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Abstract

Artificial reinforcement learning agents that perform well in training tasks typically perform worse
than animals in novel tasks. We propose one reason: generalization requires modular architectures
like the brain. We trained deep reinforcement learning agents using neural architectures with
various degrees of modularity in a partially observable navigation task. We found that highly
modular architectures that largely separate computations of internal belief of state from action
and value allow better generalization performance than agents with less modular architectures.
Furthermore, the modular agent’s internal belief is formed by combining prediction and observation,
weighted by their relative uncertainty, suggesting that networks learn a Kalman filter-like belief
update rule. Therefore, smaller uncertainties in observation than in prediction lead to better
generalization to tasks with novel observable dynamics. These results exemplify the rationale of
the brain’s inductive biases and show how insights from neuroscience can inspire the development
of artificial systems with better generalization.

Introduction

Generalization out-of-distribution requires one to act upon the correct prior knowledge of the world distilled
from experience. However, David Hume’s famous “problem of induction” indicates that one’s prior knowledge
can be objectively wrong [1]. Animals evolved to master their daily tasks, thus can correctly learn the
underlying structures of these tasks as prior knowledge, and then use it to generalize to other out-of-distribution
tasks with a similar structure [2]. In contrast, artificial intelligence (AI) models with inappropriate designs
generalize poorly, possibly due to the failure to correctly learn the task structure as prior knowledge, thus,
failing to leverage this knowledge for generalization [3, 4].

Natural tasks have infinitely many solutions that are equally good at the training task. One solution might
master the task by capturing its structure, while another might solve it by memorizing all encountered
input-output pairs. Any learning system for the training task has a bias that prioritizes one solution over
other possible solutions, known as the inductive bias [3, 4, 5]. For a neural network, its architecture is one
important aspect of this bias. To prioritize a network solution that generalizes well, the inductive bias must
specialize in matching the specific task structure of interest: a universal inductive bias appropriate for all
tasks does not exist (“no free lunch theorem” [6]). To generalize well in many daily tasks with a single
large network, the brain may have evolved a modular architecture to flexibly enable distinct circuits with
different functionally specialized modules, depending on the current task demands [7, 8, 9]. Inspired by this,
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we hypothesize that task-appropriate modular architectures empower neural networks to capture the task
structure during training, so that networks can use this prior knowledge to generalize to novel tasks with a
similar structure. Less modular neural architectures lead to inferior generalization abilities.

We tested this hypothesis using deep reinforcement learning (RL) [10] agents in a naturalistic virtual navigation
task. Agents must steer to the location of a transiently visible target (a “firefly”) using optic flow cues.
We previously designed this task to explore neural computations underlying macaques’ flexible naturalistic
behaviors [11, 12]. This task benefits from the simultaneous mental computation of multiple variables: the
subject’s internal state representation of the outside world (belief) given partial and noisy sensory cues; the
motor commands (action) controlling a joystick to navigate toward targets; and the value of actions in each
state [13]. Neural networks for this task can use a spectrum of architectures varying in functional modularity,
which we define as the degree to which separate neural units compute distinct task variables. At one extreme,
they can have a holistic architecture (lowest modularity), where all neurons are interconnected and must
compute variables jointly; at the other extreme, they can have a modular architecture (highest modularity),
where neurons are segregated in distinct modules, each dedicated to distinct variables. We trained RL agents
using neural networks endowed with various degrees of modularity in this navigation task. After training, we
tested them in two novel tasks sharing a similar task structure to the training task: one which manipulates
the sensorimotor mapping from joystick movements to subjects’ movements in the environment, and the
other which randomly applies passive perturbations to subjects’ movements.

We found that highly modular neural architectures are more appropriate for the navigation task: agents with
these architectures can learn internal state representations that are still accurate in novel tasks to support
generalization. Such network ability resembles macaque behaviors: after training, macaques showed flexibility
in performing novel tasks with a similar structure without additional training [14]. In contrast, agents with
less modular architectures demonstrated inferior generalization abilities.

We further found that a belief update rule akin to recursive Bayesian estimation [15] emerges in the modular
agent’s network after training: a posterior belief is a weighted average of a prior prediction using a motor
efference copy and a likelihood over states given visual observation, where a higher weight is assigned to
the more reliable source, similar to how the brain performs probabilistic inference [16]. Training agents
with greater uncertainty in observation than prediction biases agents toward ignoring observations in belief
formation, which then cripples their generalization abilities in novel tasks that require the use of novel
observations to construct the belief, instead of the outdated internal model. Therefore, to generalize, agents
must develop prior knowledge of relying more on observation, similar to macaques and humans in this task
[17].

Together, these findings shed light on how to bridge the gap between AI and neuroscience [3, 4, 18, 19]: from
AI to neuroscience, our work validates the rationale of the brain’s inductive biases in spatial navigation [20, 17].
From neuroscience to AI, our work exemplifies how insights from the brain can inspire the development of AI
with better generalization abilities.

Results

RL agents trained to navigate using partial and noisy sensory cues

To study naturalistic, continuous-time computations involved in foraging behaviors, we previously designed
a virtual reality navigation task where macaques navigate to targets (“fireflies”) using sparse and transient
visual cues [11]. At the beginning of each trial, the subject is situated at the origin facing forward; a target
is presented at a random location within the field of view on the ground plane and disappears after 300
ms. The subject can freely control its linear and angular velocities with a joystick to move in the virtual
environment (Fig. 1a). The objective is to navigate toward the memorized target location, then stop inside
the reward zone—a circular region centered at the target location with a radius of 65 cm. A reward is given
only if the subject stops inside the reward zone. The subject’s self-location is not directly observable because
there are no stable landmarks; instead, the subject needs to use optic flow cues on the ground plane to
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perceive self-motion and perform path integration. Note that optic flow cues cannot serve as stable landmarks
because ground plane textural elements—small triangles—appear at random locations and orientations, and
disappear after only a short lifetime (∼ 250 ms). A new trial starts after the subject stops moving or the
trial exceeds the maximum trial duration. Details of this task are described in [11]. Macaques can be trained
to master this task, and all macaque data presented in this paper were adapted from previously published
works [11, 12, 14, 17, 20, 21].

RL is a reasonable framework for modeling behavior in this task because, like animals, RL agents can learn
this task through sparse reward signals. We formulate this task as a Partially Observable Markov Decision
Process (POMDP) [22] in discrete time, with continuous state and action spaces (Fig. 1b). At each time step
t, the environment is in the state st (including the agent’s position and velocity, and the target’s position).
The agent takes an action at (controlling its linear and angular velocities) to update st to the next state
st+1 following the environmental dynamics given by the transition probability T (st+1|st,at), and receives a
reward rt from the environment following the reward function R(st,at) (a positive scalar if the agent stops
inside the reward zone). The state st is not fully observable, so to support decision-making, the agent needs
to maintain an internal state representation that synthesizes the history of evidence. For example, a recursive
Bayesian estimation (Methods) can form a posterior density p(st|o0:t,a0:t−1) over the current world state st
given the history of two sources of evidence. One source is a prediction based on its internal model of the
dynamics, its previous posterior, and the last self-action at−1 (e.g., a motor efference copy). The other source
is a partial and noisy observation ot of the state st drawn from the observation probability O(ot|st). For
our task, this observation includes the target location when it is visible, and information about the agent’s
movement estimated via optic flow. We call the resultant posterior the agent’s “belief” bt. We will show later
that agents using neural networks trained in this task approximately encode this belief bt in their neural
activity ht, and its dynamics are consistent with approximate recursive Bayesian estimation.

Here we use an actor -critic approach to learning [10] (Fig. 1b), where actor and critic are implemented using
distinct neural networks, and each network individually encodes bt in its neural activity (Methods). At each
t, the actor computes the belief bt of the state st using two sources of evidence ot and at−1, and generates
an action at. It is trained to generate the action that maximizes the value Qt—the expected discounted
cumulative rewards from t until the trial’s last step, given taking at in st. Since the ground truth value is
unknown, the critic computes the belief bt of st and estimates the value Qt, learned through the reward
prediction error after receiving the reward rt (Fig. 1b). The actor is updated more slowly than the critic
so that the actor can always learn something new from the critic (Methods, [23]). Over time, as the state
evolves in the outside world following the environmental dynamics, the belief evolves in parallel following the
internal belief update rule (learned through training). Sequential observations are drawn given the outside st;
sequential actions are taken based on the internal bt (Fig. 1c). Full details of this formulation are shown in
Methods.

