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Abstract: Drosophila melanogaster living in temperate regions evolve as they track seasonal 
fluctuations. Yet, we lack an understanding of the genetic architecture of seasonal adaptive 
tracking. By sequencing orchard populations collected across multiple years, we characterized 
the genomic signal of seasonal demography and identified that the cosmopolitan inversion 
In(2L)t drives seasonal adaptation. In(2L)t shows footprints of selection that are inconsistent 
with simple explanations of genetic drift, as well as signatures of partial selective sweeps. A 
meta-analysis of phenotypic studies shows that seasonal loci within In(2L)t are associated with 
behavior, life-history, physiology, and morphology traits. Our results identify candidate regions 
that underlie seasonal adaptive tracking and link them to phenotype. This work supports the 
general hypothesis that inversions are important drivers of rapid adaptation. 

 
One-Sentence Summary: A chromosomal inversion drives adaptive evolution between seasons 
in wild fruit flies. 
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Introduction 
 
Species living in rapidly fluctuating environments are exposed to temporally and spatially 

varying selection (1). If species harbor polymorphisms that are beneficial in one selective 
environment but not the other, local adaptation will be evident from shifts in allele frequency 
across space and time (i.e., adaptive tracking). Context-dependent fitness effects can result in the 
long-term maintenance of functional genetic variation in populations and even between species 
(2), and can also drive the rapid turnover of new, transiently balanced polymorphisms (3). 
Recent theoretical work demonstrates that multilocus adaptive tracking is possible (4), leaves 
distinct molecular signatures at linked sites (5), and can be facilitated by ecological factors such 
as seasonal population booms and busts (6). Moreover, empirical studies have provided evidence 
that adaptive tracking can be quantified in both natural and experimental populations (7–9). Yet, 
we still have a limited understanding of the ecological drivers that underlie adaptive tracking, its 
effects on genetic diversity, and its genetic architecture.  

Adaptive loci that exist as chromosomal inversions were among the first examples of 
adaptive tracking (10) and are generally thought to be facilitators of adaptation to fluctuating 
ecosystems (11, 12). Given the suppressed recombination across karyotypic states of the 
inversion, co-adapted alleles existing inside it could be protected from decoupling by 
recombination (13), or from becoming homogenized by gene flow (14). Simulations have shown 
that inversions may capture new beneficial variants that promote local adaptation and should be 
enriched for loci that are pleiotropic for ecologically important traits (12, 11). Empirical work 
has shown that inversions are often involved in local adaptation among a species’ ecotypes (15), 
show clear correlations to ecological stressors (16), and contain alleles in strong linkage 
disequilibrium with each other, as well as the inversion breakpoints (17). Combined, these lines 
of evidence provide a blueprint to identify adaptive inversions in nature. 

Fruit flies (Drosophila melanogaster) living in temperate habitats are a premier system to 
understand the role of inversions in adaptive tracking. Fruit flies have short generation times 
(~10-15 days), produce many generations per year (~15 generations, 18), and experience 
fluctuating selection across the changing seasons (19). For example, variation in stress tolerance 
and life-history enable some individuals to better survive the winter months while others more 
effectively exploit resources in the growing season (19–21). These observations suggest that 
seasonal adaptation operates through a resource-allocation trade-off between reproduction and 
survival that is also mirrored across latitudinal gradients (22). Genomic analyses have supported 
this hypothesis and identified loci whose allele frequencies track the seasons across multiple 
localities and display parallel changes in allele frequency across spatial gradients (7, 8, 23). 
Analysis of seasonal genomic shifts in Europe and North America identified that the breakpoints 
of cosmopolitan inversions, particularly of the 10Mb In(2L)t inversion, are enriched for loci that 
evolve by adaptive tracking (8). These findings demonstrate that seasonal adaptation is an 
intrinsic property of temperate populations and suggest that In(2L)t drives adaptive tracking.  

In this paper we test the hypothesis that In(2L)t underlies adaptive tracking across 
seasonally fluctuating environments. Using genomic time-series data, we asked three questions: 
1) Are signals of seasonal selection stronger than temporal drift? 2) What are the ecological 
drivers of seasonal selection for wild Drosophila? 3) Are there signatures of selection and 
function consistent with the expectations of an adaptive inversion? Overall, our data reveal rapid 
evolutionary change in response to seasonally varying selection and suggests connections 
between phenotype, genotype, and the environment. More generally, our work supports the 
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classic hypothesis that inversions are important drivers of adaptation in highly fluctuating 
environments (10). 

Results and Discussion 
 

Fly populations are structured in both space and time. To characterize patterns of 
spatial and temporal genetic variation across the temperate range of D. melanogaster, we 
performed principal component analysis (PCA). We focused on localities where flies were 
sampled at multiple points in time over multiple years from the Drosophila Evolution over Space 
and Time (DEST, 24) dataset (Munich and Broggingen, Germany; Yesiloz, Türkiye; Odessa, 
Ukraine; Akaa, Finland; Linvilla [Pennsylvania], Cross Plains [Wisconsin], USA). We also 
include a densely sampled dataset from Charlottesville (Virginia), USA (37 new pooled samples; 
Table S1). Consistent with previous analyses (24), PC1 separates samples from Europe and 
North America (Fig. 1A; Latitude: F1,86 = 586.13, P = 3.67x10-40; Longitude: F1,86 = 605.47, P = 
1.08x10-40) whereas PC2 separates the eastern and western phylogeographic clusters in Europe 
(Latitude: F1,35 = 0.019, P = 0.89; Longitude: F1,35 = 8.32, P = 0.0066). Samples collected at the 
same locality cluster together, demonstrating that population structure at local scales is stable 
over time. Yet, these populations also show signals of genetic change from one year to the next 
(Table S2). The overall pattern of year-to-year temporal structure can be visualized through the 
vector formed among samples collected in subsequent years (Figs. 1A, 1B, and S1). These shifts 
in genetic composition from one year to the next suggest that drift is occurring in fly populations 
and may be especially influenced by seasonal fluctuations in population size. 

 
Temporal structure is driven by seasonal boom-bust demography. To test the hypothesis 

that seasonal fluctuations in population size influence the genetic composition of populations, we 
compared patterns of genetic differentiation (FST) within a year’s growing season relative to 
samples collected across years thus reflecting overwintering. Although the exact number of 
generations in the summer and winter seasons is unknown for fly populations, we presume that 
the number of generations in the summer must be more than the winter, but that overwintering 
bottlenecks will nonetheless generate higher levels of differentiation compared to levels of 
differentiation within a growing season. We observe that the amount of genetic differentiation 
accrued within the growing season is smaller than that accrued overwinter (Fig. 1C; Table S3; 
median FST-within = 0.0031, median FST-overwinter = 0.0045). The pattern of increased differentiation 
is observed across multiple years of overwintering and the rate of increase of genetic 
differentiation varies among populations (Fig. 1D; ANOVA, F7,720 = 16.72, P = 1.60x10-20). To 
quantify the strength of the winter bottleneck, we conducted forward genetic simulations 
designed to emulate the boom-bust cycle and sampling scheme for the Charlottesville samples 
(Fig. S2). Our results provide support for the hypothesis of yearly population contractions and 
suggest that the magnitude of winter collapse, in Charlottesville, is on the order of 94% of the 
maximum summer size (Nmin = 936, Nmax = 16,670, Ne [effective population size, i.e., harmonic 
mean of N] = 5,599). This inference is consistent with another recent estimate of local effective 
population size of ~10,000 (25). The signal of year-to-year allele frequency change is distributed 
across the genome, consistent with a demographic explanation. To show this, we repeated the 
PCA using random sub-samples of SNPs across autosomes. We then ran correlation analyses of 
PC projections relative to the year of collection. Our results show that the correlation of PCs 1-3 
with year is robust in sample sets larger than 1000 loci (Fig. S3, Table S4). Taken together, our 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2022. ; https://doi.org/10.1101/2022.12.09.519676doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519676
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

analysis suggests that overwintering is a major determinant of the genetic structure of fly 
populations. 

 
 

 
 
Fig. 1: Signatures of overwintering in temperate flies. (A) PCA of temporal samples (PCs 1, 2). The arrow path indicates the 
temporal identity of the samples (arrowheads show the most recent samples, origins show the oldest sample). (B) Same as A, but 
PCs 2 and 3. (C) Genome-wide average FST across all within the growing season comparisons (red) and between year 
comparisons (turquoise). (D) FST values across multiple years of collection (Δy is the difference in years of collection; +/- 1 
standard deviations are shown). 

