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Abstract

Establishing a mapping between the emergent biological properties and network

structure has always been of great relevance in systems and synthetic biology. Adapta-

tion is one such biological property of paramount importance, which aids in regulation

in the face of environmental disturbances. In this paper, we present a nonlinear systems

theory-driven framework to identify the design principles for perfect adaptation in the

presence of large disturbances. Based on the input-output configuration of the network,

we use invariant manifold methods to deduce the condition for perfect adaptation to

constant input disturbances. Subsequently, we translate these conditions to necessary

structural requirements for adaptation in networks of small size. We then extend these

results to argue that there exist only two classes of architectures for a network of any

size that can provide local adaptation in the entire state space—namely, incoherent

feed-forward structure and negative feedback loop with buffer node. The additional

positiveness constraints further restrict the admissible set of network structures—this
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also aids in establishing the global asymptotic stability for the steady state given a con-

stant input disturbance. The entire method does not assume any explicit knowledge of

the underlying rate kinetics barring some minimal assumptions. Finally, we also dis-

cuss the infeasibility of the incoherent feed-forward structure to provide adaptation in

the presence of downstream connections. Our theoretical findings are corroborated by

detailed and extensive simulation studies. Overall, we propose a generic and novel al-

gorithm based on a nonlinear systems theory to unravel the design principles for global

adaptation.

1 Introduction

Systems biology has emerged as an important pillar of biology over the last two decades.

A key aspect of systems biology is the understanding of network structure and function—

this essentially leads to the adoption of either a conventional systems approach or a graph

network formalism. The knowledge of the constitutive units (typically represented as nodes

in a biochemical network) can be obtained from the traditional disciplines of biology. Further,

it is widely believed from increasing shreds of evidence that the network architecture for a

given phenotype remains conserved across the organism space.1,2 Therefore, given a sufficient

understanding of these constitutive units, finding the appropriate manner of interconnections

i. e. design principles for important functionalities remains an exciting area of study that

has attracted multi-disciplinary scholarship.

Adaptation, a ubiquitous mechanism in every living organism, is one such property that

has been of sustained interest in the broader community of science. Adaptation serves

a crucial role in a variety of processes ranging from bacterial chemotaxis to mammalian

homeostasis of important metabolites. Typically, adaptation involves two subsequent steps–

1) sensing the external disturbance and 2) reverting to its pre-disturbed level. Therefore,

evaluating the performance of a system vis-a-vis adaptation requires performance parameters

that cater to both the aforementioned steps. For this purpose, Ma et al (2009) proposed two
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parameters, namely sensitivity and precision.1 A perfectly adaptive system should provide

infinite precision with a non-zero but finite sensitivity. Fig. 1 provides a schematic of a

typical adaptive response and the associated formula for sensitivity and precision.

Figure 1: An example of adaptation response for stair-case/multi-step
disturbance input. From the expression shown in the figure, it is clear that precision (P)

and sensitivity (S) has to be infinite and non-zero finite respectively for each step change.

Identifying network structures capable of adaptation has attracted a lot of multi-disciplinary

attention ranging from computational sciences to mathematical systems theory, thereby giv-

ing rise to broadly three different categories of approaches.3 As the name suggests, the com-

putational screening approach involves scanning through the entire topology parameter sets.

Previously, Ma et al (2008) adopted a three-protein network and scanned through every pos-

sible topology-parameter combination with an assumption of Michaelis-Menten rate kinetics.

Interestingly, it was found that all the adapting network structures contain either a negative

feedback loop with buffer action or multiple forward paths from the disturbance-receiving

node to the output node with mutually opposite effects.1 Subsequently, Qiao et al (2019)

extended the framework to a stochastic scenario where the input disturbance was assumed

to be stochastic. Apart from identifying the adaptive structures, a pair-wise correlation
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study between the performance parameters such as sensitivity, precision, and output Signal

to Noise Ratio (SNR) was carried out to obtain network structures capable of accomplishing

the dual task of adaptation and noise filtering. It was found that for small scale-network

structures, the correlation between the output SNR and sensitivity is negative, indicating an

incompatibility between perfect adaptation and noise attenuation. However, it is possible

to achieve both qualities if the dedicated adaptation and noise filtering modules are con-

nected in series.4 Apart from the aforementioned simulation-based techniques, there exist

optimization-based algorithms that aim to find out adaptive network structures by solving

a mixed nonlinear integer programming-based optimization techniques.5

On the other hand, specific design strategies inspired by human-made systems have also

been adopted to construct adaptive biochemical networks. Most of these design rules have

been inspired by the seminar work by E. Sontag (2004) where it was argued that biological

adaptation, in essence, is a disturbance rejection problem.6 Therefore, from the celebrated

internal model principle in control theory, a system capable of rejecting a step-type dis-

turbance should contain an integrator either in its controller or plant module. Inspired by

this Briat et al (2016) proposed an integral controller-based design, namely antithetic in-

tegral controller (AIC), that can provide perfect adaptation for constant disturbances in

a stochastic setting.7 Subsequently, it was observed that the AIC-based design produces

perfect adaptation at the cost of increased variance. An additional negative feedback was

recommended over and above the one customary to the controller module to circumvent the

overshoot of variance,.8

The systems-theoretic approach begins with defining a few performance parameters char-

acteristic of biological adaptation. When mapped to the standard parameters of the under-

lying dynamical system (such as poles, zeros, gain etc.), these performance parameters give

rise to a number of abstract mathematical conditions for adaptation. Further, using al-

gebraic graph theoretic strategies, these abstract conditions are translated into structural

requirements for adaptation.3,9 Previously, it has been shown in several works that perfect
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adaptation – infinite precision and non-zero finite sensitivity translates to a zero-gain system

condition in the linear, time-invariant dynamical system.10–13 Bhattacharya et al (2018) used

these systems-theoretic conditions to provide the network structures for perfect adaption for

disturbance of small magnitude in three node networks.13 Subsequently, Araujo et al (2018)

and Wang et al (2019, 2021) adopted a graph-theoretic approach to provide the structural

requirements of perfect adaptation in the presence of small disturbances for a network of

any size.14–16 It has been argued that a network, irrespective of its size, must contain either

a balancer or an opposer module to provide perfect adaptation in the presence of step-type

deterministic disturbance of small magnitude. Further, Araujo et al conjectured that the

balancer modules should contain at least one negative feedback loop for the purpose of sta-

bility.14 Recently, Bhattacharya et al (2022) proved the conjecture and proposed additional

structural requirements to obtain the strictest necessary conditions for perfect adaptation.17

The computation screening, albeit a beneficial starting point, remains computationally

burdensome, thereby compromising on the scalability of the results. Further, the computa-

tional approaches require explicit knowledge about the rate laws for examining the structural

possibilities. Therefore, the conclusions drawn from these studies remain primarily confined

to the assumed kinetics, thereby losing out on generalizability. The rule-based or specific

design strategies circumvent both the issues but at the cost of being able to detect all the

possible structural combinations for adaptation – indicating a possible loss of exhaustivity.

