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Abstract 7 

Both deterministic and stochastic forces shape biofilm communities, but the 8 

balance between those forces is variable. Quantifying the balance is both 9 

desirable and challenging. For example, negative drift selection, a stochastic 10 

force, can be thought of as an organism experiencing ‘bad luck’ and 11 

manipulating ‘luck’ as a factor in real world systems is difficult. We used an 12 

agent-based model to manipulate luck by controlling seed values governing 13 

random number generation. We determined which organism among identical 14 

competitors experienced the greatest negative drift selection, gave it a 15 

deterministic growth advantage, and re-ran the simulation with the same seed. 16 

This enabled quantifying the growth advantage required to overcome drift, e.g., a 17 

50% chance to thrive may require a 10-20% improved growth rate. Further, we 18 

found that crowding intensity affected that balance. At moderate spacings, there 19 

were wide ranges where neither drift nor growth dominated. Those ranges shrank 20 

at extreme spacings; close and loose crowding respectively favoured drift and 21 

growth. We explain how these results may partially illuminate two conundrums: 22 

the difference between taxa and functional stability in wastewater treatment 23 
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plans and the difference between equivalent and total community size in neutral 24 

community assembly models. 25 

Keywords: agent-based model, biofilm, drift, neutral assembly, community 26 

assembly, individual based model  27 
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1 Introduction 28 

Both stochastic and deterministic assembly processes can shape biofilm populations.1,2 Those 29 

processes, however, rarely act equally and the balance between them is determined by many 30 

conditions related to competition intensity. Such conditions include population size,3,4 available 31 

space,5 and resource availability.6 Understanding how this balance shifts under differing conditions  32 

provides insights into biofilm-associated systems such as environmental bioreactors, healthcare, 33 

industrial production, and natural ecosystems. 34 

Here, we attempt to quantify the balance between drift, a pure stochastic process,1,3 and a more 35 

deterministic kinetic advantage. Under this balance, even if losing the ‘drift lottery,’ an individual’s 36 

progeny may thrive if their maximum growth rate (μmax) or substrate affinity (Ks) confers increased 37 

fitness over their competitors.  38 

Such quantification is challenging. Drift is an inherently random process and experimental 39 

manipulation of a random process, distinct from simply controlling for it, is difficult. Despite that 40 

difficulty, there have been some physical experiments in which drift is isolated as an experimental 41 

factor,4,7,8 often requiring subtle statistical analyses or extremely precise experimental work. 42 

An alternative approach, used here, is to perform the experiments in silico where drift may be 43 

directly manipulated via random number generation. We used an agent-based model (NUFEB)9,10 to 44 

simulate spatially competing bacteria under low nutrient conditions. The bacteria were identical and 45 

evenly spaced, differentiated only by random growth directions and biomass allocations during 46 

division. Drift was therefore the only selection process and was controlled by the seed value 47 

initializing the random number generator.  48 

Our goal was to determine the degree to which a deterministic factor (here, Monod kinetics) must 49 

improve to overcome negative drift selection, so subsequent simulations using identical seeds were 50 

run. The difference was that the ‘biggest loser’, the lineage with the lowest relative abundance, was 51 
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assigned different kinetics. This approach allowed us to relate quantifiable fitness changes to the 52 

likelihood that the failing lineage would overcome negative drift and thrive. We also determined how 53 

the required degree of fitness advantage varied under differing crowding intensities (e.g., closer 54 

spacing and increased initial population size). 55 

We found that under purely stochastic conditions the losing lineage varied unpredictably between 56 

runs, showing the expected effects of drift. Further, altered fitness did enable losing lineages to 57 

overcome drift. For example, for an initial population of 9 cells evenly spaced 10 diameters apart 58 

either Ks or μmax had to improve by at least 10-20% for a 50% chance of thriving. Crowding affected 59 

both the improvement needed for a 50% chance of thriving and the ranges over which both drift and 60 

fitness co-dominated. The strong and sometimes non-linear interactions between terms could not be 61 

adequately reproduced using simple linear estimators but could be adequately expressed with a 62 

generalized additive model. 63 

2 Methods 64 

2.1 Agent Based Model  65 

The agent-based model employed NUFEB (Newcastle University Frontiers in Engineering 66 