 
In(2L)t shows higher temporal FST than the rest of the genome. Chromosome 2L shows 

a departure from the temporal signal observed in other chromosomes (Figs. 2A, S4, and Table 
S4) suggesting that seasonally varying selection may be acting on the 10Mb cosmopolitan 
inversion In(2L)t. In principle, the action of seasonal selection on the inversion would lead to an 
increased temporal FST relative to the rest of the genome where genetic differentiation through 
time is primarily driven by overwintering drift. To test this hypothesis, we calculated FST within 
and across years at loci associated with In(2L)t (Fig. S5). Mutations inside the inversion in 
strong association with the breakpoints (Pearson’s correlation = 0.95-0.97) show temporal FST 
values among the top 10-15% relative to matched control distributions (Fig. 2B), suggesting that 
loci in strong association with the inversion are changing in frequency more than expected from 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2022. ; https://doi.org/10.1101/2022.12.09.519676doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519676
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

overwintering drift. In(2L)t has long been hypothesized to be an adaptive inversion (reviewed in 
26) and our data suggest that seasonality may be an agent of selection at this locus. 
 

In(2L)t shows signatures of adaptive tracking and footprints of natural selection. To 
identify signatures of adaptive tracking, we modeled allele frequency change through time in 
Charlottesville using a generalized linear model (GLM) at each single nucleotide polymorphism 
(SNP) in the genome as a function of year of collection and aspects of the environment prior to 
collection, including temperature, precipitation, and humidity (Fig. S6). We then assessed which 
of these environmental models is found as the best model more often than expected from a 
permutation analysis. For 2L, both inside and outside of the inversion, the best fit model is the 
maximum temperature 0-15 days prior to collection (Tmax0-15d). This model is 11 times more 
likely to be observed as the best model in the real data compared to the permutations (Fig. 2D) 
and shows strong statistical support at top hits (Fig. S7, Data S1 and S2). In contrast to 2L, and 
consistent with the PCA analysis (Figs. 2A and S3), changes in allele frequencies on 
chromosomes 2R, 3L and 3R are best explained by the model that only includes collection year 
relative to permutations (Fig. 2D).  

 
 

 
 
Fig. 2: Drivers of temporal structure in Charlottesville flies. (A) Chromosome PCAs separated by chromosome. Each point 
represents one sample. (B) FST percentiles from loci associated with In(2L)t breakpoints relative to matched controls. The y-axis 
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shows the correlation coefficient of loci associated with In(2L)t breakpoints. The x-axis shows the percentile of control loci with 
FST values lower than that of In(2L)t markers. Medians and interquartile ranges (IQRs) are shown. Dashed lines show the 0.5 and 
0.9 percentiles. (C) Same as B, but for outlier windows in the Charlottesville analysis (see Fig 3). (D) Environmental models for 
Charlottesville flies. The x-axis shows models ranked according to the best model in In(2L)t. The y-axis shows the relative rate of 
enrichment relative to permutations. The vertical line represents the null hypothesis of no change in relative rate between the real 
and permuted data. Confidence intervals are reported as the 1% and 99% percentiles. Gray circles mean that the confidence 
intervals contain the value 1. Colored circles represent models whose confidence intervals do not overlap with 1. The model 
Tmax0-15d, whose confidence intervals do not overlap 1, is indicated in green. The year model is indicated as a purple triangle. 
The null model (regression against the intercept) is indicated as a red square. The confidence intervals for the null model are 
smaller than the square and do not overlap with a value of one. 

 
We summarized the output of the Tmax0-15d model using sliding window approaches that 

test if SNPs whose frequency is strongly correlated with Tmax0-15d are randomly distributed 
throughout the genome and change with constant magnitude. These analyses indicate that six 
windows within In(2L)t centered at 3.1, 4.7, 5.2, 6.1, 6.8, and 9.6 Mbs outperform permutations 
and are enriched for SNPs whose frequency is strongly correlated with recent maximum 
temperature (Fig. 3A). To test whether candidate loci are more differentiated than expected 
based on short-term demographic fluctuations, we compared temporal FST across candidate SNPs 
within the windows to matched controls. In Charlottesville, candidate SNPs have higher FST than 
controls (values fall within the 6% and 10% tails for within and across year comparisons; Fig. 
2C) thus demonstrating that outlier loci in In(2L)t are strongly differentiated across time. Taken 
together, the outlier windows identified here represent candidate loci under seasonal selection.  

These candidate loci show additional footprints of natural selection based on a set of 
whole genome sequences of individual flies sampled in Charlottesville (see Table S1). In(2L)t 
harbors reduced levels of Tajima’s D at w6.1 and w9.6, consistent with a signature of an 
incomplete selective sweep (Figs. 3B, S8A and S8B, 27). Indeed, w6.1, w6.8, and w9.6 all show 
low levels of haplotype diversity (Fig. S9, Table S6), w6.8 harbors young alleles (Fig. S8C), 
and w9.6 co-localizes with a soft-sweep private to the North American population (28). Linkage 
disequilibrium (LD) analysis across the individual data show strong SNP associations within and 
among SNPs in our windows of interest (Fig. S10C), with the strongest linkage observed 
between the inversion breakpoints and windows w5.2, w6.1 (Fig. S10D). To visualize these 
patterns of haplotype diversity, we combined our individual Charlottesville data with genome 
sequence data from inbred lines or haploid embryos established from worldwide collections (see 
Tables S6 and S7; Fig. 3D) and show the presence of soft-sweeps at w6.1 and w9.6. By 
identifying a series of anchor loci based on LD and GLM scores (Data S3) to represent the major 
haplotypes at each region, we show that the standard karyotype has its lowest frequency in mid-
summer and highest frequency in the spring and late fall (Fig. 3E; left panels). Regressing the 
average allele frequency at the anchor SNPs against Tmax0-15d shows a significant negative 
relationship between In(2L)t haplotype frequency and maximum temperature across 2016-2018 
(Fig. 3E, right panels). 

Estimates of FST between standard and inverted karyotypes are highest (FST > 0.4) at the 
inversion breakpoints and at w5.2 (Figs. 3C, S10A, and S10B; a signal also observed in the 
Drosophila Genetics Reference Panel [DGRP], 29). This window primarily encodes the Msp300 
gene, a nesprin-like protein known to mediate the positioning of nuclei and mitochondria in 
muscle (30). Within the region, one seasonal SNP is a trans-species, nonsynonymous 
polymorphism (Fig. S11; 2L:5192177; c.32735G>T, p.Gly10912Val) that is also polymorphic in 
D. simulans and D. sechellia (see Fig. S11D). While these species are known to hybridize in the 
wild (31), the region corresponding to 32735G>T does not show evidence of introgression 
between D. simulans and D. sechellia (32). The SNP is in strong linkage with the In(2L)t 
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inversion breakpoints in Charlottesville (mean LD [r2] = 0.75, sd = 0.03) and present on both 
karyotypes in at least one African population (Figs. S11E-S11H), suggesting that the allele arose 
prior to both the inversion (75-160 Kya) and the worldwide spread of D. melanogaster out of 
Africa (33). Collectively, these findings suggest that In(2L)t captured this old polymorphism 
during its evolution and is still accumulating beneficial alleles.  
 

 

 
 
Fig. 3: Signals of seasonal selection in In(2L)t. (A) Two tests of enrichment for the Tmax0-15d model. The top portion of the 
panel shows the P-value of the rank normalization test. The bottom portion shows the P-value of the aggregation test. The pink 
line shows the 99th quantile of all permutations. The black line shows the real data. The windows of interest are highlighted in 
yellow. In(2L)t is demarcated by the vertical lines. (B) Tajima’s D across 2L for inverted and standard karyotypes. (C) FST 
between the inverted and standard karyotypes in 2L for Charlottesville and the DGRP. (D) Haplotype structure plot for inversion 
breakpoints and windows of interest. Only samples homozygous for the inversion and for the standard karyotype are shown. 
Samples are sorted and grouped according to the phylogeny (built using candidate SNPs across windows) shown to the left. 
Ancestral state was determined relative to D. simulans. The horizontal line divides inverted vs standard karyotypes. (E) Mean 
allele frequency plots of the anchor loci relative to time (left) and temperature (right). Regression information is shown in each 
facet. Circles represent samples from 2016, triangles from 2017, and squares from 2018. 

 
Signals of adaptive tracking within In(2L)t are generalizable to other populations. We 

tested if the associations between environmental variables and In(2L)t observed in 
Charlottesville are generalizable to other localities. We used linear modeling to determine the 
most likely environmental correlates of allele frequency change using temporal samples from 
localities situated in three distinct phylogeographic regions: Europe west, Europe east, and the 
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east coast of North America (without Charlottesville; see Fig. S12 and S13). The best-fit models 
for these regions are distinct from those of Charlottesville: average temperature in the 45-75 days 
prior to sampling for EU-E (Tave45-75d; 9.4 times higher than permutations; Fig. S12A), average 
humidity 15-45 days prior for EU-W (H%ave15-45d; 5.3 times higher than permutations; Fig. 
S12B), and average temperature 0-7 days prior for NoA-E (Tave0-7d; NoA-E does not beat 
permutations; Fig. S12C).  

