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 Abstract 

 Thousands of proteins have now been genetically-validated as therapeutic targets in 
 hundreds of human diseases.  However, very few have actually been successfully targeted 
 and many are considered ‘undruggable’.  This is particularly true for proteins that function via 
 protein-protein interactions: direct inhibition of binding interfaces is difficult, requiring the 
 identification of allosteric sites. However, most proteins have no known allosteric sites and a 
 comprehensive allosteric map does not exist for any protein.  Here we address this 
 shortcoming by charting multiple global atlases of inhibitory allosteric communication in 
 KRAS, a protein mutated in 1 in 10 human cancers.  We quantified the impact of >26,000 
 mutations on the folding of KRAS and its binding to six interaction partners.  Genetic interactions 
 in double mutants allowed us to perform biophysical measurements at scale, inferring  >22,000 
 causal free energy changes, a similar number of measurements as the total made for proteins to 
 date. These energy landscapes quantify how mutations tune the binding specificity of a signalling 
 protein and map the inhibitory allosteric sites for an important therapeutic target.  Allosteric 
 propagation is particularly effective across the central beta sheet of KRAS and multiple surface 
 pockets are genetically-validated as allosterically active, including a distal pocket in the 
 C-terminal lobe of the protein.  Allosteric mutations typically inhibit binding to all tested effectors 
 but they can also change the binding specificity, revealing the regulatory, evolutionary and 
 therapeutic potential to tune pathway activation.  Using the approach described here it should be 
 possible to rapidly and comprehensively identify allosteric target sites in many important proteins. 
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 Introduction 
 The GTPase KRas (KRAS) is somatically mutated in ~10% of all cancers, including ~90% of 
 pancreatic adenocarcinoma, ~40% of colorectal adenocarcinoma, ~35% of lung 
 adenocarcinoma and ~20% of multiple myeloma  1  .  KRAS  functions as an archetypal 
 molecular switch, cycling between inactive GDP-bound and active GTP-bound states.  The 
 altered conformation and activity of KRAS upon GTP binding is an example of allostery, the 
 long-range transmission of information from one site to another in a protein  2  .  Many 
 structures of KRAS have been determined, revealing major (but variable) rearrangements in 
 the switch I and switch II regions that allow binding to effector proteins in GTP-bound states 
 3  .  KRAS effectors include the  RAF proto-oncogene  serine/threonine-protein kinase  (  RAF1 
 also known as CRAF) and Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit 
 gamma isoform (PIK3CG) and the signalling protein Ral guanine nucleotide dissociation 
 stimulator (RALGDS).  Guanine nucleotide exchange factors (GEFs) such as Son of 
 sevenless homolog 1 (SOS1) catalyse release of GDP to activate KRAS whereas 
 GTPase-activating proteins (GAPs) catalyse GTP hydrolysis to complete the cycle back to 
 the inactive states.  Cancer driver mutations interfere with this cycle, increasing the 
 abundance of active GTP-bound effector-binding states  4,5  . 

 Despite its identification as an oncoprotein 40 years ago  6  , tens of thousands of scientific 
 publications, and more than three hundred published structures of KRAS  3  , only a single 
 inhibitor of KRAS has been approved for clinical use: sotorasib, a covalent binder of one 
 driver mutation, KRAS(G12C)  7–9  .  Sotorasib is an  allosteric inhibitor that binds outside of the 
 nucleotide and effector binding sites to lock KRAS(G12C) in inactive GDP-bound states, 
 reducing effector binding and clinically validating the efficacy of allosteric KRAS inhibition  7,9  . 
 As for many medically important proteins, the development of therapeutics against KRAS is 
 limited by the lack of information about inhibitory allosteric sites to target.  Indeed, a 
 comprehensive map of allosteric sites has not been generated for any oncoprotein or, 
 indeed, for any disease target or any complete protein in any species. 

 Atlases of allosteric sites have the potential to greatly accelerate drug development, 
 especially for the many human proteins considered ‘undruggable’ because of the lack of an 
 appropriate active site or because they function via difficult to inhibit protein-protein 
 interaction interfaces.  In addition, among other benefits, allosteric drugs often have higher 
 specificity than orthosteric drugs targeting conserved active sites  10,11  . 

 KRAS biophysics at scale 
 To comprehensively map inhibitory allosteric communication in KRAS, we applied our 
 multidimensional deep mutational scanning approach  12  .  We used two rounds of nicking 
 mutagenesis  13  to construct three libraries of KRAS  variants in which every possible single 
 amino acid (aa) substitution is present not only in the wild-type (WT) KRAS (4B isoform, 
 aa1-188) but also in KRAS variants with a range of reduced activities (median of seven 
 genetic backgrounds for each single mutant, Fig. 1a-d).   Quantifying the effects of the same 
 mutations in different genetic backgrounds provides sufficient data to infer the causal 
 biophysical effects of each mutation (see below).  In total, the library consists of >26,500 
 variants of KRAS, including >3,200 single aa substitutions and >23,300 double aa 
 substitutions. 

 3 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.06.519122doi: bioRxiv preprint 

https://paperpile.com/c/iNDH9g/bocgV
https://paperpile.com/c/iNDH9g/oW5wf
https://paperpile.com/c/iNDH9g/s8oQ5
https://paperpile.com/c/iNDH9g/Fl4n1+HFOLF
https://paperpile.com/c/iNDH9g/8bdSZ
https://paperpile.com/c/iNDH9g/s8oQ5
https://paperpile.com/c/iNDH9g/FLYLr+LJzD1+LJuQ1
https://paperpile.com/c/iNDH9g/LJuQ1+FLYLr
https://paperpile.com/c/iNDH9g/ueYjZ+OAN6T
https://paperpile.com/c/iNDH9g/oJJK
https://paperpile.com/c/iNDH9g/hl21K
https://doi.org/10.1101/2022.12.06.519122
http://creativecommons.org/licenses/by-nc-nd/4.0/


 We first quantified the binding of these KRAS variants to the RAS-binding domain (RBD) of 
 the oncoprotein effector RAF1.  Binding was quantified using a protein-fragment 
 complementation assay (BindingPCA)  12,14,15  .   Binding  fitness was highly correlated among 
 three independent replicate selections (Pearson’s  r  > 0.9, Extended Data Fig. 1a) and to 
 previous data that used a different binding assay in a different cellular context (Pearson’s  r  = 
 0.82, Extended Data Fig. 1c  16  ,  17  . 

 As expected, mutations in the RAF1-binding interface strongly inhibit binding, as do variants 
 in the nucleotide binding pocket (Fig. 1e,i).  However, in total, 2,019 out of 3,231 single aa 
 substitutions reduce binding to RAF1 (FDR = 0.05, two-sided  z  -test), including many outside 
 of the interface including in the hydrophobic core of the protein (Extended Data Fig. 1d). 
 This strongly suggests that many changes in binding to RAF1 are caused by changes in the 
 abundance of folded KRAS, not by altered binding affinity  12,18  . 

 From molecular phenotypes to free energy changes 
 To disentangle the effects of mutations on KRAS folding and binding, we used a second 
 selection assay, AbundancePCA  12,19  , to quantify the  cellular abundance of the KRAS 
 variants.  We refer to this combined approach of BindingPCA and AbundancePCA as 
 ‘doubledeepPCA’ (ddPCA)  12  .  Plotting the RAF1 binding  of each variant against its cellular 
 abundance shows that many changes in binding can indeed be explained by reduced KRAS 
 abundance (Fig. 1j).   However, inspection of Figure 1j also reveals that a substantial 
 number of variants have effects on binding that are much larger than can be accounted for 
 by their reduced abundance, including many variants in the binding interface (red points in 
 Fig. 1j). 

