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Environmental DNA (eDNA) is becoming an increasingly important tool in diverse scientific

fields from ecological biomonitoring to wastewater surveillance of viruses. The fundamental

challenge in eDNA analyses has been the bioinformatical assignment of reads to taxonomic

groups. It has long been known that full probabilistic methods for phylogenetic assignment

are preferable, but unfortunately, such methods are computationally intensive and are typi-

cally inapplicable to modern Next-Generation Sequencing data. We here present a fast ap-

proximate likelihood method for phylogenetic assignment of DNA sequences. Applying the

new method to several mock communities and simulated datasets, we show that it identi-

fies more reads at both high and low taxonomic levels more accurately than other leading

methods. The advantage of the method is particularly apparent in the presence of polymor-

phisms and/or sequencing errors and when the true species is not represented in the reference

database.

In the past ten years, metabarcoding and metagenomics based on DNA sequencing and sub-

sequent taxonomic assignment, have become an important approach for understanding diversity

and community organization at many taxonomic levels. This has led to the publication of over
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80 taxonomic classification methods1. There are three major strategies in classification methods:

composition-based, which do not align sequences but extract compositional features (e.g., kmers)

to build models of probabilistic taxonomic inclusion, alignment-based, which rely on alignments

to directly compare query sequences to reference sequences but do not use trees, and phylogenetic-

based, which rely on a phylogenetic tree reconstruction method, in addition to alignments, to per-

form a placement of the query onto the tree. As a trade-off between speed and precision for pro-

cessing Next-Generation Sequencing (NGS) data, the vast majority of recent classification methods

have either relied on alignment-based or composition-based strategies.

Composition-based tools reduce the reference database by indexing compositional features

such as kmers for a rapid search of the database. These methods require an exact match between

the kmer in the query sequence and the kmer in the reference database. As a result of hash in-

dexing of kmers, kraken22, for example, can classify >1 million reads within 1 minute using the

entire Geengenes or SILVA databases3. Alignment-based tools use a fast local aligner such as

BLAST4 to pairwise align queries to the reference database, and define a score based on sequence

similarity in the alignment between the read and reference sequence. However, alignment-based

methods can be many orders of magnitude slower than composition-based tools since datasets with

>10 million reads require weeks of BLASTN running time5. In both composition-based tools and

alignment-based tools, a lowest common ancestor (LCA) algorithm is then typically used to assign

at different taxonomic levels (Figure 1A). LCA works by assigning to the smallest possible clade

that include all matches with a similarity less than the specified cut-off.

Phylogenetic placement methods place a query sequence onto a phylogenetic tree of refer-
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ence sequences. This placement requires a full multiple sequence alignment (MSA) of the refer-

ence sequences and a subsequent estimation of a phylogenetic tree. However, large datasets with

high rates of evolution are hard to align accurately6 and phylogeny estimation methods produce

poor trees when MSAs are not of high quality7. Futhermore, phylogentic placement tends to be

computationally demanding as both running time and memory usage scale linearly with the size

of the reference database 8. Even for reference databases that contain sequences as few as 1,600

sequences, assignment for a single query using the most cited phylogenetic placement method,

pplacer9, takes more than 7 minutes and requires over 10GB of RAM. At this rate, a reference

database that contains a metabarcode such as Cytochrome oxidase 1 (COI) that has at least 1.5

million reference sequences, assigning just a single query would require 20.9 hours and 2.37TB

RAM. Scaling the query size to millions of queries would therefore be computationally intractable.

To address these challenges, the most recent implementations of phylogeneny-based methods10

rely on reference database reduction techniques (i.e., using only representative taxa or consensus

sequences for a sparse backbone tree) to handle the large amount of data that is routinely produced.

Often a single species is selected to represent an entire clade11. While this reduces the computa-

tional cost, it also reduces the granularity, and potentially the accuracy, of the assignments. As a

trade-off between speed and precision, the vast majority of recent classification methods are ei-

ther alignment-based or composition-based approaches12 since phylogeny-based methods have not

scaled to handle the entirety of the rapidly growing reference databases of genome markers and the

increasingly large amounts of NGS data.

