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Abstract:

Advances in DNA sequencing and machine learning are illuminating protein sequences and structures on an
enormous scale. However, the energetics driving folding are invisible in these structures and remain largely
unknown. The hidden thermodynamics of folding can drive disease, shape protein evolution, and guide protein
engineering, and new approaches are needed to reveal these thermodynamics for every sequence and structure. We
present cDNA display proteolysis, a new method for measuring thermodynamic folding stability for up to 900,000
protein domains in a one-week experiment. From 1.8 million measurements in total, we curated a set of ~850,000
high-quality folding stabilities covering all single amino acid variants and selected double mutants of 354 natural
and 188 de novo designed protein domains 40-72 amino acids in length. Using this immense dataset, we quantified
(1) environmental factors influencing amino acid fitness, (2) thermodynamic couplings (including unexpected
interactions) between protein sites, and (3) the global divergence between evolutionary amino acid usage and protein
folding stability. We also examined how our approach could identify stability determinants in designed proteins and
evaluate design methods. The cDNA display proteolysis method is fast, accurate, and uniquely scalable, and
promises to reveal the quantitative rules for how amino acid sequences encode folding stability.

One-Sentence Summary:
Massively parallel measurement of protein folding stability by cDNA display proteolysis
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Main Text:
Protein sequences vary by more than ten orders of magnitude in
thermodynamic folding stability (the ratio of unfolded to folded
molecules at equilibrium) (1, 2). Even single point mutations that
alter stability can have profound effects on health and disease (3–5),
pharmaceutical development (6–8), and protein evolution (9–13).
Thousands of point mutants have been individually studied over
decades to quantify the determinants of stability (14, 15), but these
studies highlight a challenge: similar mutations can have widely
varying effects in different protein contexts, and these subtleties
remain difficult to predict despite substantial effort (16, 17). In fact,
even as deep learning models have achieved transformative accuracy
at protein structure prediction (18–21) progress in modeling folding
stability has arguably stalled (22–24). New high-throughput
experiments have the potential to transform our understanding of
stability by quantifying the effects of mutations across a vast number
of protein contexts, revealing new biophysical insights and
empowering modern machine learning methods.

Here, we present a powerful new high-throughput stability
assay along with a uniquely massive dataset of 851,552 folding
stability measurements. Our new method - cDNA display proteolysis
- combines the strengths of cell-free molecular biology and
next-generation sequencing and requires no on-site equipment larger
than a qPCR machine. Assaying one library (up to 900,000 sequences
in our experiments) requires one week and only ~$2,000 in reagents,
excluding the cost of DNA synthesis and sequencing. Compared to
mass spectrometry-based high-throughput stability assays (25–28),
cDNA display proteolysis achieves a 100-fold larger scale and can
easily be applied to study mutational libraries that pose difficulties
for proteomics. Compared to our earlier yeast display proteolysis
method (29), cDNA display proteolysis resolves a wider dynamic
range of stability and is more reproducible even at a 50-fold larger
experimental scale. Large-scale proteolysis data have already played
a key role in the development of machine learning methods for
protein design and protein biophysics (30–36). The cDNA display
proteolysis method massively expands this capability and has the
potential to expand our knowledge of stability to the scale of all
known small domains.

Our new dataset of 851,552 absolute folding stabilities is
unique in size and character. Current thermodynamic databases
contain a skewed assortment of mutations measured under many

varied conditions (14). In contrast, our new dataset comprehensively
measures all single mutants for 354 natural domains and 188
designed proteins - including single deletions and two insertions at
each position - all under identical conditions. Our dataset also
includes comprehensive double mutations at 595 site pairs spread
across 208 domains (a total of 222,265 double mutants). By
maintaining uniform experimental conditions, our data can be used to
examine the determinants of absolute folding stability in addition to
the effects of mutations. Using our unique dataset, we investigated
how individual amino acids and pairs of amino acids contribute to
folding stability (Figs. 3 and 4) as well as how selection for stability
interacts with other selective pressures in natural protein domains
(Figs. 5 and 6). We also explored how our unique scale of data can be
applied in protein design (Fig. 7).

Massively parallel measurement of folding stability by cDNA
display proteolysis

Proteases typically cleave unfolded proteins more quickly
than folded ones, and proteolysis assays have been used for decades
to measure folding stability (37) and select for high stability proteins
(38, 39). In 2017, we introduced the high-throughput yeast display
proteolysis method for measuring folding stability using next
generation sequencing (29, 40–46). To improve the scale, precision,
speed, and cost of stability measurements, we developed cDNA
display proteolysis. Each experiment begins with a DNA library.
Here, we employ synthetic DNA oligo pools where each oligo
encodes one test protein. The DNA library is transcribed and
translated using cell-free cDNA display (47), based on mRNA
display (48, 49), resulting in proteins that are attached at the
C-terminus to their cDNA. We then incubate the protein-cDNA
complexes with different concentrations of protease, quench the
reactions, and pull down the proteins using an N-terminal PA tag
(Fig. 1A). Intact (protease-resistant) proteins will also carry their
C-terminal cDNA. Finally, we determine the relative amounts of all
proteins in the surviving pool at each protease concentration by deep
sequencing (Fig. 1D). To control for any effects of protease
specificity, we perform separate experiments with two orthogonal
proteases: trypsin (targeting basic amino acids) and chymotrypsin
(targeting aromatic amino acids).
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Fig. 1. cDNA display enables massively parallel measurement of protein folding stability.
(A) A DNA oligo library is expressed using cell-free cDNA display, producing proteins with an N-terminal PA tag and C-terminal covalent
attachment to cDNA. Protease cleavage separates the cDNA from the PA tag. After protease challenge, magnetic beads with anti-PA antibodies pull
down protein N-termini and intact proteins carry along their cDNA. cDNA is then amplified and sequenced to quantify the intact fraction of each
protein.
(B) Thermodynamic model of proteolysis based on single turnover kinetics. Protease enzymes (E) and protein substrates (S) form an ES complex to
produce cleaved protein products (P) (1). We model the cleavage as a first-order reaction (2) according to single turnover kinetics (3). We use an
identical kmax for all sequences and fit each sequence’s K50 concentration to our data. Proteins are normally cleaved in the unfolded (U) state but can
also be cleaved in the folded (F) state (e.g. by cleaving the PA tag) (4). We determine the folding equilibrium using each sequence’s measured K50, a
predicted sequence-specific K50 for the unfolded state (K50,U), and a universal K50 for the folded state (K50,F).
(C) Relationship between K50 and ∆G for a protein with fewer cut sites (yellow) and a protein with more cut sites (blue). When K50 approaches K50,U

or K50,F (red shaded regions), ∆G becomes very sensitive to K50 and its uncertainty increases relative to the uncertainty in K50.
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(D) PA tag pulldown at increasing protease concentrations separates proteins by stability. Each sequence of Protein GB1 variants in a library is shown
as a gray line tracking its change in population fraction relative to that in the pre-selection library (enrichment). Enrichment traces for the wild-type
and four mutants are highlighted in color.
(E) Reproducibility of K50 from two replicates of the proteolysis procedure, after filtering for data quality and range (see Methods). The K50 density is
shown in gray with the proteins from (D) highlighted in color.
(F) Consistency of K50 (left) and ∆G (right) between trypsin and chymotrypsin for one library (black), highlighting the five proteins shown in (D).
(G) Our high-throughput ∆G measurements are consistent with previously published stability data from purified protein samples for wild types and
mutants of 10 domains. The red dashed line represents the Y = X+b (intercept) line. Gray points (Protein GB1) indicate ‘no data’ in the previous
paper. See Table. S2 and Fig. S3 for analysis of the intercepts

We inferred the protease stability of all sequences from our
sequencing counts using a Bayesian model of the experimental
procedure. We modeled protease cleavage using single turnover
kinetics (50, 51) (Fig. 1B eqs. 1 to 3, Fig. S1, and Supplementary
Text for the derivation) because we assume the enzyme is in excess
over all substrates (up to ~20 pM of substrate based on previous
estimates (47) versus 141 pM for the lowest concentration of
protease). To parameterize the model, we used a universal kmax

cleavage rate for all sequences (Fig. S1) and used our sequencing
data to infer a unique K50 for each sequence (the protease
concentration at which the cleavage rate is one-half kmax, see
Methods). The K50 values inferred by the model were consistent
between two replicates of the proteolysis procedure (R = 0.97 for
trypsin and 0.99 for chymotrypsin for ~84% of sequences in a pool of
806,640 sequences after filtering based on confidence and dynamic
range; Fig. 1E).

To infer each sequence’s thermodynamic folding stability
(∆G for unfolding), we used a kinetic model that separately considers
idealized folded (F) and unfolded (U) states (Fig. 1B eq. 4). We
model both states using the same single-turnover equations as before
(Fig. 1B eq. 3), with separate K50 protease concentrations for each
state (K50,F and K50,U) and a shared kmax. We assume that cleavage in
the folded state exclusively occurs outside the folded domain (e.g. in
the N-terminal PA tag added to all sequences), so we use an identical
K50,F for all sequences. In contrast, K50,U reflects an individual
sequence’s unique protease susceptibility in the unfolded state, which
depends on its potential cleavage sites. We inferred K50,U for each
sequence using a position-specific scoring matrix (PSSM) model of
protease cleavage parameterized using measurements of 64,238
scrambled sequences (sequences with a high probability of being
fully unfolded, Fig. S2; see also Methods). Finally, we assume that
folding, unfolding, and enzyme binding are all in rapid equilibrium
relative to cleavage, implying that K50,U, K50,F, and the overall K50 can
be approximated by the enzyme-substrate equilibrium dissociation
constants for each state (Fig. 1B eq. 6). Although these
approximations will not be universally accurate, they are appropriate
for the small domains examined here and facilitate consistent analysis
of all test sequences. With these approximations, we can express a
sequence’s ∆G in terms of the universal K50,F, its inferred K50,U, and
its experimentally measured K50 (Fig. 1B eq. 5 and 7, and
Supplementary Text for the derivation). For most analysis we
combine our independent trypsin and chymotrypsin data into a single
overall ∆G estimate (See Methods). Based on our kinetic model, (1)
stability (∆G) will be underestimated if significant cleavage occurs

inside the test domain in the folded state, (2) stability can be over- or
under-estimated depending on the accuracy of K50,U (independent
measurements with trypsin and chymotrypsin help correct this), and
(3) ∆G values become unreliable if K50 approaches K50,F or K50,U (Fig.
1C).

Folding stabilities from cDNA display proteolysis are consistent
with traditional experiments on purified proteins

In Fig. 1G, we compare stabilities measured by cDNA
display proteolysis to previous results from experiments on purified
protein samples for 1,143 variants of ten proteins (52–65). All
Pearson correlations are above 0.7. Our stability measurements for
these 1,143 sequences were all performed in libraries of
244,000–900,000 total sequences. Although several sets of mutants
show systematic offsets (y-intercept values) between literature values
and our measurements, these offsets correlate with temperature
differences between experimental conditions (with the exception of
the N-terminal domain of Ribosomal Protein L9 (2HBB), Fig. S3, see
Table S2 for all experimental conditions). We also noticed several
variants of Protein GB1 appear unstable in our data but stable in the
previous experiments (52). Our structural analysis of these mutations
suggests that our measurements are more likely to be correct (Fig.
S4). Overall, the consistency between our cDNA display proteolysis
data and traditional biophysical measurements establishes that (1)
small domains are cleaved mainly in the globally unfolded state, (2)
our method can reliably measure these cleavage rates on a massive
scale, and (3) our unfolded state model can remove protease-specific
effects to attain accurate quantitative folding stability measurements.

Comprehensive mutational analysis across designed and natural
protein domains

To systematically examine how individual residues
influence folding stability, we used cDNA display proteolysis to
measure stability for all single substitutions, deletions, and Gly and
Ala insertions in 983 natural and designed domains. We chose our
natural domains to cover almost all of the small monomeric domains
in the Protein Data Bank (30-72 amino acids in length). Our designed
domains included (1) previous Rosetta designs with ααα, αββα, βαββ,
and ββαββ topologies (40-43 a.a.) (29, 66), (2) new ββαα proteins
designed using Rosetta (47 a.a.), and (3) new domains designed by
trRosetta hallucination (46 to 69 a.a.) (42, 67). We collected these
data using four giant synthetic DNA oligonucleotide libraries and
obtained K50 values for 2,520,337 sequences; 1,844,548 of these
measurements are included here. K50 values were reproducible across
libraries (Fig. S5). Oligo pools were synthesized by Agilent
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Technologies (one 244,000-sequence library, length 170 nt) and Twist
Bioscience (three libraries of 696,000 - 900,000 sequences, length
250-300 nt).

Deep mutational scanning of hundreds of domains revealed
several overall patterns. The largest fraction of these domains showed
clear, biophysically reasonable sequence-stability relationships that
were consistent between separate experiments with trypsin and
chymotrypsin. However, other domains were completely unfolded,
too stable to resolve, insensitive to mutation, or inconsistent between
the proteases. For 42 domains that were too stable to resolve, we
introduced single mutations to destabilize the wild-type sequence,
then performed new mutational scanning experiments in these 121
new “wild-type” backgrounds (Fig. S6). In four domains, mutational
scanning revealed trypsin-sensitive loops that could be cleaved in the
folded state, leading to inconsistent stabilities between trypsin and
chymotrypsin (Fig. S7). In these cases, we introduced one to two
substitutions into the wild-type sequences to remove trypsin-sensitive
sites, then performed new mutational scanning experiments in these
alternative backgrounds. This led to consistent results between the
two proteases. In total, we performed deep mutational scanning for
983 domain sequences, including both original and revised wild-type
backgrounds.

Our overall categorization of all domains is shown in Fig.
2B (see Fig. S8 for inclusion criteria). Based on these categories, we
assembled three curated datasets for machine learning (Fig. 2A). Our
∆∆G dataset (Dataset #1) includes 586,938 sequences (single and
double mutants) from 251 natural domains and 145 designs. In this
dataset, the wild-type sequence is 1.25-4.5 kcal/mol in stability so
that most ∆∆G values (including for stabilizing mutants) are correctly

resolved. Our ∆G dataset (Dataset #2) includes all 851,552 single and
double mutants from 354 natural domains and 188 designs. In this
dataset, the large majority of mutant ∆Gs are accurately resolved, but
the wild-type ∆G may lie outside the dynamic range, preventing
accurate ∆∆G calculations. Finally, Dataset #3 includes all ~1.8
million confidently estimated K50 values, even when trypsin and
chymotrypsin measurements produced inconsistent ∆G estimates.
The main domain classes in Dataset #1 are shown in Fig. 2C; all
natural domains included in Dataset #1 are listed by category in Fig.
S9 (see Supplementary Materials for all wild-type sequences).

Mutational scanning results for nine domains are shown in
Fig 2D and E. Like all mutational scans in Datasets 1 and 2, these
examples show a strong consistency between independent ∆G
measurements with trypsin and chymotrypsin (Pearson correlation
0.94 ± 0.04 for 542 domains in Dataset 2, median ± std.). In each
structure, sites are colored according to the average effect of an
amino acid substitution, with the most critical sites (where mutations
are very destabilizing) colored dark blue. Most of these critical sites
are in the hydrophobic core. However, our data also reveal numerous
other critical interactions, such as a side chain hydrogen bond
between S23 and D42 in the U-box domain of human E4B Ubiquitin
ligase and a cation-π interaction between R10 and W32 in the
chromodomain of human chromobox protein homolog 7 (residues
have been re-numbered based on the exact sequence included in our
experiments). These unique stabilizing interactions reveal the rich
biophysical diversity found in our systematic exploration of stability
across hundreds of domains.
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Fig. 2. Comprehensive mutational analysis of stability in designed and natural proteins
(A) Comparison of the size of existing datasets and the datasets from this paper. The data of this paper are divided into three groups: datasets #1, #2,
and #3, according to the quality of the data (see Table S1 and Fig. S8 for details). ML: machine learning
(B) Classification of mutational scanning results for each wild-type sequence. The G0 group corresponds to Dataset #1, and G0 and G1 groups
combined correspond to Dataset #2 in (A). (G1: Good but WT may be outside the dynamic range)
(C) Wild-type structures classified as G0 in (B) grouped into domain families. The 11 most common domain types are shown; the remaining 174
domains are classified as “Other” (see Fig. S9).
(D) Mutational scanning results for four domains. Left: domain structures colored by the average ∆∆G at each position; darker blue indicates mutants
are more destabilizing. The structure of the design r11_829_TrROS is an AlphaFold model. Middle: Heat maps show ∆G for substitutions, deletions,
and Gly and Ala insertions at each residue, with the PDB numbering shown at top and our one-indexed numbering at bottom. White represents the
wild-type stability and red/blue indicate stabilizing/destabilizing mutations. Black dots indicate the wild-type amino acid, red slashes indicate missing
data, and black corner slashes indicate lower confidence ∆G estimates, (95% confidence interval > 0.5 kcal/mol), including ∆G estimates near the
edges of the dynamic range. Red boxes highlight the S23-D42 hydrogen bond in 3L1X and the R10-W32 cation-π interaction in 2K1B. ∆G values
were fit to trypsin and chymotrypsin data together; see Methods. Right: Agreement between mutant ∆G values independently determined using
assays with trypsin (x-axis) and chymotrypsin (y-axis). Multiple codon variants of the wild-type sequence are shown in red, reliable ∆G values in
blue, and less reliable ∆G estimates (same as above) in gray. The black dashed line represents Y=X. Each plot shows the number of reliable points
and the Pearson r-value for the blue (reliable) points.
(E) As in (D) left, structures of five domains are shown colored by the average ∆∆G at each position; darker blue indicates mutants are more
destabilizing. The two designed structures are AlphaFold models.