 Protein folding and binding relate to changes in the free energies of folding (∆  G  f  ) and 
 binding (∆  G  b  ) by nonlinear functions derived from  the Boltzmann distribution (Fig. 1b)  12,18  . 
 When mutational effects are combined additively in free energy they therefore cause 
 non-additive changes in the molecular phenotypes of protein abundance and the abundance 
 of a protein complex.  The KRAS variant libraries contain a median of seven double mutants 
 for each single aa substitution, providing sufficient experimental data to infer the causal free 
 energy changes using MoCHI, a flexible package to fit mechanistic models to deep 
 mutational scanning data using neural networks (see Methods) (Fig. 1c, Extended Data Fig. 
 1e).   The fitted model predicts the mutant data extremely well (abundance median 
 Pearson’s  r  = 0.86, binding median  r  = 0.96, Extended  Data Fig. 1e) and the free energy 
 changes are highly correlated with  in vitro  measurements  (R =0.95, Fig. 1k). 

 The RAF1 binding interface 
 In total, 2,241 out of 3,453 single aa substitutions are detrimental to folding and 843 out of 
 3,301 are detrimental to binding (FDR = 0.05, Fig. 1g, h). Mutations detrimental to folding 
 are enriched in the hydrophobic core of the protein (odds ratio, OR = 1.92, Fisher’s exact 
 test,  P  < 10e-16, Fig. 1h,l, Supplementary Movie 1).  In contrast, mutations that increase the 
 binding free energy are strongly enriched in the binding interface (OR = 6.02,  P  < 10e-16, 
 Fig. 1g, 2a), with the mean absolute binding free energy changes upon mutation at each site 
 identifying the binding interface (Fig. 2b,c, Supplementary Movie 2, receiver operating 
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 curve-area under curve, ROC-AUC = 0.8 compared to ROC-AUC = 0.65 when using the 
 mean absolute binding fitness). 

 The interface residues most important for RAF1 binding include a mixture of charged (E37, 
 D38) and hydrophobic (I36, Y40) residues.  D38 cannot be changed to any other aa without 
 detrimental effects on binding affinity, revealing a requirement for both negative charge and a 
 particular side chain length at this site (Fig. 2d, e).  In contrast, E37 can be replaced by D 
 (shortening the side chain but retaining the negative charge) and also by Y, F or H, 
 suggesting the salt bridge to RAF1 R67 can be replaced by an alternative interaction 
 involving an aromatic side chain.  Y40 can only be replaced by F, revealing the importance of 
 the aromatic side chain which makes a cation-π interaction with RAF1 R89.  I36 makes two 
 hydrophobic contacts with RAF1, and whereas polar mutations at this position are 
 detrimental, multiple hydrophobic substitutions are tolerated.  Mutations at other residues 
 that contact RAF1 are much better tolerated, indicating that these sites are less important for 
 binding.  For example, mutations at D33 tend to be mildly detrimental, with only 
 charge-reversing mutations to R and K and mutation to P strongly inhibiting binding. 
 Likewise, charge-reversing mutations and mutation to P are also most detrimental at R41, 
 whereas mutations at the other two charged sites (E31 and E3) at the edge of the interface 
 generally have little effect on the binding free energy. 

 Inhibitory allosteric landscape for RAF1 binding 
 We next considered mutations outside of the binding interface.   In total there are 361 distal 
 mutations in 74 residues  that increase the binding free energy to a greater extent than the 
 average effect of mutations in the RAF1 binding interface (∆∆  G  b  greater than the weighted 
 mean absolute binding free energy change of substitutions in binding interface residues, 
 FDR = 0.05, Fig. 3a). Allosteric mutations defined in this manner are highly enriched in the 
 physiological allosteric site of KRAS, the nucleotide binding pocket (157 mutations in 13 
 residues, OR = 7.68, Fisher’s exact test,  P  < 10e-16). 

 Enhanced allosteric communication across a beta sheet 
 We first focussed on the residues where many different mutations have strong allosteric 
 effects.  Defining major allosteric sites as residues where the mean absolute change in 
 binding free energy upon mutation is equal to or greater than that in binding interface 
 residues identifies a total of 18 sites (Fig. 3b, c). 10 of these major allosteric sites are located 
 in the physiological allosteric site - the nucleotide binding pocket (Fig. 3b, c). The additional 
 8 major allosteric sites are residues V7, G10, D54, T58, A59, P110, F141 and I163 (Fig. 3b). 
 Three of these residues are close to the binding interface, with Asp 54 adjacent to the 
 binding interface and Thr 58 and Ala 59 connecting the binding interface to the nucleotide 
 binding pocket (Fig. 3c, Supplementary Movie 3). 

 Strikingly, 5 of the 8 novel major allosteric residues are located in the central beta sheet of 
 KRAS (Fig. 3b, c).  Within the beta sheet, the binding free energy changes are largest for 
 mutations in residues in the first strand that contacts RAF1 and they progressively decrease 
 in each subsequent strand of the sheet (Fig. 3d, Extended Data Fig. 2a-d, Supplementary 
 Movie 4).  This decay of the strength of allosteric effects across the sheet is consistent with 
 local energetic propagations underlying allosteric communication.  A similar, yet weaker, 
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 distance-dependent decay is observed for residues outside of the beta-sheet (Extended 
 Data Fig. 3c). Propagation appears more efficient across the sheet than along the backbone 
 within a strand, with residues in the first strand that do not contact RAF1 being depleted for 
 allosteric mutations (Fig. 3a, Extended Data Fig. 2b, OR = 0.16, Fisher’s exact test,  P  = 
 1e-3).  Allosteric communication therefore seems particularly effective across the central 
 beta sheet of KRAS. 

 KRAS has four allosterically active surface pockets 
 We next considered the effects of mutations in the surface residues of KRAS, focussing on 
 the four previously described pockets in addition to the nucleotide-binding pocket (Fig. 3e, 
 Supplementary Movie 5)  20  . 

 Pocket 1 (also called the switch I/II pocket) is located behind switch II between the central 
 beta sheet and alpha helix 2 and is the binding site for multiple inhibitors that are effective in 
 pre-clinical models  21,22  .  Many mutations in pocket  1 allosterically inhibit RAF1 binding (57 
 mutations in 10 residues, FDR = 0.05, Fig. 3f, Extended Data Fig. 2e), consistent with the 
 demonstrated ability of pocket 1 engagement to inhibit effector binding. 

 Pocket 2 (also called the switch II pocket) is located between switch II and alpha helix 3 and 
 is the binding site of sotorasib, the clinically approved allosteric inhibitor of KRAS(G12C)  23  . 
 71 mutations in 9 residues that contact sotorasib allosterically inhibit RAF1 binding (Figure 
 3g  ,  Extended Data Fig. 2f).  Thus, both mutations  and small molecules binding to pocket 1 
 and pocket 2 can allosterically inhibit KRAS activity. 

