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Abstract

There has been considerable recent progress in designing new proteins using deep learning
methods1–9. Despite this progress, a general deep learning framework for protein design that
enables solution of a wide range of design challenges, including de novo binder design and
design of higher order symmetric architectures, has yet to be described. Diffusion models10,11

have had considerable success in image and language generative modeling but limited success
when applied to protein modeling, likely due to the complexity of protein backbone geometry
and sequence-structure relationships. Here we show that by fine tuning the RoseTTAFold
structure prediction network on protein structure denoising tasks, we obtain a generative model
of protein backbones that achieves outstanding performance on unconditional and
topology-constrained protein monomer design, protein binder design, symmetric oligomer
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design, enzyme active site scaffolding, and symmetric motif scaffolding for therapeutic and
metal-binding protein design. We demonstrate the power and generality of the method, called
RoseTTAFold Diffusion (RFdiffusion), by experimentally characterizing the structures and
functions of hundreds of new designs. In a manner analogous to networks which produce
images from user-specified inputs, RFdiffusion enables the design of diverse, complex,
functional proteins from simple molecular specifications.

Main
De novo protein design seeks to generate proteins with specified structural and/or functional
properties, for example making a binding interaction with a given target12, folding into a
particular topology13, or stabilizing a desired functional “motif” (geometries and amino acid
identities that produce a desired activity)4. Denoising diffusion probabilistic models (DDPMs), a
powerful class of machine learning models recently demonstrated to generate novel
photorealistic images in response to text prompts14,15, have several properties well-suited to
protein design. First, DDPMs generate highly diverse outputs – DDPMs are trained to denoise
data (for instance images or text) that have been corrupted with Gaussian noise; by learning to
stochastically reverse this corruption, diverse outputs closely resembling the training data are
generated. Second, DDPMs can be guided at each step of the iterative generation process
towards specific design objectives through provision of conditioning information. Third, for
almost all protein design applications it is necessary to explicitly model 3D structure;
SE(3)-equivariant DDPMs are able to do this in a representation-frame independent manner.
Recent work has adapted DDPMs for protein monomer design by conditioning on small protein
“motifs”5,9 or on secondary structure and block-adjacency (“fold”) information8. While promising,
these attempts have shown limited success in generating sequences that fold to the intended
structures in silico5,16, likely due to the limited ability of the denoising networks to generate
realistic protein backbones, and have not been tested experimentally.

We reasoned that improved diffusion models for protein design could be developed by taking
advantage of the deep understanding of protein structure implicit in powerful structure prediction
methods like AlphaFold2 (AF2) and RoseTTAFold (RF). RF has properties particularly well
suited for use in a protein design DDPM (Fig. 1A). First, RF can generate protein structures with
very high precision, and in our previous work we demonstrated considerable success in
accurately scaffolding motifs following fine tuning of RF for protein design (“RFjoint Inpainting”)4.
Second, RF operates on a rigid-frame representation of residues with rotational and
translational equivariance. Third, the RF architecture enables conditioning on design
specifications at three different levels: individual residue properties, pairwise distances and
orientations between residues, and 3D coordinates. In RFjoint Inpainting, we fine-tuned RF to
design protein scaffolds in a single step. Experimental characterization showed that the method
can scaffold a wide range of protein functional motifs with atomic accuracy17, but the approach
fails on minimalist site descriptions that do not sufficiently constrain the overall fold, and
because it is deterministic, can produce only a limited diversity of designs for a given problem.
We reasoned that by instead fine-tuning RoseTTAFold as the denoising network in a generative
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diffusion model, we could overcome both problems: because the starting point is random noise,
each denoising trajectory yields a different solution, and because structure is built up
progressively through many denoising iterations, little to no starting structural information should
be required.