On the other hand, the systems-theoretic approaches, albeit their impressive strides vis-a-vis

the scalability, generalizability, and exhaustivity, have primarily assumed the input distur-

bance to be small enough. Additionally, a few common assumptions that run through the

preceding contributions in systems-theoretic approaches are– i) the input disturbance is of

small magnitude, and ii) the underlying dynamical system is assumed to be relaxed prior to

the step-type disturbance. The assumption of the input magnitude is small enough such that

the states are not pushed into an unstable region (or beyond the domain of attraction of the

stable operating point) allowed to proceed with a linearised treatment of the problem. The
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second assumption translates to the requirement that the interval between two subsequent

input step-type disturbances is larger than the system’s settling time. None of the afore-

mentioned assumptions can be ensured in reality. On the other hand, the real-life network

structures that have been obtained through experiments not only form a small subset of

ones derived via the linearised treatment but also are capable of regulating the output for an

astonishingly wide range of input disturbances.18,19 Although there have been several inter-

esting discussions about the scale or translation-invariance of biological networks that have

proposed novel insights into building a nonlinear systems-driven framework for disturbance

rejection extending it to structural requirements remains an open task.20,21

In this work, we present a nonlinear systems theory-driven framework to identify the

design principles for global, perfect adaptation in the presence of deterministic disturbance

of arbitrary magnitude (GPAD). The adaptation capability in the global sense (anywhere in

the state space) relaxes the assumptions mentioned above in the linearised treatment. Fur-

ther, the nonlinear treatment renders the imposition of practical constraints on the system’s

treatment of biological adaptation possible. For instance, since all the states are considered

as the concentration of the biological species such as proteins, genes it is customary for the

resulting dynamical system to be positive,22 a condition that can not be accommodated in

a linearized system’s framework. To check the veracity of the framework, we first use the

conditions inspired by nonlinear systems theory to obtain the topologies for perfect adap-

tation in a localized sense. Conceivably, the resultant network structures obtained for local

analysis coincides with the structural predictions obtained using a linearised analysis. Hence,

the proposed method is unique in literature, for it does not entirely rely on the Jacobian

analysis of the system to provide the admissible topologies for adaptation in the presence

of small input disturbance. Further, we utilize the conditions for positiveness and global

stability to deduce the network structures that can provide perfect adaptation irrespective

of the amplitude and time interval of the step-type disturbances.

The paper is organized in the following manner. Section 2 outlines the methodology
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that is used to arrive at precise mathematical conditions for GPAD. Subsequently, section 3

entails the application of the proposed methodology in determining the structural require-

ments for GPAD in biochemical networks. Finally, section 4 attempts to put all the results

in perspective and tally the contributions vis-a-vis the existing literature.

2 Methodology

This section presents a generic framework inspired by nonlinear systems theory to deduce

the conditions for adaptation. These conditions can then be applied to biological networks

to determine candidate network structures for adaptation.

Given a biochemical network with the concentration vector of the biochemical species

denoted as x, the underlying dynamical system formulated from the reaction kinetics can be

written as

ẋ = f(x,u) (1)

y(t) = h(x,u) (2)

where, u(t) is the external input species of the network. Further, the dynamics of the input

node can be expressed as

u̇ = fu(u(t)) (3)

It can be seen that (1) and (3) together form a triangular dynamical system. According to

the stability theorems on triangular systems,23 the system of the form

u̇ = fu(u), ẋ = f(x,u)

is Lyapunov stable at the origin if and only if u(t) is Lyapunov stable and x has autonomous
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asymptotically stable dynamics around the origin.

2.1 Assumptions

Here we list out important assumptions on the network dynamics, which shall be valid

throughout the text unless specified otherwise.

1. For an N−node protein system with concentrations x′
is (i = 1, 2, · · · , n) the dynamics

of the concentration of kth protein is assumed to be of the form

ẋk =
N∑
j=1

fkj(xk, xj) (4)

2. The flow associated with (4) satisfies semi-group property and Lipschitz continuous

with respect to the states.

3. The system of differential equations constructs a well-posed system.

4. If i ̸= j then for a given xi, |fi,j(xi, xj)| is class K function with respect to xj i. e.

fi,j = 0 at xj = 0 and monotonic function of xj in the closed interval (0, xjmax).

5. |fi,j(xi, xj)| is monotonically decreasing with respect to xi in the event of activation

and increasing for repression.

6. In the case of activation, |fi,j(xi, xj)| = 0 when xi = ximax and argmin
xi

fi,j(xi, xj) =

ximin . Similarly, in the case of repression, |fi,j(xi, xj)| = 0 when xi = ximin and

argmax
xi

|fi,j(xi, xj)| = ximax

7. The input disturbance (Denote it as v) is only connected to one protein (denote it

as x1), and the effect is mediated through inter-protein connections. Further, the

connection is reflected in the following way.

ẋ1 = f1(x) + f1v(x1)v
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These assumptions aid in guaranteeing stability and perfect output regulation for a wide

range of biologically relevant rate dynamics.

2.2 Conditions for perfect adaptation

In this subsection, we derive the main conditions for any biochemical network to produce

the perfect adaptation for bounded input with zero dynamics.