Actor and critic networks can have various architectures using two types of building blocks: a recurrent
neural network (RNN) that possesses memory, and a memoryless feedforward network (here, a multi-layer
perceptron [MLP]). Each architecture defines the network’s functional modularity for this task, i.e., the degree
of separation in computing task variables. At one extreme, all neurons in a holistic actor/critic network are
interconnected, and must compute the belief and the action/value jointly; at the other extreme, neurons in a
modular actor/critic network are segregated into distinct modules to compute the belief and the action/value
sequentially (Fig. 1d–e). We can manipulate which variables can be computed in each module (thought
bubbles in Fig. 1d–e) by using two types of segregation. First, to synthesize the belief from the sequence
of evidence, networks must have some memory. RNNs satisfy this requirement with their hidden state ht

evolving over time. In contrast, the computations of value and action do not need a memory when the belief
is given, so feedforward MLPs can perform these. Therefore, using an architecture consisting of an RNN
followed by an MLP, we segregate the temporal processing: the computation of bt over time is constrained only
to the RNN, as the MLP cannot integrate signals over time. Second, using a critic architecture comprising
two connected modules and only providing the input of the current action at to the second module, we
segregate inputs in a manner that limits the computation of value Qt to only the second module: Qt is a
function of at, but the first module does not have access to at and thus cannot compute Qt (Fig. 1e, right).

Agents with four combinations of actors and critics in Fig. 1d–e were successfully trained in the navigation
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task (Fig. 1f). We refer to the agent whose actor and critic are both holistic or both modular as the holistic
or modular agent. Fully trained agents’ behavior was compared with that of two monkeys (Fig. 1g) for a
representative set of targets uniformly sampled on the ground plane (distance: 100–400 cm, angle: −35◦ to
+35◦; modular agent: Fig. 1h, holistic agent: Fig. S1a). In the next section we will contrast the properties of
the holistic and modular agents’ trajectories, but first, we focus on their stop locations (linear: r̃, angular:
θ̃) versus the target location (linear: r, angular: θ; Fig. 1g, inset). The tight correspondence between stop
and target locations indicates that, similar to monkeys, all agents had mastered the training task (Fig. 1i;
Pearson’s r: Fig. S1b). When stop locations were regressed against target locations (without intercept), we
found that, similar to monkeys, agents also systematically undershot targets (Fig. S1c: the regression slope is
smaller than 1). This finding can be predicted based on RL framework: although the immediate reward for
stopping at any location within the reward zone is the same, those considering long-term values discounted
over time should prefer closer reward locations to save time.

We used a Receiver Operating Characteristic (ROC) analysis [11, 12] to systematically quantify and compare
behavioral performance. A psychometric curve for stopping accuracy is constructed from a large representative
dataset by counting the fraction of rewarded trials as a function of a hypothetical reward boundary size
(radius 65 cm is the true size; infinitely small/large reward boundary leads to no/all rewarded trials). A
shuffled curve is constructed similarly after shuffling targets across trials (Fig. 1j). Then, an ROC curve is
obtained by plotting the psychometric curve against the shuffled curve (Fig. 1k). An ROC curve with a slope
of 1 denotes a chance level (true=shuffled) with the area under the curve (AUC) equal to 0.5. High AUC
values indicate that all agents reached good performance after training (Fig. 1k, inset). This performance
can be explained by accurate task variables encoded in their neural networks (actor: Fig. 1l, critic: Fig. S1d;
see Methods), as previously also shown in the macaque brain [12, 20, 21]. In summary, like macaques, all
agents with different neural architectures can be trained to master our navigation task (Fig. 1k).

To test the generalization abilities of these agents after training, all parameters in their neural networks are
frozen to prevent further learning, and we challenge them in the following novel tasks.
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Figure 1: RL agents with different neural architectures were trained in a partially observable navigation task.
a. Schematic of the navigation task from the subject’s perspective. Optic flow cues are generated by the
motion of many randomly positioned and oriented triangle elements on the ground. These cues cannot serve
as landmarks since each one exists for only a short time. A trial is rewarded only if the subject stops in the
reward zone, and is otherwise unrewarded. b. Block diagram showing the interaction between an RL agent
and the task environment. At each time step t, a partial and noisy observation ot of the state st drawn from
the distribution O, and the last action at−1 are provided to the actor and critic to form the belief bt that is
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encoded in their network states ht. The actor outputs an action at based on bt, and this action updates
st to st+1; the critic estimates the value Qt of this action based on bt. The actor is trained to generate the
action that maximizes Qt; the critic updates its synaptic weights using the reward prediction error after
receiving reward rt from the environment. c. Graphical model of the task. In the environment (dark gray),
st changes over time following the transition probability. Internally (light gray), bt evolves following the
belief update rule using observations ot and motor efference copies at−1. Observations ot are drawn given st.
Actions at are taken given bt. d. Schematic of actors with a holistic (left) or modular (right) architecture. A
holistic actor uses an RNN to compute bt and at jointly; a modular actor consisting of an RNN and an MLP
constrains the computation of bt to the RNN, and leaves the MLP only to compute at. Thought bubbles
denote the variables computed in each module. e. Similar to d, but for critic networks computing bt and
Qt. f. Fraction of rewarded trials during the course of training. Performance is measured in a validation set
(300 trials) for agents with various architectures. Shaded regions denote ±1 SEM across training runs with
n = 8 random seeds. g. An example trial showing monkeys and agents navigating toward the same target
from the start location. Shaded circle: reward zone. Inset compares the target location (radial: r, angular:
θ) vs. the stop location of monkey S (radial: r̃, angular: θ̃). h. Overhead view of the spatial distribution
of 500 representative targets and an example modular agent’s trajectories while navigating toward these
targets. i. Comparison of agents/monkeys’ stop locations for the target locations from h. Black dashed lines
have a slope of 1. j. Fraction of correct trials in a test set (2000 trials) as a function of hypothetical reward
boundary size. Solid lines denote true data; dashed lines denote shuffled data. The gray dotted line denotes
the true reward boundary size. k. True data versus shuffled data in j (ROC curve). Inset shows the area
under the ROC curve (AUC). j–k. Agents’ data are averaged across n = 8 training runs. l. Performance of
linear decoders trained to decode task variables from example neural modules. Performance is quantified by
computing the Pearson correlation coefficient between true and decoded values of variables.

Gain task: generalization to novel sensorimotor mappings

An important sensorimotor mapping is the joystick gain. This task variable linearly maps linear and angular
motor actions on the joystick (dimensionless, bounded in [−1, 1]) to linear and angular velocities in the
environment. During training, the joystick gain is fixed (linear: 200 cm/s, angular: 90◦/s). We refer to this
condition as 1× gain. By increasing the gain to values that were not previously experienced, we create a
“gain task” manipulation. Monkeys and agents (see Methods, agent selection) were tested with novel gains in
the range [1×, 2×] and [1×, 4×], respectively (Fig. 2a).

Since novel gains used in the gain task are larger than the training gain, agents would overshoot if they
blindly used the same sequence of actions as that used in the training task (no-generalization hypothesis:
Fig. 2b, dashed lines; see Methods). Instead, agents exhibited adaptive behaviors and could generalize to
various extents (Fig. 2b, solid lines). To systematically quantify the behavioral accuracy and also consider
the effect of over-/under-shooting, we defined a radial error, whose absolute value is the Euclidean distance
between one’s stop location and the target location in each trial, and whose positive/negative sign denotes
over-/under-shooting (using idealized trajectories, see Methods). Across gain task trials, agents, like macaques
(Fig. 2c, Fig. S2a–b), produced radial errors that are much smaller than those of no-generalization trajectories
(Fig. S2a), indicating that they generalized in the novel gain task. ROC analyses also confirmed this result
(Fig. 2e). Across agents, the modular agent generalized much better than other agents (Fig. 2d–f).

When we trained agents (in the training task), we periodically assessed their performance on gain task trials
(see Methods). We found that even though agents could master the training task fairly quickly (Fig. 2g,
vertical bars on the x-axis), their generalization abilities emerged only when they experienced many more
training trials than were necessary to achieve solid performance in the training task (Fig. 2g). The modular
agent reached the highest generalization performance at the end of training.

Finally, we quantified the similarities in curvature and length between agents’ and macaques’ trajectories (see
Methods) under different gain conditions to assess the similarities between their control policies in the gain
task. At 1× gain (trained) and 2× gain (generalized), trajectories of the agents using a modular critic are
more similar in curvature (Fig. S2c) and length (Fig. S2e) to monkeys’ trajectories, than trajectories of the
agents with a holistic critic. Trajectories of the modular agent exhibited greater consistency in curvature and
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length across different gains than trajectories of other agents (Fig. S2d,f), reflecting the robustness of the
modular agent’s control policy.

Together, these results demonstrate that the modular agent, whose actor and critic are both modular,
generalized the best in the gain task.
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Figure 2: The modular agent exhibits the best generalization performance in the gain task. a. Gain is the
variable that linearly maps the joystick actions (bounded in [−1, 1]) onto velocities in the environment. 1×
gain used in training has linear and angular components of 200 cm/s and 90 ◦/s, respectively. After training,
animals and agents were tested with gain values within the ranges [1×, 2×] and [1×, 4×], respectively. b.
Example trajectories of agents navigating toward a target with a novel 1.5× gain. Dashed lines denote
hypothetical no-generalization trajectories (see Methods). Arrows indicate regions of over- or under-shooting
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rate (number of rewarded trials per second) averaged over three validation sets (using the same 300 targets,
gain= 2×, 3×, 4×) as a function of the number of training trials (gain= 1×) experienced after training phase
I (see definition in Methods). Vertical bars overlaid on the x-axis denote the first time agents reach 90%
accuracy in a training gain validation set (300 targets, gain= 1×). e–g: Lines denote means across n = 8
random seeds for each agent; shaded regions and error bars denote ±1 SEM.