Biology),9,10 which is based on the LAMMPS9 molecular dynamics simulation framework and has 67 

successfully been used to model multi-species biofilms,10 including development and detachment,7  68 

trade-offs in extracellular polymeric substance production,11 and phototroph-heterotroph metabolic 69 

interactions.12.   70 

NUFEB is not lattice based, cells were positioned in three dimensions and had individual dynamic 71 

sizes. The directions in which cells divided and biomass allocations (40 to 60%) during division were 72 

randomly determined using a Park-Miller pseudorandom number generator and were the two factors 73 

contributing to drift.  74 
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The individually simulated bacterial cells physically interacted using realistic physics and grew 75 

according to Monod-style models described by Equation (1) where µ is the substrate-dependent 76 

growth rate (1/hr), µmax is the maximum specific growth rate (1/hr), [S] is the concentration of the 77 

relevant substrate (kg/m3), and Ks is the affinity constant for the substrate (kg/m3). Additional 78 

descriptions of NUFEBs mechanics are detailed in previous publications.9,10 79 

 
𝜇 =  𝜇𝑚𝑎𝑥

[𝑆]

𝐾𝑠 + [𝑆]
  

(1) 

The simulation volume height (2x10-4 m) was defined to be in the Z-dimension, the bulk substrate 80 

concentration boundary condition at the top of the simulation volume was 1x10-4 kg/m3 and the 81 

initial substrate concentration throughout the volume was set to the same value. The X and Y 82 

dimensions were equal and varied based on spacing and number of initial cells. Additionally, the X 83 

and Y boundaries were periodic, allowing biomass and substrates to wrap from one side of the 84 

simulation to the other.   85 

2.2 Experimental Approach 86 

The base experimental unit was an agent-based simulation initially seeded with identical bacterial 87 

cells with starting diameters of 1x10-6 m, Ks of 3.5x10-5 kg/m3, µmax of 1 h-1, and yield 0.61 kg 88 

biomass per kg substrate consumed. The initial cells (total population 4, 9, or 16) were arranged 89 

along evenly spaced (2.5, 5, or 10 cell diameters) MxM points at the base of the simulation volume. 90 

Bacteria were allowed to grow and compete until 20% of the simulation volume consisted of 91 

heterotrophic biomass.  92 

Each combination of populations sizes and spacings was run 120 times using different seed values to 93 

initialize the random number generator and the ‘biggest loser’ from each run was identified (see 2.3). 94 

Those simulations were then run again, but with the failed lineage given altered kinetic values (see 95 

2.4). The results of the runs were used to determine how the altered kinetics contributed to the 96 
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probability of transitioning from drift-driven failure to a thriving state (see 2.5) under various 97 

crowding intensities.  98 

All combinations of the factor levels listed in Table 1 (1089 combinations) were simulated for each 99 

of the 120 seeds, resulting in a total of 130680 runs. Each run required between 2 to 36 hours to 100 

complete, so the simulations were carried out on a high-performance computing cluster (see 2.6). 101 

Table 1: Experimental factors and levels 102 

Factor Values 

Spacing (cell diameters) 2.5 5 10         

Initial Population Size 4 9 16         

% Change in Ks -50 -40 -30 -20 -10 0 10 20 30 40 50 

% Change in µmax -50 -40 -30 -20 -10 0 10 20 30 40 50 

2.3 Determining Failed Lineages 103 

For a system initialized with N bacterial lineages, the total biomass Xt is the sum of the biomass for 104 

each lineage Xi, as expressed by equation(2). 105 

 

𝑋𝑡 = ∑ 𝑋𝑖

𝑁

𝑖

 
(2) 

In a system where each initial cell is identical, with no competition, and with no random effects, all 106 

Xi are expected to be equal, thus the expected relevant abundance of any lineage (XE) is given as: 107 

 
𝑋𝐸 = 𝑋𝑇/𝑁 

(3) 

