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ABSTRACT:  1 

Explaining why some species are disproportionately impacted by the extinction crisis is of critical 2 

importance for conservation biology as a science and for proactively protecting species that are 3 

likely to become threatened in the future. Using the most current data on threat status, population 4 

trends, and threat types for 446 primate species, we advance previous research on the determinants 5 

of extinction risk by including a wider array of phenotypic traits as predictors, filling gaps in these 6 

trait data using multiple imputation, and considering more explicitly the mechanisms that connect 7 

organismal traits to extinction risk. Our Bayesian phylogenetically controlled analyses reveal that 8 

larger-bodied and insular species exhibit higher threat status, while those that are more omnivorous 9 

and live in larger groups have lower threat status. The same traits are not linked to risk when 10 

repeating our analyses with older IUCN data, suggesting that the traits that influence species risk 11 

are changing as anthropogenic effects continue to transform natural landscapes. We also show that 12 

larger-bodied and arboreal species are more susceptible to key threats responsible for primate 13 

population declines. Collectively, these results provide new insights to the determinants of primate 14 

extinction and identify the mechanisms (i.e., threats) that link traits to risk.  15 

 16 

INTRODUCTION: 17 

Anthropogenic activity is causing species to disappear at an alarming rate. However, not all species 18 

are affected equally: some species show no changes in abundance while others are increasing in 19 

abundance as human activity increases. Explaining why some species are more susceptible to 20 

extinction than others has become a major goal of conservation biologists as these contributions 21 

help to both explain current extinction patterns and allow for proactive protection of species 22 

possessing traits that could increase their probability of becoming imperiled. Previous studies have 23 

shown that phenotypic traits affect a species’ susceptibility to extinction (Chichorro et al., 2019). 24 

Physical traits such as large body size and life history traits such as long generation lengths have 25 

been associated with increased risk of extinction (Purvis et al., 2000; Cardillo & Bromham, 2001; 26 

Cardillo et al., 2005; Lee & Jetz, 2011; Matthews et al., 2011). Behavioral traits have also been 27 

linked to increased extinction risk, including small group size and reduced innovativeness 28 

(Davidson et al., 2009; 2012; Ducatez et al., 2020). 29 

While much effort has been put toward identifying how different traits covary with 30 

extinction risk, important knowledge gaps have limited the effectiveness of these analyses. First, 31 
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only a handful of studies have incorporated a broad range of traits in a single analysis. Chichorro 32 

et al. (2019) reviewed studies investigating the correlates of extinction risk and found significant 33 

variability in the traits that were investigated (or controlled for). In addition, some traits have only 34 

recently been linked to extinction risk, such as behavioral flexibility (Ducatez et al., 2020), and 35 

thus have not been widely investigated across clades.  36 

Second, the relationship between the actual anthropogenic drivers of environmental change 37 

that are responsible for extinction and species traits are understudied in many clades (e.g., in 38 

primates; Estrada et al., 2017), limiting the impact of these comparative studies in applied 39 

conservation (Cardillo & Meijaard, 2012). Identifying which threats are most impactful to species 40 

with different trait types would enable actionable conservation steps. This could include mitigating 41 

key threats in susceptible species’ ranges and identifying which species are most likely to be 42 

vulnerable to certain types of environmental change in the future. Despite this possible benefit of 43 

considering specific threats, previous studies have been mostly limited to linking traits and species’ 44 

threat status, although a few exceptions have incorporated consideration of threats into these 45 

analyses (e.g., Purvis et al., 2005; González-Suárez et al., 2013; Murray et al., 2014). 46 

Lastly, we lack information on relevant traits for many species, resulting in incomplete 47 

data. The species for which we lack data may be systematically biased towards those that are more 48 

difficult to study, such as arboreal or nocturnal species. In addition to reducing statistical power, 49 

removing these species from analyses has potential to bias observed relationships between 50 

variables (Nakagawa & Freckleton, 2008) and can result in a loss of real information when some 51 

traits included in an analysis have better data coverage than others. 52 

Primates have been especially important in studies assessing predictors of extinction risk 53 