 Pocket 3 of KRAS is located in the C-terminal lobe of the protein and is the most distant 
 pocket from the RAF1 binding interface (Fig. 3e).  The effects of pocket 3 engagement are 
 not well described  20  and pocket 3 has received little  attention for therapeutic development  21  . 
 However, our data reveal that pocket 3 is allosterically active, with 20 mutations in 6 residues 
 in pocket 3 inhibiting binding to RAF1 (Fig. 3h, Extended Data Fig. 2g ).   Indeed helix 1 in 
 pocket 3 is the only secondary structure element outside of the beta sheet enriched for 
 allosteric mutations (Extended Data Fig. 2b, odd ratio = 5.7 , Fisher’s exact test,  P  < 
 10e-16).  Despite its distance from the effector binding interface, pocket 3 should be 
 prioritised as a site for the development of KRAS inhibitors. 

 Finally, pocket 4, which is located immediately behind the  flexible effector binding loop, 
 contains 105 allosteric mutations in 9 residues that do not contact RAF1 (Fig. 3f,  Extended 
 Data Fig. 2h  ).  Our data therefore validate all four  surface pockets of KRAS as allosterically 
 active, with perturbations in all pockets having large inhibitory effects on RAF1 binding.  This 
 strongly argues for the development of molecules targeting all four pockets as potential 
 KRAS inhibitors. 

 Energetic landscapes for six KRAS interactions 
 Like most oncoproteins, KRAS binds many different proteins as part of its physiological and 
 disease-relevant functions  2  .   Many of these interaction  partners bind a common surface of 
 KRAS –  the effector-binding interface –  making KRAS an interesting model of 
 multi-specificity in molecular recognition  2  .  To  our knowledge, the effects of mutations on 
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 binding energies for multiple interaction partners have not been comprehensively profiled for 
 any protein. Moreover, quantifying KRAS binding to multiple interaction partners provides an 
 opportunity to quantify the conservation and specificity of allosteric effects in a signalling hub 
 (Fig. 4a). 

 We quantified the binding of the >26,000 KRAS variants to six interaction partners:  the three 
 KRAS effector proteins RAF1, PIK3CG and RALGDS, the GEF SOS1 and two DARPins, 
 K27 and K55, synthetic antibody-like molecules selected to bind GDP- and GTP-bound 
 KRAS, respectively.  The structures of all six complexes have been determined  24–28  . 

 The data for all six binding selections were highly reproducible (Extended Data Fig. 1a, 3a), 
 and we used MoCHI to simultaneously fit a thermodynamic model to the molecular 
 phenotypes of the variants in all seven experimental datasets (see Methods, Extended Data 
 Fig. 3b).   Each single aa change in KRAS therefore has seven associated free energy 
 changes: six binding energies and one folding energy (Fig. 4a, Extended Data Fig. 4a).  As 
 for RAF1 (Fig. 1k), the MoCHI binding energies for RALGDS correlate extremely well with 
 independent  in vitro  measurements (Fig. 4b, c).  The  binding energies identify the known 
 binding surfaces on KRAS, including the two known interfaces for SOS1  28  (Fig. 2b, 
 Extended Data Fig. 4b, median ROC-AUC=0.80, range=0.68-0.89 for weighted mean 
 binding energies;  median  ROC-AUC=0.64, range=0.54-0.75 for weighted mean binding 
 fitness measurements). 

 These seven free energy landscapes constitute >22,000 thermodynamic measurements, 
 which is similar in scale to the number of measurements made for proteins in the entire 
 scientific literature  29  . 

 Specificity in the effector binding interface 
 We first considered how mutations in the binding interfaces alter binding to the six interaction 
 partners. All six proteins bind KRAS through an overlapping set of contacts (Fig. 5a-c). This 
 sharing of contacts is particularly pronounced for the three effector proteins, RAF1, PIK3CG 
 and RALGDS (Fig. 5a).  Comparing the mutational effects reveals that whereas some 
 residues are critically important for binding to all three proteins, many substitutions alter the 
 binding specificity (Fig. 5d).  For example, many mutations in the negatively charged 
 residues D33 and D38 and the hydrophobic residues I36 and Y40 strongly inhibit binding to 
 all three effectors. However, a subset of hydrophobic substitutions at I36 inhibits binding to 
 PIK3CG and RALGDS but not to RAF1 and substitution of L56 to negatively charged 
 residues specifically increases binding to RAF1 whilst retaining binding to PIK3CG but 
 inhibiting binding to RALGDS (Fig. 5d).  In contrast, many substitutions at E37 inhibit binding 
 to RAF1 and RALGDS but increase binding to PIK3CG.  Mutating Y64 inhibits binding to 
 PIK3CG and RALGDS but allows binding to RAF1.  At S39 a subset of hydrophobic 
 mutations inhibit binding to PIK3CG and RAF1 but not to RALGDS.  Comparing the binding 
 free energies for all six binding partners reveals a striking diversity of specificity changes that 
 can be reached through single aa substitutions (Extended Data Fig. 5) 
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 Inhibitory allosteric landscapes for six KRAS interactions 
 We next considered the specificity of mutational effects outside of the binding interfaces.  We 
 first focussed on the positions most enriched for allosteric mutations for each interaction, 
 defining the major allosteric sites for each interaction as those in which the average absolute 
 binding free energy change is as large or greater than the average across mutations in all 
 the binding interfaces (Fig. 6a).   Novel major allosteric sites were identified for all six binding 
 partners, with a median of 9 major allosteric sites in the nucleotide-binding pocket and a 
 median of 5.5 additional major allosteric sites for each interaction (Fig. 6a). 

 We then compared the binding free energy changes between all six interaction partners for 
 all mutations in these positions (Fig. 6b).  Many substitutions at G10, G15, S17, D57, F78, 
 P110 and V112 inhibit all 6 interactions (Fig. 6b).  Substitutions of F28 to non-aromatic amino 
 acids inhibit all 6 interactions, as do many changes to charged amino acids at I55 and to 
 hydrophobic amino acids at A18 and A83 (Fig. 6b).  Substitutions to P at I55, A59, R68, 
 K117, F156 inhibit at least 5 interactions (Fig. 6b).   Considering all mutations outside of the 
 binding interface, allosteric mutations are enriched at G, P, F and T residues for 4/6 partners 
 and depleted at charged residues for 6/6.  Allosteric mutations are also enriched for 
 substitutions to P for 6/6 partners and to R for 5/6 partners (Extended Data Fig. 7).  The 
 enrichment for allosteric mutations at G residues and for substitutions to P is also observed 
 in two small protein domains  12  . 

 Allosteric control of binding specificity 
 That multiple mutations at many of the allosteric sites inhibit binding to all interaction 
 partners suggests engagement of these sites is likely to generally inhibit KRAS function. 
 However inspection of Figure 6b also reveals sets of mutations in the major allosteric sites 
 that have more specific allosteric effects.     Particularly striking examples are many 
 mutations in residues K16, I55, G60 and F156 that allosterically inhibit binding to most KRAS 
 interaction partners but allosterically increase binding to the DARPin K27 (Fig. 6b).  DARPin 
 K27 specifically recognises inactive GDP-bound KRAS and so mutations at these sites likely 
 favour GDP-binding states. Consistent with this, K16 and G60 directly contact the 
 γ-phosphate of GTP.  Many substitutions of E76 also increase binding to DARPin K27 but 
 with little effect on the other interactions.  Additional examples include mutations at Y71 and 
 M72 that specifically inhibit binding to DARPin K55 and mutations at D54 that inhibit four 
 interactions but retain or enhance binding to PIK3CG and RALGDS (Fig. 6b).  In addition, 
 outside of these major allosteric sites there are many other mutations that allosterically alter 
 both the binding affinity and specificity of KRAS (Extended Data Fig. 6). 
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 Discussion 
 We have presented here the first global map of inhibitory allosteric sites for any protein and 
 the first comprehensive comparative map of the effects of mutations on the free energies of 
 binding of a protein to multiple interaction partners.  The dataset constitutes >22,000 free 
 energy measurements, which is a rich resource for protein biophysics and computational 
 biology. 