Although the best fit environmental models identified in these other regions are different 
from what we identified in Charlottesville, the loci underlying allele frequency change in these 
different regions could be the same. Indeed, the strongest signals of environmental enrichment 
that we observe in these other phylogeographic clusters is on 2L, and for loci inside In(2L)t (Fig. 
S12). To test if the same loci change in frequency among these regions, and to test if the 
direction of allele frequency change is consistent among these regions, we conducted enrichment 
and directionality tests. The enrichment test asks if top SNPs (top 5%, ranked genome wide) 
identified in the candidate windows in Charlottesville are also in the top 5% of SNPs identified 
in the other regions. The directionality test asks whether the direction of allele frequency change 
between best-fit GLM models for each group are the same, conditional on SNPs being in the top 
5% for both groups. The directionality test is calculated as the proportion of SNPs with the same 
sign of allele frequency change with respect to the environmental variable that we identify as the 
best fit on 2L (Fig. S12). The null hypothesis is 50%, and values significantly different from 
50% in either direction indicate that there is some consistency in direction. Candidate loci at 
w3.1, w5.2, w9.6 and the inversion breakpoints are enriched for SNPs strongly correlated with 
weather in both Charlottesville and either EU-E or EU-W (Fisher’s exact test, P < 0.05; Fig. 4A). 
We observe signals of under-enrichment at w6.1 and w6.8 when contrasting Charlottesville to 
EU-W and EU-E, suggesting that the incomplete sweeps observed in this region may be private 
to North American populations. The directionality test shows that nearly all top SNPs are 
changing in consistent directions in Charlottesville and EU-E and EU-W (directionality scores 
>90% or less than 10%; binomial test, P < 0.05, for most candidate loci; Fig. 4B). The 
enrichment and directionality tests show that the loci that we identify in Charlottesville are 
fluctuating in other locations, and that the SNPs at these candidate loci are changing in frequency 
as a haplotype block, consistent with fluctuations of a large linked locus. 
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Fig. 4: Enrichment, directionality and genetic differentiation in In(2L)t. (A) Enrichment scores (odds ratio [OR]) between 
loci in the Tmax0-15d model in Charlottesville and the best models across other populations at inversion breakpoints and windows 
in In(2Lt). 95% confidence intervals shown. The horizontal line is the null expectation of no enrichment. (B) Same as E but for 
directionality scores. The horizontal line is the null hypothesis of no consistent directionality. (C) Spatial FST for three types of 
markers: candidate SNPs in In(2L)t (ranked P < 5% in their respective best models), and controls inside and outside inversions in 
EU-W and EU-E. The comparisons were done within the EU-W and EU-E clusters separately.  

 
Seasonal drivers of allele frequency change at In(2L)t. The specific aspects of weather 

identified by our analysis vary by geographical region (Tmax0-15d in Charlottesville, Tave45-75d 
in EU-E, H%ave15-45d in EU-W, and Tave0-7d in NoA-E). Are these aspects of weather the 
proximate causes of temporally varying selection, or do they reflect something else? We consider 
three non-mutually exclusive hypotheses. First, allele frequencies oscillate across seasons as a 
direct consequence of fluctuating environmental selection. Although the specific environmental 
models that we identify suggest different stressors drive selection across the species range, these 
variables may simply be proxies for a shared seasonal stressor. Second, due to the temporal 
nature of our data it is plausible that allele frequencies are driven by negative frequency 
dependent selection (34), and because weather is seasonal, artefactual associations with 
environmental variables may have emerged. A third hypothesis is the joint action of genetic 
overdominance and boom-bust demography. In this model, the inverted and standard karyotypes 
are maintained via heterotic (35) or associative overdominance (36) and are kicked out of 
equilibrium by yearly bottlenecks. As selection returns alleles back to equilibrium frequency, 
allele trajectories may resemble seasonal oscillations.  

Although we cannot rule out any of these models conclusively, our data are most in-line 
with the seasonal stressor hypotheses. To arrive at this conclusion, we first consider the 
overdominance-perturbation model. Under this model, we predict low spatial differentiation and 
lower than average temporal differentiation because natural selection would be rapidly pushing 
populations back to a common equilibrium. To the contrary, our data show high temporal 
differentiation within Charlottesville (Fig. 2C), yet only average differentiation across spatial 
gradients (Kruskal-Wallis tests; PEU-E = 0.47, PEU-E = 0.46; Fig. 4C). Although evidence in favor 
of the seasonal stressor model over the negative frequency dependent selection model is more 
limited, and differentiating these hypotheses is challenging (34), several pieces of evidence point 
in favor of the seasonal stressor model. The first is a comparison between our results and several 
previous studies. In one, seasonal frequency change of In(2L)t was documented during the 
1980’s in a Spanish population (37). There, In(2L)t is high frequency in the fall and low 
frequency in the summer, similar to what we observe (Fig. S14). In(2L)t was also found to be 
higher frequency in the fall compared to the summer in some North American populations (38), 
and time series analysis of caged seasonally evolving populations shows that In(2L)t increases 
frequency from summer to fall (9). The seasonal stressor hypothesis is interesting to consider in 
light of spatial patterns of allele frequency change at In(2L)t. In D. melanogaster, inversions are 
generally thought of as “hot adapted” (39), and most cosmopolitan inversions are higher 
frequency in more tropical locales across multiple continents (38). However, In(2L)t is peculiar 
in this regard. It shows a stable latitudinal cline only in Australia and weak or unstable patterns 
of clinality in other continents (26). In(2L)t is found at frequencies between 20-80% in many 
high latitude locales (Table S1), in contrast to other cosmopolitan inversions (26). Taken 
together, patterns of spatial and temporal allele frequency change show that In(2L)t is common 
across the range, weakly differentiated across spatial gradients, and highly differentiated through 
time, suggesting that In(2L)t frequencies are affected by temporally heterogeneous selection. 
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In(2l)t loci are associated with ecologically important traits. Although individual 

candidate loci underlying seasonal evolution in D. melanogaster have been identified and 
validated (e.g., 40, 41) genome-wide analysis of seasonal allele frequency change in this species 
has provided limited resolution to identify phenotypes and loci underlying adaptive tracking (7, 
8). To elucidate the phenotypic consequences of the candidate loci that we identify, we 
aggregated line mean estimates for 225 phenotypes collected by dozens of labs using the DGRP 
(Tables S8 and S9). Phenotypic variation of 36 traits is correlated with In(2L)t inversion status, 
and these traits span all phenotypic categories (Figs. 5A and S15A). We performed GWAS for 
each trait and assessed the level of enrichment between loci that affect traits and loci that are 
strongly associated with the Tmax0-15d model in Charlottesville. We show that In(2L)t is 
enriched for loci that are associated with phenotypic variation in the DGRP and are also strongly 
correlated with Tmax0-15d in Charlottesville (Figs. 5B and S15B). We also investigated the 
proportion of SNPs that have the same sign of allele frequency change conditional on those 
SNPs being in the top 5% of both the GWAS and the GLM models (i.e., “directionality”; see 
Fig. 4B). For each SNP under investigation, we used the estimated allelic effect from the GWAS 
and the slope of allele frequency change with respect to the Tmax0-15d model. Like our previous 
directionality analysis, our null hypothesis is 50%. Values significantly different from 50% show 
evidence of consistent alignment of effect directions between the GWAS and GLM analysis. 
SNPs on 2L that are associated with phenotypes and Tmax0-15d show levels of directionality 
greater than we expect from permutations, a signal only seen in 2L (Figs. 5B and S15B). We 
performed the enrichment analysis on sliding windows across 2L to test for localized enrichment 
of SNPs that are top hits for both the GWAS and GLM relative to permutations. Windows near 
the inversion breakpoints and at w5.2 show enrichment of GWAS and GLM hits relative to 
permutations and are associated with many phenotypes. Regions near the left breakpoint are 
associated with at least 31 phenotypes, whereas w5.2 is associated with at least 23 phenotypes 
(Figs. 5C and S15C). The association between these loci and phenotypic variation in the DGRP 
may have been missed in previous studies because inversion status is explicitly used as a 
cofactor in GWAS (42). 