Consider a biochemical network with N proteins. Without any loss of generality, let us

denote the concentration of the input-receiving node as x1. Further, the output is measured

as the concentration of the kth node. Given concentration vector x ∈ RN as state variables

and v as the disturbance input, the underlying dynamics of the network can be written as

v̇ = fv(v) (5)

ẋ = f(x) + fv(x)v (6)

y(t) = eTk x (7)

where, ek ∈ RN is the unit vector in the direction of xk and given,

∂fv(v)

∂v

∣∣∣∣∗
v

= 0 (8)

As discussed earlier, for perfect adaptation, the required non-zero, finite sensitivity can be

guaranteed if the system is controllable by the disturbance input v i. e. it should satisfy the

following condition

D := span

{
f , fv, [f , fv], [f , [f , fv]], [fv, [f , fv]] · · ·

}
= RN (9)

where, [t,p] refers to the Lie brackets between two vectors t and p in the tangent space of

the manifold the state space evolves on.24

Similarly, the infinite precision condition can be perceived as the invariance of the steady
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state level of the output with respect to the disturbance input. Therefore, perfect adaptation

can be guaranteed if there exists a steady state (v∗,x∗(v)) in RN+1 such that

fv(v
∗) = 0 (10)

f(x(v∗)) + fv(x(v
∗), v∗) = 0 (11)

and, xk(v
∗) = k0 (constant) (12)

Further, the steady state must be Lyapunov stable for perfect adaptation to non-trivial

initial conditions. For this purpose, we adopted a two-step procedure where in the first step,

we guarantee the local stability of the system by verifying whether the Jacobian matrix at

a particular steady state is stable. If yes, subsequently, we investigate whether there exists

a compact, positive invariant set (Ω) containing only the concerned steady state. For this

purpose, we use Nagumo’s theorem (1946),25 which provides the necessary methodology to

check whether a given set is positive invariant.

Nagumo’s Theorem (1943) 1. Assume the dynamical system in (1) has a unique solution

for a constant u. Consider the set C : x ∈ RN , Ci(x) ≤ b where, Ci(x) and b are smooth

functions of x such that ∆Ci(x) ̸= 0 ∀x ∈ ∂C and constant column vector respectively.

Further, if the set containing the active constraints is only non-empty on the boundary, then

the closed set C is positive invariant with respect to (1) if and only if

∆Ci(x)f(x, u) ≤ 0, ∀x ∈ ∂C and i ∈ A(x)

where, A(x) is the set of active constraints at the boundary of C.

Finally, using a Lyapunov function (V ) in Ω we show that for adaptation capable networks

V̇ (x) ≤ 0, ∀x ∈ Ω, the equality holds only at x = x̄(v), where x̄(v) is the isolated unique

steady state of (6). Therefore, from LaSalle’s invariance principle, we conclude x̄(d) is a

globally asymptotically stable steady state for a given disturbance level.
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Interestingly, it can be seen that the scenario of perfect adaptation in the neighborhood

of the steady state i. e. infinitesimal adaptation, as termed by16 satisfies the premise of

the celebrated central manifold theorem (CMT).26 In that case, Eq. 7-9 serves as the CMT

equations, which can be formulated as the conditions for perfect infinitesimal adaptation

and the localized stability requirement.

Figure 2: Workflow of the proposed methodology. Any given protein network is first
linearized, and the conditions on the A matrix are investigated to ultimately derive admis-
sible motifs for the desired functionality.

3 Results

We use this section to present the novel insights gained by applying the proposed methodol-

ogy in Figure 2 on the biochemical networks. The nodes characterize a biochemical network

as the biochemical species and the edges as the interactions. Further, as defined in the

preceding chapters, each edge in the network can be of two types– activation or repression

leading to the emergence of many structural possibilities. Although the question of estab-

lishing global stability for biochemical networks has been attempted in considerable detail,

the approach has been limited to either a mass-action or synergy kinetics27 or a particular
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type of dynamics that assumes a radial unboundedness of the rate kinetics for a particular

state.28 Therefore, the present intervention attempts to close the stability analysis by focus-

ing explicitly on the networks with rational rate functions, including Michaelis-Menten or

Hill kinetics and their variants.

We begin with deriving network structures that can adapt perfectly to an input distur-

bance of small magnitude. Additionally, we assume that two subsequent step-type distur-

bances are further than the settling time of the dynamical system. To this purpose, we adopt

a bottoms-up approach wherein we first attempt to find the minimal motifs (both nodes and

edges) that can perform perfect adaptation.

3.1 Two node networks

As can be inferred from the figure, adaptation is a non-monotonic response. Therefore, the

possibility of achieving perfect adaptation from a single-node network (single-state system)

can be safely ruled out. The immediate scenario of the two-node network can be examined.

Proposition 1. A 2-node network can perfectly adapt to constant disturbance if and only if

it contains negative feedback and a buffer action at the non-input-receiving state.

Proof. We shall prove it through contradiction. We first start with a two-node network

where the concentration of the input-receiving node (A) is denoted as x1(t) and the same

for the other node (C) is x2(t). Given x2(t) is the output node, the corresponding dynamical

system can be written as

v̇ = fv(v)

ẋ1 = f11(x1, x1) + f12(x1, x2) + f1v(x1, v)

ẋ2 = f21(x2, x1) + f22(x2, x2)

y(t) = x2(t)

12
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Since the present work focuses on constant (step or staircase type) disturbances, we shall

limit our discussion to the case fv(v) = 0.

f11(x1(v), x1(v)) + f12(x1(v), x2(v)) + f1v(x1(v), v) = 0 (13)

f21(x2(v), x1(v)) + f22(x2(v), x2(v)) = 0 (14)

Again, according to the condition in (12), replacing the output state x2(v) with a constant

(k0) we obtain

f11(x1(v), x1(v)) + f12(x1(v), k0) + f1v(x1(v), v) = 0 (15)

f21(k0, x1(v)) + f22(k0, k0) = 0 (16)

=⇒ x1(v) = g(k0) (17)

=⇒ k0 = ζ(v) (Contradiction) (18)

The trivial scenario of feed-forward structure can be safely ruled out as it can be easily shown

similarly that the steady-state, in this case, is dependent on the disturbance input.

As it can be inferred from (15) the only way to satisfy (11) and (12) is not to have any

edge from the input-receiving node (x1) to the output node (x2). However, it can be shown

(Supporting information) that this shall render the system uncontrollable, failing to satisfy

the condition 9 for perfect adaptation. Therefore, it can be concluded that a two-node

network with an output node different from the input-receiving node can not produce the

adaptation.

Interestingly, if x1 is considered as the output node i. e. x1(v) = k1 (constant), the
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infinite precision condition for adaptation can be written as

f11(k1, k1) + f12(k1, x2(v)) + f1v(k1, v) = 0 (19)

=⇒ x2(v) = g1(v) (20)

f21(g1(v), k1) + f22(g1(v), g1(v)) = 0 (21)

Equation (21) can only be achieved if f2 is made independent of x2, which is possible for a

class of rate kinetics prevalent in biochemical systems. Further, the corresponding condition

for local stability requires the system matrix for the linearised system is Hurwitz. It can be

shown that (refer to supporting information) this is possible if node 1 (x1) and node 2 (x2)

engage in a negative cycle.