 KRAS is one of the most frequently mutated genes in cancer and one of the most sought 
 after and valuable therapeutic targets.  Our results reveal a number of principles concerning 
 allosteric communication in KRAS.  First, KRAS has many inhibitory allosteric sites.  Second, 
 most allosteric mutations inhibit binding to all three KRAS effectors, revealing the potential to 
 broadly inhibit KRAS activity.  Third, allosteric mutations are enriched close to binding sites, 
 suggesting local energetic propagation as the main allosteric mechanism.  Fourth, allosteric 
 communication is anisotropic, with communication particularly effective across the central 
 beta sheet of KRAS.  Fifth, mutations can also allosterically control binding specificity, 
 revealing extensive potential for regulatory, evolutionary and therapeutic modulation of 
 signalling bias.  Sixth, all four surface pockets of KRAS are allosterically active, with the 
 effects of mutations in the distal and unexplored pocket 3 particularly striking.  The 
 comprehensive allosteric map therefore genetically validates all four pockets as suitable for 
 therapeutic targeting and focuses attention on the largely ignored pocket 3. 

 The KRAS effector interface –  like many protein surfaces –  has to recognise structurally 
 diverse proteins.  Comprehensive mutagenesis of this surface shows that its evolution is 
 constrained by fitness trade-offs, with mutations that increase binding to one protein typically 
 having antagonistic pleiotropic effects on binding to others.  However, the binding specificity 
 of KRAS is highly evolvable, with single aa substitutions causing a diversity of specificity 
 changes.  These altered binding profiles can be useful experimental tools, providing ‘edgetic’ 
 perturbations  30  to test the functions of individual  molecular interactions and their 
 combinations  30,31  . 

 The accelerated pace of human genetics means we now know the proteins to therapeutically 
 target in hundreds of human diseases  32  .  Unfortunately,  however, effective therapeutics 
 have only been developed against a small minority of these genetically-validated targets.  In 
 short, for many diseases we know the proteins to target but we do not know how to target 
 them.  For most proteins, we do not know the location of the ‘switches’ to target with drugs to 
 turn them off or on.   If we could find these switches, we would be able to develop drugs to 
 control their activity. 

 The data presented here and in additional recent studies  12,33–36  have revealed that allosteric 
 sites are much more prevalent than is widely appreciated.  Moreover, the approach that we 
 have applied here to KRAS is quite general and can be used to identify allosteric sites in 
 many different proteins.  We believe that using this general strategy it will be possible to 
 systematically map the regulatory sites to target in many important proteins.   Mapping 
 allosteric sites is likely to play an increasingly important role in drug development, laying the 
 foundations for therapeutically targeting proteins previously considered to be ‘undruggable’. 
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 Figures 

 Fig. 1  . Mapping the energetic landscape of KRAS folding  and binding to RAF1.  a  , Overview 
 of ddPCA selections. yes, yeast growth; no, yeast growth defect; DHF, dihydrofolate; THF, 
 tetrahydrofolate.  b  , Three-state equilibrium and corresponding  thermodynamic model.  ∆  G  f  , 
 Gibbs free energy of folding; ∆  G  b  , Gibbs free energy  of binding;  K  f  , folding equilibrium 
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 constant;  K  b  , binding equilibrium constant;  c  , binding partner concentration;  p  f  , fraction 
 folded;  p  fb  , fraction folded and bound;  f  f  , nonlinear  function of ∆  G  f  ;  f  fb  , nonlinear function of 
 ∆  G  f  and ∆  G  b  ; R, gas constant;  T  , temperature in Kelvin.  c  , Neural network architecture used 
 to fit thermodynamic models to the ddPCA data (bottom, target and output data), thereby 
 inferring the causal changes in free energy of folding and binding associated with single 
 amino acid substitutions (top, input values).  d  , 3D  structure of KRAS bound to RAF1-RBD 
 (Protein Data Bank (PDB) ID: 6VJJ).  e, f,  Heat maps  of fitness effects of single aa 
 substitutions for KRAS-RAF1 from BindingPCA (  e  ) and  AbundancePCA (  f  ) assays. White, 
 missing values; - , wild-type aa; X, STOP codon.  g,  h,  Heat maps showing inferred changes 
 in free energies of binding (  g  ) and folding (  h  ).  i,  Sequence and annotation of KRAS. Binding 
 interface, RAF1 distance < 5 Å; GTP pocket, GTP or Mg2+ distance < 5 Å; core, relative 
 accessible surface area (RSASA) < 0.25 (PDB:6VJJ).  j,  Scatter plot comparing abundance 
 and binding fitness of single aa substitutions. Substitutions in the binding interface are 
 indicated in red.  k,  Comparisons of model-inferred  free energy changes to  in vitro 
 measurements  37  . Error bars indicate 95% confidence  intervals from a Monte Carlo simulation 
 approach (n = 10 experiments). Pearson’s  r  is shown.  l  , 3D structure (left) and clipping view 
 (right) of KRAS with residues coloured by the weighted mean folding free energy change. 
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 Fig. 2  . Free energy changes of mutations in the KRAS-RAF1  binding interface.  a,  Scatter 
 plot comparing binding and folding free energy changes of single aa substitutions.  b,  ROC 
 curves for predicting binding interface residues (RAF1 distance < 5 Å) using weighted mean 
 absolute binding ∆∆  G  (red) or using weighted mean  absolute binding fitness (black). AUC = 
 Area Under the Curve.  c,  3D structure of KRAS bound  to RAF1 in which residue atoms are 
 coloured by the position-wise weighted mean absolute change in the free energy of binding 
 to RAF1. RAF1-RBD is shown in grey.  d,  Heat maps of  binding free energy changes in 
 RAF1 binding interface residues.  e,  Direct contacts  between KRAS and RAF1. 
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 Fig. 3  . Allosteric regulation of KRAS binding to RAF1.  a,  Manhattan plot showing the binding 
 free energy changes of all single aa substitutions. Points are coloured according to residue 
 position and whether the corresponding binding ∆∆  G  is significantly greater than the 
 weighted mean absolute binding ∆∆  G  of all mutations  in the RAF1 binding interface 
 (two-sided  z  -test, FDR = 0.05).  b,  Relationship between  the position-wise average absolute 
 change in free energy of binding to RAF1 and the minimal side chain heavy atom distance to 
 RAF1. Major allosteric sites are defined as non-binding-interface residues with weighted 
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 mean absolute change in free energy of binding higher than the average of binding-interface 
 residue mutations (horizontal dashed line).  Error bars indicate 95% confidence intervals (n ≥ 
 10).  c,  3D structure (PDB:6VJJ) of KRAS bound to RAF1  (grey) with binding interface and 
 major allosteric site residue atoms of KRAS coloured as in  b. d,  Similar to c except KRAS 
 residues are coloured by maximum binding ∆∆  G  .  e,  Violin  plot showing the decay of binding 
 free energy change across successive strands in the beta sheet. Beta strands are ordered 
 by increasing distance to RAF1 in the 3D structure.  f,  3D structure (PDB:6OIM) of KRAS 
 bound to GDP (blue), sotorasib (yellow) and RAF1 (grey) with KRAS surface coloured 
 according to previously described pockets in KRAS (pocket 2, Sotorasib distance < 5 Å; 
 pocket 1, 3, 4  20  ).  g,  Similar to  h  except KRAS pockets  are coloured by maximum binding 
 ∆∆  G  . 
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 Fig. 4  . Seven KRAS free energy landscapes.  a,  Manhattan  plots showing the folding and 
 binding free energy changes of all single aa substitutions. Dark grey rectangles indicate beta 
 strands, light grey rectangles indicate alpha helix 1; HVR, hypervariable region.  Binding 
 interface, indicated binding partner distance < 5 Å (RAF1, PDB:6VJJ; PIK3CG, PDB:1HE8; 
 RALGDS, PDB:1LFD; SOS1, PDB:1NVW; DARPin K27, PDB:5O2S; DARPin K55, 
 PDB:5O2T).  b, c,  Comparisons of binding free energy  changes to  in vitro  measurements. 
 Pearson’s  r  is shown. Error bars indicate 95% confidence  intervals from a Monte Carlo 
 simulation approach (n = 10 experiments). 
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 Fig. 5  . Energetic landscapes of KRAS interaction surfaces.  a,  Common and unique 
 structural contacts between  KRAS and the indicated six binding partners.  b,  3D structures 
 of KRAS indicating binding partner contacts (upper row, coloured as in  a  )  and weighted 
 mean absolute binding free energy change (lower row).  c,  3D structures of binding partners 
 (RAF1, 6VJJ; PIK3CG, 1HE8; RALGDS, 1LFD; DARPin K55, 5O2T; SOS1, 1NVW; DARPin 
 K27, 5O2S) with binding interface indicated in grey.  d,  Heat maps of binding free energy 
 changes in interface residues contacting at least one of the three effectors (RAF1, PIK3CG, 
 RALGDS). Asterisks indicate binding interface residues for each partner. 
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 Fig. 6  . Allosteric control of binding specificity.  a,  Relationship between the weighted mean 
 absolute change in free energy of binding and the distance to each corresponding binding 
 partner (minimal side chain heavy atom distance). Major allosteric sites are defined as 
 non-binding-interface residues with weighted mean absolute change in free energy of 
 binding higher than the average of binding-interface residue mutations across all binding 
 partners (horizontal dashed line).  Error bars indicate 95% confidence interval (n ≥ 10)).  b, 
 Heat maps of binding free energy changes in all major allosteric sites. Nucleotide pocket and 
 γ-phosphate-contacting residues are indicated. 
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 Methods 