Trends in amino acid fitness at different sites and across domains
We first sought to define the major sources of variation

between protein sites that determine the relative stabilities of all 20
amino acids at that site (i.e. the site’s stability landscape). To this end,
we performed principal component (PC) analysis using 293,697 ∆G
measurements at 15,440 sites in 337 domains from Dataset #1 after
centering our data to set the average ∆G at each site to zero (Fig. 3A,
B). Each principal component expresses specific properties of a site
that determine which amino acids are stabilizing or destabilizing.
Based on the loadings of the different amino acids onto each
principal component (Fig. 3C), we interpreted the first four
components to reflect amino acid hydrophobicity (PC1; 31% of the
total variance explained by this PC), helical probability (PC2; 15%),
aliphatic vs. aromatic favorability (PC3; 12%), and positive vs.
negative charge (PC4; 7%). The fifth principal component (6%) was
more complex: at one extreme were small amino acids that could be
buried in dense environments, along with positively charged amino
acids that can “snorkel” their charged moieties to the surface even
when partially buried. At the other extreme were negatively charged
amino acids that are energetically costly to bury. We interpreted this
component to reflect an “ease of burial” that is orthogonal to the
hydrophobic property captured by PC1. These interpretations are also
consistent with the structural environments at each site, as shown in
Fig. 3D. For example, the first principal component reflecting
hydrophobicity is high at buried positions and low at exposed
positions (Fig. 3D).

These first five principal components collectively form a
coarse model of the properties of protein sites, but some sites have
unique stability landscapes that cannot be accurately represented by
this model. We reconstructed the stability landscapes at all sites using
the first five components and examined how different sites and
domains deviated from these simplified landscapes (Fig. 3E). On
average, stability landscapes reconstructed using five principal
components were similarly accurate (in terms of mean absolute error)
for both high and low stability domains (Fig. 3F). However, as
expected, these coarse reconstructions were less accurate for domains
with more varied stability landscapes (domains with a higher
standard deviation of ∆G for all substitutions). The coarse model was
also more accurate at reconstructing the stability landscapes of de
novo designed domains and less accurate at reconstructing the
landscapes of natural domains (Fig. 3F). This remained true for any
number of principal components and even when designed proteins
were excluded from the initial PCA (Fig. S10). This indicates that the
de novo design protocols examined here lead to structures with
“typical” amino acid environments that can be accurately described
by only five principal components, and that these proteins generally
lack the more specialized environments found in natural domains.
Indeed, wild-type amino acids in natural domains tend to be more
stable than the fit from the coarse model (Fig. S11). This suggests the
remaining components capture additional biophysical effects that
contribute to the compatibility between wild-type amino acids and
their environments.
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Fig. 3. Environmental factors that determine amino acid stabilities at a position.
(A) Principal component (PC) analysis on a matrix consisting of 15,440 observations (sites in proteins) x 20 amino acids (features) to determine the
factors influencing stabilities of different amino acids.
(B) Fraction of the total variance explained by each PC (bars) and the cumulative total (upper line).
(C) Principal components of the stability data indicating the dominant trends for which amino acids would be stable or unstable at a site. We label
each component with a biophysical interpretation and show the percent of the total variance explained by that component.
(D) Relationships between the PC values (x-axis) for all 15,440 positions and environmental properties of the position from the three-dimensional
structure (y-axis). Colored lines show each environmental feature averaged over a window of 0.25 in the units of each PC.
(E) Fraction of sites (observations) whose stability landscapes can be reconstructed with MAE < 0.25 kcal/mol using the first 1-8 principal
components.
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(F) Relationship between reconstruction error using five PCs (MAE, y-axis) and wild-type stability (left, x-axis) or variance in the ∆∆G data (right,
x-axis). Colors represent protein structures grouped into natural proteins (green), Rosetta designs (blue), and hallucination designs (orange). Three
example proteins shown in (G) are shown as large dots. Lines show LOWESS fits.
(G) Structures of three example proteins with each position colored by the error (MAE) between the reconstructed ∆∆G values (using 5 PCs) and the
observed ∆∆G values. The left protein was designed by hallucination and each position is accurately reconstructed using only 5 PCs, whereas the
middle and right natural proteins have positions with more unusual ∆∆G patterns and larger MAEs. The r11_692_TrROS structure is an AlphaFold
model.
(H) For seven positions with large MAE in the center (1QP2) and right domains (2JN4) from (G), we show the experimental trypsin and
chymotrypsin K50 values, the ∆G values, and the reconstructed ∆G values based on the top five PCs.

Three example proteins shown in Fig. 3G illustrate how the
coarse five-component model captures (or fails to capture) protein
stability landscapes. At one extreme, the stability landscape of the
designed protein r11_692_TrROS (from trRosetta hallucination) is
accurately approximated by the coarse model (average per-residue
MAE 0.13 kcal/mol). In contrast, the two natural domains (an SH3
domain (1QP2) and a unique NifT/FixU barrel domain (2JN4); Fig.
S12) contain many sites with unique properties that are not accurately
represented by the model (average per-residue MAE of 0.34 kcal/mol
and 0.31 kcal/mol for the SH3 domain and β-barrel domains
respectively). Seven of these sites are highlighted in Fig. 3H. Each
stability landscape contains sharp differences between closely related
amino acids that are not captured by the coarse model, such as V
versus L at V8 and Q19 in 1QP2, and Q versus E at Q19 in 1QP2,
M28 in 2JN4, and T60 in 2JN4. These unusual patterns are unlikely
to be experimental artifacts because the patterns are consistent
between independent experiments with trypsin and chymotrypsin and
the same patterns are seen in both our K50 and ∆G analysis (Fig. 3H).
Our massive dataset enabled us to identify the global trends in
stability landscapes as well as specific cases that depart from these
trends. These unusual cases with large reconstruction errors may
provide the opportunity to study how protein flexibility and/or rare
side chain interactions contribute to folding stability. These unusual
sites will also serve as stringent test cases for models of protein
stability.

Quantifying thermodynamic coupling for hundreds of amino acid
pairs

Next, we examined how side chain interaction between
amino acid pairs affects folding stability. We constructed
comprehensive substitutions (20 x 20 amino acids) of 595 amino acid
pairs from 208 natural domains and designs in our ∆G dataset
(Dataset #2) and measured stability for all sequences by cDNA
display proteolysis. We selected pairs that were suggested to form
energetically important hydrogen bonds in our mutational scanning
data as well as other pairs forming close contacts (Fig. 4A; Methods).
To quantify the interactions between side chains, we constructed an
additive model for each amino acid pair with 40 coefficients that
capture the independent stability contributions of each amino acid in
each position. The deviations from these models quantify the
“thermodynamic coupling” between specific amino acids. Among our
curated set of wild-type pairs, thermodynamic couplings were
typically 0.5-1.0 kcal/mol in magnitude, with the largest couplings
stronger than 2 kcal/mol (Fig. 4B). Among all sequences tested
(wild-type or mutant pairs), pairs with opposite charges and cysteine

pairs tended to have positive (favorable) couplings, whereas pairs
with the same charge and acidic-aromatic/aliphatic amino acid pairs
tended to have negative couplings (Fig. 4C). These couplings are
lower than our observed wild-type couplings because the side chain
orientations and environment surrounding wild-type pairs will
typically be optimized for that pair. Nonetheless, our data recapitulate
expected patterns of side chain interactions, provide a wealth of data
for training machine learning models, and identify a wide range of
noteworthy interactions for further study.

Several notable pairs are highlighted in Fig. 4D to F. In an
OB-domain from Shewanella oneidensis, we found strong
thermodynamic coupling between two unrelated pairs of amino acids:
the wild-type Tyr-Glu pair and a mutant Lys-Trp pair that may form a
cation-π interaction (thermodynamic couplings of 1.6±0.2 and
1.4±0.2 kcal/mol respectively; mean±std from calculating the
coupling using bootstrap resampling of the ~400 amino acid
combinations; Fig. 4D, S13A). In the Alpha-spectrin SH3 domain,
our comprehensive double mutant scanning of Y10 and Y52
uncovered the highly stable, tightly coupled double mutant
Y10H/Y52K (coupling of 2.5±0.4 kcal/mol for His-Lys versus
1.0±0.2 kcal/mol for the wild-type pair) (Fig. 4E, S13B). AlphaFold
modeling predicts that this double mutant introduces a new hydrogen
bonding network to replace the original Tyr-Tyr interaction. We also
identified an unexpected thermodynamic coupling between an amino
acid pair lacking a direct side chain interaction. In the SH3 domain of
Myo3, mutations at K24 are destabilizing even though the side chain
makes no clear interactions. To investigate interactions of K24, we
quantified thermodynamic couplings to nearby Y9 (0.0±0.1 kcal/mol)
and D10 (1.0±0.2 kcal/mol) (Fig. 4F and Fig. S13C). The surprising
K24-D10 coupling - between two side chains that appear not to
interact - highlights the difficulty of inferring energetic interactions
from structural data alone, and suggests a possible longer-ranged
ionic interaction.

We also investigated thermodynamic couplings within 36
different three-residue networks. For each triplet, we
comprehensively measured stability for all possible single and double
substitutions in both the wild-type background and in the background
where the third amino acid was replaced by alanine (400 mutants x 3
pairs x 2 backgrounds = ~2,400 mutants in total for each triplet). As
before, we modeled each set of 400 mutants (i.e. one residue pair in
one background) using 40 single-amino acid coefficients (we did not
globally model all 2,400 mutants together). One notable triplet is
found in the J domain of HSJ1a, where R60 and D64 both interact
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with the hydroxyl group on Y3 (Fig. 4G left). We observe strong
couplings (> 1.5 kcal/mol) between each pair of two out of the three
amino acids. However, when any of the three amino acids is mutated
to alanine, the coupling between the remaining two amino acids
becomes much weaker (< 0.5 kcal/mol, Fig. 4G middle and right,
Fig. S13D). These results reveal a strong third-order thermodynamic
coupling: the interaction between two amino acids is mediated by a
third amino acid.

This strong three-way coupling is especially noteworthy
because the interactions do not appear in the deposited NMR
structural ensemble (2LGW; Fig S14A and B). The interaction
network shown in Fig. 4G comes from the AlphaFold predicted
structure for our wild-type sequence taken from the J domain of
human HSJ1a. This network reproduces interactions seen in other

J-domain crystal structures from C. elegans (2OCH) and P.
falciparum (6RZY). However, in the deposited NMR ensemble for
2LGW, the backbone near Y5 (Y3 in our numbering) always
positions that residue away from the helix containing R62 and D66,
making the interaction network impossible. The strong couplings we
identify support the AlphaFold model and suggest the deposited
ensemble is missing conserved interactions that form in HSJ1a and
other J domain proteins. This example illustrates how large-scale
folding stability measurements can reveal the thermodynamic effects
of a critical interaction even when that interaction is missing in the
deposited NMR structure. Notably, AlphaFold itself does not always
predict this network either: when we include disordered linkers from
the NMR construct or used for cDNA proteolysis, AlphaFold also
predicts alternative structures lacking the interaction network (Fig.
S14D and E).
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Fig. 4. Quantifying thermodynamic coupling between amino acid pairs
(A) Categorization of 595 pairs of amino acids selected for exhaustive double mutant analysis.
(B) Thermodynamic couplings of the wild-type amino acid pairs according to our additive model broken down by category.
(C) The average thermodynamic couplings (left) and the fraction of amino acid pairs with thermodynamic coupling > 0.5 kcal/mol (middle) and <
-0.5 kcal/mol (right) for all amino acid combinations (wild-type and mutant).
(D and E) Analysis of thermodynamic coupling for two notable amino acid pairs. From left to right, we show the structure of each domain and the
two positions that were mutated, the stabilities (∆G) of all pairs of amino acids at those positions, the agreement between the stabilities from the
additive model (x-axis) and the observed stabilities (y-axis) with the wild-type pair shown as a red dot, and AlphaFold or ESMFold models of amino
acid pairs with strong thermodynamic couplings. Thermodynamic couplings show the observed stability minus the expected stability from the
additive model; the uncertainties show the standard deviations from computing the couplings using bootstrapped samples of the 400 double mutants.
(F) Thermodynamic coupling without a visible side chain interaction. From left to right, the structure of the MYO3 SH3 domain and notable
residues; the stabilities (∆G) of all pairs of amino acids at D10 and K24; the stabilities of double mutants in the additive model (x-axis) and
experimental data (y-axis); and the zoomed structure for D10, K23, and K24.
(G) Thermodynamic coupling mediated by a third amino acid. Exhaustive amino acid substitutions were performed for each pair of two out of the
three amino acids. The same amino acid substitutions were also performed for the mutant background with the third amino acid replaced by Ala.
From left to right, the AlphaFold-modeled structure of the J domain of HSJ1a with three interacting amino acids, the stabilities of double mutants in
the additive model (x-axis) and experimental data (y-axis) in the wild-type background (blue) and Ala-replaced backgrounds (orange), and the
thermodynamic coupling for each pair of wild-type amino acids in the wild-type background (blue) and the Ala-replaced backgrounds (orange).
Substituting any of the three amino acids for Ala eliminates the thermodynamic coupling between the other two amino acids. Error bars show
standard deviations from bootstrap resampling as before.

The scale of our cDNA display proteolysis experiments makes it
straightforward to characterize unique cases like these, and again these
cases will serve as stringent tests for models of folding stability. Strong
third-order couplings like this example also present a special challenge for
computational models that calculate stabilities by summing interaction
energies between pairs of residues using a single reference structure. Deep
learning models that implicitly represent entire conformational landscapes
(42) may be more promising, but training these models using large-scale
thermodynamic measurements will be essential to achieve their potential.

Natural sequences systematically deviate from their highest
stability variants

How does selection for stability influence protein sequence
evolution in concert with other evolutionary mechanisms? It is well
known that proteins contain specific functional residues that are
commonly deleterious to stability (68, 69). However, the challenge of
measuring stability has made it difficult to experimentally distinguish
selection for stability from other selective pressures on a global level
(70–72). To examine the strength of selection for stability, we created
a simple classification model to predict the wild-type amino acid at
any site in a natural protein based on the folding stabilities of all
substitution variants at that site (excluding Cys) (Fig. 5A). The model
contains two parts: (1) a shared weight function that converts
absolute stabilities of protein variants into relative probabilities of
those sequences, and (2) amino-acid specific offsets that shift amino
acid probabilities by a constant amount at all sites. We fit the shared
weight function parameters (a flexible monotonically increasing
function) and the offsets together using absolute stability data for
wild-type sequences and substitution variants at 4,718 sites in 80
non-redundant natural proteins (85,004 ∆G measurements in all, Fig.
5A). Our simple model fits the data well by three criteria: (1) it
correctly produces the overall frequencies of the 19 (non-Cys) amino
acids (Fig. 5B), (2) the output amino acid probabilities are correctly
calibrated across the full range of probability (Fig. S15), and (3) the

model performs similarly well on the training set and on a held-out
testing set consisting of 621 sites in 11 domains with no similarity to
the training set (Fig. 5E).