In the first round of simulations, all initial cells were identical and evenly spaced, but cell division 108 

directions and biomass allocations during division were determined randomly. As a result, the final 109 

biomass for any lineage was often not equal to the expected relevant abundance, 𝑋𝑖 ≠ 𝑋𝐸. In 110 

practice, there were often one or two lineages which strongly dominated with Xi ≫ XE, one or two 111 

lineages which became vanishingly small with Xi ≪ XE (the ‘biggest losers’), and the rest persisted at 112 

some noticeable abundance that was however below XE.  Moreover, the outcomes appeared to be 113 

determined early in the simulation, especially for the best and worst performing lineages. (Supporting 114 

Information Figure S1, Table S1, and Video SV1). We have defined three classifications of lineage 115 
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survival based on the difference between XE and Xi: languishing (𝑋𝑖 < 0.3 𝑋𝐸), thriving (𝑋𝑖 >116 

0.9𝑋𝐸), and barely surviving (0.3 𝑋𝐸 ≤ 𝑋𝑖 ≤ 0.9𝑋𝐸). 117 

2.4 Fitness Alteration 118 

The worst-performing bacterial lineages from each of the initial homogenous runs were given a 119 

potential competitive advantage by altering their individual maximum specific growth rate (µmax) 120 

and/or their substrate affinity (Ks) (Figure 1). The altered values were selected as described in Table 121 

1. We acknowledge that not all combinations of µmax and Ks were advantageous and that µmax and Ks 122 

are often strongly correlated; here our goal was to thoroughly explore the parameter space. 123 

  124 
Figure 1: Illustration of a parameter sweep. Under baseline conditions when all bacteria are identical (left hand side), colony 4 was the 125 

worst performing lineage. When colony 4 was given a competitive advantage (right hand side) via reduced KS and increased µmax, 126 
colony 4 transitioned to thriving. This result along with all other parameter combinations across 120 random seeds was used to 127 

estimate pthrive, the probability that the worst-performing colony would transition to thriving under given altered kinetics.  128 

2.5 Probability Map Generation 129 

The kinetic parameter sweeps were used to generate tables for each combination of factors which 130 

listed the final relative biomass of each bacterial lineage, that lineage’s status as the ‘biggest loser’, 131 

and the lineage’s success under each run. The percentage of failing lineages across all random seeds 132 

which transitioned to thriving was calculated for each combination of initial population size, spacing, 133 

µmax, and Ks.  Those percentages represent the probabilities that the fitness advantage (if any) 134 

conferred by altered kinetics would outweigh negative drift selection under the given conditions.  135 
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2.6 Simulation Management 136 

Simulations were run and their results tabulated on the Newcastle University Rocket High 137 

Performance Computing environment and managed using Snakemake13,14 workflows populating a 138 

SLURM15 queue. Each simulation was run on a single core, with multiple hundreds of simulations 139 

run in parallel.  Job submissions encompassed all kinetic parameter sweeps for each combination of 140 

other parameters, e.g., a single batch submission would consist of all combinations of µmax and Ks for 141 

4 bacteria, spaced 5 diameters apart. 142 

2.7 Data Analysis 143 

Simulation results were saved as tabular comma separated value (CSV) text files and aggregated 144 

using BASH16 (v. 4.2) shell and Python17 (v. 3.8) scripts which included the NumPy18 and pandas19 145 

libraries. Further processing of the data was performed off the cluster and used R20 (v. 4.2) scripts 146 

incorporating various Tidyverse21 and other supporting packages.22–43 147 

2.7.1 Parameters Quantifying the Balance Between Drift and Fitness 148 

Each probability map was conceptually analogous to a cliffside; a continuous sharp probability 149 

threshold gradient separated by two flat regions of either 100% lineage success or failure (Figure 2 150 

A). We wished to quantify the midpoint and steepness of the gradient along lines of constant Ks for 151 

each crowding condition. A cross-section of the probabilities along µmax for any constant Ks produces 152 

a sigmoid-shaped profile (Figure 2 B). The profiles were fit to a logistic function of µmax with a 153 

maximum value of 1 given by equation (4), where pthrive is the probability of transitioning to a 154 

thriving colony, k is a parameter affecting the steepness of the curve, and µ50 is the µmax value at 155 

which there is a 50% probability of thriving. 156 

 