We construct a RoseTTAFold-based diffusion model, RFdiffusion, using the RF frame
representation which comprises a Cɑ coordinate and N-Cɑ-C rigid orientation for each residue.
We generate training inputs by simulating the noising process for a random number of steps (up
to 200) on structures sampled from the Protein Data Bank (PDB)18. For translations, we perturb
Cɑ coordinates with 3D Gaussian noise. For residue orientations, we use Brownian motion on
the manifold of rotation matrices (building on refs [19,20]). To enable RFdiffusion to learn to
reverse each step of the noising process, we train the model by minimizing a mean squared
error (MSE) loss between frame predictions and the true protein structure (without alignment),
averaged across all residues (Methods 2.5). This loss drives denoising trajectories to match the
data distribution at each timestep and hence to converge on structures of designable protein
backbones (Fig. S1A). MSE contrasts to the loss used in RF structure prediction training (“frame
aligned point error”, FAPE) in that unlike FAPE, MSE loss is not invariant to the global reference
frame and therefore promotes continuity of the global coordinate frame between timesteps
(Methods 2.5). While in this study we use RoseTTAFold as the basis for the denoising network
architecture, other SE(3)-equivariant structure prediction networks (AF221, OmegaFold22,
ESMFold23) could in principle be substituted into an analogous DDPM.

To generate a new protein backbone, we first initialize random residue frames and RFdiffusion
makes a denoised prediction. Each residue frame is updated by taking a step in the direction of
this prediction with some noise added to generate the input to the next step. The nature of the
noise added and the size of this reverse step is chosen such that the denoising process
matches the distribution of the noising process (Methods 2.2-2.3, Figure S1A). RFdiffusion
initially seeks to match the full breadth of possible protein structures compatible with the purely
random frames with which it is initialized, and hence the denoised structures do not initially
appear protein-like (Fig. 2A left). However, through many such steps, the breadth of possible
protein structures from which the input could have arisen narrows, and RFdiffusion predictions
come to closely resemble protein structures (Fig. 2A right). We use the ProteinMPNN network1

to subsequently design sequences encoding these structures. We also considered
simultaneously designing structure and sequence within RFdiffusion, but given the excellent
performance of combining ProteinMPNN with the diffusion of structure alone, we did not
extensively explore this possibility.

Fig. 1A highlights the similarities between RoseTTAFold structure prediction and an RFdiffusion
denoising step: in both cases, the networks transform coordinates into a predicted structure,
conditioned on inputs to the model. In RoseTTAFold, sequence is the primary input, with
additional structural information provided as templates and initial coordinates to the model. In
RFdiffusion, the primary input is the noised coordinates from the previous step. For design
tasks, we optionally provide a range of auxiliary conditioning information, including partial
sequence, fold information, or fixed functional motif coordinates (see Methods 3).
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We explored two different strategies for training RFdiffusion: 1) in a manner akin to “canonical”
diffusion models, with predictions at each timestep independent of predictions at previous
timesteps (as in previous work5,8,9,16), and 2) with self-conditioning24, where the model can
condition on previous predictions between timesteps (Fig. 1A bottom row, Methods 2.4). The
latter strategy was inspired by the success of “recycling” in AF2, which is also central to the
more recent RF model used here (Methods 1). Self-conditioning within RFdiffusion dramatically
improved performance on in silico benchmarks encompassing both conditional and
unconditional protein design tasks (Fig. S2E). Increased coherence of predictions within
self-conditioned trajectories may, at least in part, explain these performance increases (Fig.
S2H). Fine-tuning RFdiffusion from pre-trained RF weights was far more successful than
training for an equivalent length of time from untrained weights (Fig. S2F) and the MSE loss was
also crucial (Fig. S2D). For all in silico benchmarks in this paper, we use the AF2 structure
prediction network21 for validation and define an in silico “success” as an RFdiffusion output for
which the AF2 structure predicted from a single sequence is (1) of high confidence (mean
predicted aligned error, pAE, < 5), (2) globally within 2Å backbone-RMSD of the designed
structure, and (3) within 1Å backbone-RMSD on any scaffolded functional-site. This definition
of success is significantly more stringent than those described elsewhere (refs [5,8,16,25], Fig.
S3A-B) but is a good predictor of experimental success4,7,26.