(Purvis et al., 2000; Purvis et al., 2005; Matthews et al., 2011; Machado et al., 2022). Primates are 54 

one of the most threatened animal clades, with ~65% of species at risk of extinction (IUCN, 2021). 55 

The number of threatened primate species is on the rise (up ~5% in approximately 5 years), yet 56 

the last comprehensive assessment of the major determinants of primate extinction risk was 57 

published over 20 years ago (Purvis et al., 2000). The number of recognized primate species has 58 

changed dramatically since earlier studies, having more than doubled from 180 to over 500 in the 59 

past few decades (Rylands & Mittermeier, 2014; Creighton et al. 2022). As a result of these 60 

taxonomic changes and limitations of older phylogenies, older studies focused on a relatively small 61 

number of currently recognized primate species. More speciose and up-to-date phylogenies have 62 
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recently become available (Upham et al., 2019) in addition to a greater quantity and quality of trait 63 

data for many species. These contributions create an opportunity for the inclusion of more 64 

described primate species in comparative analyses, bringing us closer to capturing the true scope 65 

of primate diversity. Primates are crucial components of tropical biodiversity, core players in the 66 

function of ecosystems, and central to many cultures and religions (Estrada et al., 2017). It is thus 67 

an urgent goal to determine which biological and behavioral traits contribute to primate extinction 68 

vulnerability and how these traits interact with anthropogenic impacts to contribute to population 69 

declines.  70 

 Here, we analyze the biological and behavioral determinants of primate extinction risk 71 

using a phylogenetic comparative approach. We investigate the relationship between multiple 72 

phenotypic traits and two measures of extinction risk reported by the International Union for 73 

Conservation of Nature (IUCN): threat status and population trend. We then assess how these same 74 

traits covary with vulnerability to the major threats facing primate species. This research addresses 75 

the gaps above by including multiple traits in the analysis and using imputation approaches based 76 

on phylogeny and phenotypic traits to fill in data for species with missing trait values. In addition, 77 

by investigating population trends and specific threats, we improve understanding of the 78 

connections between specific traits and the abundance of primates. 79 

 We focus on 10 key traits with proposed links to extinction risk (Table 1). 80 

 81 

Table 1: The predicted direction of effect of biological and behavioral traits on extinction risk. 82 

Trait: Expected risk 

high when: 

Reason: 

Body mass (g) Large body Animals with large bodies have slow life histories 

and have been previously shown to be at 

increased extinction risk (Cardillo & Bromham, 

2001; Cardillo et al., 2005). 

Generation length (yrs) Long 

generations 

Slow life histories mean fewer generations to 

adapt to environmental changes (Purvis et al., 

2000). 

Home range size (ha) Large home 

range size 

Species that have individuals that maintain large 

home ranges are particularly vulnerable to habitat 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2022. ; https://doi.org/10.1101/2022.12.08.519299doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.08.519299
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 5 

loss, degradation, and edge effects (Woodroffe & 

Ginsberg, 1998; Purvis et al., 2000). 

Group size Small group 

size 

Small group size has been associated with 

heightened extinction risk, perhaps because large 

groups reduce predation and enhance foraging 

(Davidson et al., 2009; 2012). 

Brain volume (cm3) Small brain 

volume 

Large relative brain size is a proxy of general 

intelligence and behavioral flexibility (Reader et 

al., 2011; Navarrete et al., 2016), which have been 

associated with reduced extinction risk in birds 

(Ducatez et al., 2020).  

Omnivory (true or false) False Animals with a large dietary breadth can rely on a 

wider range of food types when resources become 

limited (Boyles & Storm, 2007). 

Social system Polygynandry Species characterized by complex social 

organization are hypothesized to have larger 

critical population sizes (i.e., more individuals 

must persist to maintain what is considered to be 

a healthy population) and may therefore go 

extinct more quickly than species in simpler 

social systems (Höglund, 1996). 