𝑝𝑡ℎ𝑟𝑖𝑣𝑒 =  
1

1 + 𝑒−𝑘∗(𝜇50−𝜇𝑚𝑎𝑥)
 

(4) 

The relevant k and µ50 parameters from each fit were recorded. We also determined the domains of 157 

µmax values associated with the 𝑝𝑡ℎ𝑟𝑖𝑣𝑒 ranges covering either a 2.5-95% or 16-84% chance of 158 
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thriving. These domains, respectively named spread95 and spread68 quantified the regions over which 159 

neither drift nor fitness dominated.  160 

 161 
Figure 2: Illustration of how the µ50 and spread parameters were calculated. In this example, the probability map corresponding to 4 162 

initial organisms placed 5 diameters apart is shown (A), and the dashed line is drawn along a line of constant Ks. The full length of the 163 
line denotes the spread95 region, the portion between crosses denotes spread68, and the solid point represents the µ50 mark. When the 164 
pthrive values are plotted as a function of µmax along the line of constant Ks, (B) it is apparent that a logistic function (grey solid line) 165 
may be fitted to the points (black rings). The fitted function was used to estimate both the value of µ corresponding to µ50 and the 166 

widths of the spread regions. This analysis was repeated for all crowding conditions along all lines of constant Ks. 167 

The results of all sigmoid fits are shown in Supporting Information Figures S2-S10. 168 

2.7.2 Analysing Balance Parameters 169 

Within each crowding scenario, the extracted parameters were analysed using simple linear 170 

regression models of the parameters as functions of Ks. The effect of crowding pressure (spacing and 171 

total population) was then analysed by comparing the results of the fits between scenarios. 172 

We note that although the linear fits for a 2nd order polynomial on µ50 generally resulted in 173 

marginally improved R2
 scores and removed parabolic patterns from the residuals, the simple linear 174 

regressions were still excellent and more interpretable; care should be taken if extending this work to 175 

larger ranges of kinetic values. 176 
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2.7.3 Modelling the Effect of Competitive Pressure and Altered Kinetics 177 

We wished to determine if a model based on the simulation results could accurately reproduce the 178 

transition probabilities for each crowding scenario.  The ultimate goal of these models was not 179 

prediction, but to provide a descriptive framework44 showing which factors, interactions, and 180 

potential non-linearities were important. Variations on both multiple linear regression models (MLR) 181 

and Generalized Additive Models (GAMs)45 were fitted to either the log-likelihood of pthrive (for 182 

MLRs) or directly to pthrive (GAMs).  183 

In both cases, backward step selection from factorial models incorporating up to three-way 184 

interactions was performed to select the final model. Non-significant (p > 0.05) terms were 185 

iteratively removed from the model starting with the highest order interactions. Main effects were 186 

retained even if non-significant when they were part of a significant interaction term. 187 

The final models were selected based on R2 and Akaike Information Criterion (AIC) values as well 188 

as interpretability. The potential models and the associated fit criteria are included in Supporting 189 

Information Tables S2-S5. 190 

3 Results 191 

3.1 Drift Occurred When All Cells Were Identical 192 

A foundational assumption of this approach is that even in a system with equally spaced, identical 193 

microbes, random growth will lead to drift. We tested this assumption for crowding scenarios where 194 

all microbes had identical base Ks and µmax parameters by determining the number of times each 195 

lineage was the ‘biggest loser’ over 120 simulations (Figure 3) and, similar to testing m dice for 196 

fairness, applied a Chi-Square test (α=0.05/m) where m is a Bonferroni correction for multiple testing 197 

(m=9 at 3x3 initial spacings and population sizes).  Each initial site was statistically as likely as any 198 

other to be the biggest loser (Supporting Information Table S6). 199 
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 200 
Figure 3: The number of times each colony was the least successful performer during all 120 runs of the baseline simulation where all 201 
bacteria were identical. Dashed grey lines indicate the expected value. Points are colored based on spacings between initial sites. For 202 

each set of initial populations, no colony appeared biased away from the expected number of failures. 203 