Accuracy of agents’ internal beliefs explains generalization in the gain task

Although we have confirmed that agents with different neural architectures exhibit different generalization
abilities in the gain task, the underlying reason is still unknown. Here, we open the “black box” to elucidate
neural mechanisms that account for the behaviors we observed in the last section.

Agents that generalize well must have accurate internal beliefs in their actor networks to support action.
When we tested agents in the gain task, we recorded their RNN activities in actors, and found that RNN
neurons are sensitive to agents’ locations in the environment (spatial tuning; holistic agent: Fig. 3a, modular
agent: Fig. 3b; see Methods). We are particularly interested in RNN activities because the belief is computed
in the recurrent module (Fig. 1d), and the spatial tuning implies that these neurons encode agents’ belief of
where they are.

To systematically quantify the accuracy of this belief, we used linear regression (with ℓ2 regularization) to
decode agents’ locations from RNN activities in their actors (Fig. 3c; see Methods), and used the decoding
error to indicate the belief accuracy, defined as the Euclidean distance between the true and the decoded
self-location. Decoding errors in training gain (1×) trials are small for all agents, indicating that agents’
locations are linearly decodable from RNN units (Fig. 3d). We found that agents that cannot generalize well
when faced with increased gains (Fig. 2f) become less accurate about where they are (Fig. 3d, Fig. S3a).
In fact, agents’ behavioral performance correlates with their belief accuracy (Fig. 3e, Fig. S3b; gain values
are sampled from the range [3×, 4×]). This analysis suggests that inductive biases, as introduced through
the choice of neural architectures, affect generalization performance by determining the accuracy of agents’
internal state representation in the novel gain task after being trained in the training task. The modular
agent generalizes the best because it is supported by its most accurate internal belief.
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Figure 3: Decoding error of agents’ internal beliefs correlates with their behavioral performance in the gain
task. a. Spatial tuning of example RNN neurons in a holistic agent’s actor. Each column denotes a neuron;
each row denotes a gain value used to generate a test set (2000 trials). Dotted lines denote the boundary
of a region containing all target locations. b. Similar to a, but for example RNN neurons in a modular
agent’s actor. c. Decoded belief trajectories versus agents’ true trajectories during navigation to an example
target under various gain conditions. Agents’ belief trajectories were estimated by linear decoders trained to
decode agents’ locations from RNNs’ neural activities (see Methods). d. Decoding error as a function of gain.
The decoding error is defined as the distance between true and decoded locations at each time step, and is
averaged across time steps and trials in the test set (2000 trials for each gain for each target). e. AUC versus
decoding error. The test set for this panel contains 1500 trials with gains randomly sampled from the range
[3×, 4×]. d–e: Error bars denote ±1 SEM across n = 8 random seeds.

9

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.07.519515doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.07.519515
http://creativecommons.org/licenses/by-nd/4.0/


Perturbation task: generalization to passive motions, explained by accurate
beliefs

To challenge one’s generalization abilities when the latent state (its position in the virtual world) is manipulated,
we use a “perturbation task” that randomly applies passive velocities (a Gaussian temporal profile for 1
second, see Methods) to monkeys’ or agents’ velocities to dislodge their intended trajectory. For each trial,
the perturbation peak time and the peak of linear and angular passive velocities are uniformly sampled from
the ranges shown in Fig. 4a. The inset of Fig. 4b shows example perturbations.

If agents simply take the same sequence of actions as in training while ignoring perturbations, their stop
locations will be biased (Fig. 4b). Instead, like macaques (Fig. 4c, Fig. S4e), we found that agents (see
Methods, agent selection) generalized to perturbations and exhibited more accurate responses (quantified
using the absolute radial error between the stop and target locations) than if there was no adjustment for
the perturbation (see Methods, no-generalization hypotheses; Fig. 4d). Agents also developed macaque-like
actions that compensate for perturbations (linear: Fig. S4a, angular: Fig. S4b).

By summarizing the behavioral data across perturbation trials (AUC: Fig. 4e, absolute radial error: Fig. S4c),
we conclude that agents with a modular critic generalize better than those with a holistic critic; given the
same critic architecture, a modular actor is better than a holistic actor. The modular agent with modular
actor and modular critic generalizes the best not only under novel gains (Fig. 2f), but also under passive
perturbations (Fig. 4e). Similar to what we have observed in the gain task (Fig. 2g), such abilities emerged
through experiencing an increased number of perturbation-free training trials (Fig. S4d).

To understand why agents with different architectures have different generalization abilities under perturba-
tions, we again examined their internal beliefs encoded in actors that support action. We recorded agents’
locations in the environment and their RNN activities in actors as we did in the gain task, but this time
under none, small, or large perturbation conditions (Fig. 5a–b). Perturbations for the latter two conditions
were drawn from the ranges shown in Fig. 4a (small/large: ranges for monkeys/agents). We then linearly
decoded agents’ locations from RNN activities (Fig. 5c; see Methods), and measured the decoding error to
probe if the belief accuracy of where they are is affected by passive perturbations. We found that agents that
generalized poorly to larger perturbations (Fig. 4d) exhibited less accurate internal beliefs (Fig. 5d, Fig. S5a).
Similar to the result in the gain task (Fig. 3e, Fig. S3b), agents’ behavioral performance also correlates with
their belief accuracy in the perturbation task (Fig. 5e, Fig. S5b; showing data under the large perturbation
condition). These analyses again exemplify how architectural inductive biases affect generalization: they
determine the agents’ abilities to maintain accurate internal beliefs in the perturbation task when trained
without perturbations. The modular agent generalizes the best because it has the most accurate internal
belief.
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random seeds for each agent, 8000 trials in total; moving window size=800 trials). e. AUC for agents’ data
in d. Bars denote means across n = 8 random seeds for each agent; red dots denote data for individual seeds.
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Figure 5: Decoding error of agents’ internal beliefs correlates with their behavioral performance in the
perturbation task. a–b. Similar to Fig. 3a–b, but for the perturbation task. Each row denotes the neural
activity of example neurons under a perturbation condition for 5000 trials. Small and large perturbations
are sampled from the ranges used to test monkeys/agents in Fig. 4a. c. Similar to Fig. 3c, but showing
trajectories navigating to two example targets; each row denotes a target, and each column denotes an
example agent. d–e. Similar to Fig. 3d–e, but for the perturbation task. e uses data under the large
perturbation condition. 5000 trials were used for each agent for each perturbation condition.

Generalization of RL agents with a spectrum of neural architectures

Holistic and modular architectures (Fig. 1d–e) analyzed in previous sections can be deemed two extremes on
a modularity spectrum (critic: Fig. 6a, actor: Fig. 6b). The holistic critic/actor fully mixes the computations
of variables in an RNN and has the lowest modularity. The modular critic/actor separates these computations
to the greatest degree and has the highest modularity. Here we consider the inductive biases of other network
architectures with intermediate modularity between these two extremes with the following rationale. A
critic/actor with two sequential RNNs (critic 2/actor 2) instead of one (holistic) can potentially distribute the
computation of variables to two modules but without constraints. By substituting the second RNN of critic
2 with an MLP (critic 3), the belief computation requiring integration over time is constrained to the first
RNN module (segregation of temporal processing). By retaining two RNNs in the critic and only providing
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the action input to the second RNN (critic 4), we constrain the value computation to the second module
(segregation of inputs). The modular critic (critic 5) has the greatest modularity because it has both types of
segregation. The total number of trainable parameters across architectures is designed to be similar (Fig. S6a,
see Methods).

Agents with all combinations of actors and critics in Fig. 6a–b can be fully trained to master the training
task (gain= 1×, no perturbations; Fig. S6b). We then tested their generalization abilities in the gain and
perturbation tasks (gains are sampled from the range [3×, 4×]; perturbation variables are sampled from the
ranges used to test agents in Fig. 4a; see Methods, agent selection). We found that agents need critics with
higher modularity to achieve good generalization, such as critic 5, the modular critic (Fig. 6c–d). When using
the modular critic, the agent’s generalization could benefit from more modularity in the actor. However, with
a less modular critic, the actor’s higher modularity does not improve the agent’s generalization much. This
result has a logical interpretation: the actor is trained by the critic; without a good critic providing adequate
training signals, an actor cannot learn the task structure well even with appropriate architecture. Behavioral
and neural data for all agents (Fig. 6c–d) further consolidate previous conclusions that agents’ behavioral
performance in novel tasks is explained by their belief accuracy (Fig. 6e–f). Together, we conclude that
the modularity of agents’ neural architectures determines the accuracy of their internal beliefs that support
generalization behavior: the more modular, the better (Fig. 6c–d).
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Figure 6: Increasing the modularity of neural architectures results in a more accurate internal belief in novel
tasks for generalization. a–b. Architecture diagrams as in Fig. 1e and 1d, but showing a spectrum from
holistic to modular for the critic (a) and the actor (b). c–d. AUC and decoding error (averaged across time
steps and trials) of agents with all combinations of actors and critics in the gain (c) and perturbation (d)
tasks (2000 trials for each agent for each task), averaged across n = 8 random seeds for each agent. Beliefs
were decoded from the RNN for actors 1 and 3, or the first RNN for actor 2. Note that the four corners
represent the four agents that were used for analyses in previous figures. e–f. Generalization performance
measured by AUC compared to the decoding error of beliefs, as in Fig. 3e and 5e, but here including agents
with all architectures.