Lifestyle Arboreal Strictly arboreal species are disproportionately 

affected from losing habitat via deforestation 

(Munstermann et al., 2022). 

Insularity (true or false) True Island ecosystems are particularly vulnerable to 

anthropogenic change due to small population 

sizes, low habitat availability, and low functional 

redundancy (Biber, 2002; Blackburn et al., 2004; 

Leclerc et al., 2018). 

Nocturnal (true or false) Diurnal Diurnal species are more likely to be disturbed by 

human activity (e.g., traffic) and diurnal activity 
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has been connected to extinction risk (Purvis et 

al., 2000). 

 83 

METHODS: 84 

DATA:  85 

We collected information on threat status (least concern = LC, near threatened = NT, vulnerable = 86 

VU, endangered = EN, critically endangered = CR, data deficient = DD, and not evaluated = NE) 87 

and population trend (increasing = I, stable = S, decreasing = D, and unknown = U), from the 88 

IUCN (2021) for 446 primate species present in the ultrametric primate phylogeny published by 89 

Upham et al. (2019) (Figure 1). We also collected a list of active threat types affecting each species 90 

in the IUCN (2021) as defined by the Salafsky et al. (2008) threat classification system: 1 = 91 

residential and commercial development, 2 = agriculture and aquaculture, 3 = energy production 92 

and mining, 4 = transportation and service corridors, 5 = biological resource use, 6 = human 93 

intrusions and disturbance, 7 = natural system modifications, 8 = invasive and other problematic 94 

species and genes, 9 = pollution, 10 = geological events, and 11 = climate change and severe 95 

weather.  96 

 97 
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 98 
Figure 1: Phylogenetic distribution of threat status and population trends (IUCN, 2021) for 446 99 

primate species in the Upham et al. (2019) phylogeny. Images of representative species are 100 

presented next to family labels. Codes for threat status: data deficient = DD, not evaluated = NE, 101 

least concern = LC, near threatened = NT, vulnerable = VU, endangered = EN, and critically 102 

endangered = CR. Codes for population trend: unknown = U, increasing = I, stable = S, and 103 

decreasing = D (IUCN, 2021). 104 

 105 

 For each of the 446 species in our dataset, we recorded data on 10 different biological and 106 

behavioral traits that have been proposed to be associated with extinction risk from various 107 

sources: body mass (g) (Galán-Acedo et al., 2019), generation length (yrs) (IUCN, 2021), home 108 

range size (ha) (Galán-Acedo et al., 2019), group size (Rowe & Myers, 2011), brain volume 109 

(Powell et al., 2017), omnivory (true or false), social system (solitary, pair-living, harem polygyny 110 

and polygynandry) (DeCasien et al., 2017; Rowe & Myers, 2011 and other sources), lifestyle 111 
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(arboreal, terrestrial, or both) (Rowe & Myers, 2011 and other sources), insular (true or false) 112 

(inferred from range data available in Rowe & Myers, 2011; IUCN, 2021), and nocturnal (true or 113 

false) (Estrada et al 2017; IUCN, 2021). The full list of references for trait values is available in 114 

the Supplementary Data. Table 1 summarizes how we expected each trait to be associated with 115 

primate extinction risk. Previous studies have included geographic range size as a covariate in 116 

similar analyses (e.g., Purvis et al., 2000; Machado et al., 2022). However, a species’ geographic 117 

range size is one of the main criteria used by the IUCN to assign threat status: species with small 118 

population sizes that have small or restricted geographic ranges are considered to be more 119 

imperiled (IUCN, 2021) (i.e., threatened species have small geographic ranges by definition). 120 

Because we were interested in how biological and behavioral trait contribute to extinction risk, 121 

including effects on what geographic ranges they are able to occupy, we did not include geographic 122 

range size in our analysis. Notably, by including insularity in our analysis we controlled for the 123 

fact that species on small islands may not be able to maintain geographic ranges large enough to 124 

be considered healthy by the IUCN due to geographic barriers. 125 

 Following Powell et al. (2017), for sexually dimorphic clades (size difference > 10%) only 126 

brain volume and body mass data from adult females were used in analysis. For all other species, 127 

averages for all adults measured in the original source were used. Species found exclusively on 128 

