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Abstract 

MHC-associated peptides (MAPs) bearing post-translational modifications (PTMs) have 

raised intriguing questions regarding their attractiveness for targeted therapies. Here, we 

developed a novel computational glyco-immunopeptidomics workflow that integrates the 

ultrafast glycopeptide search of MSFragger with a glycopeptide-focused false discovery rate 

(FDR) control. We performed a harmonized analysis of 8 large-scale publicly available studies 

and found that glycosylated MAPs are predominantly presented by the MHC class II.  We 

created HLA-Glyco, a resource containing over 3,400 human leukocyte antigen (HLA) class II 

N-glycopeptides from 1,049 distinct protein glycosylation sites. Our comprehensive resource 

reveals high levels of truncated glycans, conserved HLA-binding cores, and differences in 

glycosylation positional specificity between classical HLA class II allele groups. To support the 

nascent field of glyco-immunopeptidomics, we include the optimized workflow in the FragPipe 

suite and provide HLA-Glyco as a free web resource.   
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Introduction 

Protein glycosylation has been extensively studied and found to play a variety of biological 

roles, including antigen recognition, host-pathogen interactions, and immune modulation1. 

Glycosylation causes dramatic alterations in response to cancer and has been suggested as 

a potential biomarker2–5. Moreover, glycosylation could be an attractive source of tumor-

specific antigens, considering the viability of post-translational modifications (PTMs) on MHC-

associated peptides6–9 (MAPs). Critically, glycosylation has been reported to have a significant 

impact on the immunogenic properties of MAPs in terms of T-cell recognition10–12 and epitope 

generation due to interference with the proteolytic cleavage13.  

High-throughput identification of glycosylated MAPs from mass spectrometry (MS) data 

involves combining two notoriously challenging problems in computational proteomics. First, 

the proteolytic processing of MAPs requires non-enzymatic searches (i.e., non-specific 

cleavage of proteins at every peptide bond). Considering all possible cleavages of reference 

proteins results in an enormous search space of candidate sequences. Second, the non-

templated nature of the glycosylation process results in hundreds of distinct glycans that can 

be detected across the proteome14. A combinatorial explosion thus takes place when 

considering all possible non-enzymatic peptide sequences with many possible glycans. As a 

result, a non-specific glycopeptide search is not feasible with many search engines due to 

prohibitively long run times and/or insufficient sensitivity. To the best of our knowledge, very 

few glycosylation analyses of MAPs have been performed. One of the earliest successful 

identifications of glycosylated class II MAPs was made in 200515 with 2 N-linked 

glycopeptides found in an EBV-transformed human B-lymphoblastoid cell line. In 2017, 

Malaker et al. successfully identified 26 glycosites in 3 different melanoma cell lines9. Both 

studies required identification of glycopeptides by manual annotation of the spectra. More 

recently, a third effort from 2021 captured 209 unique human leukocyte antigen (HLA) II-bound 

peptide sequences from the SARS-CoV-2 virus16 using an automated glycopeptide search 

method assisted with a manual verification of all glycopeptide spectra.  
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Large-scale analysis of glycosylated MAPs requires automated methods with exceptional 

speed and accuracy to handle the enormous search space of glycosylated non-specific 

peptides. The above-mentioned challenges have been tackled by our recent developments to 

improve the search speed17 (MSFragger) and address the complexity of glycosylation18 

(MSFragger-Glyco). Building on these advances, we developed an optimized workflow for 

HLA glyco searches with a focus on optimizing the false discovery rate (FDR) control of 

glycosylated MAPs. We assembled, carefully annotated, and analyzed 8 publicly available 

immunopeptidomic datasets for N-glycosylation using our workflow and investigated the 

glycosylated MAPs binding properties. From nearly 2,000 LC-MS/MS runs, we found 3409 

class II N-glycosylated MAPs on 1049 distinct protein glycosylation sites of 677 unique 

proteins. We revealed characteristics of HLA glycopeptides, including high levels of truncated 

glycans, conserved HLA-binding cores across the 72 studied HLA class II alleles, and a 

different glycosylation positional specificity between the classical allele groups. 