Here we describe a new method for phylogenetic placement, implemented in the program
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’Tronko’ (https://github.com/lpipes/tronko, Supplementary Software), the first phylogeny-based

taxonomic classification method designed to truly enable the use of modern-day reference databases

and NGS data. The method is based on approximating the phylogenetic likelihood calculation by

(1) only allowing the edge connecting the reference sequence to the tree to join at existing nodes

in the tree and then (2) approximating the likelihood using a probabilistically weighted mismatch

score based on pre-calculated fractional likelihoods stored in each node (Online methods). We

argue that (2) approximates the full maximized likelihood assignment without requiring any nu-

merical maximization under the approximating assumption that the read joins the tree in an existing

node with a zero length branch. The approximation is equivalent to calculating the expected av-

erage mismatch to each node in the phylogeny. The assignment method in Tronko uses the LCA

criteria but, unlike composition-based and alignment-based approaches (Figure 1A), takes advan-

tage of fractional likelihoods stored in all nodes of the tree with a cut-off that can be adjusted from

conservative to aggressive (Figure 1B). In the simplest case, when the reference sequences form a

single tree, Tronko uses a pre-calculated MSA, the phylogenetic tree based on the MSA, and pre-

calculated posterior probabilities, which are proportional to the fractional likelihoods. However, in

more typical cases, when a single tree/MSA is unsuitable for analyses, as the reference sequences

encompass increasingly divergent species as well as an increasing volume of sequences, we present

a fully customizable divide-and-conquer method for reference database construction that is based

on dividing reference sequences into phylogenetic subsets that are re-aligned and with local trees

re-estimated.

The construction of the database, MSAs, and trees, facilitates fast phylogenetic assignment.
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The assignment algorithm then proceeds by (1) A BWA-MEM 13 search on all sequences in the

database, (2) a pairwise sequence alignment between the query and the top hit in each alignment-

subset containing a BWA-MEM hit using either the Needleman-Wunsch algorithm14 or the Wave-

front Alignment algorithm15, and (3) a calculation of a score based on the approximate likelihood

for each node in subsets with a BWA-MEM hit. An additional LCA assignment for all subsets can

then be applied to summarize the results. For full details, please see ONLINE METHODS.

RESULTS

To compare the new method (Tronko) to previous methods, we constructed reference databases

for COI and 16S for common amplicon primer sets. We first compared Tronko to pplacer for

reference databases containing a reduced amount of sequences (<1,600 sequences) to compare

the speed and memory requirements with a comparable phylogenetic-based assignment method.

Tronko shows speed-ups >20 times, with a vastly reduced memory requirement illustrating the

computational advantage of the approximations in Tronko (Supplementary Fig. S4).

Next, we evaluated Tronko’s performance to kmer-based kraken22 which previously has been

argued to have the lowest false-positive rate3, and two other popular alignment-based methods:

MEGAN16 and metaphlan217. We did not compare to pplacer because it would require too many

computational resources to do so. We used two types of cross validation tests: leave-one-species-

out and leave-one-individual-out analyses. The leave-one-species-out test involves removing an

entire species from the reference database, simulating next generation sequencing reads from that

species, and then attempting to assign those reads with that species missing from the database. The

leave-one-individual-out test involves removing a single individual from the reference database,
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simulating next generation sequencing reads from that individual, and then attempting to assign

those reads with that individual missing from the database. In both tests, singletons (i.e., cases in

which only one species was present in a genera or cases in which only one individual represented

a species) were exempt from the tests.

We performed a leave-one-species-out test comparing Tronko (with LCA cut-offs for the

score of 0, 5, 10, 15, and 20 with both Needleman-Wunsch alignment and Wavefront alignment)

to kraken2, metaphlan2, and MEGAN for 1,467 COI sequences from 253 species from the order

Charadriiformes using 150bp x 2 paired-end sequences and 150bp and 300bp single-end sequences

using 0, 1, and 2% error/polymorphism (Figures 2 and 3). See Figure S2 for results with Wave-

front alignment.