Unconditional protein monomer generation

Physically-based protein design methodologies have struggled in unconstrained generation of
diverse protein monomers due to the difficulty of sampling on the very large and rugged
conformational landscape27, and overcoming this limitation has been a primary test of deep
learning based protein design approaches5,6,8,16,28,29. As illustrated in Fig. 2B-D, Fig. S4B-C,
starting from random noise, RFdiffusion can readily generate elaborate protein structures with
little overall structural similarity to any known protein structures, indicating considerable
generalization beyond the PDB training set. The designs are diverse (Fig. S4A), spanning a
wide range of alpha-, beta- and mixed alpha-beta- topologies, with AF2 and ESMFold (Fig.
S2B-C, Fig. S3A) predictions very close to the design structure models for de novo designs with
as many as 600 residues. RFdiffusion generates plausible structures for even very large
proteins, but these are difficult to validate in silico as they are likely beyond the single sequence
prediction capabilities of AF2 and ESMFold. The quality and diversity of designs that are
sampled is inherent to the model, and does not require any auxiliary conditioning input (for
example secondary structure information8). Characterization of two of these 300 amino acid
proteins is shown in Figure 2G, demonstrating circular dichroism (CD) spectra consistent with
the mixed alpha-beta topologies of the two designs, and CD melts showing that designs are
extremely thermostable. RFdiffusion strongly outperforms Hallucination4 (Fig. 2E), the only
previously described deep learning method for unconditional protein structure generation that
has been experimentally validated6. Hallucination uses Monte Carlo search or gradient descent
to identify sequences predicted to fold into stable structures; in contrast to RFdiffusion,
Hallucination success rates deteriorate beyond 100 amino acids. RFdiffusion is also more
compute efficient than unconstrained Hallucination, requiring ~2.5 minutes on an NVIDIA RTX
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A4000 GPU to generate a 100 residue structure compared to ~8.5 minutes for Hallucination.
The computational efficiency of RFdiffusion can be further improved by taking larger steps at
inference time, and by truncating trajectories early - an advantage of predicting the final
structure at each timestep (Fig. S3C-D). For design problems where a particular fold or
architecture is desired (such as TIM barrels or cavity-containing NTF2s for small molecule
binder and enzyme design30,31), we further fine-tuned RFdiffusion to condition on secondary
structure and/or fold information, enabling rapid and accurate generation of diverse designs with
the desired topologies (Fig. 2H, Fig. S5). In silico success rates were 42.5% and 54.1% for TIM
barrels and NTF2 folds respectively (Fig. S5G), and experimental characterization of 11 TIM
barrel designs indicated that at least 9 designs were soluble, thermostable, and had circular
dichroism (CD) spectra consistent with the design model (Fig. 2H, Fig. S5D-F).

Design of higher order oligomers

There is considerable interest in designing symmetric oligomers, which can serve as vaccine
platforms32, delivery vehicles33, and catalysts34. Cyclic oligomers have been designed using
structure prediction networks with an adaptation of Hallucination that searches for sequences
predicted to fold to the desired cyclic symmetry, but this approach fails for higher order dihedral,
tetrahedral, octahedral, and icosahedral symmetries, likely in part because of the much lower
representation of such structures in the PDB7.

We set out to generalize RFdiffusion to create symmetric oligomeric structures with any
specified point group symmetry. Given a specification of a point group symmetry for an oligomer
with N chains, and the monomer chain length, we generate random starting residue frames for a
single monomer subunit as in the unconditional generation case, and then generate N-1 copies
of this starting point arranged with the specified point group symmetry. Because RFdiffusion
exhibits equivariance (inherited from RF) with respect to rotation and relabelings of chains,
symmetry is largely maintained in the denoising predictions; although we explicitly
re-symmetrize at each step, this changes the structures only slightly (Compare gray and colored
chains in Fig. S6A, Methods Proposition 2). For octahedral and icosahedral architectures, we
explicitly model only the smallest subset of monomers required to generate the full assembly
(e.g. for icosahedra, the subunits at the five-fold, three-fold, and two-fold symmetry axes) to
reduce the computational cost and memory footprint.