Induced expression and antigen-presentation by the MHC class II on tumor cells is 

increasingly being recognized as a mediator of anti-tumor immunity and neoantigen efficacy19–

24. Our results, made readily accessible as a free web resource, significantly expand our 

understanding of glyco-MAPs in cancer; and together with our novel optimized workflow, are 

expected to further the development and discoveries in the nascent field of glyco-

immunopeptidomics. 

 

Results 

Computational glyco-immunopeptidomics workflow 

The computational workflow developed in this work for the analysis of glycosylated MAPs is 

illustrated in Fig. 1. While O-glycosylated MAPs are also of potential interest25, O-glycopeptide 

analysis typically requires electron-based activation to locate the glycosite(s) within the 
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peptide. As the vast majority of available immunopeptidomics data lacks such activation, we 

focused exclusively on N-glycosylated MAPs for this analysis. Briefly, MSFragger-Glyco 

performs N-glycosylation motif checks for the N-X-S/T consensus sequence, which serves as 

the attachment site for polysaccharides (i.e., sequon). Simultaneously, spectra are checked 

for the presence of fragmentation products of peptide-conjugated glycans (i.e., oxonium ions). 

The glycan search is only performed for peptides with a sequon and for spectra containing 

oxonium ions above a relative intensity threshold (10% in this case). A regular search is 

performed for all other spectra. Next, we use PeptideProphet26 and ProteinProphet27 within 

the Philosopher28 toolkit to model and filter false discovery rates (FDR) to 1% for peptide-

spectrum matches (PSMs), peptides, and proteins, respectively. As in previous glycopeptide 

analyses, we applied the extended mass model of PeptideProphet to simultaneously model 

the score and mass-shift distributions of the database search17. This provides a separate 

probability model for different glycan masses (i.e., mass shifts) to account for the varying 

frequencies of the different glycans18. 

Initially, we assessed the standard FDR procedures used for enzymatically digested and 

enriched glycopeptides on non-enzymatic unenriched immuno-glycopeptides. We observed 

that while 91% of the glycoPSMs corresponded to known glycosylation sites, less than half of 

the observed glycosites (46%) were previously known (Supplementary Fig. 1a). Thus, known 

sites tended to have many supporting spectra, while unknown sites had few and notably lower 

scores, likely indicating an unacceptable increase in false discoveries. Since glycoPSMs 

represent a small fraction of the identified spectra, the score thresholds used in our initial FDR 

filtering were mostly influenced by non-glycosylated peptides. As glycopeptides have a much 

larger search space, this results in an enrichment of false discoveries in the glycopeptide 

fraction when all PSMs are filtered together. To counter this, we applied a separate 

PeptideProphet probability (i.e., score) filter for glycosylated and non-glycosylated PSMs to 

control FDR in each category despite the differences in search space, using a modified version 

of Philosopher (see Methods and Supplementary Fig. 1b). We further filtered glyco-PSMs 
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by glycan q-value (q ≤ 0.05) to remove glycopeptides lacking sufficient evidence supporting 

the glycan composition assignment29 by PTM-Shepherd30. With this improved filtering method, 

the proportion of PSMs corresponding to known glycosites increased to 96%, and the 

proportion of identified glycosites corresponding to known glycoproteins increased to 95%, 

with 79% of sites previously identified in other glycoproteomic analyses (Supplementary Fig. 

1c). These stringent glycopeptide-specific filters provide effective FDR control in a challenging 

search, allowing for confident construction of the HLA glycopeptide resources. 

Large multi-tissue MHC immunopeptidome dataset 

We selected 8 immunopeptidomic studies31–38, prioritizing studies with a large amount of high-

resolution mass spectrometry data and included a variety of instruments as a means to reduce 

instrumental bias (see Methods). Based on our careful curation and annotation of these data, 

our collection of 732 different HLA class II mass spectrometry samples incorporated 90.8% of 

HLA-typed data (Fig. 2a), 80.3% of patient tissues, 16.7% of cell lines, and 2.9% of tumor-

infiltrating lymphocytes (Fig. 2b). The previously mentioned sample types covered up to 6 

different cancers (Fig. 2c) located in the brain (meningioma and glioblastoma), skin 

(melanoma), colon (colorectal), and lung (adenocarcinoma and squamous carcinoma). In 

addition, 59% of the samples are non-cancerous and come from disease-free individuals. In 

terms of HLA diversity, up to 72 HLA class II alleles of the 3 classic genes (DP, DQ, and DR) 

are covered by varying numbers of mass spectrometry samples (Fig. 2d). 

