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Abstract14

The recent emergence of multi-sample multi-condition single-cell multi-cohort studies allow re-15

searchers to investigate different cell states. The effective integration of multiple large-cohort16

studies promises biological insights into cells under different conditions that individual studies17

cannot provide. Here, we present scMerge2, a scalable algorithm that allows data integration of18

atlas-scale multi-sample multi-condition single-cell studies. We have generalised scMerge2 to19

enable the merging of millions of cells from single-cell studies generated by various single-cell20

technologies. Using a large COVID-19 data collection with over five million cells from 1000+ in-21

dividuals, we demonstrate that scMerge2 enables multi-sample multi-condition scRNA-seq data22

integration from multiple cohorts and reveals signatures derived from cell-type expression that23

are more accurate in discriminating disease progression. Further, we demonstrate that scMerge224
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can remove dataset variability in CyTOF, imaging mass cytometry and CITE-seq experiments,25

demonstrating its applicability to a broad spectrum of single-cell profiling technologies.26

Introduction27

Technological advances of large-scale single-cell profiling of genes and proteins, such as single-28

cell RNA-seq (scRNA-seq) [1], Cytometry by Time-Of-Flight (CyTOF) [2] and imaging mass29

cytometry [3] have exploded in recent years and enabled unprecedented insight into the identity30

and function of individual cells. This has enabled the discovery of cell-type-specific knowledge31

and has transformed our understanding of biological systems. This myriad of single-cell data32

has prompted the recent creation of data atlases that collate single-cell omics data from multi-33

ple studies. Examples of large-scale atlases containing over two millions cells are the Human34

Cell Atlas which aims to map every cell type in the human body [4]; atlas of gene expression35

and chromatin accessibility of 4 million human fetal cells across 15 organs [5, 6]; the Human36

Tumor Atlas Network [7] and DISCO [8], which provides integrated human single-cell omics37

data across 107 tissues/cell lines/organoids and 158 diseases. These atlases serve as valuable38

references for the exploration of healthy and diseased cells.39

40

As single-cell technologies advance, there are an increasing number of studies around the41

globe that perform multi-condition and multi-sample large-cohort single-cell profiling to exam-42

ine persisting questions associated with human health. These datasets enable researchers to delve43

into biological insights of cells under multiple treatment conditions across multiple individuals.44

For example, to investigate the cell-type-specific cellular mechanism underlying COVID-19 dis-45

ease severity [9] and to predict treatment response to cancer [10]. Such data and studies are46

expected to rise in the coming years [11] in the continuing quest to improve human health. This47

expected increase necessitates the effective access and joint interpretation of multiple datasets to48

unleash the power of meta-analysis at single-cell resolution.49

50

Last year, benchmarking studies [12] began to investigate atlas-scale integration. Luecken51

and colleagues investigated 16 popular data integration technologies on 13 data integration tasks52

with up to 1 million cells. While significant progress has been achieved in batch correction and53

data integration over the years (including our research), the increasing scale of cohort sizes and54

the number of related studies for integration has introduced additional scalability challenges. The55
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new challenge for atlas-scale integration is to have a scalable algorithm that can handle a large56

number of studies, consisting a large collection samples (thousands) and millions of cells. With57

the exception of Seurat [13], SAUCIE [14] and Scanorama [15], several of these rapid procedures58

(deepMNN [16], BBKNN [17], Harmony [18] , scVI [19], scANVI [20] and DESC [21]) focus59

on extracting the joint embedding and do not return adjusted gene expression matrices. With the60

growing need for sample level analysis, the lack of adjusted expression matrices restricts the util-61

isation of such integrative results and diminishes their potency and generalizability. As a result,62

the next generation of atlas-scale integration algorithms should be capable of integrating a large63

number of studies and producing consensus cell type maps as well as adjusted expression matrix64

for further downstream analysis. In particular, these methods need to overcome the computa-65

tional challenge of integrating over a million cells and create adjusted gene expression matrix for66

all genes for downstream analysis.67

68

To this end, we present scMerge2, a scalable, high-capacity algorithm that allows data inte-69

gration of atlas-scale multi-sample multi-condition single-cell studies. We achieve this through70

three key innovations in (i) hierarchical integration to capture both local and global variation be-71

tween studies; (ii) pseudo-bulk construction to ensure computational scalability; and (iii) pseudo-72

replication inside each condition to capture signals from multiple conditions. Our new scMerge273

algorithm is able to integrate many millions of cells from single-cell studies generated from74

various single-cell technologies, including scRNA-seq, CyTOF, and imaging mass cytometry.75

Leveraging pseudo-bulk to perform factor analysis of stably expressed genes and pseudorepli-76

cates, scMerge2 is able to integrate five million cells from a large COVID-19 data collection with77

over 1000 samples from 20 studies globally within a day. We further demonstrate that the integra-78

tion using scMerge2 improves the performance of discriminating distinct cell states in COVID-1979

patients with varying degrees of severity and facilitates diverse single-cell downstream analyses.80

Results81

scMerge2 effectively integrates single-cell multi-sample, multi-condition data.82

scMerge2 provides a scalable data integration method for the rapid growth of multi-sample,83

multi-condition single-cell studies. This new extension of scMerge is specifically designed to84

address unwanted intra- and inter-dataset variation that can overshadow true biological signals85
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between conditions. In our previous study, we introduced scMerge, a novel algorithm that inte-86

grates multiple single-cell RNA-seq data by factor analysis of stably expressed genes and pseudo-87

replicates across datasets and enhances biological discovery, including inferring cell development88

trajectories [22]. The integration approach supports diverse integration settings, enabling cross-89

batch, cross-dataset, and cross-species discoveries. In particular, the semi-supervised aspect of90

scMerge allows incorporation of prior knowledge facilitated by experimental design.91

With the rapid emergence of multi-sample multi-condition single-cell studies and the in-92

creased number of datasets for integration, our proposed scMerge2 addresses challenges asso-93

ciated with scalability of cells and studies as well as producing analytically ready data (i.e. ad-94

justed expression matrix). This is achieved via three key innovations as illustrated in Fig. 1.95

First, hierarchical integration is used to capture both local and global variation. This is a clear96

contrast to the conventional data integration that involves estimating unwanted variation across97

all datasets as a whole. When integrating across a large collection (over 10) of datasets with98

different pairwise differences, sequential integration better captures the difference in pairwise99

variations. Second, pseudo-bulk construction is used to reduce computing load, allowing for the100

analysis of datasets containing millions of cells. Third, pseduo-replication inside each condition101

is built, allowing for the modelling of numerous conditions. Details of these components are102

included in Methods. In essence, scMerge2 takes gene expression matrices from a collection103

of datasets and integrates them in a hierarchical manner. The final output of scMerge2 is a sin-104

gle adjusted expression matrix with all input data matrices merged and ready for downstream105

analysis.106

scMerge2 outperforms existing integration methods in detecting differential107

expression.108

We demonstrate the performance of scMerge2 in removing multi-level unwanted variation of109

multiple scRNA-seq datasets from three aspects. Firstly, to illustrate the effectiveness of the hier-110

archical integration strategy, we applied scMerge2 to a 200k subset of cells from two COVID-19111

studies (Liu and Stephenson) that contain three cohorts/batches within each dataset. We com-112

pared the performance of two different scMerge2 settings: scMerge2-h, where we performed113

intra-study correction before inter-study correction; and scMerge2, where we integrated two114

datasets (6 batches) in one go. We find that integrating the two studies in a hierarchical man-115

ner improves the performance of data integration, especially in terms of revealing the cell type116
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signals (Fig. 2a-b). Compared to the other data integration methods (Seurat, SeuratRPCA,117

fastMNN, Liger and Harmony), both settings of scMerge2 (scMerge2-h and scMerge2) have118

overall better performance in achieving the balance of batch effect removal and biological signal119

preservation, based on the five evaluation metrics that quantify the data integration performance120