RNNs learn a Kalman filter-like belief update rule

We have thus far demonstrated that the modular agent has the most appropriate neural architecture to
construct an accurate internal belief for our navigation task. Here, we explore this agent’s belief update rule
using two information sources with uncertainties: observation (optic flow) and prediction (using a motor
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efference copy).

The Kalman filter [15] is a practical method to implement recursive Bayesian estimation when all variables
are Gaussian, and the state transitions and observations are linear (Fig. 7a). It constructs an internal belief
of states (posterior) using motor predictions (prior) and visual cues (likelihood). A prior predicts the state
using the last self-action at−1 with uncertainty σa, the last belief bt−1 with uncertainty Pt−1, and the state
transition T . The posterior (belief bt) is a weighted average of the prior and the likelihood over states, given
the observation ot with uncertainty σo. The weight is known as the Kalman gain, which weighs more on the
source with a smaller uncertainty. In combining these sources of evidence, the posterior has an uncertainty
Pt smaller than only relying on a single source. Note that for our task, the Kalman gain is only affected by
σa and σo, and is independent of the prior uncertainty Pt−1 in prediction (see Methods).

The RNN in an ideal modular agent may learn a belief update rule similar to the Kalman filter (more precisely,
an extended Kalman filter [EKF] [24] allowing nonlinear state transitions; see Methods). We therefore
compare modular agents with an EKF agent whose architecture is designed by replacing the modular actor’s
and modular critic’s RNNs with an EKF. We trained and tested these agents in an “uncertainty task” (see
Methods and below) to probe RNNs’ belief update rule. Uncertainties are represented in units of the joystick
gain G, and an uncertainty of 0 denotes the noise-free case.

We trained three types of modular agents under three uncertainty conditions. The first type is referred
to as the prior model, trained with σa = 0≪ σo, which learns to only rely on prediction rather than the
uninformative observation; the second type is the likelihood model, trained with σo = 0≪ σa, which learns
to only rely on its perfectly accurate observation; the last one, the posterior model, is trained with a sampled
value of σo on each trial which can be larger or smaller than σa, and must learn to rely on both sources.
Testing these models with σa = 0.3G and σo within the range of [0, 0.6G], we found that the prior model
relying on prediction exhibits errors that are independent of σo; the likelihood model relying on observation
exhibits errors that increase with σo; and the posterior model exhibits smaller errors than either the prior or
the likelihood models, similar to the EKF agent (Fig. 7b; see Methods, agent selection). This suggests that
the modular agent’s internal belief is formed by combining prediction and observation, weighted by their
relative uncertainty, akin to the EKF. However, unlike the EKF that is provided with the ground truth values
of uncertainties and the state transition, RNNs in the modular agent must learn to infer these from inputs
(ot,at−1) in training.

Relative reliability of information sources in training shapes generalization

Since an EKF-like belief update rule can emerge in modular agents’ RNNs after training, we explored how
the bias in this rule favoring one information source over the other influences generalization. In all previous
sections (except the last one), agents were trained with fixed σa = 0.2G,σo = 0.1G in the training task,
learning to rely more on observation. Here, we trained 16 modular agents, each with a combination of σa

and σo within {0, 0.1G, 0.2G, 0.3G} in the training task. We then tested their generalization performance
(AUC) and corresponding belief accuracy (decoding error) in the novel gain and perturbation tasks (gains are
sampled from the range [3×, 4×]; perturbation variables are sampled from the ranges used to test agents
in Fig. 4a; see Methods, agent selection). For both novel tasks, we found that agents trained with smaller
observation uncertainties (σo < σa) generalized better than agents with equal uncertainties (σo = σa),
and worst of all were agents trained with larger observation uncertainties (σo > σa; Fig. 7c–d). Decoding
errors were larger for agents exhibiting poorer performance (Fig. S7a–b), evidence that poor generalization is
associated with inaccurate internal beliefs (Fig. S7c–d).

This result is expected, given the structure of the novel tasks: agents must be aware of novel gains or
perturbations via optic flow, since their internal model for prediction is outdated in novel tasks with novel
state transitions. Agents trained with larger observation uncertainties tend to trust their prediction more and
ignore changes that must be observed via visual cues in novel tasks (a mismatch between prior knowledge
and the task structure). Therefore, like humans and macaques [17], agents must rely more on observation to
generalize to these tasks.
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Figure 7: Modular agents with a Kalman filter-like belief update rule generalize worse in the gain and
perturbation tasks when relying less on observation. a. Schematic of recursive Bayesian estimation (as
implemented by the Kalman filter, Methods) in the 1D case, given zero-mean Gaussian noises. The prior is
a prediction of the state st using the last action at−1, the last belief bt−1, and the state transition T . The
state’s likelihood depends on visual observation ot. The posterior bt combines these two sources and provides
a state estimation with an uncertainty smaller than only relying on a single source. b. Absolute radial
error of agents (n = 8 random seeds each) tested in the uncertainty task as a function of the observation
uncertainty σo, given a fixed uncertainty in prediction σa. The prior model was trained with σa = 0≪ σo.
The likelihood model was trained with σo = 0 ≪ σa. The posterior model was trained with σo values
that can be larger or smaller than σa on each trial (see Methods and text). Error bars denote ±1 SEM
across random seeds. c–d. AUC of agents trained with combinations of σa and σo tested in the gain (c)
and perturbation (d) tasks, averaged across n = 8 random seeds for each agent. Black boxes denote the
combination used in the previous analyses as the default setting. b–d. 2000 trials were used for each agent
for each uncertainty condition.

Discussion

The brain has evolved advantageous modular architectures for mastering daily tasks. Here, we examined the
impact of architectural inductive biases on generalization using deep RL agents. We posited that choosing
a task-appropriate modular neural architecture would allow agents to capture the structure of the desired
task during training, and then use this knowledge to support generalization in novel tasks with different
parameters but a similar structure. To test this hypothesis, we trained agents with neural architectures varying
in modularity on a partially observable navigation task, and tested these agents with novel sensorimotor
mappings or passive perturbations. Although all agents mastered the training task, agents with more modular
architectures separating the computation of internal beliefs from other task variables were better able to
form accurate state representations of the environment (task structure) in novel tasks to support better
generalization than agents with less modular architectures. This result helps rationalize that macaques use
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multiple brain regions in this task [20] and achieve generalization [14].

We also found that modular agents learn a Kalman filter-like belief update rule, weighing the relative reliability
of information sources for belief formation, similar to how the brain performs probabilistic inference [16].
Therefore, having higher uncertainty in observation than in prediction during training can bias agents toward
dead-reckoning strategies, as they learn not to trust their observation. The agents are then less sensitive to
novel patterns in their observation, and thus form wrong internal beliefs when tested in novel tasks, impeding
their generalization abilities.

Modular actor-critic RL models bridge neuroscience and AI

The orbitofrontal cortex (OFC) has been suggested to compute state representations by integrating sensory
inputs in partially observable environments [25], then project these beliefs to the basal ganglia (BG) [26, 27].
One possible role for the BG is to construct the value of a task using reward-prediction error of the dopamine
(DA) system [28], and then select the best action at each state proposed by the cortex that leads to the
highest value [29, 30, 31, 32].

Inspired by these brain mechanisms, we similarly modeled our modular actor-critic agent. The modular
critic is updated with the reward-prediction error, using an architecture separating the computation of belief
states from the computation of value in two different modules, an analog of the OFC-BG circuit. The
actor’s synaptic weights are optimized for generating the best action maximizing the BG’s value. Our result
that the modular critic enables agents to achieve significantly greater generalization than agents without
such modularization (Fig. 6c–d) provides one possible rationale for the brain’s modular OFC-BG circuit.
Furthermore, the advantage of high modularity in actors (Fig. 6c–d) justifies that the macaque brain in
our navigation task uses multiple cortical areas (e.g., dorsomedial superior temporal area, parietal area 7a,
dorsolateral prefrontal cortex [PFC]) to construct a control policy [20].

Interestingly, the property that our learning algorithm is only stable when the actor is updated more slowly
than the critic (Methods; [23]) can potentially explain the finding that the BG learns from experience faster
than the PFC [33]: the actor/cortex cannot learn anything new from the critic/BG if the latter’s value
estimation has not improved since the last training step.