Leveraging the wealth of proteomic data, we queried the glycosites identified in our study 

against previously reported glycosylation sites in GlyGen39. PSM level information showed 

96.4% of previously reported glycosylation sites (Fig. 2e), 1.8% of glycosylation sites within 

previously reported glycosylated proteins, and 1.8% of new glycosylation sites. On the other 

hand, at the peptide level, 90% of glycopeptides mapped to previously reported glycosylation 

sites, 6.7% of glycopeptides were within previously reported glycosylated proteins, and 3.3% 

contained new glycosylation sites. A similar trend was observed at the glycosylation site level, 
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with 78.8% of previously reported glycosylation sites, 15.6% of glycosylation sites within 

previously reported glycosylated proteins, and 5.5% of new glycosylation sites. It appears that 

peptides containing previously reported glycosylation sites are abundant species, considering 

the high spectral count (Fig. 2f in gray) in comparison with the previously unreported ones 

(Fig. 2f in blue and black). We then benchmarked our findings against previous work by 

Malaker et al. 20179 on glycosylated MAPs in 3 melanoma and 1 EBV-transformed B-cell lines. 

The original manuscript reported 93 glycosylated peptides corresponding to 26 glycosylation 

sites, split between N-glycosylation (23) and O-glycosylation (3). Our workflow recovered 20 

of the 23 identified N-glycosylation sites, of which 4 did not pass the FDR filter. With a 45-fold 

increase in glycosylation sites, we identified 1033 new sites (see Fig. 2g). 

Enrichment of N-glycosylation in the class II immunopeptidome 

Several of the datasets we searched contained both HLA class I and II peptides from the same 

samples and, in one case, whole proteome data, allowing us to compare the frequency and 

characteristics of glycosylation across these categories. Fragmentation of glycopeptides by 

tandem MS (MS/MS) produces highly abundant oxonium ions resulting from the fragmentation 

of conjugated glycan(s), which can provide an estimate of the fraction of glycopeptides in a 

sample prior to a database search. To understand the abundance of glycosylation at different 

molecular levels, we compared the percentage of oxonium-containing MS/MS scans for the 4 

datasets containing multiple HLA classes (Fig. 3a). Interestingly, datasets A31 (Bassani-

Sternberg et al. 2016), B34 (Chong et al. 2020), and D37 (Forlani et al. 2021) showed, on 

average, an approximate 5-fold enrichment in potential HLA class II glycosylation events 

compared with HLA class I data. In dataset C32 (Marcu et al. 2021), the only dataset containing 

samples derived from healthy tissue, a similar proportion of oxonium-containing scans was 

observed in the HLA class II data as in the other datasets, but there were essentially no 

oxonium-containing scans in the HLA class I data. As expected, the percentage of 

glycosylated PSMs obtained from database searches of these datasets followed a similar 

trend, with 0.5 to 3% of observed PSMs glycosylated in HLA class II data versus less than 
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0.1% glycosylated in HLA class I data (datasets A, B, and C). Strikingly, glycosylated PSMs 

were also enriched approximately 7-fold in HLA class II compared with the whole proteome 

data in dataset D (Fig. 3b), a dramatic increase given the abundance of glycosylation in the 

proteome. 

We also noticed that the composition of glycans observed in the immunopeptidomic datasets 

was different from that of their proteome counterparts. (Fig. 3c). The average glycan mass 

detected in the immunopeptidome was approximately 1000 Da, which was significantly lower 

than that observed in the proteome (1400 Da average). To further explore the nature of this 

compositional discrepancy, we compared glycan types between the two groups (Fig. 3d). A  

higher percentage of truncated glycans (68%) was observed in the HLA class II 

immunopeptidome compared to the more typical high-mannose and complex/hybrid 

categories in the proteome, as noted in a previous analysis9. This trend of truncated glycans 

on HLA peptides was preserved when only glycans from the same protein were considered. 