The model parameters reveal the strength of selection for
stability across this heterogeneous set of domains from many
organisms. Within the main range of our data (folding stabilities from
1.5 to 4 kcal/mol), amino acid probabilities increase approximately
linearly with increased stability, with a 1 kcal/mol stability difference
between protein variants indicating a ~5.7-fold difference in sequence
likelihood (Fig. 5C). The global offsets to each amino acid’s
probability (Fig. 5D) are different from the empirical amino acid
frequencies (Fig. 5B) and indicate the probability of each amino acid
under conditions where all sequence variants are equally stable. The
offsets span a 23-fold range: the most likely amino acid (Glu) is
23-fold more likely to occur (21.5/2-3.0) than the least likely amino acid
(Trp) under the conditions that sequence variants containing these
amino acids at the same site are equally stable (Fig. 5D). This
probability difference corresponds to a stability difference of ~1.8
kcal/mol (Fig. 5C); i.e. Trp and Glu would be equally likely at a site
if the Trp variant were 1.8 kcal/mol more stable than the Glu variant.
Overall, the most likely amino acids are the charged amino acids Glu,
Asp, and Lys, suggesting selection for solubility, whereas the least
likely amino acids are the nonpolar aromatic amino acids Trp, Phe,
and Tyr, along with Met. These offsets provide a quantitative
“favorability” metric incorporating all non-stability evolutionary
influences on amino acid composition, including selection for amino
acid synthesis cost (73, 74), codon usage (75, 76), avoiding
oxidation-prone amino acid(s), net charge, and function. These
offsets also highlight that biophysical models and protein design
methods trained to reproduce native protein sequences will not
consistently optimize folding stability; Fig. 5D quantifies how much
specific amino acids are over- or underrepresented in small, naturally
occurring domains compared to their effects on stability. Notably,
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these offsets are similar to findings from an independent analysis of
global discrepancies between variant effect data and sequence
likelihood modeling (77)

Fig. 5. Amino acid usage in natural proteins systematically deviates from maximizing stability.
(A) Classifier model for predicting wild-type amino acids based on the folding stabilities (∆G) of each possible protein variant. A shared weighting
function converts the stabilities of protein variants containing each amino acid into relative probabilities of those amino acids (green). The relative
probability of each amino acid is further modified by a constant offset that is unique for each amino acid (orange).
(B) Predicted and observed amino acid frequencies according to the classifier model after fitting.
(C) The weighting function from the classifier model after fitting (green). Gray lines show the weight function after amino acid-specific offsets for
Glu and Trp. In the region between 1.5 and 4 kcal/mol, the function has an approximately constant slope where a 1 kcal/mol increase in stability
leads to a 5.7-fold increase in amino acid probability.
(D) Relative offsets for 19 amino acids from the classifier model after fitting. Error bars show the standard deviation of the model posterior.
(E) The sequence recovery rate (left) and perplexity (right) for predicting the wild-type amino acid using several models: an null model that ignores
stability and always predicts amino acids at their observed frequencies, our classifier model without amino acid-specific offsets, and our full classifier
model. Similar performance of the classifier model on a training set of 4,718 positions (light purple) and a testing set of 621 positions (dark purple)
indicates that the model is not overfit. Error bars show standard deviations from bootstrap resampling of the sites in the training set and the testing
set.

Properties of functional residues across diverse domains
Selection for function also causes protein sequences to

diverge from the highest stability sequence variants. Previous studies
(70, 71) have applied this strategy to identify functional sites based
on the difference between evolutionary conservation and predicted
effects on stability. We expanded this strategy to employ
experimental stability measurements and examined the properties of

functional sites on a large scale. We identified functional sites in 92
diverse protein domains by comparing each site’s average ∆∆G of
substitutions with its normalized GEMME (78) score, an
evolutionary-based measure of sensitivity to mutations (Fig. 6A, see
Methods for the details). High sensitivity generally indicates high
evolutionary conservation. Sites where wild-type amino acids are
critical for stability (higher average ∆∆G, rightward) tend to be
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predicted as more sensitive to mutation by GEMME (upward) and
vice versa. We defined all sites in the upper left region (where the
wild-type amino acid is conserved yet unimportant for stability, 9.3%
in total) to be “functional” sites. This classification correctly
identifies key binding residues in the chromodomain of HP1 and the
SH3 domain of BBC1 (Fig. 6B and C, see Fig S16 for mutational
scanning and conservation data on these examples). We found that
Gly, Asp, and the bulky amino acids Trp Arg, and Tyr were
frequently classified as functional (Fig. 6D). However, like previous
studies, our classification method has the notable weakness that any
site that is important for folding stability will not be considered
functional.

Across all 92 domains, the fraction of functional sites
ranged from 0 to ~25% (Fig. 6E). The domains with the highest
fraction of functional sites (the Sso7d protein (1JIC) and Ribosomal
protein S19 (1QKH)) are both nucleic acid binding proteins, with the
functional sites located on the surface primarily at the binding
interface (Fig. 6F). To identify buried functional sites, we compared
each site’s evolutionary-based sensitivity to non-polar mutations
(normalized GEMME score for hydrophobic substitutions) to the
average ∆∆G of nonpolar substitutions (Fig. 6G), a more permissive
metric. With this approach, most functional sites are still located at

the protein surface, but a small fraction are located in the core (Fig.
6H). One example is A64 in the DUF1471 domain of yahO. A64 is
highly sensitive to non-polar mutations and buried in the core of the
domain, but substitutions to Tyr or Phe increase folding stability (Fig.
6I). This indicates that A64 modulates the function of the domain
even without interacting with external partner molecules, perhaps by
maintaining the overall protein shape. Similarly, in the N-terminal
domain of FK506-binding protein 3, L55 is buried in the core and
highly conserved even though substitutions to Ile, Val, or Phe have no
effect on stability (Fig. 6J). This domain binds DNA and the other
functional residues are mainly located at the binding interface.
Although L55 does not directly interact with DNA, substitutions to
other hydrophobic amino acids may change the orientations of the
surface side chains and prevent proper DNA binding. Notably,
chemical shift perturbations in this domain indicate which residues
change their magnetic environment in response to DNA binding (Fig.
6J) (79). Chemical shift perturbations are found mainly in the
functional residues on the protein surface, but L55 experiences a
chemical shift perturbation as well, indicating allosteric
communication between the functional surface residues and L55.
These results highlight unusual cases where buried sites are
conserved due to specific functional requirements rather than to
maintain overall stability.
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Fig. 6. Properties of functional sites across diverse domains
(A) The relationship between wild-type stability (average ∆∆G for substitutions) and evolutionary-based sensitivity to substitutions (normalized
averaged GEMME score). All sites above the orange dashed line are highly conserved but unimportant for stability; we define these as “functional
sites”.
(B) As in (A), highlighting positions in the HP1 chromo domain (2M2L; green) and the BBC1 SH3 domain (1TG0; red).
(C) Structures of HP1 chromo domain and BBC1 SH3 domain (gray) and their ligands (light blue). Functional sites are shown in orange. Ligand
positions were modeled based on PDB structures 1KNA (for HP1) and 2LCS (for the SH3 domain).
(D) Amino acids are ranked by the percentage of positions where that wild-type amino acid is classified as functional, for 5,396 positions in 92
non-redundant natural domains.
(E) The percentage of functional residues in each of the 92 non-redundant domains.
(F) Structures of the two domains with the highest percentages of functional residues. Nucleic acids interacting with each of the structures are shown
in light blue and functional residues are shown in orange. The Sso7d-DNA complex is the crystal structure 1BNZ; the S19-RNA complex is modeled
based on the 4V5Y structure.
(G) As in (A), except only considering nonpolar substitutions for calculating ∆∆G and normalized averaged GEMME score.
(H) The distributions of burial (side chain contacts) for all sites (blue), sites where the wild-type amino acid is unimportant for stability (average ∆∆G
< 1 kcal/mol) (green), and functional sites (orange). Functional sites are generally located on the surface of the protein. Two unusual buried
functional residues are highlighted.
(I) Structure of the DUF1471 domain of yahO (2MA4) with functional sites in orange and the unusual buried functional site A64 in red. Ala64 is
highly conserved yet the domain is stabilized by substitutions to Tyr or Phe (positive ∆∆G, x-axis). However, Tyr and Phe are rarely found in
evolution (low GEMME score, y-axis).
(J) Left: Structure of the N-terminal domain of FK506-binding protein 3 (2KFV) with functional sites in orange and the unusual buried functional
site L55 (L78 in PDB numbering) in red. Middle: Residues with chemical shift perturbations in response to DNA binding (79); L55 shows a
perturbation despite not contacting DNA. Right: L55 is conserved (high GEMME score, y-axis) but relatively unimportant for stability (low average
∆∆G, x-axis). Substitution to Phe, Val, or Ile is thermodynamically neutral (∆∆G near zero) but these amino acids are rarely found in evolution (low
GEMME score).

Large-scale stability analysis to characterize unique designs,
identify stabilizing mutations, and evaluate design methods

The unique scale of cDNA display proteolysis creates new
opportunities for improving protein design. Here, we examine three
applications of our method and massive dataset: (1) characterizing
the stability determinants of rare, highly polar proteins, (2)
identifying stabilizing mutations, and (3) benchmarking the protein
design tool PROSS (80). The hydrophobic effect is considered the
dominant force in protein folding (1), and measuring stability for
thousands of our previously-designed domains (29) by cDNA display
proteolysis revealed a general trend of increasing stability with
increasing hydrophobicity (Fig. 7A). However, increased
hydrophobicity can promote protein aggregation, non-specific
interactions, and low expression yield. To study the properties of high
stability, low hydrophobicity proteins, we examined hundreds of
designed proteins by deep mutational scanning across a wide range of
hydrophobicity and stability. Although the mutational scanning
patterns for low hydrophobicity proteins were not obviously different
from other designs, we identified several designs that possessed
exceptionally strong polar interactions (large dots in Fig. 7A). In Fig.
7B, we highlight stabilizing polar networks and a cation-π interaction
in these unusual designs (see Fig. S17 for full mutational scanning
results). The average ∆∆G for substitutions at these polar sites ranges
from -0.20 to -1.33 kcal/mol, corresponding to the top 63 to 1.5%ile
for all 3,694 polar sites in 145 designs. Our unusually massive dataset
made it possible to identify these rare highly stabilizing interactions.
Notably, the second hydrogen bond network in EHEE_rd2_0152 is
also found in two other more hydrophobic designs. However, the
network is less sensitive to substitution in those designs, highlighting

how the overall protein environment mediates the effects of
substitutions even on the protein surface (Fig. S18).

We next examined how our approach could be used to
identify stabilizing mutations. Predicting and designing stabilizing
mutations is a major goal of protein modeling, but prediction
accuracy remains low (22). In part, this is because stabilizing mutants
are rare in current databases (14, 15) (outside of reverting a
destabilizing mutant), limiting the data available for improving
modeling. In contrast, our large-scale approach revealed 2,600
stabilizing mutations, defined as mutations that increase folding
stability by at least 1 kcal/mol. The overall fraction of stabilizing
mutations was 0.06% to 0.6% for different protein types (Fig. 7C).
Stabilizing mutations were enriched at functional sites (23% of the
stabilizing mutations from 7.5% of sites classified as functional), but
these were still a small fraction of the total. Notably, our set includes
112 examples of stabilizing insertions and deletions which are nearly
absent from current databases. In Fig. 7D, we show three examples of
different classes of stabilizing mutations found in our dataset with
effects ranging from +1.2 to +3.1 kcal/mol (Fig. S19).

Finally, we applied our method to evaluate PROSS (80), an
automated method for enhancing folding stability within sequence
constraints inferred from a multiple sequence alignment. We tested
1,156 PROSS designs for 266 protein domains (a 10-100x increase
over previous benchmarking study (81)). Unlike previous studies, our
mutational scanning data for all 266 wild-type domains enabled us to
examine the isolated effect of every individual substitution in every
PROSS design. The average increase in stability from PROSS was
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0.6±1.0 (mean±std) kcal/mol, and 40% of 727 domains (with
wild-type ∆G < 4 kcal/mol) had at least one design with a 1 kcal/mol
increase in stability (Fig. 7E). As expected, PROSS avoided
mutations at functional positions: only 1.9% of PROSS-designed
mutations were found at functional positions compared to 8.7% of
sites classified as functional (defined in Fig. 6A). Three examples of
domains successfully stabilized by PROSS are shown in Fig. 7F.
Although the median number of designed mutations was only 4, more
mutations typically led to a larger increase in stability (Fig. S20A), as

theorized previously (22). Based on our mutational scanning data, the
average effect of an individual PROSS mutation was 0.22±0.47
kcal/mol (Green line Fig. S20B). On average, the added stabilization
from PROSS is comparable in size to the effect of the best single
mutant designed by PROSS, and smaller than the additive effect of
the two best designed mutations (Fig. S20C). Evaluating individual
mutations recommended by PROSS (or other design tools) by direct
comparisons to mutational scanning data provides a novel approach
for systematically improving these design methods.

Fig. 7. Application of screening data to protein design
(A) Relationship between hydrophobicity (calculated based on the previous report (Monera et al., 1995)) and folding stability (∆G) for designed
proteins (29). Examples from (B) are shown as large dots.
(B) For three proteins with high folding stability and low hydrophobicity, we highlight critical hydrophilic interactions stabilizing these proteins. The
gray density plots represent the average ∆∆G of substitutions at 3,694 polar sites in 145 designed domains. The colored vertical bars indicate the
values for the highlighted positions. These three proteins feature polar amino acids where the average ∆∆G of substitutions is unusually destabilizing
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(> top 5%ile). For HHH_rd1_0756, K22 is shown as a red line; the interacting W32 is considered nonpolar and not shown. Full mutational scanning
results are shown in Fig. S17. All three structures are design models reported previously (29), not experimental structures.
(C) Fraction of stabilizing mutations (∆∆G > 1 kcal/mol) found in natural domains, Rosetta designs, and hallucination designs, broken down by
mutation type. NP: non-polar, P: polar, Ins: insertion, Del: deletion.
(D) Three examples of stabilizing mutations identified by our assay, along with the distribution of ∆∆G values for these three mutation types. The
highlighted mutations are indicated by vertical bars on the density plots. Full mutational scanning results are shown in Fig. S19. The structure of
HHH_rd1_0598 is a design model reported previously (29), not an experimental structure.
(E) Left: Testing the protein design tool PROSS (80). Each point shows the stability of one domain before (x-axis) and after (y-axis) redesign by
PROSS. The dashed black line represents Y=X. Examples from (F) are shown as large dots. Right: Distribution of ∆G change from PROSS redesign.
40% of domains are stabilized by > 1 kcal/mol by the tool. Note that we only show 727 designs with wild-type ∆G < 4 kcal/mol.
(F) Examples of domains stabilized by PROSS. Amino acids mutated by PROSS are shown in green on the Alphafold-generated structural model.

Discussion
The cDNA display proteolysis method massively expands

the scale of folding stability experiments. Still, the method currently
has notable limitations. Because we digest proteins under native
conditions, our inferred thermodynamic stabilities are only accurate
when (1) folding is fully cooperative (no unfolded segments get
cleaved without global unfolding (82)), (2) folding is at equilibrium
during the assay (no kinetic stability or spurious stability due to
aggregation), (3) K50,U is accurately inferred (Fig. 1C), and (4)
cleavage rates fall within the measurable range of the assay, which
currently limits the dynamic range to ~5 kcal/mol (Fig. 1C). Many
domains - particularly larger protein structures - will not satisfy these
conditions, and issues such as non-cooperativity, kinetic stability, or
aggregation are invisible in a single measurement. Combining cDNA
display proteolysis with chemical denaturation (pulse proteolysis,
(37)) may overcome these obstacles and enable mega-scale analysis
of less cooperative and/or higher stability proteins, while also
avoiding the need to infer K50,U. Advances in DNA synthesis
(including methods like DropSynth (83, 84)) will also make it
possible to expand cDNA display proteolysis to analyze diverse
libraries of larger domains. Lastly, multiplexed measurements and
automated data processing always have the potential to introduce
inaccuracies, although we worked to exclude unreliable data. For
notable individual results, examining the raw data can be helpful, and
we included all data and code to regenerate all fits.