(Fig. 2a-b).121

122

Next, we investigate the performance of the adjusted matrix in identifying genes that are dif-123

ferentially expressed between two conditions (termed as differential state (DS) analysis by [23])124

through a simulation study. We generated synthetic single-cell datasets with two batches and125

multiple samples from two conditions using a simulation framework that extended from scDe-126

sign3 model [24], with known ground truth DS genes (Supp Fig. S1-S2) (See Methods). Cell-127

type-specific DS analysis was performed using the limma-trend algorithm [25] on the sample-128

wise aggregated data by taking the mean of the log-transformed or adjusted data. By simulating129

data with different log fold change (1.1 ∼ 2) and proportions of DS genes (5% and 10%), we130

find that scMerge2 substantially outperforms the other two data integration methods that also131

return adjusted matrices in detecting DS genes (Fig. 2c and Supp Fig. S3). scMerge2 has much132

lower FDR than fastMNN and Seurat, and higher TPR compared to the unadjusted data (Supp133

Fig. S4-S5), illustrating that scMerge2 outputs an adjusted matrix with less unwanted variation134

for single-cell downstream analysis.135

136

Finally, we illustrate the robustness of scMerge2 by varying the key tuning parameters of the137

algorithm, including the number of unwanted variation factors, the number of pseudo-bulk, the138

ways of pseudo-bulk construction and the number of nearest neighbours. As shown in Fig. 2d139

and Supp Fig. S6, despite varying the settings in the algorithm, scMerge2 has consistently better140

performance than the other methods. Together, these results demonstrate the effectiveness and141

utility of scMerge2 in data integration of scRNA-seq data.142

scMerge2 is scalable to integrate five millions COVID-19 PMBC cells.143

To demonstrate the scalability of scMerge2 in integrating multi-sample multi-condition single-144

cell data, we performed scMerge2 on a COVID-19 data collection of consisting of ∼ 5m cells145

from 1298 samples (963 individuals) PBMC samples from 20 studies worldwide (See Methods).146

We considered the cell type annotation refined by scClassify as pseudo-replicates information.147
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We also used a hierarchical integration strategy, where we first performed integration of different148

cohorts within one study respectively (e.g. Ren, Stephenson, Liu and Schulte-Schrepping) and149

also two studies with distinguished sequencing depth, followed by the integration of 13 studies150

with small number of cells (hierarchical integration strategy shown in Supp Fig. S7). We then in-151

tegrated all the data in the next step. An inspection of UMAP visualisations shows that scMerge2152

effectively integrates the 20 studies, while preserving the multi-level cell type information (Fig.153

3a, Supp Fig. S8). A UMAP plot faceted by dataset further illustrates the successful removal of154

dataset induced unwanted variation (Supp Fig. S9). The quantitative evaluation metrics further155

confirm this observation, where we find that scMerge2 reduces the technical variation caused by156

dataset, protocol and technology, resulting in improved cell type identification (Fig. 3b, Supp157

Fig. S10).158

159

To further illustrate the utility of scMerge2, we demonstrate that it improves the prediction of160

disease severity in the COVID-19 dataset using cell-type-specific expression. Comparing to the161

original raw log-normalised data, identifying cell types with scMerge2 substantially improves the162

prediction accuracy rate of disease severity for all cell types that have more than 1% abundance163

in the data, with a 3.2% increase in accuracy on average (Fig. 3c and Supp Fig. S11). Notably,164

we find that CD14 Monocytes have the highest discriminative power for disease severity among165

all cell types, and scMerge2 is able to further improve the accuracy rate from 81.3% to 83.6%.166

167

scMerge2 enables differential cell state detection for multi-conditions data.168

We next illustrate how the adjusted expression matrix output from scMerge2 facilitates several169

downstream analysis of single-cell multi-condition multi-sample studies, including differential170

abundance analysis and differential expression analysis. As a case study, we focus on the analysis171

of identification and characterisation of cell states that are distinguished between the moderate172

and severe patients using COVID-19 data collection. We first calculated the differential abun-173

dance score for each cell to quantify the difference between the moderate and severe patients174

using DASeq [26]. As shown in Fig. 4a-b, we are able to identify regions on the UMAP plots175

that are associated with the disease severity. As expected, when mapping these regions to cell176

types, we find that neutrophils have the highest proportion of cells that are associated with se-177

vere disease outcome as their accumulation marks the critical illness of COVID-19 patients [27]178
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(Supp Fig. S12).179

180

Next, we investigate the cell-type-specific underlying biological process pathways that are181

associated with the disease severity and time for each cell type. We performed the differential182

expression analysis on the cell-type specific pseudo-bulk by considering both disease severity and183

days from onset of symptoms as covariates, followed by gene set enrichment analysis (GSEA).184

The pathways enriched with disease severity include hallmark TNFα signaling and hallmark in-185

flammatory response (Fig. 4c) and are upregulated in severe patients in most of the cell types,186

while GO IL6 positive production and Hallmark MTORC1 signalling are upregulated in moder-187

ate patients. Notably, we observe that a few pathways reveal distinct enrichment patterns between188

different cell types, including GO response to type-I IFN. We find that for CD14 Monocytes (Fig.189

4c-d), the type-I IFN signatures is negatively associated disease severity and also decrease over190

time, consistent with the previous findings [28] (Fig. 4d). While other cell types such as CD4191

CM and CD4 Naive have an enrichment of type-I IFN in severe patients, this enrichment is also192

decreased over time. Together, these analysis demonstrate that the integration of multiple stud-193

ies using scMerge2 enables a variety of data analysis approaches that address a wide range of194

biological questions.195

scMerge2 is versatile to other single-cell platforms.196

One of the key strengths of scMerge2 is its generalizability to data from multiple biotechnology197

platforms. We illustrate that scMerge2 is generalizable to other single cell modalities including198

spatially resolved modality and multi-modalities. We start by illustrating that our algorithm is di-199

rectly applicable to other single-cell single-modal data, using two mass cytometry time-of-flight200

(CyTOF) datasets as an example. The two datasets (COMBAT (CyTOF) and Geanon (CyTOF))201

contain more than 11 million cells in total collected from healthy controls, COVID-19 and sepsis202

patients, with 18 immune cell populations and activation states. The UMAP plots constructed203

after integration (Fig. 5a) reveal that the two datasets are successfully integrated compared to204

the raw data. Notably, we find that Granulocytes (Neutrophils and Eosinophils), cell types that205

are only present in Geanon (CyTOF) but not COMBAT (CyTOF), are represented as a discrete206

and distinct cluster, suggesting that scMerge2 is able to reveal the unique cell types existing only207

in specific batches. An inspection of the cell-type-specific marker expression distribution further208

confirms the effective dataset effect removal (Fig. 5b and Supp Fig. S13).209
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210

