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Abstract 

We previously developed a fully automated spherical aberration compensation microscope system, Deep-C, to obtain 
spherical aberration-free images, but the contrast-based algorithm (Peak-C) may limit applications for low signal-to-
noise ratio images. Herein we propose a new spatial frequency-based algorithm called Peak-F and compared its 
performance to Peak-C. Unlike Peak-C, Peak-F is robust to any noise level since it is independent of the dynamic 
range of the images, and it does not suffer from image saturation. Finally, Peak-F was implemented in a two-photon 
microscope to observe living aged and young mouse brains. Consequently, the average refractive index of brain tissue 
was higher in old mice than in young mice. The Peak-F algorithm determines high-resolution microscopic images 
stably and robustly. 

 

Introduction 

Optical errors often hamper high-resolution optical imaging of biological samples. Such errors are due to 
biochemical components such as water, proteins, and lipids as well as physical properties such as anisotropy 
and the refractive index (RI) of the biological tissue. Additionally, induced tissue scattering limits image 
acquisition in deeper regions or aged tissue. Among the optical errors, spherical aberrations are due to 
mismatched RIs between the immersion medium (e.g., water) and the sample, causing photons to converge into 
two different focal planes[1–5]. A correction collar, which is usually attached to the objective lens with a high 
numerical aperture, is a revolving optical mechanism to reduce the mismatch between RIs[6,7]. It adjusts the 
distance of the inner lens to correct spherical aberrations. In the case of a histological sample, for example, the 
correction collar is adjusted to "θ = 0 degrees" (indicating 0.17 μm corresponds to the thickness of the cover 
glass). However, changing the correction collar is difficult for thick samples because there is not an objective 
measurement of the necessary rotation to eliminate spherical aberrations. To obtain spherical aberration-free 
images, we developed a fully automated spherical aberration compensation microscope system called Deep-
C[8]. This system has a motorized correction collar, and the contrast of the entire image quantifies spherical 
aberrations at a given rotation angle.  

A contrast-based calculation is often used to determine the sharpness of an image to maximize its contrast value 
since a clear image has a high contrast value, whereas a blurred one has a low contrast value. For example, out-
of-focus (no focus), an optical phenomenon, occurs when multiple subjects are at different distances from the 
lens and the light passing through the lens forms images at various locations. It is impossible to have all images 
in focus on the same focal plane simultaneously. Hence, unfocused light sources produce unclear images for the 
observer. Auto-focusing involves adjusting the distance between the lens and the specimen to focus the light 
automatically[9]. To determine the optimal focal length, the Brenner gradient method is widely used to 
maximize contrast[10]. In this method, the total contrast is equal to the square of the difference in intensity 
between neighboring pixels, which is given as  

𝐹Brenner =	∑ {𝑓(𝑥, 𝑦) − 𝑓(𝑥 + 2, 𝑦)}%&'               (1) 

Although different physical phenomena cause spherical aberrations and out-of-focus, they are similar since the 
resulting light does not focus on a single point. Therefore, spherical aberrations may be corrected using a method 
to resolve blurriness in an out-of-focus image. Unfortunately, certain frequency bands cannot be evaluated by 
simply adapting the Brenner gradient to microscope images due to the mismatch between the contrast evaluation 
region and the spatial frequency of the image. We solved this problem by calculating the contrast value as the 
sum of the squared differences among 1, 2, 3, 5, and 10 neighbors. Our approach, called Peak-C, accommodates 
a wide range of spatial frequencies.  
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𝐹Peak-C =	∑ ∑ {𝑓(𝑥, 𝑦) − 𝑓(𝑥 + 𝑛, 𝑦)}%&'-       (2) 

Our previous system consisted of a motorized collection collar and Peak-C algorithm, which calculated the 
optimal rotation[8]. We demonstrated fine and quantitative two-photon images, for example, of dendritic spines 
with this system. However, testing of the Peak-C algorithm indicated that biological scattering may result in 
many false positives. Thus, applying Peak-C to low signal-to-noise ratio images such as the deep brain areas 
and aged brain tissues is challenging. 