Madagascar, Borneo, or Sumatra were not scored as insular since these islands are large enough 129 

to support large geographic ranges comparable to many mainland species. Further details on 130 

operational definitions and trait coding are provided in the Supplementary Materials, along with a 131 

correlation matrix of all traits and response variables (Figure S1), and a comparison of trait data 132 

from different sources (Figures S2, S3, and S4).  133 

 134 

ANALYSIS: 135 

Trait imputation 136 

The availability of data varied across the species in our dataset. Percentages of species with missing 137 

trait data were: body mass (6%), omnivory (17%), generation length (23%), home range size 138 

(25%), group size (39%), and brain volume (46%). Restricting the analysis to only species with 139 

observed data on all traits reduced our sample size of species by over half (e.g., to from n=430 to 140 

n=151 in our analysis of threat status). We thus opted to use multiple imputation to avoid losing 141 

species from our analysis where one or more traits had missing observations. The main advantage 142 
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of imputation is that it avoids a loss of statistical power caused by reduced sample sizes due to 143 

missing trait data and that it reduces potential biases in parameter estimates caused by eliminating 144 

missing observations (see Nakagawa & Freckleton, 2008). For instance, if missing observations 145 

are not missing completely at random, the relationship between two variables could change when 146 

they are excluded from analysis (Nakagawa & Freckleton, 2008). In analyses with more than one 147 

independent variable imputation also prevents the loss of real information if some variables have 148 

better data coverage than others. For example, if an analysis has one independent variable with 149 

100% data coverage and a second independent variable with only 80% data coverage, imputation 150 

will allow all observations for the first trait to be kept in the analysis by substituting the 20% of 151 

missing values for the second variable.  152 

 Multiple imputation was accomplished using phylogenetic information and data for other 153 

traits. We started with phylogenetic multiple imputation using 100 randomly sampled trees 154 

available from Upham et al. (2019). The imputation of traits was ordered so that imputed 155 

information could be used to inform subsequent model fits along with phylogenetic information 156 

(e.g., once body mass was imputed it was used to inform model fits for the imputation of other 157 

variables). From each tree, we generated a variance-covariance matrix which we then dissolved 158 

into 445 eigenvectors using the ‘PVRdecomp’ function from the R package PVR (Santos et al., 159 

2018). Using forward-backward model selection, we determined which phylogenetic eigenvectors 160 

and traits had the best support for inclusion in models predicting each trait with missing data based 161 

on Akaike information criterion (AICc) scores using the ‘stepAIC’ function from the MASS R 162 

package (Ripley et al., 2013). We chose how many eigenvectors to include in model selection for 163 

the imputation based on model performance in cross validation (Table S1). The top model for each 164 

trait was used to impute values for each species missing data using the ‘predict’ function from the 165 

car package in R (Fox et al., 2012). To propagate error, we then used the fits and standard 166 

deviations associated with predicted values to take a randomly sampled trait value for each species 167 

from the normal or binomial distribution (depending on whether traits were continuous or binary).  168 

 This imputation process was repeated once for each tree, resulting in 100 imputed datasets. 169 

We performed a leave-one-out cross-validation of each imputation, where we removed observed 170 

datapoints and used our imputation method to predict their value. When comparing these 171 

predictions to the actual observed datapoints performance proved to be good in all cases (predictive 172 

accuracy > 0.8 for continuous variables and area under the ROC curve > 0.8 for binary variables; 173 
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see Table S1). 174 

 175 

Modelling threat status, population trends, and threat types 176 

We ran multiple models to test predictors of three types of outcomes for primate populations. First, 177 

we tested which biological and behavioral traits are associated with the threat status of a species. 178 