Next, we show that scMerge2 enables normalisation of spatially resolved single-cell data for211

better cell type identification with specific cluster markers. We applied scMerge2 to a COVID-212

19 Imaging Mass Cytometry (IMC) dataset [29], followed by clustering using FlowSOM [30],213

with the number of clusters set equal to the manually annotated cell types in the original study.214

We find that compared to the original data, the scMerge2 adjusted matrix provides better clus-215

tering results that are more consistent with the manual cell type annotation (Fig. 5c), with ARI216

increasing from 0.13 to 0.58. These clusters are also marked by more specific enrichment of217

protein markers (Fig. 5d). For example, scMerge2 is able to reveal a cluster of T cells that218

uniquely expressed CD8a but not CD4 and a cluster that expressed of CD4 but not CD8a. Sim-219

ilarly, scMerge2 identifies the B cell cluster that has high expression in CD20, while clustering220

directly on the unadjusted matrix results in several clusters with qualitatively similar enrichment221

of markers, lacking the ability to identify distinguished cell types (Fig. 5e).222

223

Lastly, we demonstrate scMerge2 can efficiently remove the unwanted variation of multi-224

modal data, such as Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-225

seq) data that concurrently measure RNA and cell-surface proteins of the same cell. In this case,226

we can remove the unwanted variation for each of the two modalities separately using scMerge2.227

We first examined the quality of data integration using two CITE-seq datasets with six batches228

and 87 common surface proteins measured (The same data used in Fig. 2a-b). We find that229

scMerge2 utilising the hierarchical merging strategies achieves a better balance between batch230

effect removal and cell type signal preservation than most of the other methods, with comparable231

performance with Harmony (Supp Fig. S14). Similar to the findings in scRNA-seq, using232

surface protein expression adjusted by scMerge2 improves the severity prediction, compared233

to the raw data (Supp Fig. S15). With the adjusted expression matrix of each modality, one can234

perform any multi-modal integration approach to obtain the joint latent space and visualisation235

of cells with batch effect removal [13, 31, 32]. As an example, we used j-UMAP that generates236

joint visualisation of the adjusted multi-modal data [32], which further confirms the effective237

integration of the six batches from the two CITE-seq datasets (Fig. 5f).238
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Discussion239

We have presented scMerge2, a scalable approach for integrating data from large-scale multi-240

sample multi-condition single-cell studies. This was achieved via the use of three essential in-241

novations with hierarchical integration, pseudo-bulk building to minimise processing demand,242

and pseudo-replication that accounts for circumstances with phenotypes. Our algorithm enabled243

the atlas-scale integration of 20 global COVID-19 studies with around 5 million cells from 963244

donors, 1298 samples. We illustrated that scMerge2 data integration enabled the detection of245

distinct cell states in COVID-19 patients of variable severity. Finally, scMerge2 merged millions246

of cells from a number of single-cell technologies, including as CITE-seq, CyTOF, and image247

mass cytometry.248

249

The type of output extracted from atlas-scale data integration has an important impact on250

the analytical question of interest. To date, there are three standard types of output from re-251

cent atlas-scale data integration (defined as over millions of cells). These are (i) an adjusted252

gene expression matrix, (ii) a low-dimensional projection of the data, known in machine learning253

as “embeddings”; and (iii) a unified graph representation. Various methodological approaches254

may provide one or more of these types of outputs. In general, there are a number of existing255

approaches that use modern deep learning-based algorithms to achieve fast, atlas-scale integra-256

tion. Given that single-cell data are ultra sparse high-dimensional datasets, “embeddings” are a257

natural output since they are effective for joint data visualisation and reduce memory load. How-258

ever, an embedding output by itself increases interpretability challenges since a low-dimensional259

representation does not naturally lend itself to the development of interpretable features such260

as cell-cell interactions or pathway information, which is crucial for downstream case-control261

studies or multi-treatment analysis. One step towards achieving a balance between generating262

adjusted expression matrices and appropriate memory usage is to enable selective adjusted out-263

put. For example, scMerge2 enables the extraction of a subset of genes (such as the top n highly264

variable genes) of the adjusted matrix for all 5 million cells in the COVID-19 data sets as well265

as outputting the adjusted matrix by batches, allowing users to effectively balance computational266

burden with specific downstream analytical strategies.267

268

The order of integration is an important factor in hierarchical merging, which can be knowledge-269

guided or data-guided. Our current method is based on a data-guided order, in which we integrate270
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batches within one study or studies with similar size first. In contrast, a priori information such271

as sequencing platforms or cell extraction techniques can be used in knowledge-guided order272

of integration. Noted that the hierarchical data integration design can be broadly classified into273

two strategies [33], balanced trees and concatenating approaches. The balanced tree approach274

integrates between pairs of datasets at different levels of the tree, and the procedure is continued275

until all data is merged. The concatenating approach sequentially integrates datasets, therefore276

for n data sets, this will need n − 1 steps of integration. Previous studies have found that nor-277

malisation results are very similar between the two types of integration tree structures [33]. The278

key difference between the approach is computational burden with the concatenating approach279

being more computational intensive. Currently, the scMerge2 approach is closer to the balance280

approaches allowing for many datasets to be added simultaneously at each level.281

282

We demonstrated that our curation and effective integration of the COVID-19 gene expres-283

sion data with over 1000 individual samples facilitates flexible downstream meta-analysis, offer-284

ing the opportunity to examine particular sub-populations that cannot be adequately addressed285

with individual datasets. Scientists, for example, may investigate the molecular differences un-286

derlying mild and severe outcomes for a given age group (e.g., middle-aged individuals between287

41 - 50). Such analyses are difficult to perform in individual studies due to the limited sample288

sizes. This challenge can be overcome by merging several datasets.289

290

Recent technological advancements substantially extend beyond scRNA-seq, enabling other291

data modalities (e.g. DNA, proteins) to be profiled in individual cells providing a more com-292

prehensive molecular view of the cellular regulation. For the datasets with multi-modal profiles293

measured for the same cell (paired data), such as CITE-seq and ASAP-seq, scMerge2 can be294

applied to integrate data from different batches by either considering each each modality as a295

separated matrix, or concatenating the data into a single matrix. Currently, the integration il-296

lustrated in this paper was done within each modality. In the future, we can incorporate the297

multi-modal information to better identify the pseudo-replicates of the paired data as well as298

utilise the higher-order relationship of features to improve the integration performance.299