Achieving zero-shot generalization in RL

Different classes of RL models have different generalization abilities. The classic model-free RL algorithm,
reminiscent of the brain’s DA system [28], selects actions that maximize the stored value function associated
with the environmental model (state transition probabilities and reward functions) used in training. It does
not adapt to any changes in the environmental model that should lead to a new value function. The successor
representation algorithm [34, 35] decomposes the value into a representation of transition probabilities
learned from experience and a reward function model, realizing immediate generalization on new rewards
by reconstructing new values with learned transitions and new reward function models. However, upon
encountering changes in transition probabilities, such as posed by our gain and perturbation tasks, the
successor representation requires a similarly lengthy relearning as a model-free algorithm. On the other hand,
the meta-RL algorithm [36] bypasses the tedious relearning of new values for generalization. Inspired by the
standalone fast learning system of the PFC that is shaped by (but distinct from) the slow DA-based RL [37],
meta-RL uses model-free values to train a standalone RNN policy network that maps inputs to actions over
multiple tasks, where the policy network is provided with not only current observations but also previous
actions and rewards as inputs. This structure allows the policy network to learn not a single policy, but a
learning algorithm that can learn the transition and reward structures of the task at hand from its sequential
inputs (“learning to learn”). Therefore, the policy network itself can generalize by learning structures of novel
tasks with its own learning algorithm and inputs, without referencing the outdated value for the training
tasks [37].

Macaques in our navigation task were trained in a single task instead of multiple tasks, and exhibited
instantaneous generalization in the gain and perturbation tasks without further learning (Fig. S2b, Fig. S4e).
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Therefore, rather than “learning to learn” like meta-RL, our modeling objective is to achieve zero-shot
generalization like animals. We similarly used model-free values (critic) to train a standalone policy (actor),
but we did not provide the reward as input to the actor, so it cannot use the reward feedback to assess
and improve the quality of its actions in novel tasks. We only trained the model in a single task to mimic
macaque training, so the actor does not experience a wide range of transition probabilities from which to infer
high-level rules. With task-appropriate inductive biases, however, it can acquire an accurate task structure
through a single training task, and use it to map novel observations from novel tasks to suitable actions
without referencing the outdated critic’s value. Our modeling successfully overcomes changing transition
probabilities to achieve zero-shot generalization like animals [14].

Future directions

A fundamental question bridging AI and neuroscience is how to reconcile the many distinct RL models for
which analogs have been observed in the brain and behavior. For example, the midbrain DA neurons are
believed to implement model-free RL from trial and error [28]; the successor representation has the capacity to
recapitulate place and grid cell properties [34]; the learning-to-learn system in PFC is explicated by meta-RL
[36]; the capacity of humans and animals to flexibly plan is suggestive of model-based RL [38]; the ability of
macaques to achieve zero-shot generalization is explained by our model. The brain’s reward-based learning
system could be a family of many overlapping algorithms implemented by different brain regions, such that
the aforementioned models each capture a single aspect of our cognitive capacities. Animal behavior might
inherit properties from multiple algorithms [39], or flexibly choose the most appropriate algorithm depending
on the current task demands [40]. Future studies may aspire to harmonize the diverse findings in RL literature
to develop a more comprehensive understanding of the brain’s learning mechanisms.

It is also important to consider how the brain exhibits two levels of modularity for generalization. On the
architectural level, the modularity enforced by heterogeneity among functionally specialized brain regions is
an inductive bias that has evolved for animals’ daily tasks. On the representational level, even in the same
region, specialized neural clusters as a form of modularity can emerge through learning [41]. Our finding that
agents with architecturally modular networks generalize better than those with holistic networks suggests
that for the current task, representational modularity in a homogeneous recurrently connected module might
not emerge, or be insufficient for generalization. Because in theory, a holistic critic could have internally
formed two neural clusters to compute beliefs and values separately, as enforced by architectural modularity.
One possibility is that specialized neural clusters shall emerge when agents are trained over many tasks with
some shared task variables instead of a single task [42], and then these clusters could be flexibly combined
in the face of novel tasks reusing these variables, leading to the potential for holistic agents on par with
architecturally modular agents in generalization. It is also suggested that imposing more realistic constraints
in optimizing artificial neural networks, e.g., embedding neurons in physical and topological spaces where
longer connections are more expensive, can lead to modular clusters [43]. Together, these prompt future
investigations into the reconciliation of these two levels of modularity, e.g., studying the generalization of
modular neural architectures after being exposed to a diverse task set and more biological constraints. We
hope these directions will deepen our understanding of the brain’s generalization mechanisms, and inspire the
development of more generalizable AI.

Methods

Task structure

The navigation task and its manipulations were originally designed for macaques [11, 12, 14, 17, 20, 21]. All
macaque data used in this paper were from previous works [11, 12], where details of the animal experiment
setup can be found. We modeled this task as a POMDP [22] for RL agents, containing a state space S, an
action space A, a transition probability T , a reward function R, an observation space Ω, an observation
probability O, and a temporal discount factor γ = 0.97 over steps within a trial.
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Each state st ∈ S is a vector [sxt , syt , sθt , svt , sωt , gxt , gyt ]
⊤ containing the agent’s x and y positions (cm),

head direction (◦), linear and angular velocities (cm/s, ◦/s), and the target’s x and y positions (cm). The
initial state of each trial was defined as s0 = [0, 0, 90, 0, 0, gx0

, gy0
]⊤, since the agent always starts from the

origin facing forward (90◦). The target location was uniformly sampled on the ground plane before the
agent, with the radius gr ∈ [100 cm, 400 cm] and the angle gθ ∈ [90◦ − 35◦, 90◦ + 35◦] relative to the agent’s
initial location. Specifically, angles were drawn uniformly within the field of view, gθ ∼ U(55◦, 125◦), and we
sampled radial distances as gr ∼

√
U(1002, 4002) to ensure a spatially uniform distribution in 2D. Target

positions in Cartesian coordinates are then gx0 = gr cos (gθ), gy0 = gr sin (gθ).

Each action at ∈ A is a vector [avt , aωt ]
⊤ containing the agent’s linear and angular joystick actions, bounded

in [−1, 1] for each component.

State transitions st+1 ∼ T (st+1|st,at) were defined as st+1 = fenv(st,at) + ηt, where

fenv(st,at) =



sxt
+∆t svt

cos sθt
syt

+∆t svt
sin sθt

sθt +∆t sωt

nGvavt + pvt

nGωaωt + pωt

gxt

gyt


(1)

and zero-mean independent Gaussian process noise added to the velocities

ηt = [0, 0, 0, ηvt
, ηωt

, 0, 0]⊤, [ηvt
, ηωt

]⊤ ∼ N (0, diag(σ2
a))

with standard deviation σa = [σav
, σaω

]⊤. The operator diag(·) constructs a diagonal matrix with its vector
argument on the diagonal. The timestep is ∆t = 0.1 s. Joystick gain G = [Gv, Gω]

⊤ = [200 cm/s, 90◦/s]⊤
maps dimensionless linear and angular joystick actions to units of velocities. Gain multiplier n scales G.
Linear and angular perturbation velocities are pvt and pωt .

The reward function R(st,at) maps a state-action pair to a scalar rt. We firstly defined an action threshold
a∗ = 0.1 to distinguish between when the agent had not yet begun moving, and when they moved and
stopped: the agent must increase the magnitude of at least one action component above a∗ in the beginning
(start criterion), then the agent must reduce the magnitude of both action components below a∗ to indicate
a stop (stop criterion). Non-zero rewards were only offered in the last step of each trial and if the agent
satisfied both criteria. For the non-zero rewards, we defined dt = [sxt

, syt
]⊤ − [gxt

, gyt
]⊤ as the displacement

between the agent’s and the target’s locations, and a reward rt = 10 would be given if the Euclidean distance
||dt||2 was smaller than the radius of the reward zone d∗ = 65 cm. To facilitate training in the early stages,
we allowed a small reward rt = 10 exp(− 1

2d
⊤
t Σ

−1
r dt) if the agent stopped outside the reward zone, where

Σr = ( d∗

1.5 )
2I2 is a constant matrix, and I2 denotes the identity matrix of size 2.

A trial ended when the agent stopped, or if t exceeded the maximum trial duration 3.4 s. For later convenience,
let Dt denote a trial completion flag that equals 1 if the trial is done at t, otherwise 0. A new trial thereafter
started with a new sampled initial state s0.

Observation ot ∈ Ω is a vector [ovt
, oωt

, ogx,t
, ogy,t

]⊤ containing observations of the agent’s linear and angular
velocities through optic flow, and the target’s x and y positions when visible in the first 0.3 s of each trial.
ot ∼ O(ot|st) was defined as

ot = Htst + ζt (2)

where ζt is a zero-mean Gaussian observation noise, and the observation model Ht is a 4× 7 matrix filled
mostly with zeros, except for a few observable elements depending on the time within a trial: When t ≤ 0.3 s,
the target is visible, so H1,4, H2,5, H3,6, H4,7 are equal to 1, where superscripts denote row and column;
after t = 0.3 s the target disappears and only the optic flow is observable, so only H1,4, H2,5 are 1. For the
observation noise, ζ0 = 0, ζt>0 = [ζvt , ζωt , 0, 0]

⊤, where ζvt and ζωt denote linear and angular observation
noises, and [ζvt , ζωt ]

⊤ ∼ N (0, diag(σ2
o)) with standard deviation σo = [σov , σoω ]

⊤.
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Task variables

Training task. The gain multiplier is given by n = 1. There were no perturbations, so for any t, pvt = pωt = 0.
Process and observation noise standard deviations were in units of G, i.e., σa = αaG, σo = αoG, where
αa = 0.2, αo = 0.1 were used to train agents before Fig. 7; αa, αo ∈ [0, 0.3] were used in Fig. 7 except Fig. 7b.