Additionally, the relative proportion of lineages which languished, survived, or thrived for each set 204 

of crowding conditions was determined. Simulations, on average, had between one and two thriving 205 

lineages, with the rest languishing (65-75% for 4 initial sites, 80-88% others), and a few (0-5%) 206 

which did not thrive but grew to non-negligible abundance (Supporting Information Table S1). When 207 

4 organisms were initially present, only languishing and thriving lineages existed, there was 208 

otherwise no clear trend between these ratios and either the number or spacing of initial bacteria. 209 

3.2 The Least Successful Lineages Could Overcome Drift with Altered Kinetics 210 

As expected, improving the relative fitness of an organism gave it a chance to overcome negative 211 

selection via drift (Figure 4).  212 
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 213 
Figure 4: Changing the µmax and Ks of the least successful lineage was associated with a probability of transitioning to a thriving 214 

status. Solid dots represent µ50, the percent change in µmax at a given Ks associated with 50-50 odds of thriving. Dashed lines show the 215 
range of µmax corresponding to a pthrive of 2.5 to 97.5 (i.e., spread95). Crosses indicate the analagous spread68 region. 216 

The increases in µmax corresponding to the least successful lineage having a 50% chance to become 217 

thriving, which we denote as µ50, are represented by the dark circles in Figure 4. At the baseline Ks a 218 

typical µ50 is in the range of 10-30%, with the exact value affected by initial spacing and population 219 
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size (i.e., crowding). Decreasing Ks, as expected, reduces µ50 – even to the point where so long as 220 

substrate uptake affinities are ‘good enough’, the initially failing organism may have excellent odds 221 

despite having a µmax notably lower than its peers.  The overall effect, for a given crowding 222 

condition, is a semi-linear ‘cliff ‘of µ50 values where µ50 changes inversely with Ks. Qualitatively 223 

speaking, the location of that ‘cliff’ was shifted to the right (higher µ50) when crowding was 224 

increased either via initial population size. 225 

Areas where the probability of thriving is neither 0 (drift dominated) nor 1 (fitness dominated), are, 226 

by definition, areas where drift and fitness both determine success. The widths of these areas are 227 

denoted as spread and are indicated by the dotted horizontal lines and crosses in Figure 4. The full 228 

length of the line denotes the spread95 area, which is the range of µmax for a given KS which 229 

corresponds to a 2.5% to 97.5% chance of thriving. The crosses represent a similar range, spread68, 230 

which corresponds to a 16% to 85% chance of thriving.  231 

Because the µ50 values are also the centre point of the spread regions, spread shifted in the same 232 

manner as µ50. However, the actual magnitudes of spread did not necessarily follow the same 233 

patterns. First, there was no guaranteed symmetry about Ks. For example, for 9 initial organisms 234 

separated by 5 diameters, the spread95 for Ks of -30% and 30% are visibly different (Figure 4, row 2 235 

column 2). Though the asymmetry varied between crowding conditions, it generally manifested as 236 

spread widening with increasing Ks. Second, there was no clear monotonic trend with spread values 237 

corresponding to crowding.  A spacing of 5 diameters appeared to produce the widest spreads, 238 

ceteris paribus. Further, there was no clear rule determining which of the two spacing extremes 239 

would have a larger spread. For example, with 4 initial bacteria a spacing of 10 diameters resulted in 240 

larger spreads than in 2.5 diameters, but the opposite occurred with 16 initial bacteria. 241 
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3.3 Quantitative Effect of Crowding on µ50 and spread 242 

The qualitative effects of crowding described in the previous section were quantified via simple 243 

linear regression as described in section 2.7.2. 244 

For any given crowding condition µ50, the relative change of µmax at which the worst performing 245 

lineage had a 50% chance to transition towards thriving, was essentially linear with respect to KS and 246 

the correlation coefficient was uniformly high (Figure 5). The slopes of these relationships indicate 247 

the change in µ50 required to compensate for a change in Ks. At the tightest spacing, µ50 had to 248 

change the most, with a ratio of essentially 1:1 and a slight monotonic increase corresponding to 249 

initial population size. As initial spacings widened, the ratio almost always decreased for any initial 250 

population size. Across initial population sizes, the ratio for 5 and 10 diameter spacings appeared to 251 

follow a general trend of increasing, but this was not monotonic.  252 

 253 
Figure 5: Under each crowding condition, µ50 changed linearly with KS. Large initial population sizes increased the differences 254 

between spacings, moderate spacings generally required the largest absolute µ50, but the tightest spacings required the largest change 255 
µ50 in per unit change in KS. 256 