Using leave-one-species-out and simulating reads (both paired-end and single-end) with a

0-2% error (or polymorphism), Tronko detected the correct genus more accurately than the other

methods even when using an aggressive cut-off (i.e., when cut-off=0) (Figure 3D and G). Us-

ing 150bp paired-end reads with 1% error, Tronko had a misclassification rate of only 9.045%

with a recall rate of 71.381% at the genus level using a cut-off set to 15 while kraken2, MEGAN,

and metaphlan2 had misclassification rates of 33.475%, 10.046%, and 27.731%, respectively, with

recall rates of 90.555%, 52.136%, and 95.027% (see Figure 2B). Tronko had a lower misclassifi-

cation rate relative to the recall rate out of all methods for 150bp x 2 paired-end reads with 0% er-

ror/polymorphism (Figure 2A), 1% error/polymorphism (Figure 2B), and 2% error/polymorphism

(Figure 2 and Figure 3D-I), for 150bp reads with 0% error/polymorphism (Figure 2D), 1% er-

ror/polymorphism (Figure 2E), and 2% error/polymorphism (Figure 2F), and for 300bp reads
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with 0% error/polymorphism (Figure 2G), 1% error/polymorphism (Figure 2H), and 2% er-

ror/polymorphism (Figure 2I). See Methods for definitions of recall and misclassification rates.

Tronko also accurately assigned genera from the Scolopacidae family (top left of matrices in Fig-

ure 3) using Needleman-Wunsch with a cut-off of 10 compared to kraken2 and metaphlan2.

Next, we performed a leave-one-individual-out test for the same COI sequences (Figures 4

and 3G-L). See Figure S3 for results with Wavefront alignment. Using single-end reads of lengths

150bp and 300bp, Tronko has a lower misclassification rate and higher recall rate than kraken2,

metaphlan2, and MEGAN. Using 150bp paired-end reads with 0% error (Figure 4D), Tronko had

a misclassification rate at only 0.258% with a recall rate of 65.110% at the species level using a

cut-off set to 15 while kraken2, MEGAN, and metaphlan2 had misclassification rates of 1.240%,

0.313%, and 11.181%, respectively, with recall rates of 81.717%, 65.668%, and 99.839%. Both

metaphlan and kraken2 have a number of mis-assignments within the family of Laridae (see blue

points across the diagonal in Figure 3G and H) and Tronko is able to accurately assign species

within this family or assign at the genus or family level.

We then compared Tronko’s performance to kraken2, MEGAN, and metaphlan2 using mock

communities for both 16S18, 19 and COI markers20 (Figure 5). For 16S, we used two different

mock community datasets. We used 2 x 300bp Illumina MiSeq sequencing data from a mock

community consisting of 49 bacteria and 10 archaea species from Schirmer et al. (2015)18 and 2 x

300bp Illumina MiSeq sequencing data from a mock community of 20 evenly distributed bacterial

species from Gohl et al (2016)19. For the data from Schirmer et al. (2015), at the species level,

Tronko had a less than 0.6% misclassification rate at every cut-off with a recall rate of 11.020%
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at cut-off 0 (Figure 5A; See Figure S6 for plot without outliers). kraken2 had a misclassification

rate of 1.242% with a recall rate of 10.569% when using its default database, and a misclassifi-

cation rate of 3.542% and a recall rate of 35.110% when using the same reference sequences as

Tronko. metaphlan2 did not have any assignments at the species, genus, or family level using the

default database, and it had an 8.334% misclassification and 8.943% recall rate at the species level

when using the same reference sequences as Tronko. MEGAN had a recall rate of 0.206% and a

misclassification rate of 0% at the species level.

For the data from Gohl et al. (2016), at the species level, Tronko had a less than 2.6% mis-

classification rate at every cut-off with a recall rate of 12.815% at cut-off 0 (Figure 5B; See Figure

S7 for plot without outliers). kraken2 had a misclassification rate of 26.812% and recall rate of

33.694% when using its default database, and a misclassification rate of 21.409% and recall rate

of 25.405% when using the same reference sequences as Tronko. metaphlan2 did not have any

assignments at the species, genus, or family level using the default database, and it had an 8.470%

misclassification and 2.073% recall rate at the species level when using the same reference se-

quences as Tronko. MEGAN had a misclassification rate of 0.00629% and a recall rate of 4.439%

at the species level.