 Media and buffers 

 ●  LB:  10  g/L  Bacto-tryptone,  5  g/L  Yeast  extract,  10  g/L  NaCl.  Autoclaved  20  min  at 
 120ºC. 

 ●  YPDA:  20  g/L  glucose,  20  g/L  Peptone,  10  g/L  Yeast  extract,  40  mg/L  adenine 
 sulphate. Autoclaved 20 min at 120ºC. 

 ●  SORB:  1  M  sorbitol,  100  mM  LiOAc,  10  mM  Tris  pH  8.0,  1  mM  EDTA.  Filter 
 sterilized (0.2 mm Nylon membrane, ThermoScientific). 

 ●  Plate  mixture:  40%  PEG3350,  100  mM  LiOAc,  10  mM  Tris-HCl  pH  8.0,  1  mM 
 EDTA pH 8.0. Filter sterilised. 

 ●  Recovery  medium:  YPD  (20  g/L  glucose,  20  g/L  Peptone,  10  g/L  Yeast  extract)  + 
 0.5 M sorbitol. Filter sterilised. 

 ●  SC  -URA:  6.7  g/L  Yeast  Nitrogen  base  without  amino  acid,  20  g/L  glucose,  0.77 
 g/L complete supplement mixture drop-out without uracil. Filter sterilised. 

 ●  SC  -URA/MET/ADE:  6.7  g/L  Yeast  Nitrogen  base  without  amino  acid,  20  g/L 
 glucose,  0.74  g/L  complete  supplement  mixture  drop-out  without  uracil,  adenine 
 and methionine. Filter sterilised. 

 ●  Competition  medium:  SC  –URA/MET/ADE  +  200  ug/mL  methotrexate  (BioShop 
 Canada Inc., Canada), 2% DMSO. 

 ●  DNA  extraction  buffer:  2%  Triton-X,  1%  SDS,  100mM  NaCl,  10mM  Tris-HCl  pH8, 
 1mM EDTA pH8. 

 Plasmid construction 

 Two generic plasmids were constructed to be able to assay any protein of interest by 
 BindingPCA or AbundancePCA: the BindingPCA plasmid (pGJJ161) and the 
 AbundancePCA plasmid (pGJJ162). 

 The BindingPCA plasmid (pGJJ161) and AbundancePCA plasmid (pGJJ162)  were derived 
 from the previous BindingPCA plasmid (pGJJ001) and the previous AbundancePCA plasmid 
 (pGJJ045)  12  . The C-terminus (GGGGS)4 linker of DHRF3  were changed to N-terminus 
 which allowed us to fuse protein of interest to N-terminus to the DHFR3 fragment in both 
 abundance and binding PCA assays. 

 One KRAS AbundancePCA plasmid, 6 BindingPCA plasmids and one KRAS mutagenesis 
 plasmid are used in this paper. To construct the KRAS AbundancePCA plasmid (pGJJ271), 
 the sequence of full length KRAS (188 aa) was amplified from a plasmid, a gift from Luis 
 Serrano lab using primer pair oGJJ231/oGJJ232 (Supplementary Table 1). This primer pair 
 also introduced the HindIII and NheI restriction sites. The PCR product was digested by 
 HindIII and NheI then was cloned into the digested pGJJ162 plasmid using T4 Ligase (NEB). 
 To construct 6 KRAS BindingPCA plasmids, a common KRAS bindingPCA plasmid 
 (pGJJ317) was constructed by ligating full length KRAS sequence digested by HindIII and 
 NheI to digested BindingPCA plasmid. 6 BindingPCA plasmids are constructed by ligating 
 each binding partners PCR product which was digested by BamHI and SpeI to digested 
 pGJJ317 using T4 Ligase (NEB). To construct RAF1 bindingPCA plasmid (pGJJ336), the 
 sequence of RAF1RBD (52-131) was amplified from the cDNA of 293T cell line using primer 

 18 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.06.519122doi: bioRxiv preprint 

https://paperpile.com/c/iNDH9g/oJJK
https://doi.org/10.1101/2022.12.06.519122
http://creativecommons.org/licenses/by-nc-nd/4.0/


 pair oGJJ74/oGJJ307 which also introduced the BamHI and SpeI restriction sites. To 
 construct PI3KCG bindingPCA plasmid (pGJJ565), the sequence of PIK3CG RBD (203-312) 
 was amplified from R777-E169 Hs.PIK3CG (addgene) using primer pair 
 oWCC169/oWCC170. To construct RALGDS bindingPCA plasmid (pGJJ400), the sequence 
 of RALGDS RBD (778-864) was amplified from R777-E169 Hs.PIK3CG (addgene) using 
 primer pair oWCC28/oWCC29. To construct SOS1 bindingPCA plasmid (pGJJ541), the 
 sequence of SOS1 (564-1049) was amplified from plasmid R777-E317 Hs.SOS1 (addgene) 
 using primer pair oWCC149/oWCC150. To construct DARPin K27 bindingPCA plasmid 
 (pGJJ553), the sequence of DARPin K27 was amplified from plasmid 
 pCASP-SptP120-K27-HilA (addgene) using primer pair oWCC157/oWCC158. To construct 
 DARPin K55 bindingPCA plasmid (pGJJ554), the sequence of DARPin K55 was amplified 
 from plasmid pCASP-SptP120-K55-HilA (addgene) using primer pair oWCC159/oWCC160. 
 To construct the KRAS mutagenesis plasmid (pGJJ380), pGJJ191 plasmid was constructed 
 firstly which contained a streptomycin resistance gene cassette. The pGJJ191 plasmid was 
 amplified in two fragment, one ori cassette which also contained AvrII and HindIII restriction 
 sites using primer pair oGJJ308/oGJJ309, the other streptomycin resistance gene cassette 
 using primer pair oGJJ310/oGJJ311, which were then assembled by Gibson reaction 
 (prepared in house) at 50ºC for one hour. KRAS was digested by AvrII and HindIII from 
 abundancePCA plasmid and ligated into digested pGJJ191. Then a BbvCI restriction site 
 was introduced using primer pair oWCC51/oWCC52. 