The absolute value of µ50 was strongly affected by differences between the fitted intercepts. For 257 

example, a 2.5 diameter spacing under an initial population size of 16 had a high slope (0.983) but 258 

also the lowest required µ50 of all spacings under the same conditions until a 30% change in Ks. The 259 

practical difference between spacing was largest at high initial population size, indicating a potential 260 

interaction between these factors. 261 
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Unlike µ50, the range over which both drift and fitness effects co-dominated, spread95 did not have a 262 

simple linear relationship with KS, with many poor R2 values, residual patterns, and high leverage 263 

datapoints (Figure 6).  There was also no clear, consistent relationship applicable across factors. In 264 

general, linear fits became worse with increasing population size which appeared to produce higher 265 

variance and generated more high-leverage points, especially at separation distances of 5 diameters. 266 

These issues were largely the same when the analysis was repeated for spread68 (Supporting 267 

Information Figure S13). There is little to concretely say except that the spread was most often 268 

widest at moderate spacings, generally increased with Ks, and had a noisy, complicated relationship 269 

with initial population size and spacing. 270 

 271 
Figure 6: Under each crowding condition, spread95 changed with KS. Insofar as trends were present, moderate spacing produced the 272 

widest spread95 and the differences between spacings increased with population size. 273 

3.4 Description via Multiple Linear Regression and Generalized Additive Models 274 

The simulation results were modelled using both multiple linear regression (MLR) and a generalized 275 

additive model(GAM) respectively described by equations (5) and (6) where: pthrive is the probability 276 

of transitioning to a thriving status, µp and Kp are the respective percent changes from the baseline 277 

µmax and Ks, N0 is the initial population size, si is the initial spacing (in diameters) between 278 

organisms, and ε is a small pseudo-probability (1x10-6) added to avoid division by 0 and issues with 279 
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log transformation. For linear terms in equations (5) and (6), βi denotes the fitted coefficient for term 280 

i with i=0 representing the intercept. Terms to which GAM smoothing was applied are represented 281 

by s(…) in equation (6) with interactions between a smoothed variable x and linear variable y 282 

denoted as s(x, by y). Significant terms (p < 0.05) are highlighted in bold. The associated 283 

coefficients, significance values, and other relevant fitting information are included in Supporting 284 

Information Tables S2-S5. 285 

 
log (

𝑝𝑡ℎ𝑟𝑖𝑣𝑒

1 − 𝑝𝑡ℎ𝑟𝑖𝑣𝑒 + 𝜀
+ 𝜀) = 𝛽0 + 𝛽1𝝁𝒑 + 𝛽2𝑲𝒑 + 𝛽3𝑵𝟎 + 𝛽4𝑠𝑖 +  𝛽5𝝁𝒑𝒔𝒊 + 𝛽6𝑲𝒑𝒔𝒊 

(5) 

 

𝑝𝑡ℎ𝑟𝑖𝑣𝑒 = 𝛽0 + 𝑠(𝜇𝑝) + 𝑠(𝐾𝑝) + 𝒔(𝑁0) + 𝑠( 𝒔𝒊) + 𝑠(𝝁𝒑𝑲𝒑) + 𝑠(𝝁𝒑𝒔𝒊) + 𝑠(𝑲𝒑𝒔𝒊)

+ 𝑠(𝑵𝟎, by 𝒔𝒊) + 𝑠(𝝁𝒑𝑲𝒑𝑵𝟎) + 𝑠(𝝁𝒑𝑲𝒑𝒔𝒊) 
(6) 

The MLR model captured the general behaviour of the shift in the boundary between low and high 286 

thriving probabilities but did not adequately reproduce changes in spread (Figure 7 A vs. C). The 287 

overall root-mean-squared error (RMSE) of the model was 0.125. While most predicted probabilities 288 

differed from the simulation by no more than ±0.1, some predictions were subject to large error 289 