Our research aims to understand Peak-C's susceptibility to noise and propose an alternative approach. Herein 
we propose a spatial frequency-based system, Peak-F, to find the optimum correction collar position from 
images with noise. Peak-F is a spatial-frequency bandpass filter based on a fast Fourier transform that extracts 
low-frequency boundaries from the images. This approach is based on the observation that noise appears in the 
high-frequency region. Comparing Peak-C and Peak-F reveals that Peak-F possesses a noise-resilient nature 
and is stable to other disturbances such as saturation. Furthermore, we incorporated Peak-F into a two-photon 
microscope, allowing the deep area of an aged mouse brain to be imaged. 

 

Materials and Methods 

Surgical procedures 

Benchmark images were obtained from a previous study[8]. Male and female Thy1-YFP-H(YFP-H) transgenic 
mice[11] were used. Young mice were 9-, 11-, 25-, and 25-weeks of age, while old mice were 52-, 81-, 83-, and 
91-weeks of age. Mice were housed under a 12-h:12-h light:dark cycles and raised in groups up to five. Mice 
were anesthetized with isoflurane (2%), and their body temperature was maintained at 37 °C with a heating pad 
(BWT-100 A, Bio Research Center or TR-200, Fine Science Tools) during surgery and recording. After skull 
exposure, a metal frame was attached to the skull using dental acrylic (Fuji LUTE BC, GC, Tokyo, Japan; Super 
Bond C&B, Sunmedical, Shiga, Japan). For two-photon imaging, a craniotomy (2.7-mm diameter) was made 
above the visual cortex (AP −2.0 mm, ML +2.5 mm). Then the dura mater was surgically removed. Next, the 
craniotomy was gently sealed with a thin glass coverslip (2.7 × 2.7 mm, thickness: 0.12–0.17 mm, Matsunami 
Glass, Osaka, Japan). Finally, the cranial window was secured with dental cement (Fuji LUTE BC, GC, Tokyo, 
Japan; Super Bond C&B, Sunmedical, Shiga, Japan). 

Two-photon excitation imaging 

Multi-photon laser scanning microscope (FVMPE-RS, Evident) equipped with an InSight laser system (Spectra-
Physics, 960-nm wavelength) and an Olympus objective (FV30-AC25W, NA: 1.05, working distance: 2 mm, 
immersion medium: water) was used. In Figs. 1–4, the image size is 1024 × 1024 pixels (16-bit resolution), 
while the image size in Fig. 5 is 1024 × 1024 pixels (8-bit resolution). 

Data analysis 

The acquired Fluoroview .oir file was converted into a 1024 × 1024 pixel, 8-bit grayscale bitmap image. Then 
the calculations were performed using MATLAB. 

Peak-C 

The Peak-C algorithm was calculated using the formula from the previous study[8]. 

Peak-F 1D FFT 
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Fast Fourier transforms an image one column at a time from the top as a matrix. Then it determines the optimal 
angle of the correction collar by comparing the total intensity of the extracted power spectrum from the 
frequencies ranging from 2 to 40 Hz for each correction collar position. 

Peak-F 2D FFT 

2-D fast Fourier transforms the entire image. Then it determines the optimal angle of the correction collar by 
comparing the total intensity of the extracted power spectrum from frequencies ranging from 2 to 40 Hz for 
each correction collar position. 

Adding white noise 

A 1024 × 1024 random matrix was generated using the Matlab function rand. Then multiplying the random 
matrix by σ created noise images for several intensities. The noise was reproduced by adding the benchmark 
image and the noise image created. σ was set to 256, 512, 1024, or 2048. Additionally, σ was set to 0 or as a 
control. 

Binning 

Bicubic interpolation was performed on the benchmark image. The matrix size was reshaped to 1024 × 1024 
for bin=1, 512 × 512 for bin=2, 128 × 128 for bin=4, and 64 × 64 for bin=8. 