 Mutagenesis library construction 

 The plasmid-based one-pot saturation (nicking) mutagenesis protocol was used in this study 
 13  . KRAS are divided to three blocks in order to be  fully sequenced by Illumina paired-end 
 150 NextSeq pipeline. 

 An initial single round of nicking mutagenesis using equimolar mixes of degenerate KRAS 
 primers (Supplementary Table 3) was obtained for two reasons: (1) To obtain random single 
 mutants to use as template for another round of nicking mutagenesis (by randomly selecting 
 single colonies and verified by Sanger sequencing) and (2) to quantify the degenerate primer 
 positional bias and compensate for it in the shallow double mutant libraries. 

 To construct three final KRAS libraries, an equimolar pool of single mutants of each block 
 and wild type were used as the plasmid template for a round of nicking mutagenesis. To 
 compensate for the extreme positional biases, each mutagenic primer was mixed in the pool 
 inversely to the mean read counts per position from these first-round nicking libraries. 

 The libraries midi-preps were digested with HindIII and NheI restriction enzymes and the 
 insert containing the mutated protein was gel purified (MinElute Gel Extraction Kit, QIAGEN) 
 to be later cloned into the AbundancePCA plasmid and BindingPCA plasmids by 
 temperature-cycle ligation. The AbundancePCA plasmid and BindingPCA plasmids were all 
 digested by HindIII and NheI enzymes and purified using the QIAquick Gel Extraction Kit 
 (QIAGEN). The assembly of AbundancePCA libraries and BindingPCA libraries were done 
 overnight by temperature-cycle ligation using T4 ligase (New England Biolabs) according to 
 the manufacturer’s protocol, 67 fmol of backbone and 200 fmol of insert in a 33.3 uL 
 reaction. The ligation was desalted by dialysis using membrane filters for 1h and later 
 concentrated 3.3X using a SpeedVac concentrator (Thermo Scientific). 
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 All concentrated assembled libraries were transformed into NEB 10β High-efficiency 
 Electrocompetent E. coli cells according to the manufacturer’s protocol (volumes used in 
 each library specified in Supplementary Table 2). Cells were allowed to recover in SOC 
 medium (NEB 10β Stable Outgrowth Medium) for 30 minutes and later transferred to 200 mL 
 of LB medium with ampicillin 4X overnight. The total number of estimated transformants for 
 each library can be found in Supplementary Table 2. 100 mL of each saturated E. coli culture 
 were harvested next morning to extract the plasmid library using the QIAfilter Plasmid Midi 
 Kit (QIAGEN). 

 Methotrexate selection assays 

 The methotrexate selection assay protocol was described in our previous study  12  . The 
 high-efficiency yeast transformation protocol was scaled in volume depending on the 
 targeted number of transformants of each library. The transformation protocol described 
 below (adjusted to a pre-culture of 175 mL of YPDA) was scaled up or down in volume as 
 reported in Supplementary Table 2. 

 For each of the selection assays (3 blocks x 6 BindingPCA + 3 blocks x 1 AbundancePCA), 
 three independent pre-cultures of BY4742 were grown in 20 mL standard YPDA at 30ºC 
 overnight. The next morning, the cultures were diluted into 175 mL of pre-wormed YPDA at 
 an OD600nm = 0.3. The cultures were incubated at 30ºC for 4 hours. After growth, the cells 
 were harvested and centrifuged for 5 minutes at 3,000g, washed with sterile water and later 
 with SORB medium (100mM LiOAc, 10mM Tris pH 8.0, 1mM EDTA, 1M sorbitol). The cells 
 were resuspended in 8.6 mL of SORB and incubated at room temperature for 30 minutes. 
 After incubation, 175 μL of 10mg/mL boiled salmon sperm DNA (Agilent Genomics) was 
 added to each tube of cells, as well as 3.5 μg of plasmid library. After gentle mixing, 35 mL of 
 Plate Mixture (100mM LiOAc, 10mM Tris-HCl pH 8, 1mM EDTA/NaOH, pH 8, 40% 
 PEG3350) were added to each tube to be incubated at room temperature for 30 more 
 minutes. 3.5 mL of DMSO was added to each tube and the cells were then heat shocked at 
 42ºC for 20 minutes (inverting tubes from time to time to ensure homogenous heat transfer). 
 After heat shock, cells were centrifuged and re-suspended in ~50 mL of recovery media and 
 allowed to recover for 1 hour at 30ºC. Next, cells were again centrifuged, washed with 
 SC-URA medium and re-suspended in SC -URA (volume used in each library found in 
 Supplementary Table 2). After homogenization by stirring, 10 uL were plated on SC -URA 
 Petri dishes and incubated for ~48 hours at 30ºC to measure the transformation efficiency. 
 The independent liquid cultures were grown at 30ºC for ~48 hours until saturation. The 
 number of yeast transformants obtained in each library assay can be found in 
 Supplementary Table 2. 

 For each of the BindingPCA or AbundancePCA assays, each of the growth competitions 
 was performed right after yeast transformation. After the first cycle of post-transformation 
 plasmid selection, a second plasmid selection cycle (input) was performed by inoculating SC 
 -URA/MET/ADE at a starting OD600nm = 0.1 with the saturated culture (volume of each 
 experiment specified in Supplementary Table 2). Cells were grown for 4 generations at 30ºC 
 under constant agitation at 200 rpm. This allowed the pool of mutants to be amplified and 
 enter the exponential growth phase. The competition cycle (output) was then started by 
 inoculating cells from the input cycle into the competition media (SC -URA/MET/ADE + 200 
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 ug/mL Methotrexate) so that the starting OD600nm was 0.05. For that, the adequate volume 
 of cells was collected, centrifuged at 3,000 rpm for 5 minutes and resuspended in the 
 pre-warmed output media. Meanwhile, each input replicate culture was splitted in two and 
 harvested by centrifugation for 5 min at 5,000g at 4ºC. Yeast cells were washed with water, 
 pelleted and stored at -20ºC for later DNA extraction. After ~5 generations of competition 
 cycle, each output replicate culture was splitted into two and harvested by centrifugation for 
 5 min at 5,000g at 4ºC, washed twice with water and pelleted to be stored at -20ºC. 