(Figure 7 A, D, F and Supporting Information Figures S11 and S14-S15). The largest errors 290 

unsurprisingly appear closest to the boundary between low and high pthrive regions with the MLR 291 

model over-optimistic at the extremes of spacing and lower initial population size. Conversely, the 292 

model tended towards overly pessimistic at moderate spacing. 293 
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 294 
Figure 7: Predictions of MLR model (A) and GAM (B). Simulation results in (C) are presented for ease of comparison. The model 295 

errors for the MLR (D) and GAM (E) are presented visually as well as quantified per-crowding condition in (F). The GAM 296 
outperformed the MLR, which particularly failed to capture spread, was overly optimistic at spacing extremes, and pessimistic at 297 

moderate spacing. The small region of greater than 100% odds occured because the GAM was not constrained to predicting values in 298 
the range of [0,1]. Larger individual plots of panels A, B, D, and E are available in Supporting Information figures S14-S17. 299 

In comparison to the MLR model, the GAM not only captured the general boundary shift but also the 300 

changes in spread (Figure 7 B vs. C in contrast to A vs. C). The overall RMSE of the GAM was 301 

0.0563, or somewhat better than half the RMSE of the MLR model. As with the MLR model, most 302 

predicted probabilities differed from the simulation by no more than ±0.1. Unlike the MLR model, 303 

there were fewer exceptionally large errors and those which did occur were of smaller magnitude 304 

(Figure 7 B, E, F and Figures S12 and S16-S17). The GAM followed the same trends in over- and 305 

under-prediction as the MLR. 306 

4 Discussion 307 

4.1 Crowding Affects the Balance Between Drift and Need for Fitness 308 

The two parameters describing the balance between drift and fitness, µ50 and spread, were both 309 

affected as crowding became more intense due to either decreased initial spacing or increased initial 310 
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population size. It was originally expected that as crowding intensity increased, greater fitness would 311 

be required (µ50) along with a decrease in the range of values over which both drift and fitness co-312 

dominate (spread). That was not the case. 313 

Instead, the largest spread values predominately occurred at moderate (5 diameter) initial spacing. 314 

We suggest the cause is physical competition for space, specifically the practical significance of 315 

single ‘bad’ random choices in division direction and biomass allocation. When bunched tightly 316 

together, competition for space is intense and even a few poor random events can consign a lineage 317 

to languishing despite a moderate growth advantage. At the other extreme, spatial competition is 318 

lessened sufficiently that a few missteps do not guarantee ruin, allowing a lineage to take the full 319 

benefit of any growth advantage.  Meanwhile, at moderate spacing, immediate neighbours are close 320 

enough so that poor random events are harmful but not necessarily disastrous and, at the same time, 321 

growth advantages are somewhat hindered, but still helpful. Remembering that spread quantifies the 322 

region where neither fitness nor drift dominate, it then makes sense that we observed the largest 323 

spread values at moderate spacing. 324 

The 50-50 odds point, µ50, was also slightly larger at moderate spacings, although not consistently 325 

and the effect size was not practically different except at large population sizes. The underlying basis 326 

for why is not entirely clear, numerically it was due to the consistently larger intercept (Figure 5). 327 

The trend of the slopes is, however, more easily explained and we attribute it to competition for 328 

substrate. For any initial population size, smaller spacings resulted in higher slopes. In other words, 329 

to maintain the 50-50 odds when Ks was poor, µ50 had to change more at closer spacing. This makes 330 

intuitive sense – closer spacings result in lower local substrate concentrations, and any deficit to Ks is 331 

more deleterious to fitness.  332 

Increased initial population sizes had more straightforward, secondary, effects on µ50 and Ks. As the 333 

initial population size increased, the differences between spacings became more pronounced, but the 334 
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general trends remained unchanged. In other words, more competitors are problematic, especially as 335 

it relates to diffusible substrate, but the major influence on success is competition for space between 336 

immediate neighbours. 337 

4.2 Interactions Between Factors Incorporating Non-Linear Effects are Important 338 

In the MLR a main-effects only model (RMSE 0.125, R2 of 0.820) performed essentially identically 339 

to the MLR model with interactions (RMSE 0.127, and R2 of 0.820), however neither adequately 340 

reproduced simulation results and were especially poor at representing the regions where both fitness 341 

and drift co-dominated.  A GAM which incorporated only main effects using non-linear smoothing 342 

quantitatively performed slightly worse than either MLR main-effects model (RMSE 0.197 and R2 of 343 