Second, we tested the effects of species’ behavioral and biological traits on population trends (i.e., 179 

population growth or decline). Third, we tested which traits were associated with species 180 

susceptibility to the most important threats that primate species face.   181 

 To determine which biological and behavioral traits are associated with threat status, we 182 

ran two phylogenetic generalized linear mixed models using Bayesian approximation as 183 

implemented in the MCMCglmm R package (Hadfield, 2010). The first model had an ordinal error 184 

structure, and the response variable was an ordinal measure of threat status scored as follows: 185 

LC=0, NT=1, VU=2, EN=3, and CR=4 (Butchart et al., 2007). We ran the second model with a 186 

threshold error structure; here the response variable was threat status scored as a binary outcome 187 

where species were scored as either being threatened (VU, EN, or CR) (scored as 1) or not 188 

threatened (NT or LC) (scored as 0).  189 

 To test the effects of traits on population trends we ran a third phylogenetic generalized 190 

linear mixed model with a threshold error structure (Hadfield, 2010). In this model, each species 191 

was assigned a binary outcome of either declining (scored as 1) or not declining (i.e., stable or 192 

increasing) (scored as 0). 193 

 Finally, to determine which biological and behavioral traits were associated with species’ 194 

susceptibility to the most important threats that primate species face, we ran five phylogenetic 195 

generalized linear mixed models with threshold error structures (Hadfield, 2010), one for each of 196 

the top five threats to primates identified by the IUCN (2021). These top five threats identified for 197 

primate species were: 1 = residential and commercial development (35% of species), 2 = 198 

agriculture and aquaculture (80%), 3 = energy production and mining (22%), 5 = biological 199 

resource use (82%), and 7 = natural system modifications (23%). Here, each of our five models 200 

had a binary outcome of 1 (indicating that a species was affected by a particular threat) or 0 201 

(indicating that a species was not affected by the threat). 202 

 Each model described above was run on 100 imputed datasets and phylogenies to account 203 

for uncertainty in phylogeny and trait estimates (Nakagawa & De Villemereuil, 2019). Models ran 204 
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a total of 550,001 iterations, with a thinning interval of 500 and a burn-in of 50,000 to ensure 205 

convergence had occurred. We confirmed convergence had occurred by assessing trace plots after 206 

analyses finished running (Hadfield, 2010). Species were dropped from analyses when the true 207 

value of a response variable was unknown by the IUCN (2021) (e.g., if the threat status was DD 208 

or NE). Traits were included as fixed effects and continuous variables were ln-transformed, 209 

centered with respect to the mean, and scaled by 2 standard deviations in all models to make their 210 

effect sizes comparable to those reported for binary variables (Gelman, 2008). We used a weakly 211 

informative gelman prior for fixed effects. 212 

 We also tested the hypothesis that some traits previously shown to be associated with 213 

primate extinction risk are losing signal as more species become imperiled, for example, if 214 

anthropogenic threats are becoming so overwhelming that all species are beginning to suffer 215 

regardless of their attributes. This analysis involved repeating our analyses of threat status using 216 

an older IUCN threat status data and species list (obtained from Harcourt & Parks, 2003). 217 

 To interpret the output from our Bayesian analyses, we provide (i) the distribution of 218 

posterior means for tests from all 100 imputed datasets in graphical form (Figures 2 and 3), (ii) the 219 

89% credible intervals (per McElreath, 2018) from the full posterior distribution of estimates in 220 

graphical form (Figures 2 and 3), and (iii) the percentage of iterations from each set of 100 models 221 

that were consistently positive or negative (Tables S2 to S13). We focused on results that were 222 

most supported based on these outcomes. For the purposes of providing an estimate of the 223 

magnitude of an effect in the main text, posterior means were pooled across datasets using Rubin’s 224 

rules (Nakagawa & De Villemereuil, 2019) (hereafter, “pooled posterior mean”). 225 