For COI, we used a dataset from Braukmann et al. (2019)20 which consists of 2 x 300bp

Illumina MiSeq sequencing data from 374 species of terrestrial arthropods, which is the most ex-

pansive mock community dataset that we used. At the genus level, Tronko had a misclassification

of less than 0.6% with a recall rate of 91.306% at the cut-off of 0 (Figure 5C; see Figure S8 for

plot without outliers). With the default database, kraken2 had a misclassification rate of 40.537%
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with a recall rate of 6.504%. With the same reference sequences as Tronko, kraken2 still had a

misclassification of 13.998% with a recall rate of 83.141%. metaphlan2 had a misclassification

rate of 3.538% with a recall of 86.487% with the same reference sequences as Tronko while the

default database failed to assign any reads. MEGAN did not assign any reads at the species or

genus level.

We compared Tronko with kraken2, metaphlan2, and MEGAN (using BLAST as the aligner)

for running time (Figure 6A) and peak memory (Figure 6B) using 100, 1,000, 10,000, 100,000,

and 1,000,000 sequences using the COI reference database. Unsurprisingly, kraken2 had the fastest

running time followed by metaphlan2, but MEGAN had a substantially slower running time than

all methods. Tronko was able to assign 1,000,000 queries in∼8 hours with the choice of aligner be-

ing negligible. Tronko had the highest peak memory (∼50GBs) as it stores all reference sequences,

their trees, and their posterior probabilities in memory. We note that for very large databases, the

memory requirements can, in theory, be reduced by processing different alignment subsets sequen-

tially.

Discussion

Both leave-one-species out and leave-one-individual-out simulations show that Tronko re-

covers the correct taxonomy with higher probability than competing methods and represents a

substantial improvement over current assignment methods. The advantage of Tronko comes from

the use of limited full sequence alignments and the use of phylogenetic assignment based on a fast

approximation to the likelihood.

We evaluate Tronko using diferent cut-offs representing different trade-offs between recall
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and misclassification rate, thereby providing some guidance to users for choice of cut-off. We note

that in most cases, the other methods evaluated here fall within the convex hull of Tronko, showing

that Tronko dominates those methods, and in no cases do other methods fall above the convex hull

of Tronko. However, in some cases other methods are so conservative, or anti-conservative, that

a direct comparison is difficult. For example, when using single-end 300bp reads (Figure 4G-I),

MEGAN has assignment rates that are so low that a direct comparison is difficult.

Among the methods compared here, kraken2 is clearly the fastest (Figure 6A). However, it gen-

erally also has the worst performance with a higher misclassification rate than other methods,

especially in the leave-one-species out simulations (Figure 2).

Both metaphlan2 and MEGAN tend fall within the convex hull of Tronko. Typically, metaphlan2

assigns much more aggressively, and therefore, has both a recall and misclassification rate that is

much higher than MEGAN, which assigns very conservatively. We also note that the computa-

tional speed of MEGAN is so low that it, in some applications, may be prohibitive (Figure 6A).

We evaluated Tronko using two different alignment methods, Needleman-Wunsch and Wavefront

Alignment. In many cases, the two alignment algorithms perform similarly. However, in the case,

where short, single-end reads are used (i.e., 150bp single-end reads), the Wavefront Alignment per-

forms worse than the Needleman-Wunsch Alignment (see Figures S2D-F and S3D-F). The Wave-

front Alignment algorithm implements heuristic modes to accelerate the alignment, which per-

forms similar to Needleman-Wunsch when the two sequences being aligned are similar in length.

However, when there is a large difference between the two sequences being aligned, we notice that

the Wavefront Alignment forces an end-to-end alignment which contains large gaps at the begin-
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ning and end of the alignment. Hence, based on current implementations, we cannot recommend

the use of the Wavefront Alignment for assignment purposes of short reads, although this conclu-

sion could change with future improvements of the implementation of the wavefront alignment

algorithm.