For example, LRP1, a highly glycosylated protein, was observed with a mix of high-mannose 

and complex glycans in the proteome sample, but with a mix of truncated and high-mannose 

glycans in the HLA-II sample with almost no mature complex glycans detected (Fig. 3e). There 

was very little overlap between the glycosylated proteins and sites in each category, with only 

22.8% of HLA-II glycoproteins observed in the whole proteome data and even lower overlap 

(16.3%) when considering the specific glycosylation sites within proteins. (Fig. 3f). The whole 

proteome glyco search likely captures glycopeptides from the most abundant glycoproteins, 

as the experiment was performed without any glycopeptide enrichment, whereas the 

immunopeptide datasets presumably capture MAPs with much less dependence on overall 

protein abundance. 

Overall, the data showed a remarkable enrichment of glycosylation in HLA class II-associated 

peptides relative to HLA class I and the whole proteome, leading us to focus the remainder of 

our efforts on HLA class II-associated and glycosylated peptides.  
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Glycosylation of MAPs does not influence the HLA binding motif 

To explore glycosylation in the context of HLA class II presentation, we focused on the HLA-

binding core, a 9-mer sequence that interacts with the HLA molecule. In most mass 

spectrometry experiments, samples express multiple HLA alleles, leading to an ambiguous 

association between the identified peptides and the pool of available HLA molecules. Hence, 

a deconvolution step to find the HLA motifs and the corresponding binding core offsets of each 

peptide was deemed necessary for further experimentation (see Methods).  

Deconvolution of peptides using a semi-supervised approach 

We first chose to use MoDec38 for deconvolution, a fully probabilistic framework that learns 

both the motifs and preferred binding core position offsets from the sequences themselves. 

The fact that MoDec does not rely on a pre-trained model is crucial when exploring HLA-bound 

peptides with post-translational modifications (i.e., glycosylation) to avoid the removal of all 

peptides that were not well modeled. Such a deconvolution strategy requires manual 

intervention to choose the number of HLA motifs (i.e., number of clusters) and assign each 

discovered motif to one of the expressed HLA alleles of a given sample. We carefully selected 

a case study on a human B lymphoblastoid cell line (C1R) from Ramarathinam et al. 202136. 

The purification protocol of the HLA-bound peptides in this study was performed sequentially 

with pan anti-class I, followed by class II anti-DP (Fig. 4a), class II anti-DQ (Fig. 4b), and class 

II anti-DR antibodies (Fig. 4c and d). Hence, the resulting mass spectrometry samples were 

mono-allelic (i.e., presenting one allele at a time), except for the DR samples with the 

DRB1*12:01 and DRB3*02:02 alleles eluting together. Fig. 4 presents 4 sections a, b, c, and 

d standing for the HLA class II alleles DPA1*02:01/02-DPB1*04:01, DQA1*05:05-

DQB1*03:01, DRB1*12:01, and DRB3*02:02, respectively. All alleles showed a similar 

percentage of glycosylated and non-glycosylated peptides with the corresponding HLA motifs 

after deconvolution (Fig. 4, panel I). All 25 replicates showed an unaltered HLA-binding core 

with glycosylation (two-sided Fisher’s exact test, 25 P-values > 0.05). 
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Considering the concordance of glycopeptide sequences with the HLA-binding cores, we 

checked the absolute glycosylation position per peptide length (i.e., glycosylation offset within 

the peptide). Fig. 4 panel II shows a glycosylation tendency towards the N- and C-termini for 

both DQ and DR alleles (Fig. 4 sections b, c, and d at panel II) and only the C-terminal 

tendency for the DP allele (Fig. 4 section a at panel II). To further decipher glycosylation in 

the context of the HLA-binding cores, we looked at the relative position shown in Fig. 4 panel 

III (i.e., glycosylation offset from the HLA-binding core start). Negative values indicate sites 

upstream of the HLA-binding motif start, 0 to 8 values reference positions within the HLA-

binding core, and values greater than 8 denote glycosylation sites downstream of the HLA-

binding core. For the DPA1*02:01/02-DPB1*04:01 allele, glycosylation occured 91% of the 

time within the HLA motif at position 8 (Fig. 4 section a at panel III). In contrast, for the other 

3 alleles, glycosylation was more likely (86% of the time) to take place up- or downstream of 

the HLA-binding core. 