Random shuffle 

The rows and columns of each pixel in the benchmark image were randomly placed using the function randperm. 

Adding saturation 

The mean value + the standard deviation (SD) of the luminance of the benchmark image was used as the 
threshold value. Then 500, 700, 900, or 1100 were added to the values of pixels above the threshold value. 
Afterwards, pixel values above 4095 were set to 4095. 

Implementation to two-photon microscope 

Peak-F calculations for two-photon excitation imaging were performed by modifying the FV31S-SW software 
of the FVMPE-RS TruResolution (Evident) system. Specially, the contrast calculation processing part of Peak-
C was replaced with Peak-F. The image frequency was calculated by replacing only the contrast calculation part 
of Peak-C with the image frequency calculation process of Peak-F. Image frequencies were calculated using the 
well-known Cooley-Tukey type Fast Fourier Transform method. 

 

Results 

Peak-F algorithm is robust to noise 

Peak-F was designed in two ways. One spatial frequency-based algorithm named 1D FFT was the summation 
of the 1–40 Hz power spectrum of one line of the image. For example, when the image was taken by 1024-pixel 
× 1024-pixel, the power spectrum of the first line of the image was calculated and extracted by 2–40 Hz. This 
extraction process was repeated up to the 512th pixel and summed. The other is 2D FFT, which is a 2–40 Hz 
power spectrum of the whole image. The fast Fourier transform performed band-pass filtering (see Method).  

Figure 1 explains why the chosen spectrum was 1–40 Hz. First, the noise is not negligible in the deep brain 
tissue, and we aimed to understand how noise affects the power spectrum of the spatial frequency calculated 
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from typical in vivo brain images, which were acquired by a two-photon microscope (benchmark image, see 
Method). Then we added white noise with various intensities to the benchmark image (control, Fig. 1A). 

As the noise intensity (σ_noise) increased, the effect of noise became non-negligible, especially in the high-
frequency region, and the deviation from the power spectrum obtained from the reference image increased. In 
contrast, the low-frequency component below 40 Hz was less affected by noise (Fig. 1B). Consequently, a 
calculation frequency of 2–40 Hz was used in the Peak-F algorithm because it is less susceptible to noise and 
can accommodate a wide range of noise intensities. To verify whether the proposed Peak-F can determine the 
optimal correction collar position similar to Peak-C, we prepared images in which only the correction collar 
position was changed when acquiring the reference image, applied Peak-F, and tried to detect the image with 
maximum power at 1–40 Hz. In the images acquired at 400 µm from the brain surface of the cerebral cortex of 
Thy1-YFP H-line transgenic mice, 17 benchmark images were obtained by turning the motorized correction 
collar with a Deep-C objective from –50° to 50° at 6.25° intervals (Fig. 1C). Applying the Peak-C algorithm to 
the benchmark images indicated that θ = 0 is the optimal correction collar position because the maximum 
contrast is obtained when the rotation angle of the correction collar is 0 degrees (θ = 0) (Fig. 1D, upper). 
Similarly, Peak-F was applied to the waveform vectorized in the x-axis direction from the image. The results of 
Peak-F using 1D FFT and plotting the total power at 1–40 Hz showed that the maximum power was obtained 
when the rotation angle of the correction collar was 0 degrees (θ=0) (Fig.1D, middle). Applying 2D FFT gave 
the same results. Figure 1D (lower) plots the power values for the 2–40 Hz component. 