 226 

RESULTS: 227 

Predictors of threat status and population trends 228 

When scored as an ordinal outcome (LC=0, NT=1, VU=2, EN=3, and CR=4), threat status was 229 

positively associated with insularity (pooled posterior mean = 1.217; 100% of 100,100 posterior 230 

estimates > 0) and, albeit not as strongly, with body mass (pooled posterior mean = 0.995; 94% 231 

estimates > 0) (Figure 2; Tables S2) across 430 species with known threat statuses. Ordinal threat 232 

status was negatively associated with omnivory (pooled posterior mean = -0.475; 95% estimates 233 

< 0) and group size (pooled posterior mean = -0.601; 95% estimates < 0) (Figure 2; Table S2). In 234 

our analysis using older IUCN data, we found that only insularity (pooled posterior mean = 2.255; 235 
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100% estimates > 0) and home range size (pooled posterior mean = 1.532; 100% estimates > 0) 236 

were associated with threat status (ordinal) in the predicted direction (Table S3). 237 

 Threat status was not strongly associated with any biological or behavioral traits when 238 

scored as a binary response (Figure 2; Table S4). We repeated this analysis removing imputed 239 

datapoints to see if their inclusion affected the lack of strong associations. We also ran three 240 

separate models with body mass, generation length, and brain volume as sole predictors to 241 

determine if correlations among these predictors (see Figure S1) in the full models affected the 242 

results. Results from these additional analyses again consistently showed no strong effect of any 243 

traits (Tables S5 and S6). In our analysis using older IUCN data, we found that insularity (pooled 244 

posterior mean = 2.565; 100% estimates > 0) and home range size (pooled posterior mean = 1.116; 245 

99% estimates > 0) were associated with threat status (binary) in the predicted direction (Table 246 

S7). Population trend was not consistently associated with any biological or behavioral traits across 247 

401 species with known population trends (Figure 2; Table S8).  248 

 249 
Figure 2: Outcomes from three sets of models testing the relationship between traits and: threat 250 

status scored as an ordinal variable (first panel), threat status scored as a binary variable (second 251 

panel), and population trend scored as a binary variable (third panel). Each cell contains 100 252 

posterior means (plotted as translucent diamonds) with their associated 89% credible intervals 253 
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(plotted as translucent horizontal lines) obtained from 100 MCMCglmm models run with 100 254 

randomly sampled phylogenies across 100 trait datasets with missing datapoints obtained through 255 

multiple imputation. Darker shading behind effects interpreted in text. Continuous variables were 256 

ln-transformed, centered with respect to the mean, and scaled by 2 standard deviations. 257 

 258 

Predictors of specific threat types 259 

Our analyses of threat types included 404 species with known threats (Tables S9 to S13). Species 260 

with larger body masses were more likely to be affected by threat 1 = residential and commercial 261 

development (pooled posterior mean = 1.001; 96% estimates > 0; Table S9) and threat 3 = energy 262 

production and mining (pooled posterior mean = 1.267; 99% estimates > 0; Table S11) (Figure 3). 263 

Insularity was negatively associated with threat 1 = residential and commercial development 264 

(pooled posterior mean = -0.755; 98% estimates < 0; Table S9), threat 3 = energy production and 265 

mining (pooled posterior mean = -1.811; 100% estimates < 0; Table S11), and threat 7 = natural 266 

system modifications (pooled posterior mean = -1.312; 100% estimates < 0; Table S13) (Figure 267 

3). Species living a strictly arboreal lifestyle were more likely to be affected by threat 1 = 268 

residential and commercial development than strictly terrestrial species (i.e., the baseline) (pooled 269 

posterior mean = 1.023; 97% estimates > 0; Table S9) (Figure 3). 270 

 271 
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Figure 3: Outcomes from five sets of models testing the relationship between traits and species 272 

susceptibility to: threat 1 = residential and commercial development (first panel), threat 2 = 273 

agriculture and aquaculture (second panel), threat 3 = energy production and mining (third panel), 274 

threat 5 = biological resource use (fourth panel), and threat 7 = natural system modifications (fifth 275 

panel). Each cell contains 100 posterior means (plotted as translucent diamonds) with their 276 

associated 89% credible intervals (plotted as translucent horizontal lines) obtained from 100 277 