3.2 Three node networks

The two-node networks, as discussed before, can only provide perfect adaptation when the

input-receiving node is considered the output. To circumvent this problem, we conceived a

controller node (B) with the following strategy

ẋ3 = f3,1(x3, x1) + f3,2(x3, x2) + f3,3(x3, x3) (22)

u = x3 (23)

In the case of the minimal network (not more than three edges), we consider that the

controller receives the information about the manipulated state through a single reaction

and actuates the control signal through another chemical reaction. Therefore, they can be

four such elementary network structures possible.

Proposition 2. A three-node network can provide local, perfect adaptation if it contains a

negative feedback loop that engages a controller node acting as a buffer.

Proof. Similar to the proof for Proposition 1
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At this juncture, a three-node network can also have a feed-forward structure. We inves-

tigate the scenario via the following proposition.

Proposition 3. Three-node feed-forward network structures can provide local, perfect adap-

tation if and only if multiple forward paths exist from the input-receiving to the output node

with mutually opposite effects.

Proof. For possible scenario where, A → B, B → C, A → C, the adaptation conditions (in

accordance with (11) and (12)) can be written as

f11(x1(v), x1(v)) + f1v(x1(v), v) = 0

=⇒ x1(v) = g1(v)

f21(k0, x1(v)) + f22(k0, x2(v)) + f23(k0, x3(v)) = 0

f31(x3(v), k0) + f33(x3(v), x3(v)) = 0

=⇒ x3(v) = g3(x1(v))

Let the change in the disturbance level is v1 to v2. Denote the resultant change in fij be

∆fij. The modified condition for adaptation can be written as

∆f23(∆x3) + ∆f21(x1,∆x1) = 0 (24)

=⇒ ∆f23 ◦∆g3(x1,∆x1) + ∆f21(x1,∆x1) = 0 (25)

Due to the class K nature of |fij| with respect to xj, x1, for this structure, possesses a

monotonic relationship with v. Therefore, if ∆v := v2− v1 > 0 =⇒ ∆ ≥ 0 =⇒ ∆|f21| > 0

owing to the class K nature of f21. Therefore, the only way to satisfy equation (25) is to

have a mutual opposition between the edge from A to C and the forward path A → B → C.

Fig. 3 responds to a locally adaptive module that possesses multiple forward paths with

mutually opposite effects on the output node.

It is to be observed that in the first three scenarios, the final network structure contains
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Figure 3: Validates the claims made in Propositions 2 and 3. The relaxed networks provide
a perfectly adaptive response in the presence of an external input disturbance of small
amplitude. Similar responses can also be obtained from the linearised analysis, which, in
this case, remains valid due to small input perturbation.

negative feedback, along with the controller dynamics being independent of the present

concentration of the controller species. This class of network structures is termed as negative

feedback loop with buffer node (NFBLB). Unlike the NFBLB, the end structures in the

fourth scenario entail two mutually opposing forward paths from the input to the output

node, which is termed as the incoherent feed-forward with proportional node (IFFLP).

3.3 General structural requirements for perfect, non-infinitesimal

adaptation

The analysis of two and three-node networks in the preceding subsections provides only

the minimal networks acceptable for perfect adaptation in a localized sense. At the same

time, these results provide a solid foundation to generalize the structural recommendations

to networks of any size.
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Theorem 1. For a network with N−nodes, it requires at least N−edges to provide local,

perfect adaptation.

Proof. Consider an N−node network with the concentration of each node species being

the state variable. Without any loss of generality, let us denote the concentration of the

input-receiving node as x1(t).

We shall attempt to prove this by contradiction. It is trivial that an N−node network is

structurally controllable only if it contains ≥ N−1 links.29 The resultant network structure,

in this case, can not contain any loops to ensure structural controllability. Further, each node

must be connected to the input-receiving node by one forward link. Therefore, the resultant

graph shall always be isomorphic to a hub and spoke network, with the hub being the input-

receiving node. Furthermore, there exists no path between the nodes of two different spokes.

Suppose the output node is situate at the kth spot of pth spoke. Therefore, the perfect

adaptation condition for the nodes in that branch.

v̇ = 0 (26)

ẋ1

ẋ2

...

ẋk

ẋk+1

...


x=x∗

=



f11(x1) + f1v(x1, v)

f21(x2, x1) + f22(x2)

...

fkk−1(xk, xk−1) + fkk(xk)

fk+1k(xk+1xk) + fk+1k+1(xk+1)

...


x=x∗

= 0 (27)

Further, putting x∗
k = k0 (constant) for infinite precision, we obtain from Eq. (27) x∗

k = k0

=⇒ x1 = k1 =⇒ v = f(k1) = k2 where k0, k1 and k2 are constants – This contradicts the

assumption that v is external. Therefore a network with N nodes requires at least N edges

to perform global, perfect adaptation.

Biochemical networks can be divided into two groups, namely, i) feed-forward network
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and ii) networks with loops. Our framework investigates these two categories of networks

individually to deduce the specific signature connections for perfect adaptation.

Theorem 2. An N-node controllable (by the input-receiving node) network without any loops

performs perfect adaptation if there are multiple forward paths from the input-receiving node

to the output node and at least a pair of them have mutually opposite effects on the output

node.

Proof. Given an N -node feed-forward network, the external input is connected to the node

x1(t). The maximum number of nodes x1(t) can influence is N −1. It is to be noted that for

structural controllability, there exists at least one forward path from x1 to every other node

in the network. Hence, there is no incoming edge possible at x1 in a feed-forward network.

Let us consider the set N1 (K(N ) = k1, where K refers to cardinality) consists of all

the nodes that contain an incoming edge from the node x1. These nodes are connected to

the downstream networks. We define the reachable set Rj at a node xj as the set of all

nodes with an incoming edge from xj. Further, Fj contains all the forward paths from x1 to

xj. For instance, if a three-node network contains two forward paths from x1 to x3 such as

x1 → x2 → x3 and x1 → x3 then

F3 = {(x1, x2), (x1)}

For a feed-forward network without any loops, it can be proved (Supporting information)

using steps similar to Theorem 1 that nodes that have only a single incoming path from

node x1 (hence the input disturbance) can not produce the perfect adaptation. Therefore, a

given node xj should be considered for adaptation if

K

(
Fj

)
≥ 1 (28)

This is only possible if xj is a common member of the reachable sets of at least two nodes
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(denote, xi and xk) provided the ordered set (xi, xj) or (xj, xi) does not belong to any of the

sets in Fj. Evidently, the consideration of two nodes is without any loss of generality.