Despite these limitations, the unique scale of cDNA display
proteolysis opens completely new possibilities for studying protein
stability. By comprehensively measuring single mutants across nearly
all small structures in the Protein Data Bank, we quantified several
global trends: trends in amino acid fitness at different sites, trends in
the effects of single and double mutants, and trends in how stability
influences sequence evolution. Along with these global trends, our
large-scale analysis also uncovered hundreds of exceptional cases

that would be challenging to identify by smaller-scale methods.
These include mutations with extreme effects, sites with unusual
stability landscapes, and pair interactions with unusually strong
thermodynamic couplings. The strong thermodynamic couplings we
identified in the J domain of human HSJ1a (Fig. 4G) - missing in the
deposited NMR structure - highlight how large-scale stability assays
can complement other methods for revealing structural details in
solution. The 2,400 double mutants examined in that domain made up
only 0.3% of the experimental library. Beyond studying the origins of
stability, cDNA display proteolysis will have a range of other
applications, including assaying designed proteins on a massive scale
to systematically improve design methods (29, 43, 85), identifying
folded domains in metagenomic sequences, and dissecting the
relationships between folding stability and function (41).

Achieving an accurate, quantitative understanding of
protein stability and its sequence dependence has been a central goal
in biophysics for decades. We envision millions of cDNA display
proteolysis measurements forming the foundation for a new
generation of deep learning models predicting absolute folding
stabilities and effects of mutations. Breakthroughs in deep
learning-powered structure prediction have proven the power of these
models in protein science, but collecting sufficient thermodynamic
data has always been a major obstacle. Due to the scale and
efficiency of cDNA display proteolysis, the main limit to measuring
stability for millions of small domains is the cost of DNA synthesis
(86–88) and sequencing (89, 90) - both of which are rapidly
decreasing (91–94). With the flexibility of DNA oligo synthesis,
cDNA display proteolysis can assay massive mutational libraries (as
shown here) as well as massive libraries of unrelated sequences and
structures, which will add essential diversity in training datasets. The
size and diversity of protein sequence space creates enormous
challenges for biology and protein design. The cDNA display
proteolysis method offers a powerful approach to map folding
stability across this space on an unprecedented scale.
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Materials and Methods
DNA oligo library construction
All sequences were reverse-translated and codon-optimized using DNAworks2.0 (95). Sequences
were optimized using E. coli codon frequencies because we used an in vitro translation kit
derived from E. coli. Oligo libraries encoding amino acid sequences of Library 1 were purchased
from Agilent Technologies. Oligo libraries for Libraries 2-4 were purchased from Twist
Bioscience.

Library 1: We selected ~250 designed proteins and ~50 natural proteins that are shorter than 45
amino acids. Then, we created amino acid sequences for deep mutational scanning followed by
padding by Gly, Ala, Ser amino acids so that all sequences have 44 amino acids. The total
number of sequences is ~244,000 sequences.

Library 2: We selected ~350 natural proteins that have PDB structures that are in a monomer
state and have 72 or less amino acids after removing N and C-terminal linkers. Then, we created
amino acid sequences for deep mutational scanning followed by padding by Gly, Ala, Ser amino
acids so that all sequences have 72 amino acids. The total number of sequences is ~650,000
sequences. This library also includes scramble sequences to construct unfolded state model.

Library 3: We selected ~150 designed proteins and created amino acid sequences for deep
mutational scanning of the proteins. We also included comprehensive deletion and Gly/Ala
insertion of all wild-type proteins inlcuded in Library1 and Libary2. Additionally, amino acid
sequences for comprehensive double mutant analysis on polar amino acid pairs were also
included.

Library 4: Amino acid sequences for exhaustive double mutant analysis on amino acid pairs
located in close proximity were included. We also include overlapped sequences to calibrate
effective protease concentration and to check consistency between libraries.

EEHH design method
EEHH protein design was performed in three steps: (1) backbone construction, (2) sequence
design, (3) selection of designs for deep mutational analysis. Backbone construction (the de
novo creation of a compact, three-dimensional backbone with a pre-specified secondary
structure) was performed using a blueprint-based approach described previously (96, 97). All
blueprints are included as Blueprints_for_EEHH.zip in Supplementary Materials.

Hallucination design method
We used a TrRosetta hallucination protocol described previously in (42, 67) and available at
https://github.com/gjoni/trDesign/tree/master/02-GD to unconditionally generate protein
backbones and sequences with lengths ranging from 46 to 69 amino acids by maximizing the
Kullback–Leibler divergence between the predicted and background distance/angle distributions.
Predicted distograms and anglegrams were used to obtain 3D structures of these models as
described in the TrRosetta paper (98). We selected the best designs according to the predicted
distogram and 3D structure match.

DNA and mRNA preparation for cDNA display proteolysis method
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Oligo libraries were amplified by PCR using KOD PCR Master Mix (TOYOBO) to add T7
promoter, PA tag to an N-terminal, and His tag to an C-terminal of the proteins. The number of
cycles was chosen based on a test qPCR run to avoid overamplification using SsoAdvanced
Universal SYBR Green Supermix (BIORAD). The PCR product was gel extracted to isolate the
expected length product. Then we used T7-Scribe Standard RNA IVT Kit (CELLSCRIPT) to
synthesize mRNA using the DNA fragment as a template.

Preparation of protein-cDNA complex
We basically follow the protocol described in the previous literature (47, 99) with some
modifications.

Photocross-linking between mRNA and the puromycin linker: We prepared the
photocrosslinking reaction solution including 200 mM NaCl, 40 mM Tris-HCl (pH 7.5), 20 μM
cnvK linker (EME corporation), 20 μM mRNA. The solution was incubated at 95°C for 5 min,
then slowly cooled down to 45°C (0.1°C / 1 second) using a thermal cycler. Then the solution
including the duplex was irradiated with UV light at 365 nm using a 6W Handheld lamp
(Thermofisher).

In vitro translation and reverse transcription: We prepared PUREfrex 2.0 (GeneFrontier)
translation system with mRNA-cnvK linker duplex and RiboLock RNase Inhibitor
(Thermofisher) and incubate the sample at 37°C for 2 hrs. After the incubation, 100 mM EDTA
was added to the sample to dissociate ribosomes. Then, an equal amount of binding/washing
buffer (30 mM Tris pH 7.5, 500 mM NaCl, 0.05% Tween 20) was added. The solution was added
to Dynabeads MyOne Streptavidin C1 (Thermofisher) to pull down the protein-mRNA complex
and incubated at room temperature for 20 min. Then, the beads were washed by binding/washing
buffer once and rinsed twice by TBS (10 mM Tris-HCl pH7.5, 100 mM NaCl), and we added
reverse transcription solution (PrimeScript RT Reagent Kit; Takara) onto the beads with protein
mRNA complex, and incubated the beads at 37°C for 30 mins.

Purification of protein-cDNA complex: After the reverse transcription, the protein-cDNA
complex was eluted by binding/washing buffer with RNase T1 (Thermofisher). The eluent was
added His Mag Sepharose Ni (Cytiva) and incubated at room temperature for 30 min. Then the
complex was eluted by binding/washing buffer with 400 mM imidazole then the eluent was
buffer-exchaged by Zeba Spin Desalting Column (Thermofisher). Then the complex was
snap-frozen by liquid nitrogen and stored at -80°C until the following protease assay.

Protease assay on protein-cDNA complex: We prepared 40 μL of 11 protease three-fold
dilution series from 25 μM for replicate1 and 43.3 (= 25 x 30.5) μM for replicate2, then added
them to 12 of 20 μL the protein-cDNA complex. After 5 min protease digestion in room
temperature, we added 200 μL chilled 2% BSA in PBS to quench the reaction, then the solution
was added to 10 μL Dynabeads Protein G (Thermofisher) with anti-PA tag antibody (Wako;
Clone number: NZ-1; 1μg antibody per 30 μL beads), and incubated at 4°C for 1 hr. Then the
beads were washed by washing buffer (PBS including 800 mM NaCl and 1% Triton) three times
and rinsed by PBS three times, then the complex was eluted with 50 μL PBS including 250
μg/mL PA peptide (Wako) and 200 μg/mL BSA (Thermofisher).
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qPCR analysis of cDNA display proteolysis results on individual proteins (for Fig. S1)
The cDNA amount for each specific sequence in the eluents was quantified by qPCR using
SsoAdvanced Universal SYBR Green Supermix and specific primers for each sequence. The
qPCR was performed using CFX96 Touch Real-Time PCR Detection System (BIORAD), and
the qPCR cycles were determined by the CFX Maestro Software (BIORAD).

Next-generation sequencing sample preparation
For DNA library analysis, one-half volume (25 μL) of the eluted cDNA of the complex was
amplified by PCR using SsoAdvanced Universal SYBR Green Supermix (BioRad) to add P5 and
P7 NGS adapter sequence. The number of cycles was chosen based on a test qPCR run using the
same PCR reagents to avoid overamplification. The DNA fragment length and concentration
were confirmed by 4200 TapeStation System (Agilent), then the samples were analyzed by
NovaSeq 6000 System (Illumina).

Processing of next-generation sequencing data
Each library in a sequencing run was identified via a unique 6 or 8 bp barcode. Following
sequencing, reads were paired using the PEAR program (100) then the adapter sequences were
moved by Cutadapt (101). Reads were considered counts for a sequence if the read perfectly
matched the ordered sequences at the nucleotide level.

Overall strategy for inferring K50 and ΔG from sequencing data
We used Bayesian inference to infer K50 and ΔG values for all sequences in our library. This
analysis uses two main models. The first model is called the “K50 model” and infers each
sequence’s K50 values based on the sequencing count data. The second model is called the
“unfolded state model” and predicts each sequence’s unfolded state K50 value (K50,U) based on its
sequence. Both models are implemented in Python 3.9 using the Numpyro package (102) version
0.80. Here, we first describe the structure of each model, and then we describe the practical
process of fitting the parameters of each model. Our scripts to reproduce the complete fitting
process are provided in the Supplementary Materials.

Structure of the K50 model to infer K50 values from next-generation sequencing data
We modeled our selection results using the single turnover kinetics model described in Fig. 1B.
We chose this model because we expect that the total concentration of protein-cDNA complex is
low compared to the amount of added enzyme and because the model captures the saturation
behavior observed by qPCR at high enzyme concentration (Fig. S1). Instead of attempting to
capture the microscopic complexity of our system (millions of different substrates and potential
inhibitors), the purpose of the model is to treat each substrate in a consistent, simplified manner
and infer reasonable parameters.
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Our model makes two main assumptions. First, we assume that each sequence is cleaved
independently, with no competition or product inhibition. As described by Fig. 1 eqs. 2 and 3,
cleavage is described by four parameters: enzyme concentration (E), time (t), and the kinetic
parameters K50 and kmax. All experiments used a fixed five minute reaction time. Based on qPCR
analysis of individual sequences (Fig. S1), we fixed the quantity kmax * t at 100.65 for all
sequences. Each sequence’s unique stability is defined by the K50 parameter that represents the
enzyme concentration producing the half maximal cleavage rate (Fig. 1 eq. 3). Our second main
assumption is that we can interpret our K50 values as representing the dissociation constants (KD)
between each protein sequence and the enzyme (K50 ≈ KD, Fig. 1 eq. 6). From this assumption,
we can determine the folding stability of each sequence (ΔG) based on the relationship between
the observed K50 value and theoretical K50 values for the fully folded and fully unfolded states
(K50,F and K50,U, Fig. 1 eqs. 5-7). Although we can directly fit K50 values without making any
assumptions about the microscopic basis for K50 (see Supplementary Text for the detail),
assuming that K50 ≈ KD aids our interpretation and enables us to directly fit ΔG values to our data
using the Coupled approach described below.

To fit our model to our sequencing counts data, we first assume that the cDNA display process
produces an unknown initial distribution of full-length protein-cDNA complexes (the cDNA0

distribution). The distribution of sequences at enzyme concentration E (the cDNAE distribution)
is the product of the initial sequence distribution cDNA0 and the surviving fraction of each
sequence according to Fig. 1 eqs. 2 and 3, after re-normalizing the total surviving fraction of all
sequences to 1.

(8)𝑐𝐷𝑁𝐴
𝐸, 𝑖 

 =  𝑐𝐷𝑁𝐴
0, 𝑖

 * 𝐹𝑟𝑎𝑐 ([𝐸], 𝐾
50,𝑖

)/
𝑗

∑(𝑐𝐷𝑁𝐴
0,𝑗

 * 𝐹𝑟𝑎𝑐 ([𝐸], 𝐾
50,𝑗

) 

Finally, we assume that our deep sequencing counts result from nsel independent selections from
the cDNAE distribution, where nsel is the number of sequencing reads that exactly matched our
specified DNA sequences.

We apply the K50 model in two different ways based on whether K50 values for trypsin and
chymotrypsin are Independent or Coupled. The “Independent” procedure is used in Steps 1, 2
and 5 in the section “Procedure for fitting all data”. In the independent procedure, the inputs to
the model are the sequencing counts data from experiments with one protease, the enzyme
concentrations, the reaction time, and the kmax constant. We fit the model by sampling two
parameters per sequence from normal prior distributions: (1) K50, and (2) the initial fraction of
each sequence in the cDNA0 distribution. The “Coupled” procedure is used in Step 5 in the
section “Procedure for fitting all data”. In the coupled procedure, the inputs to the model are the
sequencing counts data from experiments with both proteases, the enzyme concentrations, the
reaction time, the kmax constant, the K50,F constants representing the universal K50 value for
sequences in the folded state (one for each protease), and the predicted K50,U values for all
sequences for both proteases from the unfolded state model. We then assume that each sequence
has a specific ΔG value that is shared across both proteases. We use this shared ΔG value along
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with K50,F and K50,U (for each protease) to determine K50 for each protease according to Fig. 1
Eqs. 5 and 7. Finally, we fit the coupled model by sampling two parameters per sequence from
normal prior distributions: (1) ΔG, and (2) the initial fractions of each sequence in cDNA0.

Full results from both the independent and coupled fitting procedure are provided in
K50_dG_Dataset1_Dataset2.csv and K50_Dataset3.csv. For our stability parameters
(protease-specific K50 in the independent procedure and ΔG in the coupled procedure) we report
the median of the posterior distribution as well as the upper and lower limits of the 95%
confidence interval (the 2.5%ile and 97.5%ile values of the posterior distribution). We also used
the protease-specific K50 values from the independent procedure to compute protease-specific ΔG
values. We do this using the same K50,F and K50,U values used in the coupled procedure according
to Fig. 1 Eqs. 5 and 7. These protease-specific ΔG estimates are also reported in
K50_dG_Dataset1_Dataset2.csv and are only used to examine the consistency between different
proteases (e.g. Fig. 1F and Fig. 2D). In some cases, the independently fit K50 values can lead to
impossible values for ΔG. This can occur if K50 is higher than K50,F (observed cleavage is slower
than our limit for cleavage in the folded state) or if K50 is lower than K50,U (observed cleavage is
faster than predicted cleavage in the unfolded state). If the median protease-specific K50 or the
confidence interval limits for a particular sequence lead to impossible ΔG values for that
sequence, we report dummy values for the corresponding protease-specific ΔG estimates.

Structure of the unfolded state model to infer unfolded K50 (K50,U) from scrambled sequence data
Our unfolded state model is similar to the model employed previously (29) with two notable
differences. First, instead of assuming that all scrambled sequences are fully unfolded, we
assume that each scrambled sequence has its own unknown folding stability, with a prior
distribution biased toward low stability (normal prior centered at ΔG = -1, sigma = 4). Second,
instead of fitting an unfolded state model for each protease independently, we assume that each
scrambled sequence’s stability (ΔG) is common across both proteases, and fit the models for
each protease together. As a result, the majority of scrambled sequences are modeled as
completely unfolded (Fig. S2C), but some scrambled sequences are modeled as stable when that
interpretation is consistent with both the trypsin and chymotrypsin data.

Our unfolded state has three parts: (1) a position specific scoring matrix (PSSM) that describes
how the amino acid sequence in a 9-mer window (the P5 to P4’ positions in protease
nomenclature) determine the cleavage rate at the P1 position, (2) a local response function
describing the saturation of the cleavage rate for a single P1 position, (3) a global response
function that determines K50,U based on the sum of the cleavage rates at all possible P1 positions
in the full sequence.

To fit the PSSM, we assumed an identical normal prior distribution of scores at all positions,
with several exceptions. Due to known critical importance of the P1 position, we used a wider
prior distribution of scores for all amino acids in the P1 position for both proteases. We also used
wider prior distributions at all positions (P5-P4’) for the amino acids Asp, Glu, and Pro, due to
the established large effects of these amino acids on cutting rates.
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For the local response function to saturation of the cleavage rate at P1 site k, we used a logistic
function:

(9)𝑆𝑆
𝑘
 =   𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (

𝑠𝑖𝑡𝑒 = 𝑃5

𝑃4'

∑ 𝑃𝑆𝑆𝑀(𝑎𝑎
𝑠𝑖𝑡𝑒

,  𝑠𝑖𝑡𝑒))

where SSk (site saturation) is the saturation of the cutting rate at site P1=k, aasite is the amino acid
identity at site, and logistic is the logistic function f(x) = 1 / (1+ex). We fit the 21 (20 amino acids
+ ‘X’ representing empty sites) x 9 =189 elements of the PSSM for each protease.