The inverted and standard alleles impact a suite of traits, demonstrating pleiotropy. To 
characterize patterns of trait covariation, we conducted PCA using all phenotypes identified in 
our sliding window analysis (Fig. 5D). Presence of the inversion is significantly associated with 
PC1 (t-test, t = -4.1, df = 19.8, P = 0.00042; Fig. 5E), but not PC2 (t = -1.3, df = 20.3, P = 0.18) 
or PC3 (t = -1.2, df = 22.0, P = 0.22). Inversion homozygotes show higher levels of basal and 
induced activity, lifespan, and resistance to a variety of stressors whereas standard homozygotes 
show higher values for starvation resistance and chemical resistance. To validate the phenotypic 
effect of allelic variation at the candidate regions, we focused on startle response. Startle 
response is a top hit in our association analyses (Fig. 5B), and inverted homozygotes have a 
greater startle response than standard homozygotes. We show that the inverted haplotype is 
higher frequency in spring and late winter compared to the summer and fall (Fig. 3E) and 
suggest that startle response is important for overwintering survival and recolonization because it 
could increase the chance of finding shelter during the winter and patch recolonization during the 
summer.  

We used quantitative complementation to validate the effect of candidate windows on 
startle response. We crossed selected DGRP lines to 5 deficiency bearing lines for regions in 
In(2L)t (see Table S10; Fig. S16). One deficiency that covers the left-inversion breakpoint 
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(2.17-2.45 Mb; Fig. 5C, top) fails to complement the inverted and standard alleles for two 
measures of startle response: the rate of return to basal activity (Fig. 5F; χ2SR decay[df = 3] = 
24.20, P = 2.26x10-5) and the startle-response length (Fig. 5G; χ2SR length[df = 1] = 3.504, P = 
0.061; see Table S11). Complementation tests confirm that the inversion increases startle 
response, consistent with the direction of effect among inbred DGRP lines. Our analysis and 
validation of the phenotypic effect of inversion associated candidate loci underlying seasonal 
adaptive tracking therefore generates hypotheses for future studies and suggests, for the first 
time, that behavioral traits underlie seasonal adaptation.  

 
 

 
 
Fig. 5: Phenotypes associated with candidate loci on chromosome arm 2L. (A) Number of GWAS phenotypes associated 
with inversion status in the DGRP. Traits are divided across four phenotypic categories. The real data are shown as diamonds, 
permutations are shown as black points and boxplots. (B) Directionality and enrichment analysis between the DGRP-GWAS and 
the best environmental model in Charlottesville. Lines indicate null expectations estimated by permutations. Each point is a 
phenotype and colors same as A. (C) Window level enrichment analysis across 2L. The y-axis shows the window-wise number 
of enriched phenotypes (i.e., significant in both the GLM and GWAS). Windows that exceed permutation are shown in turquoise, 
otherwise in purple. (D) PCA of phenotypes associated with the candidate SNPs in the inversion. Each arrow represents a 
phenotype characterized in a GWAS study. Number of studies are in parentheses. (E) Inversion status is significantly associated 
with PC1 but not PC2. The 95% confidence intervals are shown. (F) Quantitative complementation tests using deficiencies shows 
that the inverted and standard karyotype have significantly different effects in the deficiency background but not the balancer 
background for the decay rate of startle response. (G) Same as F but for the startle response length. 

 
The role of adaptive inversions in fluctuating environments. Inversions have been 

proposed as drivers of adaptation for populations living in fluctuating environments because they 
can protect co-adapted alleles from being broken up by recombination or swamped by migration 
(11). Yet evidence for the ecological drivers of the phenotypes implicated in adaptation is scarce. 
Here, we have shown that In(2L)t is an adaptive locus that facilitates seasonal evolution in 
Drosophila and provides links between phenotype and genotype. Overall, this work supports the 
general hypothesis that inversions are key facilitators of adaptation to fluctuating ecosystems. 
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Materials and Methods 
 

Fieldwork: Fly collections were completed at a local orchard in Charlottesville, VA 
(Carter Mountain, 37.99N, 78.47W) from 2016 to 2019. Collections from 2016 to 2018 were 
done using aspirators and netting every two weeks starting in mid-June when peaches come into 
season in central VA and ending in mid-December at the end of the fall season. The collection in 
2019 was done at the beginning of the growing season in June. Because D. melanogaster is 
phenotypically similar to its sister taxa D. simulans, we determined species identity using the 
male offspring produced from isofemale lines set from wild-caught flies. D. melanogaster 
isofemale offspring were frozen in ethanol and stored at -20°C prior to sequencing. 
 

DNA extraction, sample preparation and sequencing: We prepared two sets of samples: 
Pool-seq samples, and individual DNA-seq libraries. For pool-seq, we prepared 37 libraries 
(sample-size per pool are available at Table S1). Libraries were made from individual male flies 
collected from 2016, 2018, and 2019. For 2016, we prepared 119 individual samples collected 
across various time points of the year’s growing season. For 2018, we prepared libraries for 43 
individuals collected in the fall. For 2019, we prepared libraries for 41 individuals collected in 
the spring. For the pooled samples, DNA extractions were done using the extraction protocol 
outlined in (7). Extracted DNA was diluted in a 1:1 DNA:water ratio mixture, then sonically 
sheared to create fragments 500 bp in length using a Covaris machine. Library preparation was 
done with a NEBNext Ultra II kit following the kit’s protocol. Eight cycles of PCR were done in 
the final PCR enrichment step. Following library preparation, each pool was quantified and 
pooled in equal concentration to produce a final sequencing library. This final library was size-
selected on a Pippen for DNA sizes in the 600-750 bp range and sequenced on a NovaSeq using 
2x150 paired-end (PE) reads. For individual libraries, DNA extractions were done using an 
Agencourt DNAdvance kit (Beckman-Coulter A48705). Library preparation was done using a 
diluted Nextera kit (Illumina FC-131-1024) (43) using a liquid handling robot. Unique index 
sequences were generated according to (44). Sequencing of the 2016 individuals was done on an 
Illumina HiSeqX (2x150). Sequencing for the 2018 and 2019 individuals was done on an 
Illumina Novaseq (2x150). 

 
Pooled sequences - Integration into to the DEST dataset: Quality control, mapping, 

SNP calling and dataset merging was done using the DEST dataset mapping pipeline 
(https://github.com/DEST-bio/DEST_freeze1) using the optimized settings for the PoolSNP 
caller (45) and enforcing a global average minimum allele frequency of 1%. The DEST mapping 
pipeline accounts for potential contamination with D. simulans in the pools using competitive 
mapping (8, 24). We combined the Charlottesville pool-seq with the pool-seq samples from 
DEST to generate a new dataset that contains 283 pooled samples from 22 countries across 12 
years 2003-2018. This version of the dataset contains 3,265,012 SNPs. We further filtered pools 
to include only samples that had more than two consecutive years of sampling and were sampled 
least twice within a year. The resulting data set is composed of samples from six countries: 
Finland (n=6 pools), Germany (n=12), Spain (n=6), Türkiye (n=14), Ukraine (n=19), and the 
USA (n=63). These can be further subdivided into 14 localities: Akaa (Finland), Broggingen and 
Munich (Germany), Yesiloz (Türkiye), Odessa (Ukraine), Charlottesville (Carters Mountain 
Orchard in Charlottesville, VA, USA), Cross Plains (WI, USA), and Linvilla (Linvilla Orchard 
in Media PA, USA). Repetitive elements, defined by the Interrupted Repeats, Microsatellite, 
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RepeatMasker, SimpleRepeats, and WM_SDust tracks from UCSC Genome Browser 
(http://genome.ucsc.edu) were removed from further analysis. 
 

Individual sequences - DNA mapping, QC, and phasing: Prior to mapping all individual 
PE reads were merged into longer reads using bbmerge (46). Merged reads were trimmed using 
bbduk v38.98, flags: ftl=15 ftr=285 qtrim=w trimq=20. Reads were mapped to the Drosophila 
genome (Release 6 plus ISO1 MT; https://www.ncbi.nlm.nih.gov/assembly/GCF_000001215.4/) 
using BWA-MEM v0.7.17 (47). Bam file sorting and read deduplication was done using Picard 
tools v2.27.4 (https://broadinstitute.github.io/picard/). Bam file quality was assessed with 
qualimap v2.2.1 (48). In the case of samples that were sequenced across multiple lanes, bam files 
were joined into a single-individual bam using samtools v1.9 merge (49) prior to PCR duplicate 
removal. GVCFs were created using the HaplotypeCaller program of the GATK v4.2 pipeline 
(50). SNP calling was done by first generating a GenomicsDBI object using GATK’s 
GenomicsDBImport. SNP calling was done using the GenotypeGVCFs program. SNPs were 
calibrated using VariantRecalibrator using the DGRP as the training set. We used WhatsHap 
v1.7 (51) to conduct read-based phasing, followed by population based phasing using shapeit 
v4.2.2 (52). For the individual based sequencing, we identified 6,689,236 autosomal SNPs that 
passed filtering. Repetitive elements, defined by the Interrupted Repeats, Microsatellite, 
RepeatMasker, SimpleRepeats, and WM_SDust tracks from UCSC Genome Browser (53) were 
removed from further analysis. 
 