Suppose the node xj satisfies (28) i. e. there are multiple forward paths from x1 to xj.

Further, since the network is structurally controllable from x1, there exists a break-away

node (xba) from which two path diverges. Therefore, the dynamics of xp and xq can be

expressed as two functions gp(xba) and gq(xba) respectively. Then the adaptation equation

for the output node xk can be written as

ẋk

∣∣∣∣
x∗

= 0 =

K(Fk)∑
i=1

fFki
(x1(v), k0)− fk,k(k0)

Where, fFki
is the contribution of the ith forward path in Fk to the dynamics of xk, k0 is the

constant steady-state concentration of xk. Therefore, for a step change in the disturbance

k(FK)∑
i=1

∆fFki
(∆x1(v), k0) = 0 (29)

(29) can only be satisfied if there exists at least a pair of elements in {fFki
} ∀ i = 1(i)K(Fk)

has opposite signs. Let us consider without any loss of generality that contribution of Fp

and Fq– the paths consisting of nodes xp and xq respectively have opposing effects in the

dynamics of xk – This can only happen if the cumulative signs of these two paths after xba

are opposite to each other, implying the presence of incoherency.

Theorem 2 provides the vital requirements for perfect adaptation in a feed-forward net-

work. As a next step, we shall investigate the scenario of loop networks wherein we shall

attempt to provide a set of structural conditions that can be safely eliminated from the set

of admissible network structures for perfect adaptation.

Theorem 3. An N-node single-loop, controllable network without incoherent feed-forward

paths can not provide perfect adaptation if the loop contains an edge from the output to the

input-receiving node.
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Proof. Consider an N -node network G with a single loop (Lp) involving Np number of nodes,

including the input-receiving node. The controllability condition guarantees at least one path

from x1 to every other node in the network. Suppose, there exists an edge from any node

xl ∈ N(G)\N(Lp) (where N(G) returns the node set of the network) to xp ∈ N(Lp). It is to

note here since xp ∈ N(Lp), there exists a path from xp to x1 – This implies the existence

of a loop other than Lp involving the forward path from x1 to xl and xl to xp and xp to x1

thereby violating the condition of a single loop.

Since there exists only one loop and no upstream connection from the non-loop nodes to

the nodes of Lp, it is possible to show through constructive proof (Supporting information)

that the resulting dynamics of the Lp can be expressed as

v̇ = 0 (30)

ẋ1

ẋ2

...

ẋk
...


x=x∗

=



f11(x1) + f1v(x1, v) + f1k(x1, xk)

f21(x2, x1) + f22(x2)

...

fkk−1(xk, xk−1) + fkk(xk)


x=x∗

= 0 (31)

Putting the infinite precision condition x∗
k = k0 on equation 31 and applying the assumption

that fxi,xj
is a class-K function of xj.

x∗
k−1 = g(k0) =⇒ x∗

1 = h(k0) = Constant (32)

It can be observed that for (31) and (32) to be consistent if and only if the external

disturbance level v is kept constant, which defies the entire purpose of adaptation. Therefore

this has to be treated as a contradiction.

It is to be noted that, although Theorem 3 suggests the presence of only one loop, the

main result works even if there exist multiple loops involving only those nodes that do not

figure in Lp. Further, even in the case of multiple loops with an edge from the output to the
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input node, it can be shown that the network structure fails to provide perfect adaptation

(Supporting information).

From Theorem 1, it is only appropriate to consider networks with at least N edges. Sim-

ilarly, Theorem 3 also eliminates the set of network structures where all the loops include an

edge from the output to the input-receiving node. Further, Theorem 2 excludes the coherent

feed-forward networks from the set of admissible topologies for perfect adaptation. There-

fore, we shall only investigate those network structures that pass the checkpoints proposed

in Theorems 1, 2, and 3.

Remark 1. As demonstrated in the foregoing sections, for an N-node network to provide

perfect adaptation, it has to provide infinite precision ( (11) and (12)) along with non-zero

sensitivity ( (9)). It is to be observed that (11) is a system of N equations. From our analysis

of two and three-node networks, we have seen a particular equation in the system of equations

in (11) that guarantees the constant steady-state value of the output state. We shall denote

this equation as the invariance equation. Suppose there exists a particular node xc in the

network such that the following relation holds

xc ∈ Fki∀i = 1(i)k(Fk)

where, Fk contains all the forward paths from the input-receiving node to the output node.

Further, xc is the immediate node before xp for every forward path in Fk. In this scenario, it

can be shown that xp inherits the response of xc in the context of adaptation, provided there

is no loop between xc and xk. Therefore, the structural requirements that guarantee perfect

adaptation for xc act as a sufficient condition for the same for xp.

Remark 2. Further, the invariance equation can be situated either in the equation concerning

the output node xk (or xc if it exists) or any other node. As the next step, we shall investigate

both these two cases separately.

In the first scenario, the dynamics of the output node or xc (if it exists) can be written
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as

ẋk =
k∑

i=1

fxkxFi
(xk, xFi)− fk,k(xk)

where, k refers to the incoming degree of xk and xFi is the immediate node before xk for the

forward path Fki.

According to the assumption, fxp,xFi
are class K function of xFi, the possibility of making

it independent of xFi can be safely eliminated. Therefore, the only way the equation corre-

sponding ẋp can become the invariant equation is if, for a change from v1 to v + ∆v, the

following condition holds true

k∑
i=1

fxpxFi
(xFi(v +∆v))−

k∑
i=1

fxpxFi
(xFi(v)) = 0 (33)

It can be proved that due to the class K nature of fi,j(.) the steady state solution x∗(v) to (6) is

a monotone function of v. Therefore, ∆v ≥ 0 =⇒ |fxpxFi
(xFi(v+∆v))−fxpxFi

(xFi(v)| > 0.

Therefore (33) can only be satisfied if at least one forward path exists whose effect on the

dynamics of xk is opposite to that of the rest of the forward paths. It is to be observed that

none of the following conclusions change when xc exists. In that case, instead of focusing on

the equation concerning ẋk, the dynamics of xc should be considered.