For the global response function (determining K50,U based on the sum of SSk across the full
protein sequence), we use a sum of logistic functions with 10 different activation thresholds.

(10)𝐾
50,𝑈

 = 𝑚𝑎𝑥𝐾
50,𝑈

−  𝑆𝑐𝑎𝑙𝑒 *  
𝑙=1

10

∑  𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐( (
𝑘=1

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑞

∑ 𝑆𝑆
𝑘
) − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑙
) 

where maxK50,U is the highest possible K50,U value (K50,U assuming no cut sites), Scale is the range
of possible K50,U values, and thresholdl is the value of the lth activation threshold for the global
response function. All K50 values (including maxK50,U) are in log10 molar units.

The key parameters of the unfolded state model (for a single protease) are the 21 x 9 =189
elements of the PSSM, the maxK50,U, the scale, and the 10 threshold values. These parameters
determine K50,U for each sequence by Eqs. 9 and 10. In addition to these parameters, we also
sample the ΔG values for each scrambled sequence during fitting. These sampled parameters (as
well as the universal K50,F value for all sequences) are sufficient to determine a theoretical K50

value for each scrambled sequence by re-writing Fig. 1 Eq. 6:

(11)1/𝐾
50

 =
([𝑈]/𝐾50

𝑢
) + ([𝐹]/𝐾50

𝑓
)

([𝑈]+[𝐹])  =   𝑓
𝑈

/𝐾
50,𝑈

 +  (1 −  𝑓
𝑈

)/𝐾
50,𝐹

where fU is the fraction of unfolded molecules:

= 　(12)𝑓
𝑈

1/(1 + Δ𝐺
𝑅𝑇 )

The input data for the model are the observed K50 values for all scrambled sequences. The
parameters of the model are fit by assuming that all observed K50 values should agree (with
small, normally distributed errors) with the theoretical K50 values determined by the model
parameters. After fitting the model, we used the median of the posterior distributions of PSSM,
maxK50,U, scale, and the 10 threshold parameters as the final model parameters. We used these
final model parameters to calculate K50,U for all sequences in our experiments without
considering any uncertainty from the model posterior distribution.
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Procedure for fitting all data

Step 1: Estimation of ‘effective’ protease concentrations for each library: We employed four
DNA oligonucleotide libraries for this study. Although we tried to minimize the difference
between assay conditions, we also fit “effective” protease concentrations to our data in order to
minimize batch-to-batch differences. We used the K50 model to perform this fitting and fit
protease concentrations for trypsin and chymotrypsin entirely independently. The main
assumption of this fitting is that each sequence should have the same K50 when assayed in
different libraries. By enforcing that each sequence had a single K50 value regardless of what
library it appears in, we calibrated the protease concentrations in each library against each other.
Although we did not use universal control sequences in all four libraries, each library contained
1000 to 2000 sequences that overlapped at least one other library in a fully connected graph.
Specifically, the library pairs 1+4, 2+4, 3+4, 1+2, and 2+3 each included 1,000 to 2,000
overlapping sequences.

The overall model included 96 experimental conditions (12 protease concentrations per replicate
x 2 replicates x 4 libraries; one of the 12 protease concentrations was the fixed “no protease”
starting condition). However, each sequence was only present in 48 of the 96 conditions because
any individual sequence was only present in two out of the four libraries. The inputs to fit the
model were the sequencing counts data, the reaction time (t), and the kmax constant. Additionally,
to set the overall scale of the protease concentration series, we fixed the effective protease
concentrations for Library 4 at the expected protease concentrations (i.e. three-fold serial
dilutions of 25 μM protease (Replicate 1) or 43.3 μM protease (Replicate 2)). We also fixed all of
the starting samples at zero protease. Using these model inputs, we sampled the K50 values (one
per sequence), the remaining 66 protease concentrations, and the initial sequence distributions
cDNA0 (a separate cDNA0 was used for each of the 8 replicates). Normal priors (with
lower/upper boundaries for some parameters) covering the range of experimentally relevant
values were used for the model parameters. Sampling was performed using the No U-Turn
Sampler (NUTS) in Numpyro with 50 steps of equilibration and 25 steps of production. We used
the medians of the protease concentrations from our 25 posterior samples as our final calibrated
protease concentrations for all further analysis (discarding the uncertainties).

Step 2: Estimation of K50 values of scramble sequences: To train the unfolded state model, we
need to determine K50 values for our scramble sequences, which were included in Library 2. We
used the Independent K50 model for this step. The input data were the sequencing counts data
from two replicates (i.e. 12 protease concentrations x 2 replicates = 24 data points per sequence),
the reaction time (t), the kmax constant, and the effective protease concentrations obtained in Step
1. We sampled the initial sequence distribution cDNA0 (a separate cDNA0 for each replicate) and
K50 for all sequences included in Library 2. Normal priors (with lower/upper boundaries for
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some parameters) covering the range of experimentally relevant values were used for the model
parameters. Sampling was performed using the No U-Turn Sampler (NUTS) in Numpyro with
100 steps of equilibration and 50 steps of production.

Step 3: Construction of unfolded state model: We trained the unfolded state model for
predicting K50,U using K50 values obtained in Step 2. The input sequences were scrambled
sequences of wild-type domains selected for deep mutational screening. In addition to our set of
exactly scrambled sequences (matching the wild-type amino acid composition 100%), we also
included scrambled sequences containing 50%, 60%, 70%, 80%, and 90% of the number of
hydrophobic amino acids in the original wild-type sequences. These sequences helped ensure the
large majority of our scrambled pool was fully unfolded. Additionally, because all sequences in
our experiments are padded with G/S/A linkers up to a constant length, we generated scrambled
sequences using two different padding procedures. In the first approach, we designed scrambled
sequences that matched the original wild-type length and were padded with G/S/A up to 72
amino acids. In the second approach, we designed 72 amino acid-length scrambles
approximately matching the composition of an original wild-type domain, regardless of the
length of that wild-type. These scrambled sequences required no additional padding. After
measuring K50 for all scrambles, we only used sequences with a 95% confidence interval smaller
than 0.5 log10 molar units for model training for model fitting (64,238 sequences in total, see Fig.
S3). In addition to the exact experimental sequences, we also augmented the training dataset with
dummy sequences where GS linkers were replaced by the blank ‘X’ amino acid.

The inputs for the model are amino acid sequences created as described above, and their
observed K50 for trypsin and chymotrypsin obtained in Step 2. The parameters of the model are
fit by assuming that all observed K50 values should agree (with small, normally distributed
errors) with the theoretical K50 values. In this model, we sampled the 21 x 9 =189 elements of the
PSSM, the site bias, the maxK50,U, the scale, and the 10 threshold values. These parameters
determine K50,U for each sequence by Eqs. 9 and 10. In addition to these parameters, we also
sample the ΔG values for each scrambled sequence during fitting.

Normal priors (with lower/upper boundaries for some parameters) covering the range of
experimentally relevant values were used for the model parameters. Using NUTS model, we
sampled the parameters described above, then reported the median of the 100 posteriors after
removing the initial 400 steps. In Step 4, we used these final model parameters to calculate K50,U

for all sequences in our experiments without considering any uncertainty from the model
posterior distribution.

Step 4: Prediction of unfolded K50 values (K50,U) across the full dataset: Using the final model
parameters obtained in Step 3, we predicted K50,U values for each amino acid sequence in the
libraries without considering any uncertainty. Additionally, since the model was constructed to
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predict unfolded K50 for sequences with 86 amino acids, we added a Gly linker 'GGG' to both
ends, followed by padding by ‘X’ up to 86 amino acids.

Step 5: Estimation of K50 values and calculation of ΔG for trypsin and chymotrypsin: We
applied the Coupled K50 model to each of the four libraries separately. The inputs to the model
are the sequencing count data from trypsin and chymotrypsin experiments (i.e. 12 protease
concentrations x 2 replicates x 2 proteases = 48 data points per sequence), the effective protease
concentrations obtained in Step 1,  the reaction time, the kmax constant (t*kmax = 100.65 based on
qPCR analysis; see Fig. S1), the K50,F constants (3 for trypsin, 2 for chymotrypsin; determined
based on the dynamic range of proteolysis experiment; see Fig. S5), and the K50,U values
predicted by the unfolded model in Step 4. Using the inputs, we sampled ΔG shared between
trypsin and chymotrypsin, and initial sequence distribution cDNA0 for each protease for each
replicate (although our experiments utilized the same batch of the cDNA-protein complex for
two replicates).

Normal priors (with lower/upper boundaries for some parameters) covering the range of
experimentally relevant values were used for the model parameters. Using NUTS in Numpyro
module, we sampled the posteriors of shared ΔG along with other parameters, then obtained the
median of the 50 posterior samples after removing the initial 100 steps. Full results from both the
independent and coupled fitting procedure are provided in K50_dG_Dataset1_Dataset2.csv and
K50_Dataset3.csv. For our stability parameters (protease-specific K50 in the independent
procedure and ΔG in the coupled procedure) we report the median of the posterior distribution as
well as the upper and lower limits of the 95% confidence interval (the 2.5%ile and 97.5%ile
values of the posterior distribution).

We also applied the Independent K50 model to each of the four libraries separately. The inputs to
the model are the sequencing count data (i.e. 12 protease concentrations x 2 replicates = 24 data
points per sequence), the effective protease concentrations obtained in Step 1,  the reaction time,
the kmax constant (t*kmax = 100.65 based on qPCR analysis; see Fig. S1). Using the inputs, we
sampled K50 for each protease, and initial sequence distribution cDNA0 for each protease for each
replicate (although we utilized the same batch of the cDNA-protein complex for two replicates).

Normal priors (with lower/upper boundaries for some parameters) covering the range of
experimentally relevant values were used for the model parameters. Using NUTS in Numpyro
module, we sampled the posteriors of K50 for trypsin and K50 for chymotrypsin along with other
parameters, then obtained the median of the 50 posterior samples after removing the initial 100
steps.

Then, we computed protease-specific ΔG values using the protease-specific K50 values from the
Independent model. We do this using the same K50,F and K50,U values used in the coupled
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procedure according to Fig. 1 Eqs. 5 and 7. These protease-specific ΔG estimates are also
reported in K50_dG_Dataset1_Dataset2.csv and K50_Dataset3.csv, and are only used to
examine the consistency between different proteases (e.g. Fig. 1F and Fig. 2D). In some cases,
the independently fit K50 values can lead to impossible values for ΔG. This can occur if K50 is
higher than K50,F (observed cleavage is slower than our limit for cleavage in the folded state) or if
K50 is lower than K50,U (observed cleavage is faster than predicted cleavage in the unfolded state).
If the median protease-specific K50 or the confidence interval limits for a particular sequence
lead to impossible ΔG values for that sequence, we reported dummy values for the corresponding
protease-specific ΔG estimates.

The actual number of sequencing counts, as well as the number of counts predicted for all
sequences at all concentrations according to the fitted model parameters, are given in
Raw_NGS_count_tables.zip and Pipeline_K50_dG.zip.

Data selection for Fig. 1E and F
We show all data from Library 3 within the range -2 < ΔG < 5 kcal/mol & log10_K50_trypsin <
1.75 & log10_K50_chymotrypsin < 2.25. We then overlaid the wild-type and four mutants of
Protein G measured in Library 2.

Replicate analysis of K50 (Fig. 1E)
Instead of sampling K50 values using 24 samples per protease at one time as described in Step 5
above, we sampled K50 values using one experiment set (i.e. 12 samples) and obtained K50 for
trypsin replicate 1 and 2, and chymotrypsin replicate 1 and 2. Note that we still used the
calibrated protease concentrations to improve consistency between replicates. The replicates
were conducted on different days using the same preparation of the protein-cDNA complex.

Classification of Datasets #1, #2, and #3 based on the quality of the data (For Fig. 2)
All mutational scanning data was classified into nine groups (0 through 8) according to the
protocol in Fig. S8. We determined that a mutational scan was high quality (suitable for Dataset
#2) if there was minimal missing data, minimal low confidence data, an appropriate slope,
intercept, and correlation between the trypsin and chymotrypsin samples, sufficient wild-type
stability, and the mutational scan did not include an unusual fraction of stabilizing mutations
suggesting poor folding. For inclusion in the smaller Dataset #1, we additionally required that the
wild-type stability was lower than 4.5 kcal/mol so that stabilizing mutations could still fall within
the assay’s dynamic range. These sequences are considered “Group 0”; the remaining sequences
in Dataset 2 are considered “Group 1”. Double mutant sequences were included in Datasets 1
and 2 based on whether the original wild-type mutational scan was included in that dataset.

All sequences in Dataset 1 and Dataset 2 are included in K50_dG_Dataset1_Dataset2.csv. All
sequences in this file have an inferred ΔG estimate value, but only sequences in Dataset 1 have a
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tabulated ΔΔG estimate. Of course, one can calculate ΔΔG for the remaining sequences in
Dataset 2, but these ΔΔG values will be biased toward destabilizing mutations because
stabilizing mutations would typically be indistinguishable from the wild-type stability. Note that
Datasets 1 and 2 include a small number of sequences with low quality data because these
sequences come from mutational scans that are high quality overall. Although these tables
include all K50, Δ   G, and ΔΔG data (for Dataset 1), low quality data have been filtered out and
replaced by a – symbol in the columns labeled “_ML” (for machine learning).

The remaining groups were defined this way:
Group 2: The wild-type protein is too unstable to see sequence-stability relationships.
Group 3: Poor expression (low counts in next-generation sequencing) for the assay.
Group 4: Very few destabilizing mutations, suggesting aggregation and/or molten globule
formation
Group 5: The wild-type is too stable to see consistency between trypsin and chymotrypsin
Group 6 and 7: Low agreement between trypsin and chymotrypsin due to the absence of
aromatic amino acids (i.e. chymotrypsin cleavage sites) or the presence of protease recognition
sequences in the linker region.
Group 8: Did not fit into groups 2-7, but did not pass the quality metrics for groups 0 and 1.

Dataset #3 includes all data combined (Groups 0-8), even the data from Groups 2-8 that were
excluded from Datasets 1 and 2. Although many of the K50 values from Groups 2-8 likely reflect
factors other than folding stability (e.g. aggregation, low expression, etc.), these data can still be
used to train models that directly predict K50. Again, a small fraction (~4%) of the K50 values in
Dataset #3 are low confidence and have been replaced by a – symbol in the “_ML” columns.

Principal component analysis (related to Fig. 3)
We performed principal component analysis to determine the factors influencing stability of
different amino acids. To this end, we utilized 15,440 sites in the 337 domains that are classified
as G0 in the above. All folding stability data were clipped between from -1 to 5 (kcal/mol)
because the folding stability outside the dynamic range is not reliable, and then the average of
the stability for 20 amino acids for each site was subtracted from the data. Using the data, we
performed PC analysis using the scikit-learn library implemented in Python 3.

Side chain contacts and burial analysis (Fig. 3D and 6H)
Burial values and contact counts were computed based on AlphaFold models (18) of all
sequences using the included script Burial_side_chain_contact_Fig3_Fig6.ipynb based on
Bio.PDB (103) and BioPython (104)). The calculation is based on the Rosetta
“sidechain_neighbors” LayerDesign method previously reported (29). Briefly, to calculate the
burial or contacts of residue X, we added up the number of residues in a cone projecting out 9 Å
away from the Cβ atom on residue X in the direction of the residue X Cα-Cβ vector. “Burial”
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(Fig. 6H) indicates the number of Cα atoms in the cone. Contact counts (Fig. 3D) each count
different atoms inside the cone: “Side chain contact count” (Fig. 3D) counts all Cβ atoms;
“Aromatic side chain contact count” counts all CE2 atoms of Phe, Tyr, and Trp; “Acidic side
chain contact count” counts all Glu OE1 and Asp OD1 atoms; and “Basic side chain contact
count” counts all Lys NZ and Arg NE atoms.

Secondary structure determination (Fig. 3D)
Using the DSSP algorithm (105, 106), we obtained secondary structure information based on
AlphaFold models.