Deconvolution of peptides using a fully unsupervised approach 

Despite the usefulness of MoDec for a previously unexplored category of peptides, such a tool 

suffers from several limitations40,41: (I) the need for manual intervention to associate the 

identified motifs with known allele specificities present in the sample; (II) the difficulty of 

assigning peptides to MHC molecules when alleles with overlapping motifs are co-expressed; 

(III) low sensitivity with low expression of MHC molecules; and (IV) the complexity of HLA 

class II specificities due to the involvement of the variable alpha and beta chains for the HLA-

DQ and HLA-DP groups. All these, render motif-allele assignment a daunting task, especially 

with up to 87 subjects in our dataset. Thus, we used the state-of-the-art binding model 

NetMHCIIpan 4.141,42 to perform MHC motif deconvolution and assign glycopeptide sequences 

to their most likely HLA alleles without the need for manual intervention (see Methods). 

Consistently, glycosylated and non-glycosylated peptides from Ramarathinam et al. 2021 

showed similar binding properties, indicating that the detected glycosylation fit within the 

known HLA-binding cores (two-tailed Fisher’s exact test, P-value: 0.48). Interestingly, 
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NetMHCIIpan 4.1 confirmed most peptides with glycosylation located at P8 within the HLA-

binding core (97% for DPA1*0201 and 100% for DPA1*0202) for the C1R DP allele (Fig. 5a). 

Overall, 95%, 83%, 76%, and 87% of glycopeptides were found to bind to C1R DP (Fig. 5a), 

DQ (Fig. 5b), DRB1*12:01 (Fig. 5c), and DRB3*02:02 (Fig.5d), respectively. Hence, we 

carried out the NetMHCIIpan 4.1 deconvolution for the 83 remaining subjects in our dataset. 

The HLA class II N-glycosylation characteristics 

We noticed a high tendency of glycosylation within the HLA-binding core for HLA DP alleles, 

followed by a lower tendency for HLA DQ, and even lower one for HLA DR alleles. Hence, we 

checked for the occurrence of such events for each of the 3 HLA groups (DP, DQ, and DR). 

Fig. 6a shows that up to 57% of HLA DP associated peptides have glycosylation inside the 

HLA-binding core, 30% for HLA DP, and 13% for HLA DR. In terms of glycan types, Fig. 6b 

shows that HLA DP associated peptides showed the highest fraction (0.67) of truncated 

glycans compared to DQ (0.55) and DR (0.41). High-mannose glycans showed a reverse trend 

for DR, DQ, and DP alleles, with fractions of 0.37, 0.27, 0.21, respectively. All DP, DQ, and 

DR associated peptides showed a depletion in complex/hybrid glycans in accordance with 

previous findings9,16.  
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Discussion 

Post-translational modifications increase the diversity of the immunopeptidome and may 

provide new targets for the immune system to recognize tumor cells or respond to pathogens.  

With PTM-driven antigenicity being continuously highlighted9,31,43,44, glycosylation is a key 

PTM that, despite its long history of research, remains understudied in the context of MHC 

presentation due to computational related challenges. In this work, we have developed a 

workflow for glyco-immunopeptidomics that combines the speed and sensitivity of MSFragger-

Glyco, with the inclusion of glycopeptide-specific FDR control in Philosopher, which is critical 

for filtering out low-confidence identifications. We used this workflow to produce a resource of 

HLA class II N-glycosylated MAPs arising from a harmonized analysis of 8 publicly available 

studies. Overall, we identified 1049 glycosylation sites from 3409 different glycopeptides, an 

order of magnitude greater than any previous effort in this area. Leveraging this large-scale 

resource, we explored the properties of glycosylated MAPs, including the types of glycans 

conjugated, MHC binding affinity predictions, and the positioning of glycosylation relative to 

the HLA binding core. Interestingly, we observed no difference in binding motif predictions with 

glycopeptides compared to non-glycopeptides, despite some peptides containing glycans 

within the binding core. HLA DP alleles presented a majority of glycans within the binding core 

(57%) compared with HLA DQ alleles (30%) and HLA DR alleles (13%). Moreover, we found 

a difference in the glycan types between HLA groups (DP, DR, and DQ), with truncated 

glycans enriched for DP alleles and a higher mannose content for DR alleles. 