Remark 3. In the second case, we examine the scenario where the invariance equation

is neither the output state equation nor the one corresponding to xc. We assume that the

invariance equation is situated at the state equation of a node xb (xb ̸= xc, xb ̸= xk). It

is evident that since the invariance equation ensures the constant steady-state value of the

output state xk has a path from the output node xk. Therefore, the dynamics equation for xb

can be written as

ẋb =

kb∑
i=1

fxbxFbi
(xb, xFbi

)− fb,b(xb) (34)
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It is to be noted that at least one of {Fbi} has a path from the output node xk. Considering

the class K nature of fxb,xFbi
, the only way (34) serves as the invariance equation at the

steady state rendering x∗
k = k0 is if ẋb becomes independent of xb. In this manner, the second

term of (34) remains a constant, and the first term is independent of xb, thereby making

xk = k0 a possibility.

Further, subsequent analysis of the local stability of the system reveals that the node

xb has to engage in a negative feedback loop for stability (supporting information). The

reason, intuitively, can be expressed in the following way. Since, fxb
is independent of xb, the

corresponding xth
b row in the system matrix (A) of the linearised system has zero diagonal

component. Therefore, from combinatorial matrix theory, the elements of the x textth
b row

have to figure in the determinant expression within at least one loop expression.17

3.4 Towards global stability

Remarks 1-3 establish the fact the structural recommendations obtained by Theorems 2,

and 3 serve as necessary structural conditions for local, perfect adaptation in a network of

any size. Since, by definition, global stability implies local (linearized) stability around the

steady state, the structural conditions hitherto derived serve as the superset for the structures

capable of global, perfect adaptation. Therefore, we begin the search for admissible network

structures within the structural possibilities of incoherent feed-forward structure and negative

feedback with buffer action.

It is to be noted that the states considered in the entire formalism refer to the concentra-

tion of the biochemical species (eg. genes or proteins). Therefore, the resulting dynamical

systems underlying the biochemical networks are positive systems.

3.4.1 Global adaptation for IFF

Claim 1. An incoherent feed-forward topology controllable by the input-receiving node with

dynamics satisfying Assumptions (a)-(g) provides perfect adaptation for arbitrarily large in-
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put disturbance if each node has at least one incoming activation link.

Proof. Let us first define the biologically feasible range of the steady state Ω ⊂ RN+ :=

xmin ≤ x ≤ xmax. We shall approach the proof in two steps: at first, we prove the uniqueness

of the steady state in Ω and further prove the stability of that steady state to establish the

stability of the steady state for any initial condition in Ω.

Uniqueness of the steady state : Without any generality loss, the input-receiving

node’s concentration is represented by the state x1. Given a feed-forward structure (with

no cycle) with the network being structurally controllable by the input-receiving node, the

dynamics can be expressed as a triangular system

ẋ1 = f1v(x1, v)− f11(x1) (35)

ẋj =

j−1∑
k=1

fxj ,xk
− fjj(xj) (36)

where, the rate function fii(xi) refers to the self-degradation rate of each species. At the

steady state,

0 = f1,v(x1, v)− f11(x1)

0 =

j−1∑
k=1

fxj ,xk
− fjj(xj)

It is to be noted here that according to the statement of the claim, the rate function f1,v

describes an activation reaction of x1 by the disturbance input v. From Assumption f, for a

given disturbance level v, |f1,v| and f11 are monotonically decreasing and increasing functions

of x1 respectively. Further, at a non-zero positive disturbance level, f1,v(x1, v) > f11(x1) =

0

∣∣∣∣
x1=x1min

and f11(x1) > f1,v(x1, v) = 0

∣∣∣∣
x1=x1max

. This guarantees the existence of single,

isolated steady-state x∗
1 in the region [x1min , x1max ]. Similarly, the other states also attain a

unique, isolated solution at the steady state. This concludes the first part of the proof.

Stability : As it can be seen from Equations 35 and 36, at xi = ximax fi < 0, ∀x ∈ Ω

24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.05.519118doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.519118
http://creativecommons.org/licenses/by-nc/4.0/


Figure 4: Encapsulates the conclusion drawn from Claim 1. Although the input disturbance
is moved from an initial value of 0.3 to 600. The five-node, opposer module retains its
adaptive property. Further, as depicted in the claim, all the states lie within Ω := 0 ≤ x ≤ 1.
The initial stiffness of the output state is due to the non-steady state initial condition.

implying ∆(xi − ximax)f(x, v) < 0

∣∣∣∣
ximax

due to the customary presence of self-degradation

activities and optional repression at each node. Further, due to the presence of at least one

activating effect present at each node, xi = ximin fi > 0. ∀x ∈ Ω, =⇒ ∆(ximin −xi)f(x, v) <

0

∣∣∣∣
ximin

. Therefore, from Nagummo’s theorem on positive invariance, we conclude that the

compact set Ω is positive invariant in the current setting of feed-forward networks. Due to

the feed-forward module’s triangular structure, the system’s Jacobian obtained around the

only steady state x∗ ∈ Ω adopts a lower triangular structure. Due to the customary presence

of the self-degradation and Assumptions a, f, and g, the diagonals of the Jacobian are always

negative anywhere in Ω rendering the only steady state x∗ ∈ Ω locally stable. Ω is the

biggest positive invariant set for the dynamical system containing a single singularity x∗.

Further, x∗ is locally stable. Therefore, all the trajectories starting at Ω have to converge to

x∗ for the well-posed dynamical system, thereby making the system asymptotically stable in

Ω. This concludes the proof. Fig. 4 demonstrates this result via a five-node opposer module
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in the presence of disturbance undergoing large amplitude swings. Fig. 5 lays out different

feed-forward structures and elucidates this theoretical result.

Figure 5: Different feed-forward structures relevant for perfect adaptation. The first two
structures from the left fail to satisfy the opposing action, thereby failing to provide adapta-
tion. On the other hand, the intermediate network structures, albeit satisfying the structural
condition for local, perfect adaptation, can not guarantee a unique and single steady state,
thereby failing to guarantee global properties. On the other hand, the right-most network
structure guarantees a unique, stable, steady state in Ω, thereby exhibiting global adaptive
properties. The node in Brown represents the controller node. The edges in Green and Red
refer to activation and repression, respectively.

3.4.2 Global adaptation for NFB

Claim 2. An N−node network structure containing a single feedback loop with an odd num-

ber of repressive edges and the underlying open-loop dynamics satisfying Assumptions (a)-(g)

provides perfect adaptation for arbitrary large disturbance input if the following conditions

are satisfied

1. Each node contains at least one incoming activation link.

2. The buffer control action is exerted directly on the input-receiving node.

3. |fkk(xK)| > |fk+1,K(xk+1, xk)|, xk > x∗
k, xk+1 > x∗

k+1 and

|fkk(xK)| < |fk+1,K(xk+1, xk)|, xk < x∗
k, xk+1 < x∗

k+1
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Proof. Similar to IFF, we also attempt to establish the claim in two steps.