Selection method of site pairs for double mutational analysis (related to Fig. 4)
Double mutants were selected for analysis in two ways. First, we manually selected polar
interactions where either amino acid appeared important for stability in single mutational
analysis. These pairs were mainly included in Library 3. Second, we used the program confind
(107, 108) to identify interacting residues. All confind pairs with notable interactions such as
polar interactions and cation-π interactions were selected, along with a randomly chosen subset
of more common interactions such as hydrophobic interactions. These pairs were included in
Library 4.

Thermodynamic coupling analysis (related to Fig. 4)
Thermodynamic coupling refers to the change in folding stability due to the interaction between
two amino acids after removing folding stability effects from each amino acid individually. To
determine this “nonadditivity”, we first modeled our double mutant data using a fully additive
model (no thermodynamic coupling). The deviations from this model then reveal the
thermodynamic coupling. Our additive model assumes that the absolute stability (ΔG) of each
sequence is the sum of an amino acid-dependent term for site one (ΔG1) and an amino
acid-dependent term for site two (ΔG2)

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 Δ𝐺
𝑎𝑎1,𝑎𝑎2 

 =  Δ𝐺
1,𝑎𝑎1

+ Δ𝐺
2,𝑎𝑎2

 (13)

The forty site-specific terms (one ΔG1 term for each amino acid at site one and one ΔG2 term for
each amino acid at site two) are not experimentally measurable; they are inferred based on
minimizing the error of the additive model. We used Bayesian inference to infer the forty ΔG1

and ΔG2 terms for each set of mutants. The inputs to fit the model were the observed 400 ΔG
values (20 amino acids at site one x 20 amino acids at site two) for a particular site pair. Using
NUTS, we sampled ΔG1 and ΔG2 by assuming that the 400 observed ΔG values should agree
(with small, normally distributed errors) with the expected ΔG values determined by eq. 13. Both
expected and observed ΔG values were clipped to the range of -1 to 5 kcal/mol. We used 100
steps of burn-in and used the median of 50 posterior samples as the final values of the ΔG1 and
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ΔG2 terms. Using these terms, we calculated the expected (additive) ΔG for each sequence, and
then the thermodynamic coupling:

𝑇ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔
𝑎𝑎1, 𝑎𝑎2

 =  𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 Δ𝐺
𝑎𝑎1,𝑎𝑎2

 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 Δ𝐺
𝑎𝑎1,𝑎𝑎2 

 (14) 

To calculate the uncertainty in the thermodynamic coupling, we re-fit the additive model 50
times by bootstrap resampling of the 400 observed ΔG values. This ensures the ΔG1 and ΔG2

terms are not overly dependent on a single experimental measurement. The model fitting code is
provided in Additive_model_Fig4.ipynb.

Wild-type amino acid prediction model (related to Fig. 5)
The classification model in Fig. 5 used a sum of logistic functions with learned amplitudes to
define the weighting function. The overall model is defined below:

𝑝(𝑎𝑎) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(  (
𝑖=1

100

∑  𝑎𝑚𝑝
𝑖
 *  𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐( (Δ𝐺

𝑎𝑎
−  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑖
) *  𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠)) +  𝑜𝑓𝑓𝑠𝑒𝑡

𝑎𝑎
) (15) 

where p(aa) is the probability of amino acid aa, softmax is the softmax function , logistic𝑒
𝑥

𝑎𝑎

𝑎𝑎
∑ 𝑒

𝑥
𝑎𝑎

is the logistic function f(x) = 1 / (1+ex), i indexes the 100 logistic functions defining the
weighting function, amp is the learned vector describing the amplitudes of the logistic functions,
threshold is the vector describing the centers of the logistic functions, steepness defines the
steepness of the logistic functions, and offset the learned vector (length 19 for the 19 non-Cys
amino acids) describing the absolute probability offset for each amino acid.

We used Bayesian inference to infer the amp vector (length 100) and offset vector (length 19 for
the 19 non-Cys amino acids). The logistic threshold vector was fixed at 100 evenly spaced points
between -2 and 7 kcal/mol. The steepness term was fixed at 5. The inputs to fit the model were
the observed ΔG values and the wild-type amino acid identities for each site within the natural
protein domains. Using NUTS, we sampled amp and offset by assuming that the observed
wild-type amino acids were randomly chosen at each site according to the predicted probability
distribution for that site, calculated according to eq. 15. We then reported the median and the
standard deviation of 100 posterior samples after removing the initial 500 steps. The fitting script
is included in Classification_model_Fig5.ipynb.

GEMME analysis (related to Fig. 6)
To calculate the “Normalized averaged GEMME score”, which represents the sensitivity of a
wild-type amino acid to substitutions inferred from evolutionary information (“ΔΔE” in the
previous reports (70, 71)), we ran GEMME (78) on each natural amino acid sequence using the
default parameters. We computed a single score for each site by averaging the scores of the 19
amino acids (except Cys), and then standardized each domain individually (subtracted the
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domain’s mean and divided by the domain’s standard deviation) so that the site scores within a
domain had a mean of zero and a standard deviation of one. Finally, we flip the sign of the score
so that positive values imply high susceptibility to mutations (i.e. very negative raw GEMME
scores for non-wild-type amino acids). We define this standardized score for each site as the
“Normalized GEMME score”. To build the input multiple sequence alignments, we performed
five iterations of the profile HMM homology search tool Jackhmmer (109, 110) against the
UniRef100 database of non-redundant proteins (111) using the EVcouplings framework (112).
We used the default bitscore threshold of 0.5 bit per residue.
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Supplementary Text
Derivation of eq.3 in Fig. 1B
We modeled the cleavage events, where Protease enzymes (E) and protein substrates (S) form an
ES complex to produce cleaved protein products (P). The goal is to get a product formation
equation in terms of the total product, initial enzyme and substrate concentrations and kinetic
constants.

Also, we defined equilibrium constant K50:
𝐾

50
=  [𝐸][𝑆]

[𝐸𝑆]  (1')

Based on the model (1), we can obtain the following dynamic formulas:
(16)𝑑[𝑆]

𝑑𝑡 =  − 𝑘
1
[𝐸][𝑆] +  𝑘

1
[𝐸𝑆]

(17)𝑑[𝐸𝑆]
𝑑𝑡 =  𝑘

1
[𝐸][𝑆] −  𝑘

1
[𝐸𝑆] − 𝑘

2
[𝐸𝑆]

(18)𝑑[𝑃]
𝑑𝑡 =  𝑘

2
[𝐸𝑆]

The first two of these are assumed to be at quasi-steady state. The following are additional
conservation equations for substrate-product and enzyme:

where [S0] is initial amount of substrates[𝑆
0
] =  [𝑆] +  [𝐸𝑆] +  [𝑃] (19)

[𝑆
𝑡𝑜𝑡𝑎𝑙

] =  [𝑆] +  [𝐸𝑆] (20)

Additionally, the reaction conditions in the study were not substrate-excessive but
enzyme-excessive:

(21) (because [E] >> [ES] or [S])[𝐸
𝑡𝑜𝑡𝑎𝑙

] =  [𝐸] +  [𝐸𝑆] ≈ [𝐸] 

Using eqs. 1’,19, and 20, the following can be derived to find an expression for the
enzyme-substrate complex in terms of the initial substrate and enzyme concentration:
[𝐸𝑆] =  1/𝐾

50
[𝐸][𝑆] =  1/𝐾

50
[𝐸] (𝑆

0
− [𝐸𝑆] − [𝑃])

[𝐸𝑆](1 + 1/𝐾
50

[𝐸]) =  1/𝐾
50

[𝐸](𝑆
0
 −  [𝑃]) =  1/𝐾

50
[𝐸][𝑆

𝑡𝑜𝑡𝑎𝑙
]

[𝐸𝑆] =  
1/𝐾

50
[𝐸]

1+1/𝐾
50

[𝐸] [𝑆
𝑡𝑜𝑡𝑎𝑙

] =  [𝐸]
𝐾

50
+[𝐸] [𝑆

𝑡𝑜𝑡𝑎𝑙
] (22)

Substituting eq. 22 into eq. 18 and using the approximation , the an expression for[𝐸
𝑡𝑜𝑡𝑎𝑙

] ≈ [𝐸]

the dynamics of the product formation in terms of enzyme concentration and substrate can be
found:
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𝑑[𝑃]
𝑑𝑡  =

𝑘
2
 [𝐸

𝑡𝑜𝑡𝑎𝑙
]

𝐾
50

+[𝐸
𝑡𝑜𝑡𝑎𝑙

] [𝑆
𝑡𝑜𝑡𝑎𝑙

]  

Thus, the observed kinetic rate is (This eq. 3)𝑘
𝑜𝑏𝑠

 =  
𝑘

2
[𝐸

𝑡𝑜𝑡𝑎𝑙
]

𝐾
50

 + [𝐸
𝑡𝑜𝑡𝑎𝑙

]  

Derivation of eq.6 and eq.7 in Fig1B
We modeled the cleavage events, where Protease enzymes (E) and folded substrates (F) or
unfolded substrates (U) form a FE or UE complex to produce cleaved protein products (PF or
PU). The goal is to get a product formation equation in terms of the total product, initial enzyme
and substrate concentrations and kinetic constants. We follow a similar derivation to that above
for a single enzyme/substrate:

where (23), (24), (25) , and kf and ku are rate1/𝐾
50,𝐹

 =  [𝐹𝐸]
[𝐹][𝐸] 1/𝐾

50,𝑈
 =  [𝑈𝐸]

[𝑈][𝐸] 𝐾
𝑈𝐹

 =  [𝑈]
[𝐹]

constant for cleavage of the bound folded substrates and unfolded substrates. Assuming binding
and unbinding equations and the folding and unfolding transition rates are in a quasi-equilibrium
then eq 23, 24, and 25 hold throughout the time-course.

We write an equation for the overall product formation:

(26)
𝑑([𝑃

𝐹
] +[ 𝑃

𝑈
])

𝑑𝑡  =   𝑘
𝑓
[𝐹𝐸] + 𝑘

𝑢
[𝑈𝐸]

Conservation equations for substrate-product and enzyme in this case are:
(27) where [S0] is initial and total[𝑆

0
] =  [𝐹𝐸] + [𝑈𝐸] + [𝐹] + [𝑈] + [𝑃

𝐹
] + [𝑃

𝑈
] 

concentration of substrate
(28) where [E0] is the initial concentration of enzyme.[𝐸

0
] =  [𝐸] + [𝐹𝐸] + [𝑈𝐸]

Step 1: Write product formation eq. 26  in terms of [FE] and constants only, by substituting  for
[UE] complex.

(use eq. 24)[𝑈𝐸] =  1/𝐾
50,𝑈

[𝑈][𝐸]

(use eq. 25)          = 1/𝐾
50,𝑈

* 𝐾
𝑈𝐹

[𝐹][𝐸] 

(29) (use eq. 23)          =
𝐾

50,𝐹
𝐾

𝑈𝐹

𝐾
50,𝑈

[𝐹𝐸] 

(30, use eq. 26)
𝑑([𝑃

𝐹
] +[ 𝑃

𝑈
])

𝑑𝑡  =  𝑘
𝑓
[𝐹𝐸] + 𝑘

𝑢
[𝑈𝐸] = (𝑘

𝑓
+  

𝐾
50,𝐹

𝐾
𝑈𝐹

𝐾
50,𝑈

𝑘
𝑢
)[𝐹𝐸] 
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Step 2: Replace [FE] dependence  with ([S0] - [PF] - [Pu]) dependence using conservation laws
(27)[𝑆

0
] =  [𝐹𝐸] + [𝑈𝐸] + [𝐹] + [𝑈] + [𝑃

𝐹
] + [𝑃

𝑈
] 

         =  [𝐹𝐸] +  
𝐾

50,𝐹
𝐾

𝑈𝐹

𝐾
50,𝑈

[𝐹𝐸] +  
𝐾

50,𝐹

[𝐸] [𝐹𝐸] +
𝐾

𝑈𝐹
𝐾

50,𝐹

[𝐸] [𝐹𝐸] + [𝑃
𝐹
] + [𝑃

𝑈
]

(use eq. 29, 23, and 23+25)

           =  [𝐹𝐸](1 +
𝐾

50,𝐹
𝐾

𝑈𝐹

𝐾
50,𝑈

 +
𝐾

50,𝐹
 (1+𝐾

𝑈𝐹
)

[𝐸] ) + [𝑃
𝐹
] + [𝑃

𝑈
] 

Thus, we get an equation which describes the dependence of [FE] on initial substrates and
products, with terms in the denominator that capture sequestration in intermediate bound states.

[𝐹𝐸] =  ([𝑆
0
] −  [𝑃

𝐹
] − [𝑃

𝑈
])/(1 +

𝐾
50,𝐹

𝐾
𝑈𝐹

𝐾
50,𝑈

 +
𝐾

50,𝐹
 (1+𝐾

𝑈𝐹
)

[𝐸] ) 

          =  
(𝑆

0
 − [𝑃

𝐹
] −[𝑃

𝑈
])[𝐸]𝐾

50,𝑈

[𝐸]𝐾
50,𝑈

+𝐾
50,𝐹

𝐾
𝑈𝐹

[𝐸] + 𝐾
50,𝑈

𝐾
50,𝐹

(1+𝐾
𝑈𝐹

)

(31)          =  
(𝑆

0
 − [𝑃

𝐹
] −[𝑃

𝑈
])[𝐸]𝐾

50,𝑈

[𝐸](1/𝐾
50,𝐹

+𝐾
𝑈𝐹

/𝐾
50,𝑈

) +1+𝐾
𝑈𝐹

Substituting this into the product formation equation:

(30)
𝑑([𝑃

𝐹
] +[ 𝑃

𝑈
])

𝑑𝑡  =  (𝑘
𝑓

+  
𝐾

50,𝐹
𝐾

𝑈𝐹

𝐾
50,𝑈

𝑘
𝑢
)[𝐹𝐸]

(use eq. 31)                      =  (𝑘
𝑓

+  
𝐾

50,𝐹
𝐾

𝑈𝐹

𝐾
50,𝑈

𝑘
𝑢
)

(𝑆
0
 − [𝑃

𝐹
] −[𝑃

𝑈
])[𝐸]𝐾

50,𝑈

[𝐸](1/𝐾
50,𝐹

+𝐾
𝑈𝐹

/𝐾
50,𝑈

) +1+𝐾
𝑈𝐹

 

Then, we defined [𝑃
𝑡𝑜𝑡𝑎𝑙

] =  [𝑃
𝐹
] +  [𝑃

𝑈
]

𝑑([𝑃
𝑡𝑜𝑡𝑎𝑙

])

𝑑𝑡 =  (𝑘
𝑓

+  
𝐾

50,𝐹
𝐾

𝑈𝐹

𝐾
50,𝑈

𝑘
𝑢
)

[𝐸]𝐾
50,𝑈

[𝐸](1/𝐾
50,𝐹

+𝐾
𝑈𝐹

/𝐾
50,𝑈

) +1+𝐾
𝑈𝐹

([𝑆
0
] −  [𝑃

𝑡𝑜𝑡𝑎𝑙
])

       =   
𝑘

𝑓
/𝐾

50,𝐹
+ 𝐾

𝑈𝐹
𝑘

𝑢
/𝐾

50,𝑈

1/𝐾
50,𝐹

+𝐾
𝑈𝐹

/𝐾
50,𝑈

[𝐸]
[𝐸] +(1+𝐾

𝑈𝐹
)/(1/𝐾

50,𝐹
+𝐾

𝑈𝐹
/𝐾

50,𝑈
) ([𝑆

0
] −  [𝑃

𝑡𝑜𝑡𝑎𝑙
])

Because the reaction conditions in the study were not substrate-excessive but enzyme-excessive
(i.e. [E] >> [S] or [ES]), [E]≈[E0]:

(32)
𝑑([𝑃

𝑡𝑜𝑡𝑎𝑙
])

𝑑𝑡 =  
𝑘

𝑓
/𝐾

50,𝐹
+ 𝐾

𝑈𝐹
𝑘

𝑢
/𝐾

50,𝑈

1/𝐾
50,𝐹

+𝐾
𝑈𝐹

/𝐾
50,𝑈

[𝐸
0
]

[𝐸
0
] +(1+𝐾

𝑈𝐹
)/(1/𝐾

50,𝐹
+𝐾

𝑈𝐹
/𝐾

50,𝑈
) ([𝑆

0
] −  [𝑃

𝑡𝑜𝑡𝑎𝑙
])