Tronko is currently not applicable to eukaryotic genomic data as it requires well-curated align-

ments of markers and associated phylogenetic trees, although we note that whole-genome phylo-

genetic reference databases for such data could potentially be constructed. Such extensions of the

use of Tronko would require heuristics for addressing the memory requirements. Tronko currently

has larger memory requirements than methods that are not phylogeny-based. Nonetheless, for

assignment to viruses, amplicon sequencing and other forms of non-genomic barcoding, Tronko

provides a substantial improvement over existing assignment methods and is the first full phylo-

genetic assignment method applicable to modern large data sets generated using Next Generation

Sequencing.

The methods presented in this paper are implemented in the Tronko software package that includes

Tronko-build and Tronko-assign for reference database building and species assignment, respect-

fully. Tronko can be downloaded at http://www.github.com/lpipes/Tronko and is available under

an open-software license.

Methods

Tronko-build reference database construction with a single tree

The algorithm used for assignment takes advantage of pre-calculated posterior probabilities of nu-
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cleotides at internal nodes of a phylogeny. We first estimate the topology and branch-lenghts of the

tree using RAxML21, although users of the method could use any tree estimation algorithm. We

then calculate and store the posterior probabilities of each nucleotide in each node of the tree. For

computational efficiency, this is done under a Jukes and Cantor (1969) model22, but the method can

easily be extended to other models of molecular evolution. The calculations are achieved using an

algorithm that traverses the tree only twice to calculate posterior probabilities simultaneously for

all nodes in the tree. In brief, fractional likelihoods are first calculated in each node using a standard

postorder traversal (e.g. Felsenstein 198123). This directly provides the posterior probabilities in

the root after appropriate standardization. An inorder traversal of the tree is then used to pull frac-

tional likelihoods from the child nodes of the root down the tree and, at each node, simultaneously

calculate fractional likelihoods by multiplying appropriate products of transition probabilities and

fractional likelihoods from the child nodes with products of transition probabilities and fractional

likelihoods from the parent node. While naive application of standard algorithms for calculat-

ing posterior probabilities in a node, to all nodes of a tree, have computational complexity that is

quadratic in the number of nodes, the algorithm used here is linear in the number of nodes. The

algorithm is implemented in the program ’Tronko-build’.

Each node in the tree is subsequently provided a taxonomy assignment. This is done by first

making taxonomic assignments of the leaf nodes using the taxonomy provided by the taxid of the

associated NCBI accession. We then make taxonomic assignments for internal nodes, at all taxo-

nomic levels (species, genus, etc), using a postorder traversal of the tree that assigns a taxonomic

descriptor to node i if both children of node i have the same taxonomic assignment. Otherwise,
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node i does not have a taxonomic assignment at this taxonomic level. In other words, node i only

gets a taxonomic assignment if the taxonomic assignments of both child nodes agree.

Tronko-build reference database construction with multiple trees

MSAs for a large number of sequences can become unreliable, and computationally challenging to

work with, due to the large number of insertions and deletions. For that reason, we devise an algo-

rithm for partitioning of sequence sets into smaller subsets based on the accuracy of the alignment

and using the inferred phylogenetic tree to guide the partitioning (Figure S1).

To measure the integrity of the MSA we calculate an average quality score, sum-of-pairs, ASP ,

which is a sum of pairwise alignment scores in the MSA. Assume a multiple sequence alignment of

length l with K sequences, A = {ai,j}, where ai,j is the jth nucleotide in sequence i, 1 ≤ i ≤ K,

1 ≤ j ≤ l, ai,j ∈M = {−, A, C, T,G,N}. Define the penalty function, p:

p(I, V ) =



3 if I = V and I 6= − (match)

−2 if I 6= V , I, V /∈ {N,−} (mismatch)

−1 otherwise

(1)

where I, V ∈M . ASP is then calculated as

ASP =

l∑
j=1

K∑
i=1

K∑
k=i+1

p(ai,j, ak,j)(
K
2

) (2)