Uniqueness of the steady state : Without any loss of generality, i) let us denote the

input-receiving node concentration as x1(t) and ii) assume the loop engages all the N nodes.

Since the controller action is meditated through x1(t), the concentration of the controller

node is indexed as xN(t). Therefore, the entire network can be understood as x1(t) → x2(t)

→ x2(t) → · · · → xN(t) → x1(t). The associated dynamics can be expressed as

v̇ = 0 (37)

ẋ1 = f1v(x1, v) + f1N(x1, xN)− f11(x1) (38)

ẋj = fj,j−1(xj, xj−1)− fjj(xj) (39)

ẋN = fN,N−1(xN−1)− k (40)

It is established in Theorem 3 and Remark 3 that for negative feedback network structure,

the controller dynamics have to be independent of its concentration. Therefore, equation

(40) contains no term containing xN in its right-hand side. At steady state, since fN,N−1 is a

monotonically increasing function of xN−1, the solution to Equation (40) is unique. Further,

due to the customary presence of at least one incoming, activating edge at each node, the

unique solution x∗
N−1 renders a unique steady state solution x∗ ∈ RN+ through the preceding

equations. This satisfies the uniqueness criterion.

Stability : The dynamical system in Equations (37) – (40) assumes a triangular form

with respect to (v,x). From Vidyasagar’s theorem on triangular system,30 the Lyapunov

stability of the interconnected system can be established if we can establish the asymptotic

stability of the autonomous dynamical system described in Equations (38) – (40). For this

purpose, we propose the following Lyapunov functional

V (x) =
N∑
k=1

||x̃||1 (41)
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where, x̃ := x− x∗. Further, since there exists a state-dependent degradation at every node

from x2 to xN−1, the corresponding contribution of the dynamics (f2 – fN−1) to the time

derivative V̇ contains at least one negative sign. Further, in the special scenario of x̃ > 0 and

x̃ < 0, the contribution of fN to V̇ is positive. However, since f1N is a repressing edge, the

positive contribution of fN is nullified by the same of f1 rendering the overall expression V̇

negative (note that x∗
N in the case of an autonomous system is, unique but negative) owing to

the third condition in the statement of the claim. This proves the Lyapunov stability of the

interconnected system. Fig. 7 provides the schematic of different possible adaptive balancer

modules. A simulation study for a balancer module in the presence of large disturbances is

demonstrated in Fig. 6.

Figure 6: Encapsulates the conclusion drawn from Claim 2. Although the input disturbance
is moved from an initial value of 0.3 to 600. The five-node balancer module retains its
adaptive property. Further, as depicted in the claim, all the states lie within Ω := 0 ≤
x ≤ 1 except the controller node. It can be shown that, unlike the opposer modules, the
concentration of the controller node, the node that accomplishes the buffering action, can
not be contained within [0, 1].
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Figure 7: Different feed-forward structures relevant for perfect adaptation. The first two
structures from the left fail to satisfy the buffer action, thereby failing to provide adaptation.
On the other hand, the intermediate network structures, albeit satisfying the structural
condition for local, perfect adaptation, can not guarantee a unique and single steady state,
thereby failing to guarantee global properties. On the other hand, the right-most network
structure guarantees a unique, stable, steady state in the state space, thereby capable of
exhibiting global adaptive properties. The node in Brown represents the controller node
providing the buffer action crucial for adaptation. The edges in Green and Red refer to
activation and repression, respectively.

Remark 4. It can be seen that due to the buffer action by the controller node and the

condition (b) of Claim 2, all the N − 1 nodes of the loop (excluding the controller node)

performs perfect adaptation. In general, for any loop engaging P number of nodes, P − 1

nodes can perform perfect adaptation if and only if the controller node exerts the control

action through the input-receiving node. We can further relax the first requirement of an edge

from the controller to the input node as the first K−1 nodes starting from the input-receiving

node to the one before the controller node (the K th node) can perform perfect adaptation.

3.5 Global adaptation in the presence of downstream connection

Most of the analysis in the foregoing sections assumes that the network structure is isolated

from any downstream network, which is not the case in reality. Typically, adaptation net-

works are mounted on top of big biological networks to improve the cell’s robustness against

variations in the external environment. It is, therefore, necessary to investigate the perfor-
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mance of an adaptive network in the presence of downstream connections. For this purpose,

we adopt the standard model of downstream connection known as retroactivity developed

by.31,32 In this model, the output node of the adaptive network is connected cyclically with

any of the downstream nodes. From Remark 3, it is well-known that the invariance equation

is situated at the controller node in the case of negative feedback. Therefore, the steady-state

value of the output node is decided at the steady-state equation pertaining to the controller

node itself. Therefore, the steady-state value of the output node is preserved in the presence

of a downstream connection. To expand this further, the dynamical system underlying an

NFB network (in Equations (38) – (40)) can be expressed at steady as

fN,N−1(x
∗
N−1)− k = 0 (42)

=⇒ x∗
N−1 = k1 (43)

fN−1,N−2(x
∗
N−1, x

∗
N−2)− fN−1(x

∗
N−1) = 0 (44)

=⇒ x∗
N−2 = k2 (45)

(46)

Suppose the output node is the Kth node. The (K + 1)th steady state equation can be

written as

fK+1,K(x
∗
K+1, x

∗
K)− fK+1(x

∗
K+1) = 0 (47)

=⇒ x∗
K = k̃ (x∗

K+1 is constant due to previous equation.) (48)

Therefore, if the stability of the network structure is not altered, the perfect adaptation

property of the output node of a negative feedback network with a buffer node is conserved

in the presence of a downstream network. Fig. 8 illustrates the modular nature of balancer

modules with a simulation exercise.