Gain task. The gain multiplier varied within n ∈ [1, 4] for testing agents. Noise standard deviations were also
multiplied by the same gains, i.e., σa = αanG, σo = αonG. There were no perturbations.

Perturbation task. Variables n,σa,σo were the same as those in the training task. There were three
perturbation variables uniformly sampled for each trial: perturbation peak time relative to the trial
start tp ∼ U(0.5 s, 1.5 s), perturbation linear and angular peaks pvpeak

∼ U(−200 cm/s, 800 cm/s) or
U(−200 cm/s, 200 cm/s), pωpeak

∼ U(−180◦/s, 180◦/s) or U(−120◦/s, 120◦/s). These sampled variables
determined Gaussian-shaped linear and angular perturbations, defined as

[pvt
, pωt

]⊤ =

[pvpeak
, pωpeak

]⊤ · exp
[
− 1

2

(
t−tp
0.2

)2]
, if tp − 0.5 ≤ t ≤ tp + 0.5

[0, 0]⊤, otherwise

Uncertainty task. The gain multiplier was n = 1, and there were no perturbations. The prior model was
trained with σa = 0, σo = 0.8G; the likelihood model was trained with σa = 0.8G, σo = 0; the posterior
and the EKF models were trained with σa = 0.3G and a randomly varying σo = αoG where αo ∼ U(0, 1)
was drawn independently for each trial. A standard deviation of 0 denotes the noise-free case.

Belief modeling

The state st is partially observable in our task, therefore, an agent cannot decide on at only based on the
current sensory inputs. It can internally maintain a belief state representation bt, which is a posterior of st,
for decision-making. We considered both a model-based inference method and a gradient-based optimization
method to model the belief.

Recursive Bayesian estimation. When the transition probability T and the observation probability O are
known, the belief is a posterior of st given all available observations and actions, i.e., bt = p(st|o0:t,a0:t−1),
and can be inferred recursively as

bt =
1

C
O(ot|st)

∫
st−1

T (st|st−1,at−1) bt−1 dst−1 (3)

where C = p(ot|o0:t−1,a0:t−1) is a normalization constant, and bt−1 = p(st−1|o0:t−1,a0:t−2).

EKF belief. When all variables are Gaussian in the Recursive Bayesian estimation and T is nonlinear, the
EKF [24] is a tractable method that uses a local linearization to approximate eq. (3). The belief here
is a Gaussian density bt = N (ŝt, Pt). To simplify the computation here, we express position in relative
coordinates by letting the initial belief mean be ŝ0 = [ŝx0 , ŝy0 , ŝθ0 , ŝv0 , ŝω0 ] = [−gx0 ,−gy0 , 90, 0, 0], and let
the state transition f env contain the first five equations in eq. (1) to reduce the dimensionality of the state
by two. Let ϵ denote a small number 10−8, we defined the initial belief covariance P0 = ϵI5. Let a 5 × 5
matrix Na denote the Gaussian process noise covariance filled with 0 except N4,4

a = σ2
av

, N5,5
a = σ2

aω
. The

observation’s dimensionality was reduced by two by omitting the target location, yielding ot = [ovt
, oωt

]⊤.
The observation model H in eq. (2) then becomes a 2× 5 matrix filled with 0, except H1,4 = H2,5 = 1. Let
No = diag(σ2

o) denote the Gaussian observation noise covariance. Any 0 variance components in σ2
a,σ

2
o were

replaced with a minimal variance of ϵ for Na, No.

fenv at bt−1 = N (ŝt−1, Pt−1) was locally linearized as

At−1 =
∂fenv
∂ŝt−1

=


1 0 −ŝvt−1∆t sin ŝθt−1 ∆t cos ŝθt−1 0
0 1 ŝvt−1

∆t cos ŝθt−1
∆t sin ŝθt−1

0
0 0 1 0 ∆t
0 0 0 0 0
0 0 0 0 0
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The EKF’s prediction step (eq. (4)) uses at−1 to get a predicted belief bt|t−1. Note that given our At−1,
velocity variance elements in the prediction P 4,4

t|t−1, P
5,5
t|t−1 only depend on Na.

ŝt|t−1 = fenv(ŝt−1,at−1)

Pt|t−1 = At−1Pt−1A
⊤
t−1 +Na

(4)

The EKF’s update step (eq. (5)) uses bt|t−1 and ot to get the final belief bt = N (ŝt, Pt). Kt is known as the
Kalman gain which specifies the relative weights of prediction and observation. Mathematically, it is only
affected by Na and No and is independent of Pt−1 in our task. As intuitively, past velocities do not predict
current velocities except via the agent’s actions, which it knows.

Kt = Pt|t−1H
⊤(HPt|t−1H

⊤ +No)
−1

ŝt = ŝt|t−1 +Kt(ot −H ŝt|t−1)

Pt = (I5 −KtH)Pt|t−1

(5)

RNN belief. When the transition and the observation probabilities T,O are unknown to the agent, to support
decision-making, an internal belief could be approximated via gradient-based optimization. We used RNNs to
integrate partial observations ot and motor efference copies at−1 over time, trained end-to-end using the RL
objective in our task (see below). It was shown in the result that an EKF-like belief update rule could emerge
in RNNs, and therefore, the belief bt resides in the RNN’s hidden state ht. Each RNN maintains a hidden
state ht = fRNN(ot,at−1,ht−1) or ht = fRNN(ot,at−1,ht−1,at) depending on its inputs (Fig. 6a–b). bt
encoded implicitly in ht is used by other neurons to compute at or Qt in the actor or critic.

RL with EKF belief

Our RL algorithm for training the EKF agent with an EKF belief is based on an actor-critic approach
called the Twin Delayed Deep Deterministic Policy Gradient (TD3) [23], referred to as EKF-TD3. We first
computed beliefs using EKF as described above, and then trained neural networks to use those beliefs as
inputs to guide actions.

Networks. Each agent has two critics with identical architectures but different initial weights to address the
maximization bias in value estimation (see the critic update section below and [44]), although in the main text
we only showed one of the critics used to train the actor to generate actions. Let it denote the state-related
inputs. All neural networks in an EKF agent were feed-forward, provided with the mean and covariance of
bt computed by the EKF, i.e., it = {ŝt, Pt}. The actor and two critics are at = πµ(it), Qt1 = Qν1(it,at),
Qt2 = Qν2(it,at), where µ, ν1, ν2 denote neural parameters.

Exploration. Since our actor is a deterministic function, to realize exploration in training, we combined the
actor’s output with a zero-mean Gaussian exploration noise βt, and clipped the sum to the box [−1, 1]:

at = clip(πµ(it) + βt,−1, 1), βt ∼ N (0, σ2
expI2) (6)

To ensure the agent can properly stop without noise variability, we let βt = 0 if the actor’s output πµ(it) is
below the action threshold.

Experience replay. Instead of learning on the current trial, we used off-policy RL by storing experience in a
replay buffer B and frequently sampling data from B to train the agent. At each state st, the EKF computed
it for the actor to generate at following eq. (6). The agent observed the reward rt, next input it+1, and trial
completion flag Dt, and stored the one-step transition tuple (it,at, rt, it+1, Dt) in B. The buffer B had a
capacity of 1.6×106 transitions, storing data on a first-in, first-out (FIFO) basis. Furthermore, we augmented
the experience by also storing the mirror transition (ı̂t, ât, rt, ı̂t+1, Dt) generated by reflecting the original
data across the y-axis.

Target networks. The learning of value in TD3 is akin to deep Q-learning [45]. Using the Bellman equation,
ideally, the agent can learn to estimate the value Qνj

(it,at) by regressing the learning target yt = rt +

21

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.07.519515doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.07.519515
http://creativecommons.org/licenses/by-nd/4.0/


γQνj (it+1,πµ(it+1)), i.e., the one-step bootstrapping of the value after receiving the reward rt, observing
the next input it+1, and estimating the next action πµ(it+1). One stability issue here is that the neural
parameters for optimization are also used to construct the learning target yt, which changes at each learning
step. To obtain a more stable yt, we thus maintained a copy of actor and critic networks with more slowly
changing parameters µ′ and ν′j used in yt, referred to as target actor and critic networks. These parameters
were initialized to be the same as µ, νj and passed through an exponential moving average,

µ′ ← τµ+ (1− τ)µ′

ν′j ← τνj + (1− τ)ν′j
(7)

We used τ = 0.005.