A study by Malaker et al.9 on HLA class II N-glycosylation covered 5 DR alleles (DRB1*0101, 

DRB1*0401, DRB1*0404, DRB1*1502, DRB4*0103) and showed that 3 out of 23 peptides 

had glycosylated residues within the binding core. In combination with molecular modeling, 

this allowed the authors to postulate that glycan residues are most likely to protrude out of the 

HLA-binding pocket and interact with the complementary determinant region of the T-cell 

receptor. Our findings expand the coverage to 28 DR alleles, along with multiple DP and DQ 

alleles, adding up to 87 HLA molecules overall, when considering the combination of alpha 
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and beta chains. In addition to the preference of terminal glycosylation for peptides associated 

with DR and DQ alleles, we observed an HLA-binding core glycosylation tendency for peptides 

associated with DP alleles. Future studies should explore whether the correlation between 

smaller glycans and presence within the HLA-binding core is related simply to size restrictions 

preventing larger glycans from occupying the core or is a reflection of other processing of 

MAPs for presentation.  

The enrichment of glycosylated peptides on the MHC-II, while preserving canonical binding 

motifs, offers the tantalizing possibility of designing and developing glycosylated neoantigen 

vaccines with improved affinity over wild-type peptides22,23. Which is further notable, in light 

that most of the known anti-tumor CD4+ T cells are specific for highly immunogenic self-

derived MHC-II antigens, demonstrating that self-antigen CD4+ T cells can mount anti-tumor 

responses. Cancer-specific glycosylation of MAPs may further contribute to the restriction of 

those mechanisms to the tumor microenvironment. We made our findings readily available as 

a web resource to query pertinent information about the identified glycosylated MAPs. Users 

can search for a specific glycan and/or MAP sequence, protein, or glycosylation site 

associated with a specific HLA allele. In addition, we included deconvolution information 

allowing further interpretation of the data within the HLA haplotype context. We are planning 

to grow this initiative, introduce more studies, and increase the HLA allele coverage. Moreover, 

by providing the optimized computational workflow file, which can be loaded directly into 

FragPipe to reproduce the method described here, we make it easy for others to carry out 

challenging glyco-immunopeptidomics analyses on new datasets. It is our hope that the 

method and findings presented here will expand the field of tumor-specific antigen discovery, 

broaden the scope of possible antigens to target, and improve strategies for vaccine design. 

O-glycosylated MAPs, for example, represent another potential class of antigens that can, in 

principle, be studied by our method for further exploration45. Finally, given the promising nature 

of glycosylated MAPs, we anticipate the attraction of glycosylation-oriented research towards 

the immunopeptidomics field.  
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Methods 

Dataset selection 

Studies from the PRIDE46 database were first screened based on a list of keywords related to 

immunopeptidomics. Next, low-resolution analyses were eliminated, and MHC-related 

datasets conducted with at least one of the following instruments were kept: Orbitrap 

Lumos/Fusion, Q Exactive, LTQ Orbitrap, Orbitrap Exploris 480, TripleTOF, impact II, and 

maXis. Then, manual curation of the resulting 312 studies was performed to filter non-relevant 

datasets, resulting in 140 HLA Class I, II, or I & II datasets. The number of identified proteins 

per study was retrieved from gpmDB47 and datasets with a high number of protein groups 

were prioritized. A final manual curation step resulted in the selection of the 8 datasets 

included in this study. 

Mass spectrometry N-glycan search 

Raw and wiff files were first downloaded from PRIDE and converted to mzML format using 

msconvert48 with peak picking, FragPipe (TPP) compatibility, and removal of zero values 

filters. The analysis was executed within the FragPipe suite v18.1-build5 using headless 

mode. Glyco-searches were performed using MSFragger v3.5 with methionine oxidation, N-

terminal acetylation, and cysteinylation as variable modifications, and a list of 198 glycans. A 

list of contaminants was added to the UniProt Swiss-Prot (UP000005640) proteins49, along 

with their corresponding reversed decoy sequences. Enzymatic cleavage was set to non-

specific with peptide lengths from 7 to 25 amino acids for the 8 HLA class II datasets, from 7 

to 12 amino acids for HLA class I datasets (A, B, C, D), and fully enzymatic cleavage with 

peptide lengths from 7 to 50 amino acids for the whole proteome dataset D. Peptides 

containing the consensus sequon (N-X-S/T) and decoy (reversed) peptides containing the 

reversed sequon were considered as potential glycopeptides to ensure the that same number 

of potential glycopeptides was searched in both target and decoy databases. Only spectra 

containing oxonium ion peaks with summed intensity of at least 10% of the base peak were 
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considered for glycan searches, while all others were searched without considering 

glycosylation. Data were deisotoped50 and decharged in MSFragger-Glyco, calibrated, and 

searched with 20 ppm mass tolerances for precursors and 15 ppm for products with 

MSFragger’s built-in parameter optimization performed for each study51. Errors in 

monoisotopic peak detection by the instrument were allowed (+1 and +2 Da). 