On the other hand, the incoherent feed-forward topology, as established in Remark 2,
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achieves perfect adaptation through the invariance equation situated at the output node (or

to another node xc in the network given the output node contains nothing other than a single

incoming path from node xc). Therefore, the invariance equation is modified if the output

node is connected to the downstream network. Let us consider an adaptation-capable, feed-

forward network with a downstream node xd and the output being the concentration of

(j + 1)th node.

v̇ = 0 (49)

ẋ1 = f1,v(x1, v)− f1,1(x1) (50)

ẋj =

j−1∑
k=1

fj,k(xj, xk)− fj,j(xj) (51)

ẋj+1 =

j∑
k=1

fj+1,k(xj, xk)− fj+1,j+1(xj+1)± fj+1,d(xj+1, xd) (52)

The condition for perfect adaptation in the isolated scenario is

∆

j∑
k=1

fj+1,k(xj, xk) = 0

where ‘∆’ refers to the change in the functional values due to the change in the disturbance

level v. Further, the condition for the same in the presence of the downstream connection

can be written as

∆fj+1,d(xj+1, xd) = 0 (53)

Equation (53) puts the baggage of adapting to the downstream state xd, showcasing the

inability of feed-forward networks to provide global, perfect adaptation in the presence of

downstream connection. However, Equation (53) can be satisfied if the steady state of xd

is kept to zero. In that case, due to the introduction of negative feedback in the otherwise

feed-forward structure, the corresponding response for xd shall be oscillatory, leading to a

31

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.05.519118doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.519118
http://creativecommons.org/licenses/by-nc/4.0/


‘negative’ value of concentration. One can find a strong parallel to this theoretical conclusion

with the computational work by33 in their study of how incoherent feed-forward loops can

perform perfect adaptation (maintain constant output levels) for a specific range of retroac-

tive strength. Fig. 8 vividly illustrates the retroactive nature of the opposer modules with

a simulation exercise.

Figure 8: A comparative study of the retroactivity property of the balancer and the opposer
modules. As it can be seen in (b) that a perfectly adaptive, 3−node opposer module loses its
adaptation capability when connected to a downstream system consisting of two nodes. On
the other hand, as shown in (c), a 3−node balancer module retains its adaptation capability
even in the presence of a two-node downstream connection. Interestingly, the output response
remains the same irrespective of the manner of the connections (positive or negative loops)
between the output node and the downstream system.

4 Discussion

The inherent nonlinearity and variety of possible rate dynamics contribute a significant

share to the complexity of the biological networks. Apart from the apparent abundance of

rate dynamics, it is well-established in the literature1,34 that the network structure plays a

governing role in determining the response of a network structure. The present study follows
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from this seminal observation and attempts to synthesize a methodology that provides novel

structural insights without possessing any explicit dependence on the particular rate kinetics.

The existing literature, including1,4,5 has focused chiefly on the computational approaches

to deduce the design principles for perfect adaptation despite the obvious scalability issue.

Further, rule-based approaches such as7,8 proposes a negative feedback-based structure that

can provide perfect adaptation. Apart from these two approaches, other theoretical in-

terventions primarily rest on the treatment of the dynamical system in the linearised do-

main13,14,16,17 – This can not portray the global picture, albeit being a sophisticated approach,

– nor can it incorporate realistic constraints that can be thought of as the vital design crite-

ria from the vantage point of the synthetic design. To circumvent this problem, the current

chapter proposed a methodology inspired by nonlinear systems theory that strives to draw

novel structural insights about biological networks that can produce perfect adaptation in a

global sense. At first, we determined the conditions for perfect adaptation using the classi-

cal performance parameters for adaptation, namely sensitivity, and precision. Contrary to

a Jacobian-based approach prevalent in the existing systems-theoretic approaches, we pro-

posed the condition for infinite precision as the existence of an error-zeroing manifold in the

state space. On the other hand, the sensitivity condition is met through a Lie-controllability

test of the dynamical system. At this point, global adaptation is indeed a stronger require-

ment than an infinitesimal adaptation for the added conditions of strict global stability and

a unique steady state.

The proposed framework has been used to study the biochemical networks. To verify the

righteousness of the algorithm, we first applied this to deduce the optimal network structures

for perfect adaptation in a localized sense. Evidently, the structural predictions obtained

are identical to the ones obtained through the Jacobian treatment of the linearised system.

Additionally, the proposed methodology can also deal with the case of singular Jacobians

using the principle of Central Manifold Theory. In that case, instead of the concentration of

a particular node, the linear combination of the node concentrations is likely to be able to
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produce an adaptive response.

The network structures obtained for local adaptation serve as the superset for the struc-

tures capable of global, perfect adaptation. Propositions 1, 2, and 3 provide the necessary

structural requirements for local, perfect adaptation in networks of small size. Subsequently,

the scope of these results is generalized using Theorems 1, 2, and 3 to establish that negative

feedback with buffer node or multiple feed-forward structures with mutually opposite effects

on the output node is the key to local, perfect adaptation in a network of any size.

Intuitively, the structural requirements for local, perfect adaptation can only serve as

the necessary conditions for global adaptive characteristics. Claim 1 establishes that ‘not

all incoherent feed-forward network can provide global adaptation.’ Only those feed-forward

structures wherein each node contains at least one activating incoming edge can provide

global (in Ω), perfect adaptation. Similarly, Claim 2 also produces such a subclass of the

networks containing a negative feedback loop with buffer action in the context of global,

perfect adaptation. It is to be noted at this juncture that the rate law assumptions (As-

sumptions (f), (g)) are only used in proving the global stability of the steady state. The

monotone nature of the rate functions (standard across the existing rate laws) is sufficient to

guarantee the uniqueness of the steady state. The curious case of synergistic or mass-action

rate laws has already been well-discussed by27,28 through the construction of a particular

Lyapunov function obtained from linear programming. Therefore, the analysis with As-

sumptions (g) and (f) brings completeness to the study of the global stability of biological

networks.

Finally, contrary to the conclusions drawn through the linear analysis, the proposed

methodology reveals the inability of the feed-forward loop to retain the global adaptive

property. The linearised analysis leads to a system of linear algebraic equations with a

trivial solution for the (linearised) downstream system. In contrast, due to the nonlinearity

of the rate functions, the actual steady-state solutions for the downstream states are likely

to be non-zero and dependent on the disturbance input, thereby resulting in the violation of
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the adaptation property of the upstream feed-forward module.

Moreover, the linearised or local analysis of the system reveals the necessary paths (with

its sign) and loops for perfect adaptation. In contrast, the practical constraints and global

stability conditions allow us to zoom in further to obtain the appropriate edge configurations

out of all the candidate loops and paths capable of local, perfect adaptation. Subsequently,

investigating the robustness of each network structure admissible for global adaptation and

obtaining appropriate structural prediction for robust, perfect, and global adaptation can be

an exciting area of further study.
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