Finally, We can rewrite the product formation eq. 3 in terms of initial substrate concentration,
total product, and an observed kinetic rate, which is a function of kinetic rates and initial enzyme
concentration,:
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* (3’)
𝑑([𝑃

𝑡𝑜𝑡𝑎𝑙
])

𝑑𝑡  =  𝑘
𝑜𝑏𝑠

* ([𝑆
0
] −  [𝑃

𝑡𝑜𝑡𝑎𝑙
]) =  

𝑘
𝑚𝑎𝑥

[𝐸
0
]

𝐾
50

 + [𝐸
0
] ([𝑆

0
] −  [𝑃

𝑡𝑜𝑡𝑎𝑙
])

Step 3, Derivation eq.6 and eq.7 in Fig. 1B
By comparing eq. 32 with eq. 3’, we can derive the following equations (including eq. 6 in Fig.
1B):

(33)𝑘
𝑚𝑎𝑥

 =  
𝑘

𝑓
/𝐾

50,𝐹
+ 𝐾

𝑈𝐹
𝑘

𝑢
/𝐾

50,𝑈

1/𝐾
50,𝐹

+𝐾
𝑈𝐹

/𝐾
50,𝑈

(34)𝐾
50

 =  
1+𝐾

𝑈𝐹

1/𝐾
50,𝐹

 + 𝐾
𝑈𝐹

/𝐾
50,𝑈

       =  1 + [𝑈]/[𝐹]
[𝐹𝐸]/[𝐸][𝐹] +([𝑈]/[𝐹])*([𝑈𝐸]/[𝐸][𝑈])

       =  1 + [𝑈]/[𝐹]
[𝐹𝐸]/[𝐸][𝐹] +[𝑈𝐸]/[𝐸][𝐹]

(This is eq. 6)       =  ([𝐹] + [𝑈])[𝐸]
[𝐹𝐸] +[𝑈𝐸]

Using eq. 34 to rewriting a formula for in terms of the half-max reaction rates:𝐾
𝑈𝐹

𝐾
50

(1/𝐾
50,𝐹

 +  𝐾
𝑈𝐹

/𝐾
50,𝑈

) =  1 + 𝐾
𝑈𝐹

𝐾
𝑈𝐹

(𝐾
50

/𝐾
50,𝑈

 − 1) =  1 − 𝐾
50

/𝐾
50,𝐹

Thus, eq.7 which gives the ratio of unfolded to folded substrate is derived:

(This is eq. 7)[𝑈]
[𝐹]  =  𝐾

𝑈𝐹
 =  

1/𝐾
50

 − 1/𝐾
50,𝐹

1/𝐾
50,𝑈

 − 1/𝐾
50
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Fig. S1. Single turnover model fitting on qPCR data
(A) To test the single turnover model, we performed cDNA display proteolysis on a mixture of
eight mini protein sequences with diverse folding stability and quantified the surviving amount
of each cDNA using qPCR. We then each curve one at a time by Bayesian inference using the
single turnover kinetics model in Fig. 1B. We sampled kmax*t and K50 for each sequence. Dots
represent the observed cDNA amount quantified by qPCR and lines show the two-parameter fits.

(B) Posterior distributions of kmax*t and K50 for eight proteins were shown. Whereas K50 values
vary between different proteins, kmax*t values (indicating saturation at high protease
concentrations) were either constant or unconstrained by the data.

(C) Based on the analysis (B), we fixed kmax*t at 100.65 and re-sampled K50 for each protein. Dots
represent the observed cDNA amount quantified by qPCR (same as in (A)) lines show the
one-parameter fits.

(D) Posterior distributions of K50. For trypsin, the K50 values for the two most stable proteins
(orange and blue) could not be defined because they were too stable and outside of the dynamic
range of this proteolysis assay.
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Fig. S2. Unfolded state model parameters and goodness of fit.

(A) Fit parameters for the unfolded state model position-specific scoring matrix (PSSM) for
trypsin. The mean of all coefficients (-0.4) was subtracted from the values in the figure to aid
visualization. Positive values indicate faster proteolysis and lower predicted K50,U values. By
using different prior distribution widths for different rows during fitting, we guided the strongest
rate determinants into the center row of each matrix, which we label “P1” (the assay cannot
actually identify the specific location of cutting). Overall, the heatmap resembles similar data as
previously reported (29) and is consistent with known trypsin specificity determinants, including
the preference for R/K at P1, the inhibitory effect of P, and the unfavorability of D and E (113).

(B) 2D-histogram showing the overall agreement between the trypsin model (predicted K50,U,
y-axis) and the data (experimental K50, x-axis). Only scrambled sequences with inferred ΔG <
0.5 kcal/mol (where we can assume K50 ≈ K50,U) are shown (53,949 out of 64,238 total sequences
used in training). The Pearson r value is shown.

(C) Overall distribution of inferred ΔG of all scramble sequences. The vertical line represents 0.5
kcal/mol, which is a threshold used in (B).

(D, E) As above, for chymotrypsin. As in our previous report (29), the coefficients resemble
established features of chymotrypsin specificity, including the preference for F/Y/W followed by
M/L at P1, the inhibitory effect of P at P3,  P1’, and P2’, and the general unfavorability of D and
E (114–116). The mean of all coefficients (-0.5) was subtracted from the values in the figure to
aid visualization.
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Fig. S3. Relationship between offset in Fig. 1G and assay temperature
Previous studies shown in Fig. 1G used diverse conditions including buffer, pH, ion strength, and
temperature (see Table. S2) (52–65). However, our measurements were all conducted in PBS at
room temperature (approximately 22°C). In general, the offsets observed in Fig. 1G are
correlated to the temperatures used in the previous studies, suggesting that the assay temperature
is the main cause of the offsets. The red line represents a best fit line after removing the 2HBB
point. The x-intercept (21.7°C) is close to our assay condition (approximately 22°C). 2HBB (the
N-terminal domain of Ribosomal Protein L9) is an outlier and not included in the linear fit; the
origin of the offset here is currently unknown.
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Fig. S4. Folding stability discrepancies between cDNA display proteolysis and previous
measurements on Protein GB1
(A) Left: Mutational scanning results from cDNA display proteolysis. As in Fig. 2, white
represents the folding stability of wild-type and red/blue indicates stabilizing/destabilizing
mutations. Black dots indicate the wild-type amino acid, red slashes indicate missing data, and
black corner slashes indicate lower confidence ∆G estimates, (95% confidence interval > 0.5
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kcal/mol), including ∆G estimates near the edges of the dynamic range. Right: Agreement
between variant ∆G values independently determined using assays with trypsin (x-axis) and
chymotrypsin (y-axis). Multiple codon variants of the wild-type sequence are shown in red,
reliable ∆G values in blue, and less reliable ∆G estimates (same as above) in gray. The black
dashed lines represent Y=X. Each plot shows the number of reliable points and the Pearson
r-value.

(B) Mutational scanning results from robotics-enabled high-throughput purification and chemical
denaturation (52), colored as in (A).

(C & D) Difference heat-map (C) showing the consistency between cDNA display proteolysis
(A) and robotics-enabled high-throughput purification and chemical denaturation (B). Dark blue
squares indicate highly inconsistent positions where cDNA display proteolysis (A) observes low
stability but robotics-assisted chemical denaturation (B) observes high stability. These positions
are mainly located in the protein core (shown in D). We hypothesize that many of the
inconsistent variants are actually very unstable (as shown by cDNA display proteolysis, A),
leading to poorly expressed protein samples that appeared stable in (B) due to the lack of a clear
melting signal in chemical denaturation. This would also explain the inconsistencies between
closely related mutants seen in (B). For example, the published chemical denaturation data show
that Y3R is poorly expressed (no data) along with many other variants at Y3, yet Y3K is
measured as very stable (both Y3R and Y3K are unstable in cDNA display proteolysis). The
same pattern is seen at L5 in the core: the published data shows that L5K is poorly expressed (no
data), yet L5R is measured as very stable (again both L5K and L5R appear unstable in cDNA
display proteolysis). The same biophysically inconsistent patterns appear at F30, Q32 (can Q32P
in the middle of the helix really be as stable as wild-type?), G41, Y45, F52, and V54. These
biophysical inconsistencies at sites where many variants are poorly expressed in the published
data suggest to us that the cDNA display proteolysis measurements are more likely to be correct.
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Fig. S5. Consistency of K50 measurements across libraries

(A and B) To examine the consistency between K50 (μM) values measured in different libraries,
we included identical sequences (potentially with different padding at the termini) in multiple
libraries. For each pair of libraries with overlapping sequences, we show the K50 values for those
sequences in both libraries for trypsin (A) and chymotrypsin (B). The top row shows raw K50
values for overlapping sequences in each library; the second row shows the difference in K50
estimates plotted against the K50 in one of the libraries. The red diagonal line shows Y=X in the
top row and Y=0 (i.e. identical K50 estimates) in the bottom row. Blue/orange vertical lines show
K50,F; all K50 values above K50,F are treated as equivalent. Each plot is annotated at the top-left
with the total number of overlapping sequences and Pearson r-value between the libraries.
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Fig. S6. Heat maps for a stable domain (Ubiquitin; 1UBQ) and its destabilizing mutants
(A) Mutational scanning results for human erythrocytic ubiquitin (1UBQ) and its destabilizing
mutant backgrounds (I3A and L67S). Heat maps show the ∆G of wild-type ubiquitin (top),
ubiquitin I3A  (middle-top), ubiquitin L67S (middle-bottom), and the difference (∆∆G) between
two mutant backgrounds (bottom) for substitutions, deletions, and Gly and Ala insertions at each
residue. In the three ∆G heat maps, white represents the folding stability of the wild-type and
red/blue indicates stabilizing/destabilizing mutations. Black dots indicate the background
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(wild-type or mutant) amino acid, red slashes indicate missing data, and black corner slashes
indicate lower confidence ∆G estimates, (95% confidence interval > 0.5 kcal/mol), including ∆G
estimates near the edges of the dynamic range.

(B) Consistency between mutant stabilities measured in the I3A background (x-axis) and L67S
(y-axis) background. The plot is annotated with the number of points and the Pearson r value.

(C) Ubiquitin structure highlighting the mutant points (I3 and L67) and the residues with a
different effect on stability between two mutational backgrounds.
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Fig. S7. Heat maps for one domain with trypsin cleavage sites in loop region

(A) Mutational scanning results for 2L3X, which includes trypsin cleavage sites in the loop
region. Left: Heat maps show the ∆G trypsin (top) and chymotrypsin challenge (bottom) for
substitutions, deletions, and Gly and Ala insertions at each residue, with our one-indexed
numbering at the bottom. Black dots indicate the wild-type amino acid, red slashes indicate
missing data, and black corner slashes indicate lower confidence ∆G estimates, (95% confidence
interval > 0.5 kcal/mol), including ∆G estimates near the edges of the dynamic range. The
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colored boxes highlight sites in the flexible loop region. Right: Replicates of the wild-type
sequence are shown in red, reliable ∆G values in blue, and less reliable ∆G estimates (same as
above) in gray. The black dashed lines represent Y=X. Each plot shows the number of reliable
points and the Pearson r-value. The dots show a reverse ‘L’ shape due to the cleavage of the
flexible loop region in the trypsin challenge.

(B) 2L3X structure highlighting Args in the loop region (R14 and R16).

(C) Same as (A) for 2L3X with replacement of Arg in the loop (R14 and R16) with Ser. In this
deep mutational scanning, we observed higher consistency between trypsin and chymotrypsin
challenges because we removed sites that could be cleaved in the folded state.
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Fig. S8. Classification of deep mutational scanning results

We classified all deep mutational scanning results into nine groups shown in Fig. 2B. Here, we
show the classification criteria. The description of all metrics is also included in Table. S3, and
the metrics of all domains for the classification are included in Single_DMS_list.csv.

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.06.519132doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519132
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S9. Classification of the natural protein domains investigated in cDNA display
proteolysis

Comprehensive group list of wild-type structures classified as G0 in Fig. 2B grouped into
domain families.
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Fig. S10. PC analysis with different numbers of PCs

(A and B) Relationship between reconstruction error (MAE) using 1-8 PCs (MAE, y-axis) and
wild-type stability (A, x-axis) or variance in the ∆∆G data (B, x-axis). Colors represent protein
structures grouped into natural proteins (green), Rosetta designs (blue), and hallucination designs
(orange). Lines show LOESS fits to the data.

(C and D) Same as (A) and (B). PCs were constructed using only natural domains. The overall
tendency is the same as (A) and (B).
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Fig. S11. Errors between observed ∆G and reconstructed ∆G by five PCs for wild-type
(WT) or non-WT residues for 20 amino acids.

Absolute (A) and signed (B) errors between observed ∆G and reconstructed ∆G (from five PCs)
are shown. Wild-type residues tend to show larger (A), more positive errors (B), meaning that the
five-PC model underestimates wild-type stabilities.
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Fig. S12. Heatmaps for the notable domains with large errors between observed ∆G and
reconstructed ∆G by five PCs.

Mutational scanning results for the two notable domains described in Fig. 3G. Left: Heat maps
show the ∆G for substitutions, deletions, and Gly and Ala insertions at each residue, and our
one-indexed numbering at the bottom. Black dots indicate the wild-type amino acid, red slashes
indicate missing data, and black corner slashes indicate lower confidence ∆G estimates, (95%
confidence interval > 0.5 kcal/mol), including ∆G estimates near the edges of the dynamic range.
Red boxes highlight the seven notable residues with large MAE described in Fig. 3H. Right:
Agreement between variant ∆G values independently determined using assays with trypsin
(x-axis) and chymotrypsin (y-axis). Multiple codon variants of the wild-type sequence are shown
in red, reliable ∆G values in blue, and less reliable ∆G estimates (same as above) in gray. The
black dashed lines represent Y=X. Each plot shows the number of reliable points and the Pearson
r-value.
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Fig. S13. Comprehensive double mutational data for the notable amino acid pairs

(A and B) Analysis of thermodynamic coupling for two notable amino acid pairs. In the first
row, we show stabilities for all 20x20 double mutants according to five different experimental
metrics. From left to right, we show trypsin K50, chymotrypsin K50, ∆G inferred from trypsin
experiments, ∆G inferred from chymotrypsin experiments, and ∆G inferred from both sets of
experiments together. In the second row, we show the results of the additive model. From left to
right, the first two plots show the inferred single amino acid terms for all 20 amino acids in the
first and second sites of the amino acid pair. Error bars represent the standard deviation of the
posterior distributions. The middle heatmap shows stability (∆G) for all amino acid pairs
according to the additive model (the sum of the two single amino acid terms). The fourth plot
shows the observed thermodynamic coupling; e.g. the experimental ∆G (rightmost plot in the
first row) minus the prediction from the additive model (middle plot of the second row). The
final scatter plot shows experimental stabilities for all double mutants (y-axis) plotted against the
results from the additive model (x-axis).

(C) Same analysis as (A) and (B) for two site pairs in MYO3-SH3 domain (2BTT).

(D) Analysis of thermodynamic coupling for all amino acid pairs from a notable amino acid
triple. The same amino acid substitutions were also performed for the mutant background with
the third amino acid replaced by Ala. From left to right, we show the stabilities (∆G) of all pairs
of amino acids, the single amino acid terms in the additive model (error bars show the standard
deviation of the posterior distribution), the stabilities for all pairs according to the additive
model, and the thermodynamic coupling for all pairs of amino acids.
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Fig. S14. Comparison of AlphaFold model and NMR structure for J domain of HSJ1a
Structure of J domain in HSJ1a (2LGW). We show NMR structure of all states stacked (A) and
the first state (B), and AlphaFold predicted structures for the minimum construct (the variable
segment in cDNA display) (C), the construct with linkers for cDNA display proteolysis (D), and
the exact sequence used for NMR (E). In (F), we overlay the first state of the NMR ensemble
(cyan) with the AlphaFold structure (orange) of the minimal construct.
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Fig. S15. Testing calibration of classification model for predicting wild-type amino acids

(A) Relationship between predicted cumulative probability and observed cumulative occurrence
for each of 19 amino acids and total data. For each of the 19 amino acids (excluding Cys), we
order all 4,718 sites from lowest to highest probability for that amino acid, then step through the
sites in that order while plotting the fraction of the total cumulative probability (x-axis) and the
fraction of all occurrences of that amino acid (y-axis). For the “Total” plot, we order all 89,642
(4,718*19) amino acid possibilities at all sites from lowest probability to highest probability,
then step through all amino acid possibilities in that order while plotting the fraction of the total
cumulative probability (x-axis) and the fraction of all actual amino acid occurrences (y-axis).
The black diagonal lines show Y=X.