300

In summary, scMerge2 enables atlas-scale integrative analysis of large collections of single-301

cell data. As the availability of public multi-sample multi-conditional single-cell studies con-302

tinues to surge, scMerge2 demonstrates its ability to integrate over 5 million cells for further303
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downstream analysis, thereby enabling effective downstream meta-analysis. Notability, when304

compared to the raw log-normalised data from the outset, we demonstrated that scMerge2 offers305

a significant improvement in the prediction accuracy rate across all of the main cell types. The306

merge of large collections of scRNA-seq datasets from several cohorts further enables identifi-307

cation of distinct cell states in COVID-19 patients whose symptoms are of varying degrees of308

severity. Finally, scMerge2 has the ability to combine the data from millions of cells obtained309

from a variety of single-cell technologies, such as CITE-seq, CyTOF, and image mass cytometry.310
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Methods311

scMerge2312

Single-cell grouping within one batch313

Following the same principals as scMerge, the new scMerge2 approach begins by grouping the314

cells that share similar biological signals within each dataset or batch. We can approach this in315

two ways: one way is to perform unsupervised clustering; the other way is using results from316

supervised cell type classification.317

• Clustering-based grouping: This is performed by default when no cell type label is used as318

input. Firstly, the top 2000 highly variables genes (HVG) are selected using getTopHVGs319

in the scran R Package, using batch information as block information. For data like CyTOF320

and ADT from CITE-seq data, this step will be skipped and all features will be used in the321

next step. Next, within each batch, instead of using k-means clustering as in the previ-322

ous version, we construct a shared nearest neighbour graph on the gene expression of the323

HVGs, with a default number of neighbours of 10, followed by louvain clustering. This324

therefore relieves the need of predefining the number of clusters that is required in our325

previous version.326

• Reference-based grouping: This refers to the use of supervised cell type classification to327

predict or annotate the cell types using one or more reference datasets. This ensures the328

cell-type annotations are consistent among datasets. Cell type classification algorithms329

(e.g. scClassify [34] and SingleR [35]) can also be used and the reference dataset can be330

external datasets with similar cell types to the data to be integrated. This approach unifies331

cell type annotation across all datasets and eliminates the need for clustering and cell type332

annotation after data integration. It is noted that this approach is used in the COVID-19333

case study to integrate the data collection of 20 datasets.334

Pseudo-bulk construction335

With the cell type grouping of each batch determined, scMerge2 next constructs multiple pseudo-336

bulk within each cell type. The pseudo-bulk construction significantly reduces the computational337

time in two main steps of the original version of scMerge [22]: identification of pseudo-replicates338
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and RUVIII model estimation. scMerge2 provides two approaches to calculate cell-type-specific339

pseudo-bulk for each batch:340

• when count data are not available for all datasets, for each cell type grouping, we randomly341

assign the cells into k subsets and take the gene-wise average of each subset as one pseudo-342

bulk. This therefore results with k pseudo-bulk for one cell type grouping.343

• when counts data are available for all data, we can perform a similar pool-and-divide strat-344

egy that is proposed in RUVIII-NB [36]. Here, we can have two strategies in pooling the345

cells: (1) assign the cells based on library size; (2) randomly assign the cells into k subsets.346

Then we gene-wisely take the sum of the counts for each subset and generate the counts347

data following a negative binomial distribution. While the pseudobulk matrix generated by348

this strategy is able to maintain the gene mean-variance relationship [36], we find that this349

approach does not improve the quality of data integration in scMerge2 (Supp Fig. S6).350

Noted that k is set as 30 by default for cell type group with more than k number of cells, and351

pseudo-bulk are not constructed for cell types with less than k cells, i.e., all the cells from these352

cell types will be retain for the next steps of scMerge2.353

Pseudo-replicates identification across batches in scMerge2354

Replicates are considered as the samples with similar biological variation across batches. Con-355

struction of pseudo-replicates is one of the key steps in scMerge which later are utilised to es-356

timate the unwanted variation from the data. In scMerge, we proposed a five-step procedure to357

identify pseudo-replicates by clustering on a mutual nearest cluster (MNC) graph, where each358

node of the MNC graph indicates a group of cells in a batch. scMerge2 follows similar steps as359

the previous version, but with two major improvements:360

• The pseudo-replicates identification is based on the pseudo-bulk matrix to reduce the com-361

putational time;362

• For data with multiple conditions (or other observed biological factors), scMerge2 allows363

the MNC graph to be constructed within each condition to preserve the biological variation.364

Note that this strategy can only be used when the batches to be merged have at least one365

common condition and can only be performed in the condition with multiple batches.366
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Estimation of RUVIII model using pseudo-bulk367

The underlying model of scMerge2 is the fastRUVIII model that takes the gene-wise standard-368

ized gene expression matrix that is log-transformed and cosine normalised as input. Let Zcg369

be the standardized data, where c = 1, ..., C, with C indicates the number of cells from all370

batches/datasets in total; g = 1, ..., G, with G indicates the number of genes. Following the same371

annotation in scMerge, we formulate ZC×G using RUVIII model as372

ZC×G = XC×pβp×G +WC×kαk×G + ϵC×G,

where X denotes the matrix of observed factors of interest; p denotes the number of factors373

of interest; W denotes the matrix of unobserved factors of unwanted variation; α denotes the374

coefficient of W ; k denotes the number of unwanted factors, which is unknown (set as 20 by375

default for scRNA-seq data, and 10 for ADT from CITE-seq data and CyTOF data); ϵ denotes the376

random error. Following the RUVIII model estimation proposed in [37, 22], the model removes377

the unwanted variation from ZC×G. In summary, it follows the three steps:378

• Step i: estimate α via the first k right singular vectors of Singular Value Decomposition379

(SVD) on RMZ, where RM = 1−M(MTM)−1MT , with the replicate matrix M ∈ RC×N ,380

N indicates the number of types of pseudo-replicates;381

• Step ii: estimate W by WC×k = Zsα̂
T
s (α̂sα̂

T
s )

−1, where α̂s ∈ Rk×Gs indicates the the382

submatrix of α, which columns include only the genes that belongs to single-cell stably383

expressed genes (SEG) with number of genes as Gs (SEG selection and evaluation can be384

found in [38]);385

• Step iii: adjust the matrix by subtracting the estimated unwanted variation component:386

ẐC×G = ZC×G − ŴC×kα̂k×G.387

SVD is a computationally intensive algorithm, especially for large matrices like single-cell data.388

We argue that for Step 1, we do not need the full single-cell data to estimate α. Instead, we can389

subsample the data or construct cell-type-specific pseudo-bulk which are informative enough390

to approximate the full single-cell matrix to reduce the computational burden in estimation of391

α. Let ZCb×G denote the the “sketch” of the full single-cell matrix derived from pseudo-bulk392

construction step, where the column denotes the number of the genes, with the same dimension393

as the full data Z; the row now indicates the number of pseudo-bulk, with dimension Cb. We then394
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construct pseudo-replicates based on the pseudo-bulk matrix Zb to obtain the replicate matrix395

Mb ∈ RCb×Nb (See Section Pseudo-replicates identification across batches in scMerge2 for more396

details). We estimate α̂b using the first k right singular vectors of SVD on RMb
Zb. By treating397

α̂b as the approximation of α̂, we then next bring back the full single-cell matrix Z to estimate398