FDR control 

Filtering was performed using Philosopher28 (v4.5.1-RC10), including PeptideProphet 

modeling of peptide probabilities, ProteinProphet protein inference, and Philosopher’s internal 

filter for FDR control. The semi-parametric modeling of PeptideProphet was used with the 

expectation value as the only contributor to the f-value. The number of tolerable termini (ntt) 

model was disabled, as it is not applicable to non-enzymatic searches. Filtering was performed 

in Philosopher using a modified, group-specific FDR procedure. Non-glycosylated and 

glycosylated PSMs were filtered separately, using a delta mass cutoff of 145 Da (the size of 

the smallest glycan considered in the search) to distinguish glycosylated PSMs from non-

glycosylated PSMs. This allowed different score thresholds to be used to filter glycosylated 

and non-glycosylated PSMs to 1% FDR. This is essential as the large search space for 

glycosylated PSMs results in higher scoring false matches, requiring a higher score threshold 

for effective filtering than for non-glycosylated PSMs. Since non-glycosylated PSMs make up 

the majority of the results, filtering all PSMs together would yield an insufficiently low score 

threshold for glycosylated PSMs. After the group-specific 1% FDR filter was applied to 

glycosylated and non-glycosylated PSMs, 1% peptide- and protein-level FDR filters were 

applied. A sequential filtering step was then applied to remove any PSMs matched to proteins 

that did not pass the 1% protein-level FDR. Glycan assignment was subsequently performed 

in PTM-Shepherd using the default N-glycan database29 and parameters along with a 0.05 

glycan q-value threshold. 
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Deconvolution of the MHC associated peptides 

Motif deconvolution is the process of finding HLA-binding motifs and their corresponding 

binding core offsets for a set of peptides. A first deconvolution that required manual inspection 

was performed using MoDec38. The peptides were grouped by subject (i.e., instances of the 

same replicates). A maximum of 10 clusters, 20 runs, and a minimum peptide length of 12 

amino acids were considered. Since HLA-II ligands from the same subject come from different 

alleles, MoDec provides a direct interpretation and assigns peptides with similar binding cores 

to clusters (i.e., HLA motifs). However, manual inspection is still required to (I) the number 

HLA motifs MoDec detected per subject and (II) annotate these motifs (i.e., clusters) to their 

respective HLA II alleles. Hence, the MoDec-identified HLA motifs were assigned to the correct 

HLA class II alleles by manual inspection for each analyzed subject. A second deconvolution 

that didn’t require manual inspection, inspired from Kaabinejadian et al. 202241, was performed 

using NetMHCIIpan 4.142. Briefly, all unique peptides were predicted for MHC presentation 

towards all the MHC alleles expressed in the given subject. The likelihood of peptides being 

presented by a given MHC molecule is given by the percentile rank score, which ranges from 

0 to 100, with 0 being the strongest binding score. Peptides with a percentile rank score > 20 

were considered MS co-immunoprecipitated contaminants and labeled as trash. Peptides with 

a percentile rank score ≤ 20 were assigned to the lowest scoring allele of a given subject. We 

applied the second deconvolution method using NetMHCIIpan 4.1 to the entirety of the 

subjects in this study, considering the similarity of the results to the first deconvolution method 

(i.e., MoDec). 

Figure generation 

Motif plots were generated using the Python library Logomaker52, heatmaps using seaborn53 

and other plots using matplotlib54. 
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Figures 

 

Figure 1: The HLA-Glyco workflow for the detection of glycosylated MHC associated peptides. 