The effect of noise is more pronounced after the image's spatial frequency of 40 Hz (Fig. 1B). Therefore, we 
expect that Peak-F can stably determine the optimal correction collar position even in noise-added images. Next, 
we compared the abilities of Peak-C and Peak-F to detect the optimal correction ring position when the noise 
intensity was varied using the benchmark image created in Fig.1A with artificially added white noise (Fig. 2A). 
We determined the variation of contrast or power displacement of the images acquired at each correction ring 
position for noise intensity σ=0 and σ =2048. The difference in contrast required to detect the optimal correction 
ring position decreased as the noise intensity increased for each algorithm. However, the difference for Peak-F 
was more significant than Peak-C (Fig. 2B, SD = 0.01 vs. 0.03 vs. 0.12). An SD value less than 0.05 indicated 
that the system could not find the optimum position. Figure 2D shows the calculated SD for each noise intensity. 
The Peak-F algorithm using the two-dimensional FFT was particularly robust to noise, while the Peak-C 
algorithm was vulnerable. 

Peak-F algorithm finds the best images according to biological structures 

Next, we investigated the difference in susceptibility to noise between the algorithms. Because we hypothesized 
the difference is due to the treatment of the spatial frequency, we prepared a binned image in which the spatial 
frequency was varied while preserving the image contrast (Fig. 3A). Peak-C found the optimal correction collar 
position even with binning only eight 8 pixels together (Fig. 3B). This suggests that Peak-C only considers 
image contrast. 

As shown in Eq. (2), the Peak-C algorithm sums the contrast at each discrete spatial frequency (N = 2, 3, 5, 10, 
20) to cover a wide range of spatial frequencies. This procedure increases the calculation cost. For Peak-C, 
nearly 75% of the contribution ratios had a large N value (N = 5, 10, or 20) (Fig. 3C, upper), indicating that the 
high-spatial-frequency domain (25–100 Hz) greatly contributes to determining the optimal correction collar 
position. However, since the effect of noise was non-negligible above 50 Hz (Fig. 1B), this may be why Peak-
C is vulnerable to noise. In contrast, as the binning size increased, each N had similar contribution ratios (Fig. 
3C, lower). This result suggests that in the case of binned images, calculations using N =2, which is known as 
Brenner's equation (Eq. 1), are insufficient. Thus, the optimum spatial frequency should be chosen to reduce the 
calculation cost. However, it is usually difficult to assess the value of N. In contrast, Peak-F excluded the 
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arbitrariness in selecting the optimal frequency in the calculation of any image because the frequency domain 
includes all spatial frequencies less than 40 Hz (Fig. 3D). 

To consider the significance of the spatial-frequency distribution in biological structures, we generated a 
randomly XY-shuffled image in which the image had the same contrast but a different spatial frequency (Fig. 
3E). As expected, Peak-C detected the optimal correction collar position, even under an XY-shuffled image, 
implying that the Peak-C algorithm ignored the biological structure, but the power spectrum of the XY-shuffled 
image shows a flat distribution (Fig. 3F). Contrary to our expectation that Peak-F reflects the fine structure as 
the spatial frequency, Peak-F also found the optimum position in the XY-shuffled images because the optimum 
correction collar provides the brightest images (Fig. 3G). 

To demonstrate that the algorithm does not simply reflect the image's brightness to determine the optimal 
correction collar position, we added saturated pixels to the benchmark image by increasing the pixel gain beyond 
the threshold without altering its spatial frequency (Fig. 4A). As the number of saturated pixels increased, the 
incorrect position was identified as the optimum using the Peak-C algorithm. In contrast, the Peak-F algorithm 
accurately found the optimum correction collar position even when 0.03% of pixels were saturated (Fig. 4B). 
These results along with those for the XY-shuffled cases (Figs. 3E-G) suggest that Peak-F does not simply look 
at brightness but also recognizes biological structures in the image. 