W and adjusted Ẑ following the same Steps 2-3 above.399

Hierarchical merging400

When we integrate data from different studies, the unwanted variation can come from multiple401

levels, such as batch effect of samples within each study but also between studies. In this case,402

a hierarchical integration strategy would be useful to first adjust intra-study unwanted variation403

effect, and then perform the inter-study data integration. On the other hand, when we integrate a404

large number of studies, such as the COVID-19 data collection in this paper, starting from cor-405

recting the data of a smaller set of studies can be a more efficient way to estimate the parameters406

of the model to harmonise the data [33].407

scMerge2 allows users to input a hierarchical tree strategy to perform the data adjustment in408

a multi-level manner. The data adjusted on the current level will be used as input on the next409

level. For the COVID-19 200k data collection, we first integrated the the 3 batches within each410

dataset before integrating the two datasets. For the COVID-19 scRNA-seq data collection, we411

first performed the adjustment on four datasets that have multiple cohorts (Ren, Stephenson, Liu412

and Schulte-Schrepping) to correct the intra-study unwated variation (where the cohort label is413

used as batch label) as well as between the two datasets that have very different sequencing depth414

(Arunachalam and Wilk). Next, we performed the adjustment of the 13 datasets with less than415

200,000 cells. We finally integrated all the 20 studies together, where the study label is used as416

batch label.417

Data collection and preprocessing418

COVID-19 scRNA-seq data collection419

We collected 20 public COVID-19 PBMC and whole blood scRNA-seq datasets (Supplementary420

Table 1). The raw count matrix of each dataset is size-factor standardized and log-transformed421

using logNormCount function from scater [39] R package. To unify the cell types from differ-422

ent studies, we performed scClassify to reannotate the cell types based on a 3-level hierarchical423

cell type tree [34], using three distinct reference datasets that were either generated from whole424
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blood (Wilk) or generated by CITE-seq protocol that contains multi-level annotations (Liu and425

Stephenson).426

COVID-19 200k CITE-Seq data collection (COVID-19 200k)427

To benchmark scMerge2 with other methods, we subset 200k cells from the two COVID-19 stud-428

ies (Liu and Stephenson) as a benchmarking dataset that with 17446 genes, 87 proteins and 184429

samples from 3 conditions (Healthy, Mild/Moderate, Severe/Critical) to assess the concordance430

performance of the adjusted gene expression matrix after data integration. Both of these two431

studies have three batches within the studies, which allows us to evaluate the hierarchical merg-432

ing strategy in scMerge2 (i.e., scMerge2-h), where we first integrated the three batches within433

each batch, with kRUV = 10 (kRUV denotes the number of unwanted variation) and then performed434

the integration across two datasets, with kRUV = 10.435

The raw antibody derived tag (ADT) counts matrix of each dataset is size-factor standardized436

and log-transformed using the logNormCount function from scater [39]. In scMerge2, we used437

all features as negative controls and used kRUV = 3 in both levels in scMerge2-h.438

COVID-19 60k data collection (COVID-19 60k)439

To evaluate the robustness of the parameters in scMerge2, we further created a smaller subset440

of data, which is derived from selecting the cells from moderate/mild patients of the Stephenson441

data from the COVID-19 200k data. The selected subset has 66967 cells from 58 samples and442

17446 genes where the aim is to integrate three different batches in the Stephenson data.443

COVID-19 CyTOF data collection444

Two public COVID-19 PBMC CyTOF datasets (Supplementary Table 1) were downloaded445

from FlowRepository with ID FR-FCM-Z2XA for Geanon data [40] (4,747,543 cells from 21446

samples) and zenodo https://doi.org/10.5281/zenodo.6120249 for data from gran-447

ulocyte depleted whole blood in COMBAT study [41] (7,118,158 cells from 160 samples), which448

both contain the expression matrix and cell type annotations. To combine the two studies, we449

manually unified antibody names and the cell type annotations to 18 cell types. The expres-450

sion matrices were then used as input for scMerge2. Noted that we used all features as negative451

controls in scMerge2.452

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.08.519588doi: bioRxiv preprint 

https://doi.org/10.5281/zenodo.6120249
https://doi.org/10.1101/2022.12.08.519588
http://creativecommons.org/licenses/by-nc-nd/4.0/


COVID-19 IMC data collection453

The COVID-19 IMC dataset generated by [29] aims to assess the pathology of lungs across454

Covid-19 disease progression. The dataset, including cell intensities and metadata, was ob-455

tained from the repository https://zenodo.org/record/4139443#.Yw_gk9LMKXI456

provided in the publication and contained 237 images generated from 23 samples across 43 mark-457

ers. In the original manuscript [29], the cell types were annotated by first clustering using the458

Leiden algorithm and then manually curated into 17 meta-clusters based on marker expression,459

phenotype, and proximity to lung structures.460

Evaluation461

Part I - Simulation462

Simulation framework. We adopted a simulation framework to generate single-cell multi-condition463

and multi-sample data with batch effect based on scDesign3 [24]. This framework is able to sim-464

ulate single-cell count data that preserve the gene-wise correlation structure. Similar to many465

other simulators, scDesign3 required a a real training scRNA-seq data to estimate the required466

parameters. Here, we have taken a subset of Stephenson data that contains four cell types (B cell,467

CD14 Monocytes, CD4 T and CD8 T) and 23 samples from two conditions (Healthy and Severe)468

as training data. From each sample, we randomly subsampled 400 cells. Only genes that were469

in the top 2000 highly variable genes and expressed in more than 2% of the cells were included.470

We further excluded any genes that were originally considered as differential expressed (with471

adjusted p-value < 0.2). This resulted in the training data with 9200 cells and 1196 genes from472

23 samples. Our simulation framework includes three main steps.473

474

Step 1: Construct a null dataset with no differentially expressed genes by first permuting the475

condition labels in the training data. We then estimate both cell-type and sample variation in476

the data using the function fit marginal() in scDesign3 that fits the marginal distribution of each477

gene using a negative binomial distribution with the mu formula ∼cell type + sample478

ID + condition and the sigma formula ∼1. Then we used a vine copula to estimate the479

gene correlation from the real training data.480

481

Step 2: Introduce the batch effect to the simulated data. Assuming all genes are affected by482
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the batch variation, we drew a vector with length equal to the number of genes from a log-normal483

distribution with mean log(2) and standard deviation 0.43 as batch effect on the mean of the gene484

distribution. The direction of the batch effect is randomly assigned to each gene.485

486

Step 3: Introduce the ground truth differential state genes to the simulated data. For each487

cell type, we randomly select p% of genes to be differentially expressed between two conditions488

(p = 5, 10 in our study). The log fold changes (logFC) vector is simulated from a log-normal489

distribution, with the mean µlfc and the standard deviation σlfc. In our evaluation setting, we490

consider a range of logFC values from µlfc = 1.1 to 2 in 0.1 increment and σlfc = 0.43. The491

direction of the regulation is randomly assigned to each DS genes using a binomial distribution492

with probability 0.5.493

494

Lastly, with the fold change of both batch effect and condition effect combined with the495

parameters estimated in Step 1, the simulated single-cell data is generated from the negative bi-496

nomial distribution using strategies implemented in simu new() of scDesign3. For each value of497

logFC, we simulated 18, 400 cells (23 samples, each sample with 800 cells), with 5% or 10%498

differential states genes within each cell types.499

500

Evaluation metrics and settings - Differential states analysis. To assess the impact of data inte-501

gration on downstream analytics, we considered the performance of the differential states anal-502

ysis results on the simulated data. Our evaluation is based on three metrics; false discovery rate503