Other fly datasets used: D. melanogaster data was downloaded from three public 
repositories: DEST (24), DGRP2 (26), and DPGP3 (54, 55). D. simulans was obtained as a VCF 
file from Zenodo's repository of (56). Data for  D. yakuba was obtained from (57) and mapped to 
its corresponding genome (NCBI acc. GCA_016746365.2). Data for  D. sechellia was obtained 
from (32) and mapped to its corresponding genome (NCBI acc. GCF_004382195.1). Data for  D. 
mauritiana was obtained from (58) and mapped to its corresponding genome (NCBI acc. 
GCA_004382145.1).  
 

Temporal analysis using PCA: Principal component analyses (PCA) were conducted on 
the Pool-seq time series data from the DEST dataset as well as the new Charlottesville samples. 
These analyses were done on two ways: First using global data using populations from Munich 
and Broggingen, Germany; Yesiloz, Türkiye; Odessa, Ukraine; and Akaa, Finland: Linvilla, 
Pennsylvania, and Cross Plains, Wisconsin, USA, including all Virginia (Charlottesville, 
Virginia, USA) samples. This is the PCA presented in Fig. 1). The second way only used the 
data from Virginia (shown in Fig. 2). In both cases, we applied a minimum allele frequency filter 
of 0.001 across the subset of populations. We also applied a mean effective coverage Neff filter of 
28 (see explanation below). Neff  was calculated as in (59): 

 
Neff = (nreads x nchrs - 1)/(nreads + nchrs)  

 
Where nreads is the read depth, and nchrs is the number of pooled chromosomes. Neff is calculated 
in a SNP-wise manner, and the mean Neff for a given sample is used in our filtering. We also 
applied local missing data filters of 0.01 (i.e., any samples with higher missing data is excluded). 
The resulting dataset (a matrix of allele frequencies) was used to calculate the principal 
component analysis using FactoMiner v2.6 (60). The Neff filter of 28 was determined empirically 
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by running the PCA analysis sequentially at various Neff thresholds. We observe that when 
samples with Neff < 28 are included in the analyses these samples create outliers in PCA driven 
by Neff. When PCA is done with samples Neff > 28, Neff no longer influences clustering across 
major PCs. 
 In addition, we randomly sampled SNPs in increments of 100, from 100 to 1000 SNPs, 
and in increments of 1000, from 1000 to 20000 SNPs and performed PCA, and calculated 
correlations of PC 1, 2, and 3 with year of collection (ρ2year), frequency of inv(2L)t (ρ2inv(2L)t), and 
effective coverage (ρ2Neff). In parallel, we ran an identical analysis but with sample labels 
permuted. We repeated this process 500 times each and compared estimates of the real order of 
the data relative to permutations. 
 

Generalized linear models (time and environment):  We tested the effects of time and 
temperature on allele frequencies (AFs) by fitting a binomial generalized linear model (GLMs) 
using fastglm v0.0.3 (61). We used the effective coverage Neff as the observed sample size for the 
GLMs. For each SNP, we fit 112 models. First, we fit a null model in which AFs were regressed 
onto their means (AF = β0 + 𝜀;) and a second model where AFs were regressed onto the 
collection year as an unordered factor (AF = β0 + β1(yfactor) + 𝜀). Next, we constructed 110 
environmental models (AF = β0 + β1(yfactor) + β2(γ) + 𝜀; where γ is an environmental covariate). 
For any model, the environmental covariate is a summarization (e.g., mean) of temperature, 
precipitation, or humidity in the weeks to months prior to sampling. For temperature, 
precipitation, or humidity, we summarized hourly estimates from the NASA-power dataset (62). 
using the mean and variance over the selected window of time. For temperature, we calculated 
the maximum and minimum hourly temperature in the selected window of time. For temperature, 
we also calculated the number of days where the daily maximum was above 32°C or minimum 
daily temperature was below 5 °C. See Fig. S6 for a visual depiction of the summarization 
scheme.  

We performed likelihood ratio tests (LRT) between each environmental model and the 
year-only model; we performed LRT between the year-only model and the null model (Data S1). 
For other DEST populations we fit similar models, but the environmental models have the form 
AF = β0 +  β1(Population:yfactor) +  β2(γ)  + 𝜀, a change also included in the time model (AF = β0 
+  β1(Population:yfactor) + 𝜀 ).  

For each SNP, and for the four population sets (Charlottesville, EU-E, EU-W, and NoA-
E) independently, we identify the “best” model by assessing the number of times were the model 
fit in the real data is the best fit model (by AIC) relative to 100 permutations (i.e., the model’s 
relative rate of enrichment). Notice that the permutations were done preserving linkage 
relationships in the data, meaning that each SNP was permuted in the same way and thus the 
correlation of signal across that is generated by linkage is preserved in each permutation.  

Window based enrichment analyses were done in two ways. First, by rank-normalizing 
the LRT P-values such that all P-values are transformed into a uniform distribution bounded 
between 1 and 1/L. By using these rank-normalized P-values and dividing the genome into 10 
Kb windows with a 5 Kb step, we assessed the number of SNPs in each window that had P-
values at the 5% of the ranked P-value distribution. We calculated a p-value of enrichment for 
each window under the null hypothesis that 5% of SNPs in the window will be in the top 5%, 
ranked genome-wide using the binomial.test() function in R. We also calculated the wZa metric, 
which is based on Stouffer's method (63) for aggregating P-values across windows, and we use it 
to assess the strength of signal across the genome.  
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Inference of inversion 2Lt markers: We used the DGRP (26) to identify a panel of SNPs 

associated with inversion breakpoints for Inv(2L)t using only lines karyotyped as standard or 
inverted homozygotes; no heterozygous lines were used (42). We conducted a PCA on the 
DGRP panel using only data from chromosome 2L (Fig. S6). We identified putative inversion 
markers using PCA loadings followed by estimating levels of linkage disequilibrium (LD) using 
Plink v1.9 (64). We only kept SNPs with highest loadings to PC 1 and mean LD > 0.99 relative 
to the inversion kayrotype. We validated these putative inversion SNPs by calculating LD of 
these markers in our individual phased data from Charlottesville (SNP positions were 
transformed to Dmel 6 using LiftOver;  https://genome.ucsc.edu/cgi-bin/hgLiftOver). We kept 
47 SNPs with mean LD > 0.8 in our Charlottesville data as a list of final inversion markers. We 
trained a linear support vector machine model (SVM) using the 47 markers and the DGRP data 
using the R package “e1071” v1.7-11 and used this SVM to perform in-silico karyotyping of the 
sequenced inbred lines.  
 

Forward genetic demographic simulations: To test if variable bottleneck sizes influence 
patterns of genetic differentiation through time, and to infer minimum and maximum population 
sizes during boom-bust cycles that are consistent with our data we performed genetic 
simulations. First, we performed a coalescent based neutral simulation of a single population 
with θπ = 0.001 using msprime (65) in python 3.8. This neutral background was used as a burn-in 
within the forward genetics software, SLiM3 (66). SLiM3 was used to simulate cyclic population 
crashes genetic data, and we varied the population size maximum (nMax) and the population size 
minimum (nMin) under a model of instantaneous change in population size. For each parameter 
combination, the simulated demographic event had a constant population size at nMax from 
generations 1-16, 19-33, and 36-50 and the bottlenecks occurred at generations 17-18 and 34-35 
where the population size was set to nMin. A VCF of 50 simulated diploid individuals was 
output at the end of each generation to track allele frequency changes. Allele frequencies were 
simulated to mimic pooled-sequencing using the sample.allele() function in the poolSeq v0.3.5 
(67) package with a mean coverage of 60. Principal component analyses were performed using 
the PCA function in FactoMiner v2.6 (60) and missing data was imputed using the mean. 
Pairwise FST was calculated using the compute.pairwiseFST() function in poolfstat v2.1.1 (68). 
Every parameter combination was simulated 100 independent times with different seeds. Model 
selection was performed using approximate bayesian computation (ABC) under a rejection 
method with a threshold of 10% using abc v2.1(69) in R. The summary statistics used were the 
medians of: within year FST, between year FST, median allele frequency variance, the r2 of PC1, 
PC2, PC3, LD1, and LD2 values with simulation year (Fig. S2). 