MCMCglmm models run with 100 randomly sampled phylogenies across 100 trait datasets with 278 

missing datapoints obtained through multiple imputation. Darker shading behind effects 279 

interpreted in text. Continuous variables were ln-transformed, centered with respect to the mean, 280 

and scaled by 2 standard deviations. 281 

 282 

DISCUSSION: 283 

We investigated the correlates of extinction risk and threat susceptibility in primates using 284 

phylogenetic comparative methods to analyze the most complete and up-to-date set of trait data 285 

and IUCN data. One novelty of our approach involved the use of phylogenetic and trait-based 286 

imputation of missing data. Our analyses revealed that larger-bodied and more insular species 287 

exhibit higher threat status, while those that are more omnivorous or live in larger groups have 288 

lower threat status. When looking at specific threats, we found that larger-bodied and arboreal 289 

species are more vulnerable to key threats, while insular species are less vulnerable to these threats.  290 

Our analyses with binary outcomes included threat status scored as threatened versus non-291 

threatened and population trend scored as declining versus not declining. These analyses revealed 292 

that most traits are not strong predictors of whether a given primate species is considered 293 

threatened (contrary to findings in other taxonomic groups, such as birds; Lee & Jetz, 2011). When 294 

we scored threat status ordinally – with five ranked categories from least concern to critically 295 

endangered – higher threat status was associated with insularity, large body mass, omnivory, and 296 

small group size, consistent with our predictions for these traits. Therefore, primate species that 297 

are most imperiled, and thus score highest in ordinal threat status, do tend to be those with 298 

biological and behavioral predispositions to extinction.  299 

We also considered how the effects of predictors changed over time. When applying the 300 

same methods to analyze a 1999 IUCN dataset, we found that insularity and home range size 301 

shared a positive relationship with both binary and ordinal threat status, but other traits were not 302 
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meaningfully associated with threat status. This pattern of results using newer versus older data 303 

indicates that some traits (i.e., home range size) are becoming less important to extinction risk as 304 

the effects of anthropogenic activity become increasingly overwhelming. The fact that traits 305 

identified in our analysis of ordinal 2021 threat status (i.e., body mass, group size, and omnivory) 306 

do not come out as strongly in our analysis with older data could indicate that these traits are 307 

beginning to have a larger signal over time, or that the larger number of species in our 2021 dataset 308 

(a consequence of taxonomic reevaluations in many clades; Creighton et al., 2022) enabled us to 309 

more powerfully detect effects of these traits.  310 

 Previous studies have found an effect of variables not shown to explain meaningful 311 

variation in our analysis. For example, Ducatez et al. (2020) investigated whether threat status 312 

covaries with innovativeness, which is a known measure of behavioral flexibility associated with 313 

general intelligence (Reader & Laland, 2002; Reader et al., 2011). We did not find an effect of 314 

brain size, another known measure of behavioral flexibility and general intelligence (Reader et al., 315 

2011; Creighton et al. 2021), and correlate of innovativeness, in our analysis. The caveats 316 

associated with each of these measures is discussed in Creighton et al. (2021), including the 317 

difficultly of adequately controlling for literature effort when estimating innovativeness and the 318 

small sample sizes used to estimate average brain sizes for many species. However, our difference 319 

in results could point to the fact that different traits contribute to heightened extinction risk for 320 

these two clades, and that the relationship between some traits and extinction risk may be far more 321 

complicated than originally expected. Species with higher behavioral flexibility and general 322 

intelligence may be less at risk of extinction because they are better equipped to find novel 323 

solutions that allow them to overcome environmental challenges (Beever et al., 2017; Ducatez et 324 

al., 2020). However, the relationship between behavioral flexibility and extinction may be more 325 

complex, particularly in a clade like primates where innovations are frequent and human conflict 326 

is common. Certain behavioral innovations can help species to avoid human conflict and endure 327 

habitat modifications, such as novel approaches for accessing foods or shifting to new food 328 

resources (Beever et al., 2017). However, other innovative behaviors can increase human-wildlife 329 

conflict. In many primate species, crop-raiding and garbage eating have become common practice 330 

and indicate their flexibility to survive in changing environments (e.g., chimpanzees and baboons; 331 