(FDR), true positive rate (TPR) and F1 scores. For each log-transformed simulated matrix with504

dimension G×C, with S samples and T cell types, we took the gene-wise average of each sample505

within each cell type, resulting in a G× S matrix for each cell type. We then performed a differ-506

ential state analysis using the limma-trend algorithm [25] on the cell-type specific sample-wise507

aggregated data using the default parameters.508

Part II - Real data comparison509

Evaluation setting for scRNA-seq and CITE-seq data collection.510

1. Signal to noise ratio: We used ARI and ASW (see evaluation metrics below) to evaluate511

the concordance of clustering results with respect to the cell type labels and the datasets.512

A desirable data integration method will show a high concordance between the clustering513
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result and known cell type information (signal refers to cell types) and a low concordance514

between the clustering results and known datasets information (noise refers to batch effect).515

2. Severity prediction: We aggregated cell-type-specific average expression of each sample to516

a gene by sample matrix for each cell type. We then used each cell-type specific matrix to517

predict the sample condition (Healthy, Mild/Moderate and Severe/Critical) using support518

vector machine (SVM) with radial basis function kernel. The prediction performance was519

evaluated using repeated 5-fold cross validation with 20 repeats. We evaluate the prediction520

performance using F1 score.521

3. Visualisation plot: For scRNA-seq data, we used Uniform Manifold Approximation and522

Projection (UMAP) to visualise and evaluate the results of the adjusted expression matrix.523

For CITE-seq case study, we used j-UMAP to jointly visualise the two modalities [32],524

where we first performed PCA within each modality, and then j-UMAP was performed to525

obtain the joint UMAP embeddings of the two modalities.526

Evaluation on IMC data collection. We applied scMerge2 to perform data integration of the 23527

samples. This is achieve by first filtering and selecting the data using the 38 markers specified in528

the original publication [29] and removing all undefined cell types (i.e. cells having cell type an-529

notation as “nan”). Next, considering sample labels as batch information, we applied scMerge2530

with settings kRUV = 2, kpseudoBulk = 5, kcelltype = 20, using all markers as negative control genes531

and highly variable genes. Thirdly, unsupervised clustering was performed on both the unnor-532

malised and scMerge2 normalised datasets using the FlowSOM [30] algorithm with 17 clusters.533

The Adjusted Rand Index (ARI) was used to compared the concordance between this unsuper-534

vised clustering with the manually curated cell types in the original manuscript [29]. The results535

are visualised using heatmaps showing the average marker abundance in the cell types. Average536

marker abundance were generated after scaling the marker expression by computing the ratio of537

the mean of each marker and its standard deviation.538

539

Sensitivity analysis of scMerge2. We examined the robustness of the following parameters in540

scMerge2: the number of pseudobulk constructed; the number of neighbours in SNN graph;541

the pseudobulk construction strategy and the number of unwanted variation. We performed our542

sensitivity analysis on the COVID-19 60k data on a number of settings for each of the four543

parameters as below:544
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• Number of pseudobulk constructed within each group: 10, 20, 30, 40 and 50545

• Number of neighbours in SNN graph: 5, 10, 15, 20, 25 and 30546

• Ways of pseudobulk construction: Default, Pool-Divide, Pool-Divide (Random)547

• Number of factors of unwanted variation to be removed: 10, 15, 20, 25 and 30548

For each setting, we repeat the analysis 10 times with a different seed and assess the concordance549

performance of the signal to noise ratio using ASW and ARI as evaluation metrics as describe in550

the Section Evaluation metrics. We compared against benchmarking methods described in the551

Section Benchmarking methods.552

Evaluation metrics553

We used three metrics to assess the performance of data integration results from different meth-554

ods. Details of the evaluation metrics are described as follows:555

• Adjusted Rand Index (ARI) - Clustering analysis: We used ARI to quantify the concordance556

of the clustering results with respect to the cell type (ARI (cell type)) and batch labels557

(ARI (batch)). The clustering results for all methods were derived from first building558

a shared nearest neighbour from the batch corrected embeddings with a default number559

of neighbours of 10, followed by louvain clustering. For scMerge2, the batch corrected560

embeddings were derived from the top 20 PCs of the adjusted gene expression matrix.561

• Average silhouette width (ASW) - Embedding visualisation: We calculated the average of562

silhouette coefficients for each cell (ASW) by considering two different groupings: cell563

type (ASW (cell type)) and batch label (ASW (batch)), based on the Euclidean distance564

obtained from the UMAP embeddings generated from the batch corrected embeddings.565

• PCA scores: We calculated the coefficient of determination (R2) for a linear regression566

model that fitted each of the first 20 principal component with technical variation labels,567

such as batch, technology and protocol labels. We then calculated the product of the vari-568

ance explained by each principal component and the corresponding R2. The final PCA569

score was calculated by summing across the products, which quantify how much the PCs570

explained the unwanted technical variation.571
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Benchmarking methods572

We benchmarked the performance of scMerge2 against five other methods that are designed573

for data integration of scRNA-seq datasets in terms of the batch corrected embeddings in the574

COVID-19 200k data. Detailed settings used in each method are as follows:575

(i) Seurat. Applying Seurat with canonical correlation analysis set as the reduction method.576

Version 4.1.1. of the Seurat[42] R package was used. We first identified the variable features577

within each batch using FindVariableFeatures() and then selected the integration features using578

SelectIntegrationFeatures(). The integration anchors were then identified using FindIntegratio-579

nAnchors() with reduction set as “cca”, followed by IntegrateData() to obtain the integrated data.580

(ii) SeuratRPCA. Similar to Seurat (CCA), within each batch, we first found the variable581

features, with an addition PCA step performed. After integration features were selected, Find-582

IntegrationAnchors() was performed with reduction set as “rpca”. Lastly, IntegrateData() was583

performed to obtain the integrated data.584

(iii) fastMNN. This is a fast version of the mutual nearest neighbors (MNN) method [43]. R585

package batchelor v1.12.3 was used. We ran fastMNN() with default parameters to derived both586

the batch corrected embeddings and adjusted expression matrix.587

(iv) Liger. R package rliger v1.0.0 [44] was used. Online integrative nonnegative ma-588

trix factorization was performed to obtain the batch corrected embedding following the tutorial589

(https://github.com/welch-lab/liger/blob/master/vignettes/online_590

iNMF_tutorial.html), where we first ran selectGenes() to select the features, scaleNotCen-591

ter() to scale the features, and online iNMF() with miniBatch size = 5000 and max.epochs = 5.592

(v) Harmony. R package Harmony v0.1.0 [18] was used. The PCA space returned by run-593

PCA() of R package scater was used as input, and then HarmonyMatrix() was performed with594

do pca = FALSE to retain the batch corrected embedding.595

COVID-19 downstream analysis596

Differential abundance analysis on the cells from mild/moderate and severe/critical samples597

Differential abundance (DA) analysis was performed on the cells from mild/moderate and se-598

vere/critical samples using DA-seq [26]. The top 30 PCs derived from the adjusted expression599

data were used as input for the algorithm to calculate the DA scores. A range of k values from 50600

to 500 was used for the calculation of DA score vector with kNN. We define salient differential601
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abundance (DA) cells as cells with absolute abundance scores greater than 0.8.602