Critic update. We sampled a batch of M = 256 transitions from the buffer each time,

(i(k),a(k), r(k), i′
(k)

, D(k))k=1,2,··· ,M ∼ B

where the temporal subscript is omitted, and i′(k) denotes the next input after i(k). The next action given
i′
(k) was estimated by the target actor network as

a′(k) = clip(πµ′(i′
(k)

) + β′(k),−1, 1), β′(k) ∼ clip(N (0, 0.052I2),−0.1, 0.1) (8)

where β′(k) is small zero-mean Gaussian noise clipped to [−0.1, 0.1] to smooth the action estimation.

The learning target y(k) used the smaller value estimation between two target critics to reduce the maximization
bias [44], and was truncated at the end of each trial (D(k) = 1). The learning objective of the two critics,
J(νj), j = 1, 2, was to regress the learning target y(k), defined as

y(k) = r(k) + (1−D(k)) γ min
j=1,2

Qν′
j
(i′

(k)
,a′(k))

J(νj) =
1

M

M∑
k=1

(y(k) −Qνj
(i(k),a(k)))2

(9)

The gradient ∇νjJ(νj) was computed by backpropagation (BP). Critic parameters νj were updated (see the
agent training section below for optimizers) using ∇νjJ(νj) to minimize J(νj).

Actor update. The actor’s parameter µ was updated once for every two critic updates. The actor’s learning
objective J(µ) was to maximize the value of the first critic, defined as

J(µ) =
1

M

M∑
k=1

Qν1
(i(k),πµ(i

(k))) (10)

The gradient ∇µJ(µ) was computed by BP. The actor parameter µ was updated using ∇µJ(µ) to maximize
J(µ). Note that the critic parameter ν1 was not updated here.

RL with RNN belief

We developed a memory-based TD3 model leveraging RNNs to construct a form of internal beliefs to tackle
POMDPs, referred to as RNN-TD3. All agents except the EKF agent were trained by this algorithm.

Networks. Let it = {ot,at−1} and ht denote the state-related inputs and the RNN’s hidden state. The actor
and two critics are {at,h

µ
t } = πµ(it,h

µ
t−1), {Qtj ,h

νj

t } = Qνj (it,at,h
νj

t−1), j = 1, 2, where we interpret that
the belief bt is implicitly encoded in all ht evolving over time. At the beginning of each trial, ht−1 and at−1

were initialized to zeros. For simplicity, we drop ht in our notations for all networks’ outputs.
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Exploration. Similar to that of EKF-TD3 (eq. (6)), we added zero-mean Gaussian exploration noise to the
output of the actor during training if the output is above the action threshold,

at = clip(πµ(it,h
µ
t−1) + βt,−1, 1), βt ∼ N (0, σ2

expI2) (11)

Experience replay. Similar to that of EKF-TD3, but rather than storing one-step transition tuples, the replay
buffer B stored the whole trajectory for each trial of N time steps,

(i0,a0, r0, D0, · · · , iN−1,aN−1, rN−1, DN−1)

and its mirror image, because RNNs have hidden states ht generally depend on the entire history of inputs,
not just the most recent ones. Each action was obtained using eq. (11). The FIFO buffer had a capacity of
105 trajectories.

Target networks. Same as that of EKF-TD3.

Critic update. Similar to that of EKF-TD3, but critics here also needed to learn the temporal structure. Since
the trial duration N varies across trials, we first sampled a trial duration Ñ from the buffer B, then sampled
a batch of M = 16 trajectories with the same duration Ñ ,(

i
(k)
t ,a

(k)
t , r

(k)
t , i′

(k)
t , D

(k)
t

)k=1,··· ,M

t=0,··· ,Ñ−1
∼ B

where i′
(k)
t = i

(k)
t+1. The next action a′(k)

t , the learning target y
(k)
t , and the learning objective of the two

critics J(νj) were

a′(k)
t = clip(πµ′(i′

(k)
t ,h

µ′(k)
t ) + β

′(k)
t ,−1, 1), β

′(k)
t ∼ clip(N (0, 0.052I2),−0.1, 0.1) (12)

y
(k)
t = r

(k)
t + (1−D

(k)
t ) γ min

j=1,2
Qν′

j
(i′

(k)
t ,a′(k)

t ,h
ν′
j(k)

t )

J(νj) =
1

MÑ

M∑
k=1

Ñ−1∑
t=0

(
y
(k)
t −Qνj (i

(k)
t ,a

(k)
t ,h

νj(k)
t−1 )

)2 (13)

The gradient ∇νjJ(νj) was computed by BP through time (BPTT). Critic parameters νj were updated using
∇νj

J(νj) to minimize J(νj).

Actor update. Similar to that of EKF-TD3, but the actor here needed to learn the temporal structure. The
actor’s learning objective J(µ) was

J(µ) =
1

MÑ

M∑
k=1

Ñ−1∑
t=0

Qν1

(
i
(k)
t ,πµ(i

(k)
t ,h

µ(k)
t−1 ),h

ν1(k)
t−1

)
(14)

The gradient ∇µJ(µ) was computed by BPTT. The actor parameters µ were updated using ∇µJ(µ) to
maximize J(µ).

Agent training

All network parameters µ, ν1, ν2 were updated by the RAdam optimizers [46]. Optimizer parameters were set
as follows: learning rates annealed from 3× 10−4 to 5× 10−5, exponential decay rates for the first and second
moment estimates = 0.9, 0.999, a constant added in denominators for numerical stability = 1.5× 10−4, and
weight decay = 0. The critics were updated once for every c = 4 interactions with the environment. The
actor was updated once for every two critic updates.
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During training, we periodically validated the agent’s performance with 300 validation trials, and used the
moments when the agent achieved 20% and 90% accuracy to split the whole training course into three phases.
The learning rates for the actor and critics, the exploration noise σexp (eq. (6),(11)), and the observation
noise σo (eq. (2)) in each phase were set as follows: In phase I, learning rates were 3 × 10−4, σexp = 0.8,
σo = 0. In phase II, learning rates were 3× 10−4, σexp = 0.5, σo = αoG, where αo is defined in the training
or uncertainty tasks. In phase III, learning rates were 5× 10−5, σexp = 0.4, σo = αoG.

We summarize the EKF/RNN-TD3 algorithms for training all our agents in Algorithm 1.

Algorithm 1 EKF/RNN-TD3
Initialize network parameters µ, ν1, ν2, let target network parameters µ′, ν′1, ν

′
2 ← µ, ν1, ν2

Initialize replay buffer B and optimizers for each network, let update timer t̃ = 0
for trial = 1 to max number of trials do

Choose phase-specific σo, σexp, sample initial state s0
for t = 0 to max trial duration do

Receive ot, construct it with ot,at−1

Select at using eq. (6) (EKF) / eq. (11) (RNN)
Receive rt,ot+1, Dt, construct it+1 with ot+1,at

Store transition (it,at, rt, it+1, Dt) and its mirror image in B (EKF only)
if t̃ mod c = 0 then ▷ Update critic for every c steps

Sample transitions (EKF) / trajectories (RNN) from B
Update ν1, ν2 by critic optimizers following eqs. (8) to (9) (EKF) / eqs. (12) to (13) (RNN)

end if
if t̃ mod 2c = 0 then ▷ Update actor for every 2c steps

Update µ by actor optimizer following eq. (10) (EKF) / eq. (14) (RNN)
Update µ′, ν′1, ν

′
2 using eq. (7)

end if
t̃← t̃+ 1
if Dt = 1 then ▷ Trial is done

break
end if

end for
Store trajectory (it,at, rt, Dt)t=0,··· ,N−1 and its mirror image in B (RNN only)

end for

Agent selection

During phases II and III training, every 500 trials we saved neural parameters of each network, and ended
training after the agent had experienced 105 trials. To fairly compare agents’ performance in each task
(training, gain, perturbation, uncertainty), we tested all of these 200 sets of stored parameters for each
task with one or multiple test sets with 300 trials each. Training task: one test set with the training task’s
variables; gain task: four test sets with the gain= 1×, 2×, 3×, 4×; perturbation task: three test sets with the
same perturbation variables as those in the none, small, and large conditions in Fig. 5a; uncertainty task:
three test sets with σa = 0.3G and σo = {0, 0.4G, 0.8G}. For analyses in each task, we endowed each agent
with the neural parameters that allowed it to achieve the highest reward rate (number of rewarded trials per
second averaged across test sets) in that task.

Agent architectures

Although all agents had two architecturally identical critics, we only showed one in the main text (Fig. 1e,
Fig. 6b). All RNNs were implemented as Long Short-Term Memory (LSTM) networks [47]. All MLP layers
linearly transformed inputs and then applied ReLU nonlinearities. The output of critics Qt was produced by
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a linear unit without any nonlinearity; the linear and angular control outputs of the actors at were bounded
to [−1, 1] by hyperbolic tangent nonlinearities. In the holistic critic/actor (Fig. 6a–b), there were 220 LSTM
units. In all other architectures in Fig. 6a–b, each RNN module had 128 LSTM units, and each MLP module
contained two layers with 300 ReLU units in each. All architectures, as a result, had a similar number of
parameters (Fig. S6a). The EKF agent’s actor and two critics used the same architecture consisting of an
MLP module with two layers, each with 300 ReLU units.