 DNA extractions and plasmid quantification 

 The DNA extraction protocol used was described in our previous study  12  . A 50 mL harvested 
 culture of OD600nm ~ 1.6 is described below. Cell pellets (one for each experiment 
 input/output replicate) were re-suspended in 1 mL of DNA extraction buffer, frozen by dry 
 ice-ethanol bath and incubated at 62ºC water bath twice. Subsequently, 1 mL of 
 Phenol/Chloro/Isoamyl 25:24:1 (equilibrated in 10mM Tris-HCl, 1mM EDTA, pH8) was 
 added, together with 1 g of acid-washed glass beads (Sigma Aldrich) and the samples were 
 vortexed for 10 minutes. Samples were centrifuged at RT for 30 minutes at 4,000 rpm and 
 the aqueous phase was transferred into new tubes. The same step was repeated twice. 0.1 
 mL of NaOAc 3M and 2.2 mL of pre-chilled absolute ethanol were added to the aqueous 
 phase. The samples were gently mixed and incubated at -20ºC for 30 minutes. After that, 
 they were centrifuged for 30 min at full speed at 4ºC to precipitate the DNA. The ethanol was 
 removed and the DNA pellet was allowed to dry overnight at RT. DNA pellets were 
 resuspended in 0.6 mL TE 1X and treated with 5 uL of RNaseA (10mg/mL, Thermo 
 Scientific) for 30 minutes at 37ºC. To desalt and concentrate the DNA solutions, QIAEX II 
 Gel Extraction Kit was used (50 µL of QIAEX II beads). The samples were washed twice with 
 PE buffer and eluted twice by 125 µL of 10 mM Tris-HCI buffer, pH 8.5 and then combined 
 two elution. Finally, plasmid concentrations in the total DNA extract (that also contained 
 yeast genomic DNA) were quantified by qPCR using the primer pair oGJJ152-oGJJ153, that 
 binds to the ori region of the plasmids. 

 Sequencing library preparation 

 The sequencing library preparation protocol was described in our previous study  12  . The 
 sequencing libraries were constructed in two consecutive PCR reactions. The first PCR 
 (PCR1) was designed to amplify the mutated protein of interest and to increase the 
 nucleotide complexity of the first sequenced bases by introducing frame-shift bases between 
 the adapters and the sequencing region of interest. The second PCR (PCR2) was necessary 
 to add the remainder of the Illumina adapter and demultiplexing indexes. 

 To avoid PCR biases, PCR1 of each independent sample (input/output replicates of any of 
 the yeast assays) was run with an excess of plasmid template 20-50 times higher than the 
 number of expected sequencing reads per sample. Each reaction started with a maximum of 
 1.25x10  7  template plasmid molecules per uL of PCR1,  avoiding introducing more yeast 
 genomic DNA that interfered with the efficiency of the PCR reaction. For this reason, PCR1s 
 were scaled up in volume as specified in Supplementary Table 2. The PCR1 reactions were 
 run using Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs) according to 
 the manufacturer’s protocol, with 25 pmol of pooled frame-shift primers as specified in 
 Supplementary Table 1 for difference blocks (forward and reverse primers were 
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 independently pooled according to the nucleotide diversity of each oligo, Supplementary 
 Table 1). The PCR reactions were set to 60ºC annealing temperature, 10 seconds of 
 extension time and run for 15 cycles. Excess primers were removed by adding 0.04 uL of 
 ExoSAP-IT (Affymetrix) per uL of PCR1 reaction and incubated for 20 min at 37 ̊C followed 
 by an inactivation for 15 min at 80 ̊C. The PCRs of each sample were then pooled and 
 purified using the MinElute PCR Purification Kit (QIAGEN) according to the manufacturer’s 
 protocol. DNA was eluted in EB to a volume 6 times lower than the total volume of PCR1. 

 PCR2 reactions were run for each sample independently using Hot Start High-Fidelity DNA 
 Polymerase. The total reaction of PCR2 was reduced to half of PCR1, using 0.05 uL of the 
 previous purified PCR1 per uL of PCR2. In this second PCR the remaining parts of the 
 Illumina adapters were added to the library amplicon. The forward primer (5’ P5 Illumina 
 adapter) was the same for all samples, while the reverse primer (3’ P7 Illumina adapter) 
 differed by the barcode index (oligo sequences in Supplementary Table 1), to be 
 subsequently pooled together and demultiplex them after deep sequencing (indexes used in 
 each replicate of each sequencing run found in Supplementary Table 2). 8 cycles of PCR2s 
 were run at 62ºC of annealing temperature and 10 seconds of extension time. All reactions 
 from the same sample were pooled together and an aliquot was run on a 2% agarose gel to 
 be quantified. All samples were purified using the QIAEX II Gel Extraction Kit. The purified 
 amplicon library pools were subjected to Illumina 150bp paired-end NextSeq sequencing at 
 the CRG Genomics Core Facility. 

 Sequencing data processing 

 FastQ files from paired-end sequencing of all BindingPCA and AbundancePCA experiments 
 were processed with DiMSum v1.2.9  38  using default  settings with minor adjustments: 
 https://github.com/lehner-lab/DiMSum  . Supplementary  Table 4 contains DiMSum fitness 
 estimates and associated errors for all experiments. Experimental design files and 
 command-line options required for running DiMSum on these datasets are available on 
 GitHub (  https://github.com/lehner-lab/krasddpcams  ).  In all cases, adaptive minimum Input 
 read count thresholds based on the corresponding number of nucleotide substitutions 
 (“fitnessMinInputCountAny” option) were selected in order to minimise the fraction of reads 
 per variant related to sequencing error-induced “variant flow” from lower order mutants. 

 Variant counts associated with all samples (output from DiMSum stage 4) were further 
 filtered using a custom script to retain only those variants with single aa substitutions 
 including a G/T in the third codon position (encoded by “NNK”) or aa substitutions 
 representing high confidence backgrounds. The latter were defined as single aa 
 substitutions observed at least 200 times (in different double aa variants) in at least five (out 
 of a total of seven)  BindingPCA  /  AbundancePCA  experiments.  For double aa variants, we 
 required one of the constituent single aa variants to be a high confidence background 
 mutation. All read counts associated with remaining single or double aa variants (likely the 
 result of PCR and sequencing errors) were discarded. Finally, fitness estimates and 
 associated errors were then obtained from the resulting filtered variant counts with DiMSum 
 (“countPath” option). 
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 Thermodynamic model fitting with MoCHI 

 We used MoCHI (  https://github.com/lehner-lab/MoCHI  ) to fit a global mechanistic model to 
 all 21 ddPCA datasets (7 phenotypes x 3 blocks) simultaneously. The software is based on 
 our previously described genotype-phenotype modelling approach  12  with additional 
 functionality and improvements for ease-of-use and flexibility. 

 Briefly, we model individual KRAS PPIs as an equilibrium between three states: unfolded 
 and unbound (  uu  ), folded and unbound (  fu  ), and folded  and bound (  fb  ). We assume that the 
 probability of the unfolded and bound state (  ub  ) is  negligible and free energies of folding and 
 binding are additive i.e. the total binding and folding free energy changes of an arbitrary 
 variant relative to the wild-type sequence is simply the sum over residue-specific energies 
 corresponding to all constituent single amino acid substitutions. Furthermore, we assume 
 binding energies are specific for each binding partner whereas folding energies are 
 shared/intrinsic to KRAS i.e. unaffected by the identity/presence/expression of a given 
 binding partner. 