 
Cross-model enrichment and directionality scores: We tested whether candidate loci 

that show strong signal in Charlottesville are enriched for those SNPs in the top 5% identified in 
the best models in EU-W, EU-E, and NoA-E using Fisher's exact test. We also assessed if allele 
frequency changes are consistent between population sets by calculating the proportion of SNPs 
that have the same sign of allele frequency change with respect to the population cluster’s best fit 
model, conditional on their being strong allele frequency change at all (top 5% in both 
population clusters). Because the specific environmental models for EU-W, EU-E, and NoA-E 
are different from those identified in Charlottesville, directionality values of either 0% or 100% 
indicate that alleles at a candidate window are changing in frequency as a haplotype block 
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relative to Virginia. To this end, we performed a binomial test on the windows of interest across 
the best models in EU-W, EU-E, and NoA-E relative to Charlottesville. The significance of a 
window’s directionality is assessed if the estimate of the binomial test is different from 50% (i.e., 
random expectation).   
 

Population genetic analyses: For our phased samples, we calculated FST, π, Tajima’s D, 
and haplotype numbers in vcftools v0.1.16 (70). LD was calculated using plink v1.9 (64). 
TMRCA was calculated using GEVA v1.0 (71). For pool-seq data, FST was calculated using 
poolfstat v2.1.1 (68). Temporal FST was calculated among populations sampled across 
timepoints. Spatial FST, in Europe, was done on samples collected during the fall of 2015 to 
ensure temporal homogeneity across comparisons. For the haplotype-inferred trajectory analyses, 
anchor markers were selected based on Q-values < 0.05 in the pooled data (i.e., adjusted P-
values using false discovery rate). Using the LD estimates from the individual data, we identified 
all loci pairs (+/- 0.2 Mb) with r2  > 0.6 in Virginia to the anchor locus. We used the averaged 
frequency of the anchor loci and its high LD pairs as estimators of haplotype frequencies in the 
pooled data (Anchor loci and LD pairs can be found in Data S3).  

 
Matched controls: Matched controls, used for FST analyses, were identified by sampling 

the genome for 100 SNPs with similar recombination rate (+/- 0.20 cm/Mb), global allele 
frequency (+/- 0.030). By design matched controls must originate from chromosomes different 
from the one containing the SNP of interest.   

 
Phenotypic association with inversion status: GWAS meta-analyses was performed 

using phenotypic datasets described in Table S8. We constructed a phenotypic dataset from 
published data of DGRP line averages for 225 phenotypes (Table S9). We annotated these 
phenotypes by classifying each phenotype into one of four general-groups: “Behavior”, “Life-
History”, “Morphology”, and “Stress-resistance”. We used this dataset to establish the effect of 
cosmopolitan inversions (In(2L)t, In(2R)Ns, In(3L)P, In(3R)K, In(3R)Payne, In(3R)Mo) on 
phenotype using a linear models designating inversion presence focusing on DGRP strains 
reported to be homozygous inverted, or homozygous standard. In the case of 3R the analysis was 
implemented to identify traits associated with any inversion inside the chromosome. 
 

GWAS analysis: We performed GWAS for each phenotype using the DGRP2 dataset 
with GMMAT v1.3.2 (72). In this analysis our null model is described by the formula: 
Phenotypei = β0 + β1(Wolbachia) + β2(GRM), where β2(GRM) is a random effect matrix. The 
null model is compared to a full model defined as: Phenotypei = β0 + β1(Wolbachia) + β2(SNP 
dosage) + β3(GRM). Where β1(Wolbachia) is a fixed effect corresponding to Wolbachia 
infection status of the line as defined by DGRP2, and β3(GRM) is a random effect matrix. The 
GRM refers to the genetic relatedness matrix. The GRM is traditionally used to account for 
cryptic relatedness or genetic structure among the individuals or strains. The publicly available 
GRM generally used in DGRP-GWAS has large sections around the inversions removed but 
despite this remaining relatedness within the matrix is influenced by inversion status of the lines, 
especially In(2l)t (42). As the goal of our analysis was to reveal the effect of elements within 
inversion on these phenotypes, our analysis used an identity matrix in place of the standard 
GRM. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2022. ; https://doi.org/10.1101/2022.12.09.519676doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519676
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

GWAS-GLM enrichment & directionality: We identified regions of the genome that are 
enriched for SNPs identified in the GWAS analysis and loci identified by the Tmax0-15d model 
from Virginia. We grouped our SNPs per chromosome and inversion status (inside or outside), 
then tabulated the number of SNPs that are outliers for the GLM and GWAS datasets (top 5% 
SNPs, ranked by p-values), and calculated odds-ratios using the Fisher’s Exact Test. We 
calculated the directionality score as the proportion of times the sign of allele frequency change 
was identical for the GLM and GWAS models, using SNPs in the top 5% for both. A direction 
score of 1 thus indicates that the sign of allele frequency change at every SNP under 
investigation is the same, and 0 indicates that all SNPs have opposing signs of effect in the GLM 
and GWAS analysis. We repeated this analysis with the same 100 GLM permutations referenced 
previously to develop an empirical null distribution for the enrichment and directionality tests. 

 After using the previous analysis to identify phenotypes broadly enriched for seasonal 
SNPs, we performed a sliding-window analysis to identify specific regions of high enrichment. 
The sliding analysis used a window size of 100 kb and a step of 50 kb and examined the local 
enrichment of phenotypes with SNPs that are in the top 5% of the GLM and GWAS hits, per 
phenotype. After identifying the phenotypes enriched with GLM and GWAS at each window. 
We replicated this sliding window analysis using the 100 GLM permutations, described above. 
We identified significant windows as those were the Fisher’s exact test p-value of enrichment per 
phenotype had chromosome-wide Bonferroni-corrected P-value < 0.05, and where the number of 
phenotypes that had such a significant enrichment was greater than 100% of the permutations. 
This analysis identified 62 phenotypes as candidate phenotypes. We scaled these phenotypes to 
conduct a principal component analysis using FactoMiner v2.6 (60). 

 
Startle response quantitative complementation tests: We performed quantitative 

complementation using deficiencies to test the effect of In(2L)t on startle response by selecting a 
set of 5 deficiency lines covering regions within our windows of interest. We additionally 
selected DGRP lines that included lines both homozygous for inverted and standard karyotype 
and included lines with either the ancestral or derived haplotypes for w5.2 and w9.6. We used 
these deficiency lines, and constructed a set of 25 F1 crosses (see Table S10: Crossing Scheme). 
For example, the Df(2L)BSC37, dpp[EP2232]/CyO deficiency (Bloomington #7144) which 
spans approx. 2.1 mb to 2.5 mb was crossed with three inverted DGRP lines and two standard. 
For each F1 cross, we sorted 3–5 day old females into balancer and deficiency F1 backgrounds 
based on the curly wings balancer phenotype. 

To test startle response, we mounted Trikinetic monitors (DAM2 Drosophila Activity 
Monitor) to a vibrating pad (Best Choice Products #SKY3197) within a Percival incubator held 
at 20°C in constant light. On five consecutive days we assayed a new set of flies from each cross 
to avoid a day-effect, and on each day randomly selected the location of each fly amongst the 
Trikinetic monitors and wells to avoid a monitor-effect. We placed the flies in the monitors 
overnight with DAM (v3.10.7) software set to record at 1 second intervals. At 10 am the 
following morning we set the vibrating pad to the lowest setting for 5 seconds, before letting the 
monitors continue data collection for at least 10 minutes. We repeated the whole experiment in 
three independent blocks. Prior to data analysis, we smoothed the activity data for each fly as 
activity counts over a window size of 90 seconds, progressing with an interval of 30 seconds.  

We estimated the startle response in two ways. First, we calculated startle duration as the 
time between a fly’s peak activity post-stimulus, and their return to that flies basal activity level 
as defined as the average activity prior to startle. We tested for a failure to complement using a 
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mixed effect model implemented in lme4 version v1.1-30 (73), by performing a likelihood-ratio 
test between the full model to the additive one: 

 
Full: Startle Duration = β0 + β1(genotype) x β2(background) + β3(block) 
Additive: Startle Duration = β0 + β1(genotype) + β2(background) + β3(block) 

 
Where, genotype is a fixed effect that includes both the inversion status and the ancestral/derived 
state of any haplotype in that window, background is a fixed effect factor that considered if that 
fly has the balancer or deficiency background, and block is a random effect factor that considers 
which of the three experimental blocks the data was collected from.  