No-generalization hypothesis

For each gain trial with a novel gain nG for n > 1, or for each perturbation trial with novel non-zero
perturbation velocities pvt , pwt , the hypothetical no-generalization trajectory was obtained as follows. We
first recorded the agent/monkey’s sequential actions (a0,a1, . . . ,aN−1) in the training task (1× gain, no
perturbations) navigating to the same target (for agents) or the closest target in the data set (for monkeys).
We then regenerated a new trajectory using (a0,a1, . . . ,aN−1) following the environmental transition (eq.
(1), process noise ηt = 0), but with the novel gain multiplier n for the gain task or the novel perturbation
velocities pvt , pwt for the perturbation task.

Under-/over-shooting definition using idealized circular trajectories

To determine when an agent or a monkey under- or over-shot the target in the gain task, we asked whether
its stop location exceeded the target location in the distance along their corresponding idealized circular
trajectories.

Specifically, given an arbitrary endpoint [x̃, ỹ]⊤, the circular trajectory connecting it from a forward heading
(90◦, initial head direction) at the origin (start location) has a radius as a function of this point R̃(x̃, ỹ). The
arc length of this trajectory is a function:

L(x̃, ỹ) = 2r̃ arcsin

(√
x̃2 + ỹ2

2r̃

)
, r̃ = R̃(x̃, ỹ) =

x̃2 + ỹ2

2x̃

We deemed the agent’s stop location [sxN−1
, syN−1

]⊤ to have overshot the target [gx, gy]⊤ if L(sxN−1
, syN−1

) >
L(gx, gy), otherwise it undershot.

Trajectory length and curvature

We approximated the length l̃ and the curvature k̃t of a trajectory (sxt
, syt

)t=0,··· ,N−1 as follows:

l̃ =
N−2∑
t=0

√
(sxt+1

− sxt
)2 + (syt+1

− syt
)2

k̃t =
|s′xt

s′′yt
− s′yt

s′′xt
|

(s′2xt
+ s′2yt

)
3
2

where first derivatives s′xt
, s′yt

and second derivatives s′′xt
, s′′yt

were estimated using first-order one-sided
differences for the first and last points and second-order central differences for interior points. Note that the
monkeys’ trajectories here were downsampled to have the same 0.1 s time step as the agents’ trajectories.
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Spatial tuning

We obtained the approximate spatial tuning of each neuron by linearly interpolating its activity and the
agent’s x and y location using data from each step across trials (2000 trials for the gain, and 5000 for the
perturbation task), followed by a convolution over the 2D space using a boxcar filter with height and width
of 40 cm.

Neural decoding

While agents were being tested, we recorded their sensory, latent, and motor task variables for the analyses
in Fig. 1l and Fig. S1d and their positions sxt

, syt
for all other decoding analyses. We also recorded their

neural activities in each module for both their actors and critics. Let S denote a partitioned matrix where
rows are time steps, and columns are decoding target variables, e.g., [sx, sy] for agent’s positions. Recorded
neural activities X were concatenated over time, where rows are time steps and columns are units. A linear
decoder regressed S on X, whose partitioned parameters for all decoding variables W were obtained by the
ridge estimator following

W = (X⊤X + λI)−1X⊤S

where λ is a penalty term chosen from {0.1, 1, 10} by cross-validation. Importantly, we always used 70% trials
in the dataset to train the decoder, and used the remaining 30% trials to test the decoder’s predictions.

The decoding error of the belief in each trial was defined as

1

N

N−1∑
t=0

||ŝxt
− sxt

, ŝyt
− syt

||2

where ŝxt
, ŝyt

are predicted x and y positions.

Statistics

All agents were trained with 8 different random seeds, which determined the initialized neural network
parameters and random variables in training (e.g., process and observation noises, agent’s initial state,
exploration noise, and sampling from the buffer). All analyses for agents did not exclude any data, and
included data from training runs with all random seeds unless otherwise noted. We reported mean, SD, or
SEM throughout the paper. All correlations were quantified by Pearson’s r.

In all violin plots, we determined upper and lower whiskers following q1−whis ·(q3−q1) and q1+whis ·(q3−q1),
where q1, q3 are the first and third quartiles, and whis = 1.5 [48]. We did not plot outliers beyond the whisker
range for better visualization, but we did not exclude them in quantification.
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Code availability

All training and analysis codes are available on GitHub https://github.com/ryzhang1/Inductive_bias.

Data availability

All data used in this work are available from the corresponding author upon request.
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Figure S1: [Related to Fig. 1]. a. Similar to Fig. 1h, but showing an example holistic agent’s trajectories. b.
Pearson correlation coefficient for agents’ and monkeys’ stop locations versus target locations after training,
for data shown in Fig. 1i. c. Similar to b, but showing regression slopes (> 1/< 1: over-/under-shooting). d.
Similar to Fig. 1l, but for modules in critics.
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Figure S2: [Related to Fig. 2]. a. Similar to Fig. 2c–d, but showing detailed distributions of agents’ and
monkeys’ radial errors. b. Monkeys’ absolute radial error as a function of the number of 1.5× gain trials
experienced. Solid lines and shaded regions denote means and ±1 SD obtained using a moving window
(size= 150 trials). c. Curvature of agents’ and monkeys’ trajectories with 1× and 2× gains. d. Curvature
of agents’ trajectories as a function of gain. e–f. Similar to c–d, but for the length of trajectories. a,c–f :
Containing data from n = 8 random seeds for each agent. White bars denote means across trials.
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Figure S3: [Related to Fig. 3]. a. Similar to Fig. 3d, but showing detailed distributions of decoding errors.
White bars denote means across trials. b. Behavioral error (absolute radial error between the target and
the agent’s stop location) versus decoding error of stop locations (distance between decoded and true stop
location) for example agents in the test set used in Fig. 3e. Confidence ellipses capture 1 SD. Pearson’s r,
Holistic: 0.53, Modular actor+Holistic critic: 0.66, Holistic actor+Modular critic: 0.68, Modular: 0.40.
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Figure S4: [Related to Fig. 4]. a–b. Agents’ and monkeys’ perturbation-specific linear (a) and angular (b)
actions (in units of velocities) in a 2 s time window, averaged across a test set comprising 1000 trials. Task
variables (target location, perturbation peak time, and peak of perturbation linear and angular velocities)
used in agents’ trials are the same as those in monkey B’s trials. Trials for monkey S are the most similar
trials (measured in Euclidean distance of task variables that were all normalized in [0, 1]) in the whole data
set to monkey B’s trials. Trials are aligned such that perturbations start at t = 0 s. The perturbation-specific
linear/angular actions are obtained by subtracting linear/angular actions in target-matched unperturbed
trials from those in corresponding perturbation trials. Perturbations causing one to get closer to/further from
targets are grouped as forward (+)/backward (−) for linear perturbations (a) and congruent (+)/incongruent
(−) for angular perturbations (b). Vertical dotted lines denote the perturbation end time (t = 1 s). Horizontal
dashed lines denote the null perturbation-specific action. Shaded regions for agents denote ±1 SD across
n = 8 random seeds. c. Distributions of agents’ absolute radial error in Fig. 4d. White bars denote means
across trials. d. Agents’ reward rate (number of rewarded trials per second) averaged over 2 validation
sets as a function of the number of training trials (no perturbations) experienced after training phase I (see
definition in Methods). Two validation sets share the same 300 targets, and their perturbation task variables
are sampled from the ranges for monkeys and agents in Fig. 4a, respectively. Shaded regions denote ±1
SEM across n = 8 random seeds. Vertical bars overlaid on the x-axis denote the first time agents reach 90%
accuracy in the no perturbation validation set (the same 300 targets). e. Monkeys’ absolute radial error as a
function of the number of perturbation trials experienced. Solid lines and shaded regions denote means and
±1 SD obtained using a moving window (size= 200 trials).
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Figure S5: [Related to Fig. 5]. a–b. Similar to Fig. S3a–b, but for the perturbation task. b. Pearson’s r,
Holistic: 0.52, Modular actor+Holistic critic: 0.53, Holistic actor+Modular critic: 0.52, Modular: 0.35.
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Figure S6: [Related to Fig. 6]. a. Total number of neural parameters in critics (Fig. 6a) and actors (Fig. 6b).
b. Fraction of rewarded trials in the training task (2000 trials) for agents with all combinations of actors and
critics after training, averaged across n = 8 random seeds for each agent.
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Figure S7: [Related to Fig. 7]. a–b. Similar to Fig. 7c–d, but showing the decoding error, averaged across time
steps and trials. c–d. AUC (Fig. 7c–d) versus decoding error (a–b) for agents trained with all combinations
of σa and σo, tested in the gain (c) and the perturbation (d) tasks. Error bars denote ±1 SEM across n = 8
random seeds.
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