 We configured MoCHI parameters to specify a neural network architecture consisting of 
 seven additive trait layers (free energies) i.e. one for each biophysical trait to be inferred (6x 
 binding and 1x folding), as well as one linear transformation layer per experiment (3x 
 abundancePCA  and 18x  bindingPCA  fitness). The specified  non-linear transformations 
 “TwoStateFractionFolded” and “ThreeStateFractionBound” derived from the Boltzmann 
 distribution function relate energies to proportions of folded and bound molecules 
 respectively. The target (output) data to fit the neural network comprises fitness scores for 
 wild-type, single and double aa substitution variants from all 21 ddPCA datasets. 

 A random 30% of double aa substitution variants was held out during model training, with 
 20% representing the validation data and 10% representing the test data. Validation data 
 was used to evaluate training progress and optimise hyperparameters (batch size). Optimal 
 hyperparameters were defined as those resulting in the smallest validation loss after 100 
 training epochs. Test data was used to assess final model performance. 

 MoCHI optimises the parameters  of the neural network  using stochastic gradient descent θ
 on a loss function  based on a weighted and  regularised form of mean absolute error:  ℒ [θ]

 ℒ [θ]   =  1/  𝑁    
 𝑛    =    0 

 𝑁 − 1 

∑  𝑦 
 𝑛 
   −  𝑦 

 𝑛 
|||

|||σ 𝑛 
− 1    +    λ

 2 
θ| || | 2    

 where  and  are  the  observed  fitness  score  and  associated  standard  error  respectively  𝑦 
 𝑛 

σ
 𝑛 

 for  variant  ,  is  the  predicted  fitness  score,  is  the  batch  size  and  is  the  𝑛  𝑦 
 𝑛 

 𝑁 λ
 2 

 𝐿 
 2 

 regularisation  penalty.  In  order  to  penalise  very  large  free  energy  changes  (typically 

 associated  with  extreme  fitness  scores)  we  set  to  representing  light  regularisation. λ
 2 

 10 − 6 

 The  mean  absolute  error  is  weighted  by  the  inverse  of  the  fitness  error  (  )  in  order  to σ
 𝑛 
− 1 

 downweight  the  contribution  of  less  confidently  estimated  fitness  scores  to  the  loss. 
   Furthermore,  in  order  to  capture  the  uncertainty  in  ddPCA  fitness  estimates,  the  training  data 
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 was  replaced  with  a  random  sample  from  the  fitness  error  distribution  of  each  variant.  The 
 validation and test data was left unaltered. 

 Models  were  trained  with  default  settings  i.e.  for  a  maximum  of  1000  epochs  using  the  Adam 
 optimization  algorithm  with  an  initial  learning  rate  of  0.05.  MoCHI  reduces  the  learning  rate 
 exponentially  (  )  if  the  validation  loss  has  not  improved  in  the  most  recent  ten γ   =     0 .  98 
 epochs  compared  to  the  preceding  ten  epochs.  In  addition,  MoCHI  stops  model  training 
 early  if  the  wild-type  free  energy  terms  over  the  most  recent  ten  epochs  have  stabilised 

 (standard deviation  ). ≤  10 − 3 

 Free  energies  are  calculated  directly  from  model  parameters  as  follows:  ∆  G  b  =  b  RT  and  ∆  G  f θ
 =  f  RT  ,  where  T  =  303  K  and  R  =  0.001987  kcalK  -1  mol  -1  .  We  estimated  the  confidence θ
 intervals  of  model-inferred  free  energies  using  a  Monte  Carlo  simulation  approach.  The 
 variability  of  inferred  free  energy  changes  was  calculated  between  ten  separate  models  fit 
 using  data  from  [1]  independent  random  training-validation-test  splits  and  [2]  independent 
 random  samples  of  fitness  estimates  from  their  underlying  error  distributions.  Confident 
 inferred  free  energy  changes  are  defined  as  those  with  Monte  Carlo  simulation  derived  95% 
 confidence  intervals  <  1  kcal/mol.  Supplementary  Table  5  contains  inferred  binding  and 
 folding free energy changes of mutations for all binding partners. 
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 Extended Data 

 Extended Data Fig. 1  . Experimental reproducibility  and thermodynamic model fitting.  a,b, 
 Scatter plots showing the reproducibility of each block’s binding (a) and abundance (b) 
 fitness estimates from ddPCA. Pearson’s r indicated on the top right corner.  c,  Comparison 
 of the binding fitness to previously reported KRAS-RAF1 binding E score  17  . Pearson’s r = 
 0.82.  d,  single mutation fitness density distributions.  e,  Non-linear relationships (global 
 epistasis) between observed AbundancePCA fitness and changes in free energy of folding. 
 f,  Scatter plots of predicted abundance fitness against  observed abundance fitness from the 
 model.  g,  Non-linear relationships (global epistasis)  between observed. BindingPCA fitness 
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 and both free energies of binding and folding.  h,  Predicted binding fitness against observed 
 binding fitness. Three rows stand for three mutagenesis library blocks (block 1, on the top, 
 block 2, in the middle, block 3, on the bottom). 
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 Extended Data Fig. 2  . Allosteric mutations in the  KRAS beta sheet and surface pockets.  a, 
 Heat maps of binding free energy changes of residues in the beta sheet. GTP indicates the 
 location of GTP in the 3D structure.  b,  Number of  allosteric mutations in each secondary 
 structure element. *, odds ratio > 1, and Fisher's exact two sided test, p < 0.05.  c,  Scatter 
 plot showing the binding free energy changes of all mutations and the distance to the binding 
 partner. Residues in beta sheet and GTP binding sites (minimal side chain heavy atom 
 distance to GTP < 5 Å) are coloured as indicated.  d,  e, f, g,  Scatter plot showing the binding 
 free energy changes of all mutations and the distance to the binding partner. Residues in 
 each pocket are coloured as indicated. 
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 Extended Data Fig. 3  . Experimental reproducibility  and thermodynamic model fitting for five 
 additional interaction partners.  a,  Scatter plots  showing the reproducibility of each block’s 
 binding fitness estimates from ddPCA. Pearson’s r indicated on the top right corner.  b, 
 Performance of models fit to ddPCA data. Scatter plots of predicted binding fitness against 
 observed binding fitness. 
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 Extended Data Fig. 4  . Seven KRAS free energy landscapes.  a,  Heat maps of folding and 
 binding free energy changes.  b,  ROC curves for predicting  binding interface residues 
 (distance to binding partner < 5 Å) using weighted mean absolute binding free energy 
 changes (∆∆G) in red or using weighted mean absolute binding fitness in black. AUC = Area 
 Under the Curve. 
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 Extended Data Fig. 5  . Binding interface specificity  for all interactions. Heat maps of binding 
 free energy changes of all binding partners (RAF1, PIK3CG, RALGDS, SOS1, DARPin K27, 
 DARPin K55) binding interface residues. *, binding interface residues of each binding 
 partner. 
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 Extended Data Fig. 6  . Binding energy and allosteric  landscapes for all six binding partners. 
 Scatter plot showing the binding free energy changes of all mutations coloured according to 
 residue position and whether the free energy change is larger than the weighted mean of 
 binding free energy changes in the binding-interfaces of all six proteins. Two-sided Z test, 
 FDR < 0.05. 

 32 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.06.519122doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519122
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Extended Data Fig. 7  . Enrichments of allosteric mutation  types for each interaction. 
 Enrichments are quantified for changes from each wild-type (WT) aa and for changes to 
 each aa.   Enrichments are also quantified for changes from and to amino acids with 
 particular physicochemical properties: hydrophobic (A, V, I, L, M, F, Y, W) and charged (R, H, 
 K, D, E). Results are shown for all residues outside the binding interface. 
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