Differential states analysis of DA cells603

For all DA cells, we aggregated cell-type-specific abundance scores (or values) of each sample604

to a gene by sample matrix for each cell type. Next, we model the aggregated cell-type-specific605

abundance values across using a linear model with severity and the days since symptom onset606

as covariates. We account for sample level variability using the limma-trend implementation in607

the R package limma [25]. We then ranked the genes based on the test statistics. The preranked608

based gene set enrichment analysis (GSEA) of the selected pathways that are related COVID-609

19 disease mechanism [28] (as listed in Fig. 4c) is measured using the fgsea function in the610

R package fgsea v1.22.0 [45]. Significant pathways are defined with adjusted p-value less than611

0.05.612
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Data availability613

All data used in this study are included in Supplementary Data 1. All analysis was done in R614

version 4.1.2.615

Code availability616

The code to run scMerge2 is part of the scMerge package (Github: https://github.com/SydneyBioX/scMerge)617

and is available under the GPL-3 license.618
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Figure legends744
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Figure 1: Overview of scMerge2: This new scalable algorithm uses (i) hierarchical integration

to capture both local and global variation; (ii) pseudo-bulk construction to reduce computational

load; and (iii) phenotype specific pseuduo-replicate, and outputs adjusted expression matrix for

millions of cells ready for downstream analysis.

29

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.08.519588doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.08.519588
http://creativecommons.org/licenses/by-nc-nd/4.0/


Scaled scores

0.00
0.25
0.50

0.75

1.00

Ranking
1

8

a b

2
3
4
5
6
7

Raw

Liger

fastMNN

SeuratRPCA

Seurat

Harmony

scMerge2

scMerge2-h

A
R

I (
ba

tc
h)

A
R

I (
ce

ll 
ty

pe
)

A
S

W
 (b

at
ch

)

A
S

W
 (c

el
l t

yp
e)

P
C

A
 (b

at
ch

)

O
ve

ra
ll

Raw

Liger

Harmony

fastMNN

Seurat

SeuratRPCA

scMerge2

scMerge2-h

0.3

0.4

0.5

0.6

0.80 0.85 0.90 0.95 1.00
1 − ARI (batch)

A
R

I (
ce

ll 
ty

pe
)

Raw

Liger

HarmonyfastMNN

Seurat
SeuratRPCA

scMerge2

scMerge2-h

−0.1

0.0

0.1

0.2

1.08 1.09 1.10 1.11 1.12
1 − ASW (batch)

A
S

W
 (c

el
l t

yp
e)

threshold = 0.001 threshold = 0.01 threshold = 0.05

C
D

14
C

D
4

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

logFC

F1

Raw fastMNN Seurat scMerge2c

# of pseudobulk 10 20 30 40 50

d

0.05

0.10

0.15

0.20

0.25

0.95 1.00 1.05
1 − ASW (batch)

A
S

W
 (c

el
l t

yp
e)

Raw

Liger

Harmony

fastMNN

Seurat
SeuratRPCA

Figure 2: (a) Scatter plots of evaluation metrics of data integration of a 200k cells subset of two

COVID-19 studies (Liu and Stephenson) for scMerge2, scMerge2-h (data merged in a hierarchi-

cal manner), Seurat, Seurat (RPCA), Harmony, fastMNN, Liger and Raw: Adjusted rand index

(ARI) (left panel), where x-axis indicates 1 minus batch ARI and y-axis indicates cell type ARI;

Average silhouette width (ASW), where the x-axis is 1 minus batch ASW and y-axis is the cell

type ASW (right panel). (b) Dot plots indicate the ranking of the data integration methods in

terms of five different evaluation metrics. The size of the dot indicates the scaled scores, which

are obtained from the min-max scaling of the original values. The overall ranking is ranked

based on the average ranking of the five evaluation metrics. (c) F1-score of the differential state

(DS) results of two selected cell types (CD14 and CD4) (row) of simulated data, with 10% DS

genes within each cell type, for scMerge2, Seurat, fastMNN and raw, varying simulated log fold

change (logFC) of DS genes (x-axis) and different threshold of adjusted p-value (column). (d)

Scatter plots of evaluation metrics of robustness analysis when varying the number of pseudob-

ulk constructed within each cell type of each batch, where the x-axis is 1 minus batch ASW and

y-axis is the cell type ASW.

30

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.08.519588doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.08.519588
http://creativecommons.org/licenses/by-nc-nd/4.0/


−15

−10

−5

0

5

10

−5 0 5 10

DC
CD16 Mono
CD14 Mono
B
Plasma
CD4 T
NK
CD8 T
MAIT
gdT
dnT
NKT
Neutrophil
MAST
Platelet
HSC
RBC
ILC
Intermediate
Unassigned

−15

−10

−5

0

5

10

−5 0 5 10

Arunachalam (2020)
Bost (2021)
COMBAT (2022)
Combes (2021)
Lee (2020)
Liu (2021)
Ramaswamy (2021)
Ren (2021)
Schulte−Schrepping (2020)
Schuurman (2021)
Silvin (2021)
Sinha (2021)
Stephenson (2021)
Su (2020)
Thompson (2021)
Unterman (2022)
Wilk (2021)
Yao (2021)
Zhao (2021)
Zhu (2020)

a

0.55

0.60

0.65

0.70

0.75

0.80

0.85

C
D

14
 M

on
o

C
D

4 
T

N
K

C
D

8 
T B

C
D

16
 M

on
o

N
K

T

D
C

gd
T

P
la

te
le

t

M
A

IT

P
la

sm
a

N
eu

tro
ph

il

A
cc

ur
ac

y

Raw
scMerge2

c

U
M

A
P

2

UMAP1

b

0.000

0.025

0.050

0.075

0.100

Dataset Protocol Technology

P
C

A
 s

co
re

s

Raw
scMerge2

Figure 3: (a) UMAP of integration of COVID-19 data collection by scMerge2, colored by cell

type (left) and studies (right). (b) Evaluation metrics of PCA scores using dataset, protocol and

technology as labels, comparing raw logcounts (blue) and scMerge2 normalised results. A lower

score indicates better unwanted technical variation removal. (c) Prediction results of disease

severity using cell type-specific aggregated expression calculated from raw logcounts (blue) and

scMerge2 normalised results (red).
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Figure 4: (a-b) UMAP plot of integrated COVID-19 data coloured by (a) differential abundance

(DA) probability scores calculated by DA-seq between the moderate and severe patients, where

higher scores indicated the cells are more related to severe states; (b) DA region associated with

disease severity identified by DA-seq. (c) Enrichment scores of selected pathways for cell-type-

specific differential expressed genes distinguished the severity, where a higher score indicates a

higher enrichment associated with severe states. The size of the dot indicates the -log10 adjusted

p-value, where black circles indicate statistical significance (adjusted p-value < 0.05); and the

colour indicates the normalised enrichment scores of the pathways. (d) Scatter plots showing per-

sample gene set signatures (Type-1 IFN) calculated from the scMerge2 normalised data along the

days since symptom onset, coloured by disease severity of the patient. CD14 Monocytes, CD4

CM and CD4 Naive are shown as examples.
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Figure 5: (a) UMAP plots of CyTOF data colored by dataset (left) and cell type (right), for orig-

inal (first row) and scMerge2 (second row). The red circles highlight the cell types (Neutrophils

and Eosinophils) that are unique to Geanon (CyTOF). (b) Density plot of selected markers in spe-

cific cell types (CD4 in CD4 T cells), using original expression (first row) and scMerge2 adjusted

expression (second row). Within a specific cell type, the distribution of the cell type markers are

expected to be similar between two datasets. (c) Heatmaps indicate the clustering results and

their fractions of concordance with the original cell type annotation given in [29] for Original

(first row) and scMerge2 (second row). Clearer diagonal structure illustrates better concordance.