The second way that we assessed startle response was by estimating the rate of change of 
startle induced activity following stimulation. The startle-response decay rate is the slope of 
activity per unit time following stimulation. We scaled activity by dividing the activity rate 
scores by the basal activity rate, defined as the average activity per minute over the hour prior to 
stimulus, for each individual fly before fitting models to these scaled activity scores over the 
span of time starting at peak activity post-stimulus. The rate of change of activity following 
startle is the “startle response decay” and we estimated these decay rates using the Emmeans 
v1.8.1-1 (74). To test for failure to complement using a mixed effect model, we conducted a 
likelihood-ratio test of the full model to the additive one: 
 

Full: Activity = β0 + β1(minute) x β2(genotype) x β3(background) + β4(block) + β5(fly)  
Additive:  Activity = β0 + β1(minute) + β2(genotype) + β3(background)  + β4(block) + β5(fly) 

 
Where β1(minute) is a fixed effect that tracks the elapsed time in minutes since the peak 

of post-stimulus activity, β2(genotype) is a fixed effect that includes both the inversion status and 
the ancestral/derived state of any haplotype in that window, β3(background) is a fixed effect 
factor that considered where that fly has the balancer or deficiency background, β4(block) is a 
random effect factor that considers which of the three experimental blocks the data was collected 
from, and  β5(fly) is the random effect of each individual fly. 
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Figure S1: Principal component analysis (PCs 1 and 2 shown), at the chromosome arm level, for 
each population. The color indicates the collection year. Shapes indicate the sample type: spring 
and fall collections (collected at the beginning and end of the growing season), frost (collected 
prior to a frost event), or time series (indicated bi-weekly collections). Samples are: Akaa, 
Finland; Broggingen, Germany; Charlottesville, VA, USA; Cross Plains, NY, USA; Linvilla PA, 
USA; Munich, Germany; Odessa, Ukraine; Yesiloz, Türkiye. 
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Figure S2: Genetic summary statistics of boom-and-bust simulations. (A) Cartoon models of 
simulated overwintering demography. Each facet showcases example nMax population sizes. (B) 
Median r2 of principal component (PC) and linear discriminant (LD) axis with simulation year. 
(C) Median pairwise-Fst within and between simulation years. D) Median allele frequency 
variance for simulated models across the entire simulation period. Panels B-D are grouped and 
colored according to the percentage of bottleneck simulated. 
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Figure S3: Resampling analysis shows correlations between a number of variables of interest 
(e.g., Year, Frequency In(2L)t) to the PC projections (PCs 1, 2, and 3) in Charlottesville. Red, 
green, and blue colors represent PCs 1, 2, and 3 respectively. Permutations are shown in purple. 
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Figure S4: Median correlation between variables of interest (Year, effective coverage, frequency 
of cosmopolitan inversions) relative to the PC projections (PCs 1, 2, and 3). The confidence 
intervals represent the 5th and 95th interquartile ranges (IQR). We also show the results of 
correlations where sample identity has been permuted. Samples are: Aka=Akaa (Finland), 
Bro=Broggingen (Germany), Cha=Charlottesville (VA), Cp=Cross Plains (NY), Li=Linvilla 
(PA), Mun=Munich (Germany), Ode=Odessa (Ukraine), Yes=Yesiloz (Türkiye).  
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Figure S5: Using the DGRP to characterize mutations associated with the In(2L)t inversion. (A) 
PCA of DGRP lines colored by known inversion status (heterozygous individuals were excluded 
from the analysis). (B) Correlation analysis of individual SNPs within 2L to PC 1 shown in panel 
A. The y-axis shows the P-value (Bonferroni corrected) of the SNP-level correlation to PC 1 
shown in panel A. (C) Levels of linkage disequilibrium among the inversion markers discovered 
in the DGRP estimated in our Charlottesville data. To determine inversion breakpoint markers, 
we only kept loci with median LD values among markers of 0.8 or greater. (D) Results of a 
support vector machine (SVM) algorithm trained to determine the inversion status of unknown 
individual samples. The SVM algorithm was trained on the DGRP using the 47 marker loci 
highlighted on the right side of the dashed red line in C. 
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Figure S6: Data summarization scheme using the NASA power dataset for environmental 
variables. (A) The x- axis shows the number of days prior to collection. The panel shows the 
summary statistics and environmental variables used. (B) Green dots indicate that the metric was 
used. Including a null and year models, the total number of models tested is 11 x 6 
(Temperature) + 11 x 2 (Humidity) + 11 x 2 (Precipitation) + 2 (Null and Year) = 112 models. 
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Figure S7: The plot shows ΔAIC that compares various models used in our GLM analyses of 
Charlottesville. Two comparisons are: 1) the best model in Charlottesville (AF = β0 +  β1(year) +  
β2(Tmax0-15d)  + 𝜀) relative to the null model (AF = β0), and 2) the best model in Charlottesville 
(AF = β0 +  β1(year) +  β2(Tmax0-15d)  + 𝜀) and the year model alone (AF = β0 +  β1(year)). The 
horizontal line signifies ΔAIC = 2, a common threshold used for model selection when choosing 
among models by AIC. The value reported is the median as well as the 2.5% and 97.5% 
percentiles of ΔAIC for all SNPs across the genome. The color indicates the 3 thresholds in the 
ranked normalized P-value analysis of the GLM.  
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Figure S8: (A) Levels of nucleotide diversity (𝜋) within chromosome arm 2L. (B) Distributions 
of Tajima’s D for standard and inverted karyotypes. The annotation “Inv” and “Std” refer to the 
karyotypes In(2L)t and standard, respectively, in chromosome arm 2L. The values for two 
windows of interest (6.1 and 9.6) are annotated as arrows, as well as the average value for the 
entire karyotype. (C) Distribution of the allele age, defined as time to most common ancestor 
(TMRCA) across genotypes of Virginian flies. The metric was estimated for standard 
homozygous (std/std), In(2L)t homozygous (Inv/Inv) and heterozygous (Std/Inv). 
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Figure S9: (A) Levels of haplotype diversity within inverted and standard classes in 
chromosome 2L. The y-axis is the number of unique haplotypes across windows of 10k bp. (B) 
Boxplots showing the number of unique haplotypes. The y-axis shows the scaled number of 
haplotypes (scaled as (x – x̄) / s; where x: number of haplotypes across individual 10k windows, 
x̄: mean within the region among 10k windows of interest, s: SD within the region of interest). 
Summaries are shown in six regions of interest in In(2L)t, as well as regions inside and outside 
of the inversion. The annotation “Inv” and “Std” refer to the karyotypes In(2L)t and standard, 
respectively, in chromosome arm 2L. 
 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2022. ; https://doi.org/10.1101/2022.12.09.519676doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519676
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

Figure S10: (A) FST between the inverted and standard karyotypes in 2L for the Virginia data 
and the DGRP (North Carolina), both North American samples. The line in blue indicates the 
trans-species mutation in Msp300. (B) FST between the inverted and standard karyotypes in 2L in 
the DPGP (Zambia) an African population. Various window (W) and step sizes (S) are shown. 
(C) Matrix of linkage disequilibrium values (r2) within the region of 2L corresponding to 
In(2L)t. (D) Distribution of counts for the number of SNP pairs with r2  >0.6 among windows of 
interest.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2022. ; https://doi.org/10.1101/2022.12.09.519676doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519676
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

Figure S11: Trans-species polymorphism in Msp300 drive divergence in 2L. (A) Mean FST 
between inverted and standard karyotype classes, at the Msp300 region in 2L (Window = 5000 
bp, Step = 1000 bp). (B) Gene structure and isoforms of Msp300. The vertical line indicates the 
focal mutation (32735G>T, Gly10912Val). (C) Correlation between Tmax (0-15 d) and the 
frequency of 32735G>T, 32735G>T. (D) Phylogenetic tree showing the trans-species 
polymorphism at 32735G>T (D. melanogaster samples from North America are shown). 
Bootstrap values shown in the nodes. (E) Allele frequencies of 32735G>T across populations of 
D. melanogaster. The location of two reference panels, DGRP and DPGP, are shown. (F) PCA 
on temperate (DGRP) and African (DPGP) genetic panels of the locus shows that PC1 mostly 
captures continental differences between panels. PC2, on the other hand, captures karyotypic 
differences (For PC1 DGRP/DPGP: F1,371 = 5155.80 , P = 2.2e-16; For PC1 Inversion: F1,371 = 
219.20, P  = 2.2e-16; For PC2 DGRP/DPGP: F1,371 = 56.10, P = 4.885e-13; For PC2 Inversion: 
F1,371 = 3163.30, P = 2.2e-16). (G) Frequency of inverted or standard karyotypes carrying 
32735G>T in the DGRP and DPGP. (H) Enrichment score (Odds Ratio) of T alleles (of 
32735G>T) in the standard karyotypes using Fisher's exact test in the DGRP and DPGP. 
Notably, patterns of allelic variation are different in African populations. For example, the 
frequency of T is more abundant in Africa, relative to G (FET, Odds Ratio = 18.43 [95% C.I. = 
4.51-16.6];  P-value = 3.288e-08) and, unlike temperate populations, both alleles are abundant in 
the standard karyotype 
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Figure S12: Model search in EU-E (A), EU-W (B), and NoA-E (C). The x-axis shows each 
model ranked according to the best model in In(2L)t in Virginia. The y-axis shows an enrichment 
score testing whether the model output was scored as the best model by AIC relative to 
permutations. The vertical line represents the expected value across all permutations. Confidence 
intervals are reported as the 1% and 99% percentiles of the estimators. Gray circles represent 
models that are not statistically significant. Blue circles represent models that are statistically 
significant. There are three special models highlighted in this plot. First: Tmax(0-15 d) is shown 
as a black circle that is always the first model (since it is the best model in Virginia). Second: the 
year model shown as a triangle. Third: the null model shown as a square. For these three special 
models, green indicates significance whereas red the lack of significance. 
 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2022. ; https://doi.org/10.1101/2022.12.09.519676doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519676
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