Peak-F reveals optical characteristics of the brain tissue from noisy images 

The Peak-F algorithm is robust against noise and saturation (Figs. 1–4). Thus, we implemented Peak-F in a two-
photon microscope system to test whether it was applicable to actual in vivo imaging. We observed samples 
100, 200, 300, and 400 µm below the brain surface in both young (9-, 11-, 25-, and 25-weeks) and old (52-, 81-, 
83-, and 93-weeks) mice (Fig. 5A). As expected, the deep area of old mice looked noisy, which may reflect the 
optical characteristics of the tissue such as RIs. We previously reported that our system can quantify RIs in any 
sample using the relationship between imaging depth and the correction collar angle[8]. Applying the Peak-F 
algorithm to detect the optimum correction collar angle in the noisy image, we calculated RIs in a deep area of 
aged mice. Figure 5B shows a relationship between the depth and optimum correction collar angle. Converting 
this relationship to RIs, we found a significant difference between young and old mice between 300–400 µm 
(Fig. 5C, 1.36 ± 3.88E-3 vs. 1.46 ± 5.99E-2, p = 0.04). 

 

Discussion  

The ability of the proposed algorithm, Peak-F, to find the optimum correction collar position was compared to 
that of Peak-C. Specifically, we verified Peak-F's performance on noise-added images (Fig. 2), binning images 
(Fig. 3), XY-random shuffled images (Fig. 3), and saturation-added images (Fig. 4). Then Peak-F was applied 
to two-photon microscopy to observe the brain of a mouse (Fig. 5). 

Previously, we used Peak-C to determine the optimal correction collar position from images[8]. However, it 
was not applicable to noisy images. In contrast, Peak-F realized highly accurate calculations even in high-noise 
images by the Fourier transform and extracted 1–40 Hz. Since this study used 1024 pixels square for about 500 
micrometers, 1–40 Hz corresponds to approximately 12.5 –500 mm. We believe that 40 Hz is sufficient to cover 
the soma size because Figs. 3 and 4 demonstrate that Peak-F reflects the fine biological structure. 

The Peak-C algorithm calculates the optimum correction collar position according to the image's contrast. 
Indeed, image processing such as noise addition, binning, and XY-random shuffling, does not affect the 
calculation. This algorithm compensates for the effect of spatial frequency in the contrast calculation by 
subtracting from multiple distant pixels (N = 2, 3, 5, 10, and 20). Because the impact of the spatial frequency 
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on the analysis accuracy remained unclear, we also analyzed the contribution of each N (Fig. 3, Supplementary 
Fig. 1-A). The benchmark image gave homogeneous contributions for all frequency components at the optimal 
correction collar position, indicating that Peak-C tends to calculate the signals and high-frequency components 
such as noise equally. Hence, Peak-C is vulnerable to noise. In contrast, the contribution of the low-frequency 
components may depend on the object's size. For example, the signal in the benchmark image contained sparse 
dendrites with about 1.5-µm diameter. In fact, in the artificially generated image with 1.5-µm diameter sparse 
bright spots, the contribution of the low-frequency component became saturated at ~20%, whereas the case of 
10-µm diameter bright spots looked like as soma. That is, the 10-µm diameter bright spots had a much larger 
contribution of the low-frequency component while that of the high-frequency component was negligible 
(Supplementary Fig. 1B). Therefore, using only the low-frequency component for contrast calculations is 
sufficient for large structures such as cell bodies. Because actual living organisms have a wide variety of large 
structures, the contrast in every frequency band must be calculated to determine the optimal contrast value. This 
is an unrealistic high-cost computation. Alternatively, Peak-F is flexible and can handle the appearance of any 
structure, including noise, while maintaining a low computation cost. 

The Peak-F algorithm uses the image frequency determined by the structure in the image for the calculation. 
Although it was hypothesized that it may not be suitable to determine the optimal image for XY-random 
shuffling, in which the shape of the power spectrum varies greatly, image brightness without a biological 
structure should contribute to the algorithm’s robustness. Peak-F chose the optimal image, which is probably 
because the image luminance determines the magnitude of power when a structure is not present. The XY 
Random Shuffle described earlier showed a structure change while maintaining brightness. We also compared 
the performance of each algorithm with saturation, in which the brightness changes while maintaining the 
structure. The Peak-C algorithm showed a weak performance, whereas the Peak-F algorithm was robust. 
Consequently, Peak-F improves the ability to make optimal image decisions for noise and saturation at a faster 
computational speed than Peak-C. 