(B) Relationship between modeled amino acid probabilities and actual amino acid frequencies.
For each of the 19 amino acids (excluding Cys), we binned all 4,718 sites into 20 bins according
to the probability of that amino acid. Bins are spaced every 0.05 probability units and each bin
has a width of 0.1, so sites can appear in two neighboring bins. For each bin (x-axis), the bar
shows the true frequency of that amino acid in that bin (y-axis); error bars indicate the standard
deviation of the true frequency from bootstrap resampling of all the sites. The black diagonal
lines show Y=X (e.g. the predicted probability matches the true frequency). For the “Total” plot,
we binned all 89,642 (4,718*19) amino acid possibilities at all sites as before, then counted the
fraction of matching amino acids in each bin. Error bars represent the standard deviation of the
frequencies from bootstrap resampling of all sites.
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Fig. S16. Heat maps for notable domains with functional residues
(A- D) Mutational scanning results for four domains. Left: Heat maps show ∆G for substitutions,
deletions, and Gly and Ala insertions at each residue. White indicates the wild-type stability and
red/blue indicates stabilizing/destabilizing. Black dots indicate the wild-type amino acid, red
slashes indicate missing data, and black corner slashes indicate lower confidence ∆G estimates,
(95% confidence interval > 0.5 kcal/mol), including ∆G estimates near the edges of the dynamic
range. At top, lines show the mean ∆∆G (blue) and the mean normalized GEMME score (red),
with functional sites (classified according to Fig. 6A) marked with vertical orange lines. Right:
Agreement between variant ∆G values independently determined using assays with trypsin
(x-axis) and chymotrypsin (y-axis). Multiple codon variants of the wild-type sequence are shown
in red, reliable ∆G values in blue, and less reliable ∆G estimates (same as above) in gray. The
black dashed line represents Y=X. Each plot shows the number of reliable points and the Pearson
r-value for the blue (reliable) points.

(E- F) Same as (A-D), but top lines indicate the mean of ∆∆G for hydrophobic amino acid
substitutions (blue) and mean normalized GEMME score of hydrophobic amino acids (red).
Functional sites are classified according to Fig. 6G.
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Fig. S17. Heat maps for three designed domains with notable polar interactions.

Mutational scanning results for three domains with notable polar interactions. Left: Heat maps
show ∆G for substitutions, deletions, and Gly and Ala insertions at each residue. White indicates
the wild-type stability and red/blue indicates stabilizing/destabilizing. Black dots indicate the
wild-type amino acid, red slashes indicate missing data, and black corner slashes indicate lower
confidence ∆G estimates, (95% confidence interval > 0.5 kcal/mol), including ∆G estimates near
the edges of the dynamic range. The polar networks shown in Fig. 7B are highlighted in orange,
red, and green. Right: Agreement between variant ∆G values independently determined using
assays with trypsin (x-axis) and chymotrypsin (y-axis). Multiple codon variants of the wild-type
sequence are shown in red, reliable ∆G values in blue, and less reliable ∆G estimates (same as
above) in gray. The black dashed line represents Y=X. Each plot shows the number of reliable
points and the Pearson r-value for the blue (reliable) points.
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Fig. S18. Comparison of the notable hydrogen bond networks in three designs

(A) Designed structure of EHEE_rd2_0152 from (29) highlighting residues in the “2nd hydrogen
bond network” defined in Fig. 7B middle.

(B) Relationship between hydrophobicity (calculated based on (117)) and folding stability (∆G)
for designed βαββ proteins. The three dots in the plot represent three designs with the same
hydrogen bond network.

(C) The gray density plots represent the average ∆∆G of substitutions at 3,715 polar sites in 144
designed domains. The colored vertical bars indicate the values for the sites related to the 2nd
hydrogen bond network.

(D) Relationship between ∆∆G in EHEE_rd2_0152 and in the other designs EHEE_rd2_0372 or
EHEE_rd2_0191 for E11, R14, and E18. At E11, substitutions to the 19 other amino acids have
smaller effects in EHEE_rd2_0372 (blue) and EHEE_rd2_0191 (orange) compared to in
EHEE_rd2_0152 (e.g. all points are above the dashed Y=X line). However, the points are
ordered similarly; i.e. the rank ordering of the 19 other amino acid variants in stability is similar
between the three designs. For R14 and E18, substitutions in EHEE_rd2_372 (blue) have similar
effect sizes to EHEE_rd2_0152, but substitutions in EHEE_rd2_0191 (orange) have smaller
effects. Again, the rank ordering of the amino acid variants by stability is similar across the three
designs.
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Fig. S19. Heat maps for three domains with notable stabilizing mutations
Left: Heat maps show ∆G for substitutions, deletions, and Gly and Ala insertions at each residue.
White indicates the wild-type stability and red/blue indicates stabilizing/destabilizing. Black dots
indicate the wild-type amino acid, red slashes indicate missing data, and black corner slashes
indicate lower confidence ∆G estimates, (95% confidence interval > 0.5 kcal/mol), including ∆G
estimates near the edges of the dynamic range. The red boxes and arrows highlight sites with
notable stabilizing mutations. Middle: Agreement between variant ∆G values independently
determined using assays with trypsin (x-axis) and chymotrypsin (y-axis). Multiple codon variants
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of the wild-type sequence are shown in red, reliable ∆G values in blue, and less reliable ∆G
estimates (same as above) in gray. The black dashed line represents Y=X. Each plot shows the
number of reliable points and the Pearson r-value for the blue (reliable) points. Right: For four
positions with stabilizing mutations, heatmaps show five experimental metrics: the trypsin (T)
and chymotrypsin (C) K50 values, the ∆G values inferred from trypsin and chymotrypsin
experiments, and the overall ∆G inferred from both trypsin and chymotrypsin experiments
together.
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Fig. S20. Global analysis of PROSS designs
(A) All 727 PROSS designs grouped according to the number of amino acid substitutions in each
design. Top: the number of designs with each different number of substitutions. Bottom: the
distribution of design results for each group. ∆∆G indicates the stability of the PROSS design
(∆G) minus the stability of the original wild-type sequence; positive ∆∆G indicates the design
stabilized the domain.

(B) ∆∆G distributions for all amino acid substitutions in wild-type domains used as input to
PROSS (blue), all amino acid substitutions at sites modified in PROSS designs (orange), and all
PROSS-designed substitutions (green). All ∆∆G measurements are in the original wild-type
background; positive ∆∆G indicates stabilizing substitutions.

(C) Relationship between ∆∆G of PROSS designs and ∆∆G of the most stabilizing mutations
designed by PROSS. At left, we compare PROSS designs to the single most stabilizing mutation
(in the original wild-type background) out of all the substitutions in the PROSS design. At right,
we compare PROSS designs to the sum of the two most stabilizing mutations (each measured
individually in the original wild-type background without considering thermodynamic coupling).
The density plots show the distribution of PROSS designs that were better (positive) or worse
(negative) than the single best mutation (left) or sum of the two best mutations (right).
Two-thirds of designs are better than the best single designed mutation, although the difference is
small. Likewise, two-thirds of designs are worse than the additive effect of the two best designed
mutations (assuming no thermodynamic coupling).
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Table S1. List of amino acid sequence number for each group

Dataset name # of total
sequences Sequence group # of sequence

groups # of sequences

Dataset #1 586,938

Single amino acid
replacement, deletion,

and insertion
396 wild-types 434,556

Double amino acid
replacement 458 pairs 152,382

Dataset #2 851,552

Single amino acid
replacement, deletion,

and insertion
560 wild-types 629,287

Double amino acid
replacement 595 pairs 222,265

Dataset #3 1,844,548

Single amino acid
replacement, deletion,

and insertion
983 wild-types 1,046,752

Double/Triple amino
acid replacement

725 pairs
(including 36

triples)
416,274

Scrambles for
unfolded model - 68,427

Rocklin 2017 rd1-3 - 36,707

Others - 276,388
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Table S2. Conditions for measuring folding stability in the previous papers.

Protein PDB ID Pubmed ID Reference
Offset in
Fig.1G

(kcal/mol)

Temperat
ure

(°C)
Buffer pH

Protein GB1 1PGA 31371509 (52) -0.8 25 NaPi 6.5

NTL9 2HBB 28494951 (53) 1.9 25
20 mM

NAOAc, 100
mM NaCl

5.5

SAP domain 2WQG 26073259 (54) 1.2 10
50 mM MES
pH 6.0, 500
mM NaCl

6

hPin1 WW
domain 2M8I 19565466 (55) -1.9 40 10 mM NaPi 7

hYap65
WW

domain
1K9Q 11420447 (56) -2.3 60

20 mM KPi,
100 mM

NaCl
7

hYap65
WW

domain
1K9Q 23035249 (57) -2.3 50 20 mM NaPi 7

Villin HP35 1VII 23798426/19
354264 (58, 59) 0.1 25

10 mM
NaOAc, 150

mM NaCl
5

BBL 2WAV 19445954 (60) 0.3 10 50 mM KPi
200 mM KCl 7

FF domain 1UZC 15935381 (61) 0.8 10
50 mM

NAOAc, 100
mM NaCl

5.7

ADA2h
activation
domain

1O6X 9799641 (62) -0.2 25 50 mM NaPi 7

hFyn SH3
domain 1SHF

9819209/120
79394/16142

914
(63–65) -0.1 25

10 mM Tris,
0.2 mM

EDTA and
250 mM KCl

8
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Table S3. Description of metrics in Fig. S8
Metrics Description

dg_corr
Correlation between ΔG from trypsin challenge and

chymotrypsin challenge

frac_pos_with_hydrophobic_st
abilzing_muts

Fraction of stabilizing mutations which replace hydrophobic
amino acids

frac_stabilzing_mut Fraction of stabilizing mutations

lowconf_frac_lowss
Fraction of mutations with low reliable data (95CI > 0.5

kcal/mol)

NA_frac Fraction of data without sufficient NGS reads

raw_corr Correlation between trypsin K50 and chymotrypsin K50

slope
Slope of linear fitting line between ΔG from trypsin challenge

and chymotrypsin challenge

width_KC Standard deviation of ΔG from chymotrypsin challenge

width_KT Standard deviation of ΔG from trypsin challenge

wt_d_from_line
Distance between WT data points and linear fitting line from

mutational data

wt_dg ΔG of WT

wt_dg_std_max Standard deviation of ΔG of WT

y_intercept
Y-intercept of linear fitting line between ΔG from trypsin

challenge and chymotrypsin challenge
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Table S4. Description of columns in K50_dG_Dataset1_Dataset2

Column name Description

name sequence name

dna_seq DNA sequence

log10_K50_t Median of posteriors of K50 trypsin in log10 scale (μM)

log10_K50_t_95CI_high Top 2.5%ile of posterior of K50 trypsin in log10 scale (μM)

log10_K50_t_95CI_low Top 97.5%ile of posterior of K50 trypsin in log10 scale (μM)

log10_K50_t_95CI log10_K50_t_95CI_high - log10_K50_t_95CI_low

fitting_error_t

Absolute error between the observed counts and the expected
counts for a given sequence (based on all model parameters
related to trypsin data), averaged over 24 conditions and
normalized by the observed counts in the no-protease samples
for that sequence

log10_K50unfolded_t K50 unfolded trypsin in log10 scale (μM)

deltaG_t ΔG calculated from log10_K50_t (kcal/mol)

deltaG_t_95CI_high ΔG calculated from log10_K50_t_95CI_high (kcal/mol)

deltaG_t_95CI_low ΔG calculated from log10_K50_t_95CI_low (kcal/mol)

deltaG_t_95CI deltaG_t_95CI_high - deltaG_t_95CI_low (kcal/mol)

log10_K50_c Median of posteriors of K50 chymotrypsin in log10 scale (μM)

log10_K50_c_95CI_high
Top 2.5%ile of posterior of K50 chymotrypsin in log10 scale
(μM)

log10_K50_c_95CI_low
Top 97.5%ile of posterior of K50 chymotrypsin in log10 scale
(μM)

log10_K50_c_95CI log10_K50_c_95CI_high - log10_K50_c_95CI_low

fitting_error_c

Absolute error between the observed counts and the expected
counts for a given sequence (based on all model parameters
related to chymotrypsin data), averaged over 24 conditions and
normalized by the observed counts in the no-protease samples
for that sequence

log10_K50unfolded_c K50 unfolded chymotrypsin in log10 scale (μM)

deltaG_c ΔG calculated from log10_K50_c (kcal/mol)
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deltaG_c_95CI_high ΔG calculated from log10_K50_c_95CI_high (kcal/mol)

deltaG_c_95CI_low ΔG calculated from log10_K50_c_95CI_low (kcal/mol)

deltaG_c_95CI deltaG_c_95CI_high - deltaG_c_95CI_low (kcal/mol)

deltaG
Median of posterior of ΔG from trypsin+chymotrypsin data
(kcal/mol)

deltaG_95CI_high
Top 2.5%ile posterior of ΔG from trypsin+chymotrypsin data
(kcal/mol)

deltaG_95CI_low
Top 97.5%ile posterior of ΔG from trypsin+chymotrypsin data
(kcal/mol)

deltaG_95CI deltaG_95CI_high - deltaG_95CI_low

aa_seq_full Amino acid sequence including padding linker sequence

aa_seq Amino acid sequence without linker sequence

mut_type
Mutation type (like WT, substitution, insertion, deletion, or
double mutants)

WT_name Name of wild-type domain

WT_cluster Cluster number of wild-type domain

log10_K50_trypsin_ML
K50 trypsin in log10 scale for machine learning (μM)
('-' means lacking or unreliable data)

log10_K50_chymotrypsin_ML
K50 chymotrypsin in log10 scale for machine learning (μM)
('-' means lacking or unreliable data)

dG_ML ΔG for machine learning (kcal/mol) ('-' means unreliable data)

ddG_ML
ΔΔG for machine learning (kcal/mol)
('-' means unreliable data)

Stabilizing_mut True if ΔΔG>1 (kcal/mol) and ΔΔG is reliable
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Files for Supplementary Materials
Raw_NGS_count_tables.zip

NGS_count_lib1.csv
NGS_count_lib2.csv
NGS_count_lib3.csv
NGS_count_lib4.csv

K50_dG_tables.zip
K50_dG_lib1.csv
K50_dG_lib2.csv
K50_dG_lib3.csv
K50_dG_lib4.csv

Processed_K50_dG_datasets.zip
K50_dG_Dataset1_Dataset2.csv
K50_Dataset3.csv
Single_DMS_list.csv
Double_DMS_list.csv
Triple_DMS_list.csv
Heat_maps_single_DMS.pdf
Heat_maps_double_DMS.pdf

Data_tables_for_figs.zip
dG_extdG_data_Fig1.csv
dG_site_feature_Fig3.csv
dG_for_double_mutants_Fig4.csv
dG_non_redundant_natural_Fig5.csv
dG_GEMME_non_redundant_natural_Fig6.csv

Pipeline_qPCR_data.zip
Raw_qPCR_data_FigS1.csv
Process_qPCR_data.ipynb

Pipeline_K50_dG.zip
STEP1_module.ipynb
STEP1_run.ipynb
STEP2_run.ipynb
STEP3_run.ipynb
STEP4_module.ipynb
STEP4_run.ipynb
STEP5_module.ipynb
STEP5_run.ipynb
Raw_NGS_counts_overlapped_seqs_STEP1_lib1_lib2.csv
Raw_NGS_counts_overlapped_seqs_STEP1_lib2_lib3.csv
Raw_NGS_counts_overlapped_seqs_STEP1_lib1_lib4.csv
Raw_NGS_counts_overlapped_seqs_STEP1_lib2_lib4.csv
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Raw_NGS_counts_overlapped_seqs_STEP1_lib3_lib4.csv
K50_scrambles_for_STEP3.csv
STEP1_out_protease_concentration_trypsin
STEP1_out_protease_concentration_chymotrypsin
STEP3_unfolded_model_params

Pipeline_figure_model.zip
Burial_side_chain_contact_Fig3_Fig6.ipynb
Additive_model_Fig4.ipynb
Classification_model_Fig5.ipynb

AlphaFold_model_PDBs.zip

Blueprints_for_EEHH.zip
eehh_EA_GBB_AGBB.bp
eehh_GG_GBB_AGBB.bp
eehh_XX_XXX_XXXX.bp

55

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.06.519132doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519132
http://creativecommons.org/licenses/by-nc-nd/4.0/