78.1), but drastically and uniformly overpredicted spread. Only when both interactions and 344 

smoothing were incorporated did a model adequately reproduce the simulation results (Figure 7 and 345 

Supporting Information Figure S17). It is visually apparent in the simulation results and quantified in 346 

the fitting results (Supporting Information Table S4-5) that interactions are important, particularly 347 

those involving spacing. Further, the non-linearity of the interactions (measured as the departure of 348 

the term’s extended degrees of freedom from a value of 1), is particularly high for any interaction 349 

incorporating both µp and Kp and less so but still notably for interactions incorporating spacing 350 

(Supporting Information Table S5). 351 

4.3 Limitations and Extensions 352 

The simulated conditions were deliberately chosen to isolate the effect of drift. While this made the 353 

work tractable, a system wherein every organism is completely identical, starts growing at the same 354 

time, and is initially evenly spaced on a grid does not frequently occur in nature. Although we 355 

believe the general themes uncovered translate to real ecological systems, the exact quantification 356 

does not and is not mean to apply to all situations. Future work should focus on stochastically placed 357 

(in time and space) populations with natural variability in Monod parameters.  358 
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Extending the work so that the simulated community reflects a more natural distribution would also 359 

enable validation of the model, as, despite promising advances,46 it is currently infeasible to exactly 360 

place essentially identical bacteria at the resolution required. 361 

 Additional parameters affecting drift and fitness should also be evaluated – especially the influence 362 

of nutrient-rich conditions47 and how a change to yield, rather than growth rate, alters success.48 363 

Adding these factors requires however overcoming the curse of dimensionality, the current 364 

simulations took over 1 year of real-world time and 175 years’ worth of CPU time. Given the large 365 

areas where ‘nothing interesting’ happens, designing further experiments to incorporate adaptive 366 

sampling49 is a promising solution. Further, adaptive sampling would enable, at the same 367 

computational cost, exploring a larger range of µmax and KS variation (which may vary by orders of 368 

magnitude in real-world conditions50) and at a greater degree of resolution than 10% changes in the 369 

region where the probabilities rapidly change.   370 

5 Conclusion And Relevance to Real World Systems 371 

It is apparent that during biofilm formation in low nutrient conditions, drift strongly determines 372 

which organisms thrive and which organisms fail, so long as they have similar growth rates and 373 

substrate affinities. Even when those parameters differ between individuals by ±50%, there are still 374 

large regions where a fitness advantage does not guarantee overcoming negative drift selection. 375 

In fact, we observed the lineage fates were determined very early in the simulations and for these 376 

systems ‘well-begun is half done’. We speculate that this may be a piece to the puzzle explaining the 377 

apparent contradiction between actual and effective community size in neutral modelling4 – the 378 

bacteria are not in competition with the full steady-state community but only the immediate smaller, 379 

community near the beginning of biofilm growth. However, the conditions studied here violate the 380 

steady state assumption of that work, so a more careful analysis is warranted. 381 
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The conditions we have described are not dissimilar from those within an aerated portion of a 382 

wastewater treatment plant, where tightly packed bacterial aggregates are suspended in a bulk liquid 383 

and where substrate concentrations are often quite low, especially during operation as a completely 384 

mixed stirred reactor (albeit somewhat higher than simulated here). Further, these bacteria are 385 

recirculated through the system and relatively well-adapted to domestic wastewater, thus already 386 

selected for similarity. Based on the results presented here, we would expect to see a system in which 387 

there is a high degree of random turnover in organism identity, but relatively stable functional and 388 

biological activity, which is exactly what has been observed in wastewater treatment plants.51,52  389 
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