The amount of information in neighboring pixels is large because digital cameras use reduction optics[12]. 
Therefore, the auto-focusing technique used in a digital camera employs simple subtraction between adjacent 
pixels, which is sufficient to calculate the contrast of images[9]. This procedure is known as Brenner's equation 
(Eq. 1). In contrast, microscopy employs magnifying optics, making microscopy susceptible to high-frequency 
components because the difference between neighbors is small and Brenner's equation cannot adequately 
calculate the contrast. Therefore, we invented Peak-C. Unfortunately, Peak-C was adversely impacted by noise. 
Since the biological structures are concentrated in the low-frequency band, and excluding high-frequency 
components easily separates noise and frequency bands, the Fourier transform analysis in Peak-F is suitable to 
determine the optimal correction collar position. 

The techniques used in adaptive optics can also correct spherical aberrations[13–15,2,16–20]. However, the 
optical path fluctuations must be calculated in advance since the brain tissue's RIs are unknown. For example, 
embedded fluorescent beads with a known diameter and luminance at the given depth of the brain tissue are 
necessary to calculate the optical path fluctuations. Since a biological brain's RIs may not be constant and vary 
with time and individual differences, accurate compensation requires implanting fluorescent beads in every trial, 
which is a time-consuming and invasive surgical procedure with many steps to obtain a single image. In contrast, 
our system is less invasive, and neither a high calculation cost nor additional optical devices are necessary. 
Additionally, there are no compulsory assumptions about the tissue’s RI. 

Finally, we implemented the Peak-F algorithm for two-photon imaging of living mouse brains. The brains of 
old mice showed higher RIs than those of young mice at 300–400 µm. However, the Peak-C algorithm, which 
is sensitive to noise, had difficulty determining the optimal correction collar as old brain tissue tends to show 
more scattering in deeper areas. Hence, the noise-robust Peak-F algorithm may be useful not only for high-
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resolution observations of biological tissues but also for studying the physical properties of the brain. Since the 
spherical aberrant is the mismatching of RIs between water and tissue, the Peak-F algorithm can estimate time-
series changes in RIs. In the future, our system may be applicable to indirectly visualize the water dynamics in 
living biological tissues because the composition of water and lipid in biological tissues determines RIs. 
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Figure 1 

 

Fig.1 Determination of the optimal correction collar position based on the image spatial frequency 

A. Benchmark image and its image with noise added (σ = 256, 512, 1024, and 2048) 

B. Power spectrum for σ = 256(red curve), 512(blue curve), 1024(green curve), and 2048(purple curve). The 
power spectrum for the frequency range 0 - 40 Hz is shown in the dashed square (right). The vertical axis is 
Power, the horizontal axis is frequency, and the colored area is the standard error. 

C. Objective lens position and observed area. 
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D. Variation of contrast intensity and power intensity with the angle of the correction collar. The vertical axis 
is the contrast or power intensity, and the horizontal axis is the rotation angle of the correction collar. The 
traditional method is white diamonds, FFT1 is white squares, and FFT2 is black squares. 
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Figure 2 

 

Fig.2 Peak-F algorithm is robust to noise 

A. Intensities at each of the 17 correction collar positions calculated by the Peak-C, Peak-F FFT1, and Peak-F 
FFT2 algorithms for images with noise added at σ = 256 (red), 512 (blue), 1024 (green), and 2048 (purple). 
Intensities are normalized to the maximum value. 

B. The ability to detect peaks with no noise (σ_noise = 0) and strong noise (σ_noise = 2048) was evaluated by 
the variation (standard deviation) of values at 16 locations. Peak-C is represented by a white diamond, Peak-F 
FFT2 by a white square, and Peak-F FFT2 by a black square. 