Figure S13: Mean of the percentile of FST values from loci associated with In(2L)t relative to 
matched controls for various locales. The top panel shows windows of interest in the GLM 
analysis. The lower panel shows the correlation rank of loci correlated to the inversion (as per 
PCA analysis of DGRP lines). The x-axis shows the percentile of control loci with FST values 
lower than that of the locus of interest. Interquartile ranges (IQRs) are shown.  
 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2022. ; https://doi.org/10.1101/2022.12.09.519676doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519676
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

Figure S14: Estimated frequencies of the inversion In(2L)t across a previous study and this one 
looking at changes in response to seasonality. The month-to-month correlation between the 
patterns of allele frequency between this paper and our study is 0.76 (P = 0.003). 
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Figure S15: (A) The y-axis shows the number of traits used in GWAS that are associated with 
inversion status in the DGRP for autosomes (For chromosome 3R the test considers whether a 
trait is associated with any inversion). Traits are divided across four phenotypic categories 
indicated by color. The real data is shown as diamonds, permutations are shown as black points 
and boxplots (asterisks indicate that the data outperform 95% of permutations). (B) 
Directionality and enrichment analysis between the DGRP-GWAS and the best environmental 
model in Virginia for 2R, 3L, and 3R. Lines indicate the permutation based 95% confidence 
intervals. (C) Window level enrichment analysis across the whole genome. Windows that beat 
permutation are shown in turquoise, otherwise in red.The y-axis shows the SNP-wise number of 
enriched phenotypes (i.e., significant in both the GLM and GWAS). Inversions are shown as 
color blocks. 
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Figure S16: Explanation of DGRP line choice and the complete observations of three major 
phenotypes from each the different genetic backgrounds used in the deficiency line startle 
response study. (A) The ancestral (red) or derived (blue) background of the 10 DGRP lines used 
in the study. Lines are shown to be both inverted or standard, and when considering the structure 
in their genetic backgrounds either in the “A” type or “D” type (based on the proportion of sites 
shared or derived relative to D. simulans). For example, flies with DGRP 837 background are 
inverted/type A when considering the 5mb window, and type D when considering the 9mb 
window. (B) The differences in the three observed phenotypes are shown across genetic groups. 
Phenotypes are faceted by each of the 5 major deficiencies (see Tables S10, S11), grouped by 
the presence of deficiency or balancer in the F1 flies used, and colored by their inversion and 
type. The top row illustrates the activity slope, a measurement of how rapidly activity decays 
back to basal following the stimulus event.  The second row illustrates the startle duration, a 
measurement of the period between the peak of activity following stimulus, and the return to 
basal activity. Third row indicates the level of basal activity per minute. 
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Supplementary Tables (Legends) 
 
Table S1: Samples used in this analysis. The table has the following headings: sampleId: the 
name of the pooled or individual sample; country: country of provenance; city: city of 
provenance; locality: code indicating the country, state, and city where the sample was collected; 5 
collectionDate: collection date; nFlies: number of flies pooled, for individual samples this 
number is 1;  SRA_accession; SRA_experiment; type: pooled or individual; PCA.set: 
TRUE/FALSE whether the sample was used in the PCA analysis; FST.set: TRUE/FALSE 
whether the sample was used in the FST analysis;  GLM.set: TRUE/FALSE whether the sample 
was used in the GLM analysis; IND.set: TRUE/FALSE whether the sample was used in the 10 
individual analyses. in(2L)t_score: For pooled samples, this value is the frequency of the 
inversion In(2L)t in the pool. For individual samples, this is the SVM score for a sample having 
inverted (1), standard (0), or heterozygous (0.5). propSimNorm: The level, standardized, of D. 
simulans contamination in pooled data. Note that metadata for DEST samples can be found at: 
https://github.com/DEST-bio/DEST_freeze1/tree/main/populationInfo.  15 
 
Table S2: Correlation analysis between PC 1 projections for each city and the year of collection 
of the pool. Headers: City: city of provenance; Country/State: country or state from which 
samples originated; PC: Principal component used to run the correlation; r: The correlation 
between the collection year and the PC projection; r2: The coefficient of determination   20 
 of the model; P-value: P-value of the model; Sig: whether the P-value is below 5%. 
 
Table S3: P-values for the population-level Kruskal–Wallis (Overwintering test).  
 
Table S4: Full results for resampling analysis of correlations between PC projections and several 25 
variables across populations. Columns shown are: Population, chromosome, number of SNPs 
sampled, Principal Component, Median correlation, IQR25, IQR75, IQR05, IQR95, Mean, SD. 
 
Table S5: Tukey HSD analysis on the haplotype analysis of In(2L)t. Columns shown are: 
comparison (com), difference in means (diff), lower 95% confidence interval (lwr), upper 95% 30 
confidence interval (upr), P-value adjusted (p.adj). 
 
Table S6: Metadata for additional single individuals from North Carolina, Pennsylvania, Maine, 
France, and the Netherlands. Columns are: Sample name, location, longitude, latitude, Citation 
where the data can be found. 35 
 
Table S7: Output of the SVM prediction model. Columns: sample Id, quantitative prediction 
from the SVM, qualitative prediction from the SVM, population.  
 
Table S8: Phenotypes used in our meta-analysis including their references and DOIs. Columns: 40 
id, phenotype name, doi of study, specific phenotype category, general phenotype category. 
 
Table S9: Line averages for phenotypes in the DGRP. 
 
Table S10: Deficiency lines and DGRP crossing scheme. 45 
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Table S11: Statistical output of complementation tests comparing different phenotypes across 
the 5 different deficiencies backgrounds.  

Supplementary Datasets (Legends) 
 
Data S1: Data object including the SNP-wise GLM output. The columns in this dataset are as 5 
follows: chr (chromosome), pos (position), AIC (AIC of the model at given SNP), variable 
(environmental variable from NASA-POWER), mod_id  (Model Id), p_lrt (LRT p value), 
b_temp (beta of environemtnal variable), se_temp (SE of environemtnal variable), Cluster 
(Population, i.e., VA, EUE, EUW), cm_mb (Recombiantion), invName (Inversion Name), rnp 
(Ranked Normalized P-value), Perm.rnp.0.01.quant  (0.01 quantile of RNP in 100 permutations), 10 
time_window (window of time of the model), SNP_id (SNP id), N.phenos (Phenotype number), 
Description (Pheno description) 
 
Data S2: Data object including the AIC models enrichment analysis. Headers are: variant.id 
(variant Id in DESTv1.1), perm (0: real data, 1-100: indicates permutation number), cluster 15 
(population cluster), var (ecological variable), mod (summarization scheme), p_lrt (likelyhood 
ratio test), minAIC (minumun AIC of the ecological variable model), yearAIC (AIC of year 
model), chr (chromosome), pos (position) , N (number repetitive libraries; all should be 0), libs 
(repetitive elements; all should be filtered), cm_mb (recombination rate), invName (inversion 
status and name). The following columns indicate whether the SNP passes filters across core 20 
populations: DE_Bro, DE_Mun, FI_Aka, PA_li, TR_Yes, UA_Ode, , VA_ch. 
 
Data S3: Anchor SNPs and associated pairs in high LD. This data contains the following 
headers: sampleId (sample Id), variant.id (variant Id in DESTv1.1), ad (allele count), dp 
(coverage), col (annotation: function), gene (annotation: gene name), chr (chromosome), pos 25 
(position), nAlleles (allele number), af (allele frequency), country, city, collectionDate, lat, long, 
season, locality, type, continent, set (population set), nFlies (number of flies pooled), 
SRA_accession, SRA_experiment, SeqPlatform (sequencing platform), collector, sampleType, 
year, yday (day of collection), stationId (weather station info), dist_km, nEff (effective 
coverage), af_nEff, win (window of interest in In2Lt), sim_af (Simulans allele), af_polarized 30 
(allele frequency polarized to simulans). 
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