If the ASP is lower than the ASP threshold (a threshold of 0.1 was used in our analyses in

this manuscript), the corresponding tree is split in three partitions at the node with the minimum

variance, calculated as:

v = argmin
i∈T

{
((L1(i)−K/3)2 + (L2(i)−K/3)2 + (K − L1(i)− L2(i)−K/3)2)

}
(3)
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where T is a tree, i.e. a set of nodes, L1(i) and L2(i) is the number of leaf nodes descending from

the left and right child node, respectively, of node i, and K is the total number of leaf nodes in

the tree. We then split the tree into 3 subtrees by eliminating node v. Each partition is re-aligned

with FAMSA24 and new trees are constructed using RAxML21 using default parameters and the

GTR+Gamma model. The sequences are recursively partitioned until the ASP score is above the

threshold. Finally, the trees, multiple sequence alignments, taxonomic information, and posterior

probabilities are printed to one reference file which can be loaded for subsequent assignment of

reads. Notice, that the procedure for phylogeny estimating and calculation of posterior probabili-

ties only has to be done once for a marker and then can be used repeatedly for assignment using

different data sets of query sequences.

Taxonomic classification of query sequences

First, BWA-MEM25 is used with default options to align the query sequences to the reference se-

quences, thereby identifying a list of the highest scoring reference sequences (which we designate

as BWA-MEM hits) from the reference database. Second, a global alignment, either using the

Needleman-Wunsch algorithm14 or the Wavefront alignment algorithm15, is performed only on the

sequence with the highest score from each subtree (reference sequence set) identified using the

previously described partitioning algorithm.

Once aligned to the reference sequence, a score, S(i) is calculated for all nodes, i, in the

tree(s) that the reference sequence is located to. For a given read, let bj be the observed nucleotide

in the position of the read mapping to position j in the alignment. We also assume an error rate,

c. For example, if the true base is G and the error rate is c, then the probability of observing A in

14
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the read is c/3. We note that this error rate can be consider to include both true sequencing errors

and polymorphisms/sequence divergence. In an ungapped alignment, the score for site j in node

i is then the negative log of a function that depends on the posterior probability of the observed

nucleotide in the query sequence, PPij(bj), and the error rate:

−log(c/3 + (1− 4c/3)PPij(bj)) (4)

Assuming symmetric error rates, the probability of observing the base by error is (1−PPij(bj))c/3

and the probability of observing the base with no error is (1 − c)PPij(bj). The sum of these two

expressions equals the expression in the logarithm above. The score for all s sites in the read is

defined as −
∑s

j=1 log(c/3 + (1− 4c/3)PPij(bj)).

Notice that the full phylogenetic likelihood for the entire tree, under standard models of molecular

evolution with equal base frequencies and not accounting for errors is ` =
∑s

j=1 log(
∑

v∈{A,C,T,G} PPij(v)Pvbj(t)),

where Pvbj(t) is the time dependent transition probability from base v to base bj in time t. This

statement takes advantage of the fact that, under time-reversibility, the posterior for a base in an

node is proportional to the fractional likelihood of that base in the node, if the tree is rooted in

the node. For small values of t, ` converges to log(PPij(bj). Minimizing the score function,

therefore, corresponds to maximizing the full phylogenetic likelihood function assuming that the

branch leading to the query sequence is infinitesimally short and connects with the tree in an exist-

ing node. An alternative interpretation is that the score maximizes the probability of observing the

query sequence if it is placed exactly in a node or, equivalently, minimizes the expected mismatch

between the query and a predicted sequence sampled form the node.

To address insertions and deletions, we define scores of γ and λ for a gap or insertion, respec-

15
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tively, in the query sequence relative to the reference sequence. We also entertain the possibility of

a gap in the reference sequence in node i in read position j, rij , which occurs when the reference

is a leaf node with a gap in the position or if it is an internal node with all descendent nodes having

gaps in the position. We use the notation Mg = {−, N} for gaps and Mn = {A,C, T,G} for

nucleotides (no gap). Then, the score for node i in site j of the read, with observed base bj , is

Sj(i) =



c/3 + (1− 4c/3)PPi(bj) if bj ∈Mn and rij ∈Mn

γ if bj ∈Mg and rij ∈Mn

1 if bj ∈Mg and rij ∈Mg

λ if bj ∈Mn and rij ∈Mg

(5)

The total score for the entire read is

S(i) =
l∑

j=m(1)

log(Sj(i)) (6)

For paired reads, the scores for each node in the tree is calculated as the sum of the scores for the

forward read and the scores for the reverse read. Scores are calculated for all nodes in each tree

that contain a best hits from the bwa mem alignment. For all analyses in this paper we use values

of c = 0.01, λ = 0.01, and γ = 0.25.