Despite not being trained on symmetric inputs, RFdiffusion is able to generate symmetric
oligomers with high in silico success rates (Fig. S6B), particularly when guided by an auxiliary
inter- and intra-chain contact potential (Fig. S6C). As illustrated in Fig. 3 and Fig. S6E,
RFdiffusion-generated designs are nearly indistinguishable from AF2 predictions of the
structures adopted by the designed sequences (predictions of the full assemblies for the cyclic
and dihedral designs, and trimeric substructures of the octahedral and icosahedral designs),
and show little resemblance to proteins in the PDB (Fig. S6D). These include a number of
oligomeric topologies not seen in nature, including two-layer beta strand barrels (Fig. 3A, C10
symmetry) and complex mixed alpha/beta topologies (Fig. 3A, C8 symmetry) (closest TM align
in PDB: 6BRP, 0.47; 6BRO, 0.43 respectively).
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We selected 608 designs for experimental characterization, and found using size exclusion
chromatography (SEC) that at least 70 had oligomerization states closely consistent with the
design models (within the 95% CI, 109 designs within the 99% CI, as determined by SEC
calibration curves) (Fig. S11, S12). We collected negative stain electron microscopy (nsEM)
data on a subset of these designs across different symmetry groups and, for most, distinct
particles were evident with shapes resembling the design models in both the raw micrographs
and subsequent 2D classifications (Fig. 3, and Fig. S6F). We describe these designs in the
following paragraphs; most have structures that are, to our knowledge, unprecedented in
nature.

As described above, RFdiffusion was able to unconditionally generate a wide range of monomer
structures, and while AF2 predictions and circular dichroism measurements were consistent with
the design models, the structures were too small for electron microscopy-based structure
validation. We took advantage of the increase in size upon oligomerization to evaluate, using
electron microscopy, unconstrained structure generation for oligomers with subunits over 175
amino acids in length (Fig. 3B, top row). Electron microscopy characterization of a C3 design
(HE0822) with 350 residue subunits (1050 residues in total) suggests that the actual structure is
very close to the design, both over the 350 residue subunits and the overall C3 architecture. 2D
class averages are clearly consistent with both top- and side-views of the design model, and a
3D reconstruction of the density had key features consistent with the design, including the
distinctive pinwheel shape. Electron microscopy 2D class averages of C5 and C6 designs with
greater than 750 residues (HE0795, HE0789, HE0841) were also consistent with the respective
design models (Fig. S6F).

RFdiffusion also generated cyclic oligomers with alpha/beta barrel structures that resemble
expanded TIM barrels and provide an interesting comparison between innovation during natural
evolution and innovation through deep learning. The TIM barrel fold, with 8 strands and 8
helices, is one of the most abundant folds in nature35. Electron microscopy characterization
validated two RFdiffusion cyclic oligomers which considerably extend beyond this fold (Fig. 3B,
bottom rows). HE0626 is a C6 alpha/beta barrel composed of 18 strands and 18 helices, and
HE0675 is a C8 octamer composed of an inner ring of 16 strands and an outer ring of 16 helices
arranged locally in a very similar repeating pattern to the TIM barrel (1:1 helix:strand). By nsEM,
we observed 2D class averages for HE0626 that resemble this two ring organization, and for
both HE0626 and HE0675 we were able to obtain 3D reconstructions that are in agreement with
the computational design models. The HE0600 design is also an alpha-beta barrel (Fig. S6F),
but has two strands for every helix (24 strands and 12 helices in total) and is hence locally quite
different from a TIM barrel.  Whereas natural evolution has extensively explored structural
variations of the classic 8-strand/8-helix TIM barrel fold, RFdiffusion can more readily explore
global changes in barrel curvature, enabling discovery of TIM barrel-like structures with many
more helices and strands.

RFdiffusion readily generated structures with dihedral and tetrahedral symmetries (Fig. 3C, Fig.
S6E,F). SEC characterization indicated that 38 D2, 7 D3, and 3 D4 designs had the expected
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molecular weights (these have 4, 6, and 8 chains, respectively) (Fig. S12). While the D2
dihedrals are too small for nsEM, 2D class averages–and for some, 3D reconstructions– of D3
and D4 designs were congruent with the overall topologies of the design models (Fig. 3C, Fig.
S6F). The reconstruction for the D3 HE0490 shows the characteristic triangular shape of the
design. Similarly, the 3D reconstruction of the D4 HE0537 closely matches the design model,
recapitulating the approximate 45° offset between tetramic subunits. We were also able to
obtain cryogenic electron microscopy (cryo-EM) data for HE0537; however, a preferred
orientation precluded generation of a reliable 3D reconstruction for in-depth structural analysis.
Nonetheless, the resulting 2D class averages bear a striking level of secondary-structure
similarity to generated 2D projections of the corresponding design model (Fig. 3D). 2D class
averages for a 12 chain tetrahedron (HE0964) were consistent with the design, but we were
unable to generate a 3D reconstruction of high confidence due to a lack of clear discernable
design features visible at the resolution range provided by nsEM (Fig. S6F).