(d) Heatmaps indicate the average marker expression, calculated from cells aggregated by clus-

ters for Original (first row) and scMerge2 (second row). More specific markers for each column

and row indicates more distinguished clusters being identified. (e) Scatter plot indicates the av-

erage marker expression for each cluster, calculated using Original data (first row) and scMerge2

adjusted data (second row), for two pairs of protein markers: CD4 vs CD8 (first column); and

CD4 vs CD20 (second column). Low concordance between the two markers is expected to reveal

cluster with specific markers. (f) J-UMAP plot of integrated CITE-seq data colored by dataset

(left) and cell type (middle) and severity (right).
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Supplementary Figure S1: UMAP plots of an example of simulated data (logFC = 1.2, DS% =

5%), coloured by batch, sample id, cell type and condition.
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Supplementary Figure S2: MA plots of the real and simulated data, where x-axis is the aver-

age of gene expression and y-axis is the difference of the gene expression between two condi-

tion: (a) Real data; (b) Simulated data using mu formula ∼cell type, estimated from data

with one condition; (c) Simulated data using mu formula ∼cell type + sample ID +

condition, estimated from data from two conditions but with condition label permuted. The

red dots indicates the simulated ground truth DS genes. The simulation strategy (c) exhibits a

more similar pattern with the real data, which therefore is used in this study.
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Supplementary Figure S3: F1-score of the differential state (DS) results of four cell types (B

cell, CD14, CD4 and CD8) (row) of simulated data, with 5% (1st - 3rd column) and 10% DS

genes (4th - 6th column) within each cell type, for scMerge2, Seurat, fastMNN and raw, varying

simulated log fold change (logFC) of DS genes (x-axis) and different threshold of adjusted p-

value (column).
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Supplementary Figure S4: FDR of the differential state (DS) results of four cell types (B cell,

CD14, CD4 and CD8) (row) of simulated data, with 5% (1st - 3rd column) and 10% DS genes

(4th - 6th column) within each cell type, for scMerge2, Seurat, fastMNN and raw, varying sim-

ulated log fold change (logFC) of DS genes (x-axis) and different threshold of adjusted p-value

(column).

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.08.519588doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.08.519588
http://creativecommons.org/licenses/by-nc-nd/4.0/


B_cell
C

D
14

C
D

4
C

D
8

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

logFC

TP
R

logcounts

fastMNN

Seurat

scMerge2

DS%: 5%

threshold = 0.001

DS%: 5%

threshold = 0.01

DS%: 5%

threshold = 0.05

DS%: 10%

threshold = 0.001

DS%: 10%

threshold = 0.01

DS%: 10%

threshold = 0.05

Supplementary Figure S5: TPR of the differential state (DS) results of four cell types (B cell,

CD14, CD4 and CD8) (row) of simulated data, with 5% (1st - 3rd column) and 10% DS genes

(4th - 6th column) within each cell type, for scMerge2, Seurat, fastMNN and raw, varying sim-

ulated log fold change (logFC) of DS genes (x-axis) and different threshold of adjusted p-value

(column).
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Supplementary Figure S6: Robustness analysis of the tuning parameters of scMerge2 using

COVID-19 60k data: Adjusted rand index (ARI) (left panel), where x-axis indicates 1 minus

batch ARI and y-axis indicates cell type ARI; Average silhouette width (ASW), where x-axis

indicates 1 minus batch ASW and y-axis indicates cell type ASW (right panel), when varying (a)

the number of pseudobulk constructed (10, 20, 30 (default), 40, 50); (b) the number of k used in

SNN graph (5, 10 (default), 15, 20, 25, 30); (c) different methods to construct pseudobulk. (d)

Number of unwatned variation factors (5, 10, 15, 20 (default), 25, 30).
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Supplementary Figure S8: UMAP of integration of COVID-19 data collection after scMerge2

integration, coloured by (a) level 1 cell type annotation; (b) level 3 cell type annotation and (c)

severity.
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Supplementary Figure S9: UMAP of integration of COVID-19 data collection after scMerge2

integration, coloured by cell type (level 2) and faceted by dataset.
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Supplementary Figure S10: Boxplots of evaluation metrics of COVID-19 scRNA-seq data col-

lection for scMerge2-h (data merged in a hierarchical manner) and Raw, where the first row

indicates the results of adjusted rand index (ARI): 1 minus batch ARI (left) and cell type ARI

(right); the second row indicates the results of Average silhouette width (ASW): 1 minus batch

ASW (left) and cell type ASW (right). For all of the four metrics, higher value indicates better

performance. Since the size of this data collection is large, we subsampled 1% of the cells to

calculate the metrics, and repeated this procedure 10 times.
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Supplementary Figure S11: Prediction results of disease severity using cell type-specific ag-

gregated expression calculated from raw logcounts (blue) and scMerge2 adjusted results (red),

evaluated by class-specific F1 scores.
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Supplementary Figure S12: Scatter plot shows the proportion of cells in Moderate region (x-

axis) vs the proportion of cells in Severe region, determined by DAseq. The size of each point

indicates the cell type proportion in the all data (Only cell types that have more than 1% in the

data are shown).
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Supplementary Figure S13: Density plot of selected marker in specific cell type: CD8a in CD8

T cells; CD56 in NK cells; CD19 in B cells and CD20 in B cells, using (a) original expression

and (b) scMerge2 adjusted expression. Within a specific cell type, the distribution of the cell type

marker is expected to be similar between two datasets.
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Supplementary Figure S14: CITE-seq data example: (a) Scatter plots of evaluation metrics of

ADT data integration of a 200k cells subset of two COVID-19 studies (Liu and Stephenson) for

scMerge2, scMerge2-h (data merged in a hierarchical manner), Seurat, Seurat (RPCA), Harmony,

fastMNN, Liger and Raw: Adjusted rand index (ARI) (left panel), where x-axis indicates 1 minus

batch ARI and y-axis indicates cell type ARI; Average silhouette width (ASW), where x-axis

indicates 1 minus batch ASW and y-axis indicates cell type ASW (right panel). (b) Dot plots

indicates the ranking of the data integration methods in terms of 5 different evaluation metrics.

The size of the dot indicates the scaled scores, which are obtained from the min-max scaling

of the original values. The overall ranking is ranked based on the average ranking of the five

evaluation metrics.
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Supplementary Figure S15: CITE-seq data example: Prediction results of disease severity using

cell type-specific aggregated expression calculated from raw logcounts (blue) and scMerge2 nor-

malised results (red), using (a-b) ADT expression and (c-d) RNA expression.
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