After calculation of scores, the LCA of all of the lowest scoring nodes, using a user-defined

cut-off parameter, is calculated. For example, if the cut-off parameter is 0, only the highest scoring

node (or nodes with the same score as the highest scoring node) is used to calculate the LCA. If

the cut-off parameter is 5, the highest scoring node along with all other nodes within a score of 5

16
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of the highest scoring node are used to calculate the LCA. Once the LCA node is identified, the

classification of the single read (or paired-reads) will be assigned to the taxonomy assigned to that

node. The classification of query sequences is parallelized.

Classification metrics used for accuracy evaluations.

We used the taxonomic identification metrics from Siegwald et al. 201726 and Sczyrba et al.201727.

A true positive (TP) read at a certain taxonomic rank has the same taxonomy as the sequence it was

simulated from. A misclassification (FP) read at a certain taxonomic rank has a taxonomy different

from the sequence it was simulated from. A false negative (FN) read, at a certain taxonomic rank,

is defined as a read that received no assignment at that rank. For accuracy, we use the following

measures for recall and misclassification rate.

Recall =
TP

TP + FN
(7)

Misclassification rate =
FP

TP + FP + FN
(8)

Classification of mock community reads

For Schirmer et al. (2015) we used the ERR777705 sample, for Gohl et al. (2016) we used the

SRR3163887 sample, and for Braukmann et al. (2019) we used the SRR8082172 sample. All

sample raw reads used for assignment were first filtered through the Anacapa Quality Control

pipeline28 with default parameters up until before the amplicon sequence variant (ASV) construc-

tion step. Only paired reads were retained for assignment. For mock datasets where the true species

were only defined with ”sp.”, species assignment were excluded for all methods.

Leave-species-out and leave-one-individual-out analyses

We used 1,467 COI reference sequences from 253 species from the order Charadriiformes. For

17
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the leave-species-out analyses we removed each of the species one at a time (excluding singletons,

i.e. species only represented by a single sequence), yielding 252 different reference databases.

For each database, we then simulated reads from the species that had been removed, and assigned

to taxonomy using all methods tested (Tronko, kraken2, metaphlan2, and MEGAN), using the

same reference databases and same simulated reads for all methods. For the leave-individual-out

analysis, we removed a single individual from each species (excluding singletons) yielding 1,423

different reference databases. Assignments for all method were performed with default parameters

and where a paired read mode was applicable, that mode was used when analyzing paired reads.

For paired-end read assignments with MEGAN, the assignment is the LCA of the forward and

reverse read assignments as described in the MEGAN manual v6.12.3. For metaphlan, the results

from the forward reads and reverse reads were combined.

Custom 16S and COI Tronko-build reference database construction

For the construction of the reference databases in this manuscript, we use custom built reference

sequences that were generated using common primers29–32 for 16S and COI amplicons that have

been used in previous studies33–35 using the CRUX module of the Anacapa Toolkit28. For the COI

reference database, we use the following forward primer: GGWACWGGWTGAACWGTWTAY-

CCYCC, and reverse primer: TANACYTCnGGRTGNCCRAARAAYCA from Leray et al. (2013)

and Geller et al. (2013)30, 31, respectively, as input into the CRUX pipeline28 to obtain a fasta

and taxonomy file of reference sequences. For the 16S database, we use forward primer: GT-

GCCAGCMGCCGCGGTAA, and reverse primer: GACTACHVGGGTATCTAATCC from Capo-

raso et al. (2012)29. We set the length of the minimum amplicon expected to 0bp, the length