C. Trends in the value of standard deviation for each noise intensity. Peak-C is represented by a white diamond, 
Peak-F FFT2 by a white square, and Peak-F FFT2 by a black square. 
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Figure 3 
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Fig.3 Comparison of Peak-C's and Peak-F's performance on noise-added images and binning images 

A. Binning was performed on the benchmark image. 256 × 256 (bin = 2), 128 x 128 (bin = 4), 64 × 64 pixel 
(bin = 8) images were created. 

B. Intensities for each of the 17 correction collar positions calculated with the Peak-C, Peak-F FFT1, and Peak-
F FFT2 algorithms for the image A. bin = 1 is black, bin = 2 is red, bin = 4 is blue, and bin= 8 is green. The 
vertical axis is the contrast or power intensity, the horizontal axis is the rotation angle of the correction collar, 
and the intensity is normalized by the maximum value. 

C. The contribution of the Peak-C algorithm at each N when bin = 1 and bin = 8. N = 2 is black, N = 3 is red, N 
= 5 is blue, N = 10 is green, and N = 20 is purple. The vertical axis is the intensity of contrast or power, the 
horizontal axis is the correction collar rotation angle, and the intensity is normalized by the maximum value. 

D. Power spectrum of the image at bin = 1 and bin = 8. The vertical axis is power, the horizontal axis is frequency, 
and the vertical axis is normalized by the maximum value. Calculations were performed with FFT1. The graph 
of the optimal correction ring position is represented by a white square and the graph of the improper correction 
ring position by a black square. 

E. XY shuffled image. For ease of viewing, the threshold is set to the average of the actual brightness + 5 SD, 
and all pixel brightness above the threshold are set to 660. 

F. Power spectrum of the reference image and the XY shuffled image. The vertical axis is power and the 
horizontal axis is frequency, with the vertical axis normalized by the maximum value. Calculations were 
performed with FFT1. The graph of optimal correction ring positions is represented by white squares and the 
graph of inappropriate correction ring positions by black squares. 

G. The intensity of each of the 17 correction collar positions was calculated with the Peak-C (white diamond), 
Peak-F FFT1 (white square), and Peak-F FFT2 (black square) algorithms on the A image. The vertical axis is 
the contrast or power intensity, the horizontal axis is the rotation angle of the correction collar, and the intensity 
is normalized by the maximum value. 
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Figure 4 

 

Fig.4 Comparison of Peak-C's and Peak-F's performance on saturation-added images 

A. Benchmark image and its image with four levels of saturation (gain=500, 700, 900, and 1100). 

B. Intensity of each of the 17 correction ring positions calculated by the Peak-C, Peak-F FFT1, and Peak-F 
FFT2 algorithms when saturation was applied to the benchmark image. The vertical axis is the contrast or power 
intensity, the horizontal axis is the rotation angle of the correction collar, and the intensity is normalized by the 
maximum value. 
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Figure 5 

 

Fig.5 Peak-F reveals optical characteristics of the brain tissue from noisy images 

A. Images of 100, 200, 300, and 400 µm below the surface of the brain of young and old mice. 

B. Mean (solid line) and standard deviation (colored area) of the optimal angle of the correction collar for young 
and old mice. 

C. The tissue refractive index was calculated from the optimal angle of the correction collar for young and old 
mice. 300um-400um showed a significant difference between young and old mice. Tests were performed with 
Two-way ANOVA. *p < 0.05. 
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Supplementary Figure1 

 

 

Supplementary Figure1 The effect of spatial frequency in the contrast calculation by subtracting from multiple 
distant pixels N 

A. The proportion of the contribution with each N (N = 2, 3, 5, 10, and 20) for the detection of the optimum 
correction collar position in XY-random shuffled images (left) and noise-added images (right).   

B. The proportion of the contribution with each N (N = 2, 3, 5, 10, and 20) at the optimum correction collar 
position in the artificially generated image with 1.5-µm diameter sparse bright spots (left) and 10-µm diameter 
bright spots (right). 
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