Maples et al., 1976; Hahn et al., 2003; Hockings et al., 2009). These behaviors bring animals in 332 

direct conflict with humans and, in some cases, attract them to lower quality habitats. Future 333 
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contributions should further address the paradox of how flexibility both helps and hinders survival, 334 

and what this means for species’ persistence. 335 

 In analyses assessing predictors of direct threats, we found that strictly arboreal species 336 

were more likely to be threatened with residential and commercial development – a major driver 337 

of deforestation in many regions. We also found that species with large body masses were more 338 

likely to be affected by residential and commercial development and energy production and 339 

mining. Thus, the tendency of larger bodied species to be severely threatened is likely influenced 340 

by development and energy/mining activities. Finally, insular species were less likely to be 341 

vulnerable to multiple threats (residential and commercial development, energy production and 342 

mining, and natural system modifications) despite being more likely to be highly threatened. This 343 

indicates that the high threat statuses of insular species may not be driven by anthropogenic 344 

activity. Instead, their small geographic ranges enforced by geographic barriers could simply make 345 

it impossible to maintain healthy population sizes, despite not being subject to major threats. 346 

 There are some limitations to our analyses. One issue involves correlated predictor 347 

variables. Body mass, generation length, and brain volume were highly correlated in our dataset 348 

(correlation coefficients range between 0.6 and 0.9). We included these predictors in the same 349 

models to identify how they independently contributed to extinction risk and threat vulnerability 350 

(Freckleton, 2002). However, this creates the possibility of collinearity in model estimates for 351 

these variables. Increased uncertainty (i.e., wide credible intervals) around estimates for these three 352 

traits indeed point to some collinearity among estimates. We therefore investigated the effects of 353 

these variables individually in separate models, which yielded largely consistent results. Secondly, 354 

like most previous studies, response variables in our analysis come from IUCN assessments. While 355 

the IUCN maintains the largest global dataset on species extinction risk and threats useful for 356 

comparative analyses, these measures are vulnerable to errors in empirical data and in models used 357 

to estimate population declines and extinction risk (Rueda‐Cediel et al., 2018). As a result, there 358 

is likely to be uncaptured uncertainty associated with the measures of extinction risk used in our 359 

analyses. 360 

 Information about how biological and behavioral traits contribute to species’ susceptibility 361 

to direct threats has been a persistent knowledge gap in the conservation literature, particularly for 362 

primates (Estrada et al., 2017). We provide a first step in addressing this knowledge gap by linking 363 

traits to key threats responsible for population declines. This approach has potential to be expanded 364 
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to other clades. Understanding the biological and behavioral predictors of threat susceptibility in 365 

broader range of taxa could help groups like the IUCN to identify which threats pose the most 366 

imminent harm to species with shared characteristics. There is also an opportunity to apply the 367 

knowledge contributed here to projections about which species are next to become threatened: we 368 

propose that factoring in traits and threat information could provide more powerful inference and 369 

will lead to more proactive monitoring of species that face the greatest risks in the future. For 370 

instance, strictly arboreal species living in regions with residential development may be expected 371 

to decline at a faster rate than other species without these characteristics.  372 

 In summary, by taking advantage of statistical approaches for dealing with missing data 373 

and Bayesian inference, we have shown that multiple traits contribute to primate threat status. Our 374 

findings suggest that the effects of some traits, such as home range size, have weakened over the 375 

past 20 years, indicating that the traits that influence a species’ threat status are changing as 376 

anthropogenic effects continue to transform natural landscapes. Other characteristics shown to 377 

affect extinction risk in other clades, such as behavioral flexibility, do not appear to affect primate 378 

extinction risk, suggesting that different processes likely govern extinction in different clades. 379 

Focusing on mitigating key threats, as identified here, from susceptible species’ geographic ranges 380 

will be an important and necessary step for future recovery. 381 
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