The FragPipe suite was used to (I) perform a search for glycosylated peptides (glyco search) with the 

MSFragger search engine; (II) control the FDR with PeptideProphet in combination with a modified 

version of Philosopher; and (III) assign a glycan composition for each glycopeptide-spectrum match 

using PTM-shepherd.  
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Figure 2: HLA class II infographics of the 8 collected datasets in this study. a) Percentage of 

samples with HLA class II typing information. b) Sample types of the collected mass spectrometry 

samples (i.e., patient tissues, cell lines, and tumor-infiltrating lymphocytes/TILs). c) Cancer types across 

the collected mass spectrometry samples. d) HLA class II alleles (DR, DB, and DQ) across the collected 

mass spectrometry samples. e) Percentage of glyco-PSMs, glycopeptides, and glycosylation sites 

found in GlyGen. f) Abundance of the 3 categories from panel (a) by spectral count. g) Comparison of 

the identified glycosylation sites with Malaker et al. 2017 findings.  
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Figure 3: A comparison of the glycosylation on the proteome, HLA I, and HLA II peptidome 

levels. a) Levels of oxonium ions for HLA class I and II in 3 datasets (A: Bassani-Sternberg et al. 2016, 

B: Chong et al. 2020, C: Marcu et al. 2021), along with the whole proteome in dataset D: Forlani et al. 

2021. b) Percentage of Glycosylated PSMs for the HLA class I and II immunopeptidome in 3 datasets 

(A, B, C), along with the whole proteome in dataset D. c) Average glycan mass in Dalton (Da) for the 

HLA class II immunopeptidome versus the whole proteome in dataset D. d) Glycan types for the class 

II immunopeptidome versus whole proteome in dataset D. e) Glycan types found in the low-density 

lipoprotein receptor-related protein 1 (LRP1) for the class II immunopeptidome versus the whole 

proteome in dataset D. f) Comparison of glycoproteins (top) and glycosites (bottom) found in the HLA 

class I, II immunopeptidome, and whole proteome of dataset D.  
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Figure 4: Semi-supervised deconvolution of glycosylated HLA peptides from Ramarathinam et 

al. 2021 using MoDec. Panels I show the percentage of peptides and glycopeptides presenting the 

HLA binding motif. Panels II display the glycosylation absolute position within the peptidic sequence (x-

axis) and the peptide length (y-axis). Gray and black lines indicate the N-term and C-term respectively 

while the white to blue gradient represents the number of peptides with a specific glycosylation position 

at a specific peptide length. Panels III present the HLA binding motif after deconvolution with MODEC 

(top) and the number of glycopeptides per relative glycosylation position (bottom). Negative values refer 

to glycosylation position upstream the HLA-binding core, values between 0 and 8 represent positions 

within the HLA-binding core, and values ≥ 9 refer to positions downstream the HLA-binding core. a) 

Peptides associated with the HLA allele DPA1*02:01/02-DPB1*04:01 of the C1R cell line. b) Peptides 

associated with the HLA allele DQA1*05:05-DQB1*03:01 of the C1R cell line. c) Peptides associated 

with the HLA allele DRB1*12:01 of the C1R cell line. d) Peptides associated with the HLA allele 

DRB3*02:02 of the C1R cell line.  
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Figure 5: Fully unsupervised deconvolution of glycosylated HLA peptides from Ramarathinam 

et al. 2021 with NetMHCIIpan 4.1. Each panel illustrates 2 levels of information: the top level shows 

the HLA-binding motif of peptides passing a NetMHCIIpan 4.1 percentile rank threshold of 20 after 

binding affinity prediction. The bottom level shows glycopeptides that are predicted to bind to a given 

allele in green (%rank ≤ 20), otherwise non-binder peptides (i.e., trash) are shown in red (%rank > 20). 

Positions are shown relatively to the HLA binding core with negative values referring to glycosylation 

position upstream the HLA-binding core, values between 0 and 8 represent positions within the HLA-

binding core, and values ≥ 9 refer to positions downstream the HLA-binding core. a) Deconvolution of 

glycosylated peptides associated with the HLA-DPA1*02:01/02-DPB1*04:01 alleles. b) Deconvolution 

of glycosylated peptides associated with the HLA-DQA1*05:05-DQB1*03:01 alleles. c) Deconvolution 

of glycosylated peptides associated with the HLA-DRB1*12:01 allele. d) Deconvolution of glycosylated 

peptides associated with the HLA-DRB3*02:02 allele.  
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Figure 6: Glycan characteristics of the glycosylated HLA class II associated peptides. a) 

Percentage of glycosylation inside (red) and outside (blue) the HLA binding motif per HLA group (DP, 

DQ, and DR). b) Distribution of glycan types among the studied HLA class II group (DP, DQ, and DR). 
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