18
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of the maximum amplicon expected to 2000bp, and the maximum number of primer mismatches

to 3 (parameters -s 0, -m 2000, -e 3, respectively). Since all of the custom built libraries

contain ≥500,000 reference sequences and MSAs, we first used Ancestralclust 36 to do an initial

partition of the data, using parameters of 1000 seed sequences in 30 inital clusters (parameters -r

1000 and -b 30, respectively). For the COI database, we obtain 76 clusters and for the 16S

database we obtain 228 clusters. For each cluster, we use FAMSA24 with default parameters to

construct the MSAs and RAxML21 with the model GTR+Γ of nucleotide substitution to obtain

the starting trees for Tronko-build. The identified reference databases, MSAs, phylogeentic trees,

and posterior probabilites of nucleotides in nodes for COI and 16S, are available for download at

https://doi.org/10.5281/zenodo.7407318.
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Figure (1): Species assignment in alignment-based methods (A) vs. Tronko (B). In Tronko, scores

are calculated for all nodes in the tree based on the query’s global alignment to the best BWA-MEM

hit. The query is assigned to the LCA of the highest scoring nodes within the cut-off threshold.

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.06.519402doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519402
http://creativecommons.org/licenses/by/4.0/


Figure (2): Recall vs. Misclassification rates using leave-one-species-out analysis with paired-end

150bp x 2 reads with 0% (A), 1% (B), and 2% (C) error/polymorphism, single-end 150bp reads

with 0% (D), 1% (E), and 2% (F) error/polymorphism, and single-end 300bp reads with 0% (G),

1% (H), and 2% (I) error/polymorphism using kraken2, metaphlan2, MEGAN, and Tronko with

cut-offs of 0, 5, 10, 15, and 20 using the Needleman-Wunsch alignment (solid line).26
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Figure (3): Confusion matrices at the genus level of the order Charadriiformes using the
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Figure 3: Leave-one-species-out analysis with paired-end 150bp x 2 reads with 2% er-

ror/polymorphism using kraken2 (A), metaphlan2 (B), MEGAN (C), and Tronko using the

Needleman-Wunsch alignment (NW) for cut-offs 0 (D), 5 (E), and 10 (F). Unassigned column

contains both unassigned queries and queries assigned to a lower taxonomic level. Phylogenetic

tree represents ancestral sequences at the genus level. Confusion matrices at the species level of

the order Charadriiformes using the leave-one-individual-out analysis with paired-end 150bp x 2

reads with 2% error/polymorphism using kraken2 (G), metaphlan2 (H), MEGAN (I), and Tronko

using the Needleman-Wunsch alignment (NW) for cut-offs 0 (J), 5 (K), and 10 (L). Phylogenetic

tree represents sequences at the species level for leave-one-individual-out analyses and genus level

for leave-one-species-out analyses.
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Figure (4): Recall vs. Misclassification rates using leave-one-individual-out analysis with paired-

end x 2 150bp reads with 0% (A), 1% (B), and 2% (C) error/polymorphism, single-end 150bp

reads with 0% (D), 1% (E), and 2% (F) error/polymorphism, and paired-end 300bp reads with 0%

(G), 1% (H), and 2% (I) error/polymorphism using kraken2, metaphlan2, MEGAN, and Tronko

with cut-offs of 0, 5, 10, 15, and 20 using the Needleman-Wunsch alignment (solid line).29
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Figure (5): Recall vs. misclassification rates using mock communities from Schirmer et al.

(2015)18(A), Gohl et al. (2016)19(B), and Braukmann et al. (2019)20(C) using both Needleman-

Wunsch and Wavefront alignment algorithms. Figures with smaller misclassification rates on the

x-axis are available for Schirmer et al. (2015), Gohl et al. (2016), Braukmann et al. (2019) in Sup-

plementary Figures S6, S7 and S8, respectively. For metaphlan2-default, no reads were assigned

for any of the mock communities.
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Figure (6): Comparisons of running time (A) and peak memory (B) using 100, 1000, 10000,

100000, and 1000000 queries for Tronko, blastn+MEGAN, kraken2, and metaphlan2 using the

COI reference database. Needleman-Wunsch is NW and Wavefront alignment is WFA.
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