Icosahedra have 60 subunits arrayed around 2-fold, 3-fold and 5-fold symmetry axes. Of the 48
icosahedra selected for experimental validation, one was confirmed by nsEM to form the
intended assembly. As shown in Fig. 3E on the left, HE0902 is a 15nm (diameter) highly-porous
icosahedron composed of alpha helical subunits. The nsEM micrographs reveal highly
homogeneous particles, and the corresponding 2D class averages and 3D reconstruction nearly
perfectly match the design model (Fig. 3E), with triangular hubs arrayed around the empty C5
axes. Designs such as HE0902 (and future similar large assemblies) should be useful as new
nanomaterials and vaccine scaffolds, with robust assembly and (in the case of HE0902) the
outward facing N- and C-termini offering multiple possibilities for antigen display.

Functional motif scaffolding

We next investigated the use of RFdiffusion for scaffolding protein structural motifs that carry out
binding and catalytic functions, where the role of the scaffold is to hold the motif in precisely the
3D geometry needed for optimal function. In RFdiffusion, we input motifs as 3D coordinates
(including sequence and sidechains) both during conditional training and inference, and
RFdiffusion builds scaffolds that hold the motif atomic coordinates in place. A number of deep
learning methods have been developed recently to address this problem, including RFjoint

Inpainting4, constrained Hallucination4, and other DDPMs5,8,25. To rigorously evaluate the
performance of these methods in comparison to RFdiffusion across a broad set of design
challenges, we established an in silico benchmark test comprising 25 motif-scaffolding design
problems addressed in six recent publications encompassing several design
methodologies4,5,25,36–38. The benchmark includes 25 challenges that span a broad range of
motifs, including simple “inpainting” problems, viral epitopes, receptor traps, small molecule
binding sites, binding interfaces and enzyme active sites. Full details of this benchmark set are
described in Supplementary Table 9.

RFdiffusion solves all but two of the 25 benchmark problems, with greater success (23/25) than
both Hallucination (15/25) and RFjoint Inpainting (12/25) (Fig. 4A-B). For 22/23 of the problems
solved by RFdiffusion, it also has a higher fraction of successful designs than either
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Hallucination or RFjoint Inpainting. The excellent performance of RFdiffusion required no
hyperparameter tuning or external potentials; this contrasts with Hallucination, for which
problem-specific optimization can be required. In 17/23 of the problems, RFdiffusion generated
successful solutions with higher success rates when noise was not added during the reverse
diffusion trajectories (see Fig. S2I for further discussion of the effect of noise on design quality).

One of the benchmark problems is the scaffolding of the p53 helix that binds MDM2. Inhibiting
this interaction through high-affinity competitive inhibition by scaffolding the p53 helix and
making additional interactions with MDM2 is a promising avenue for therapeutics39. In silico
success has been described elsewhere4, but experimental success has not been reported. We
tested 96 designs scaffolding this helix, which were predicted to make additional interactions
with MDM2, and identified 0.5nM and 0.7nM binders (Fig. 4C-D), three orders of magnitude
higher affinity than the reported 600nM affinity of the p53 peptide alone40. The success rate for
this problem was particularly striking with 55/95 designs showing some detectable binding at
10μM (Fig. 4E) and multiple designs with affinities in the low- to sub- nanomolar range (Fig. 4D).

Scaffolding enzyme active sites

A grand challenge in protein design is to scaffold minimal descriptions of enzyme active sites
comprising a few single amino acids. While some in silico success has been reported
previously4, a general solution that can readily produce high-quality, orthogonally-validated
outputs remains elusive. Following fine-tuning on a task mimicking this problem (Methods 4.2),
RFdiffusion was able to scaffold enzyme active sites comprising multiple sidechain and
backbone functional groups with high accuracy and in silico success rates across a range of
enzyme classes (Fig. 4F-H). While RFdiffusion is currently unable to explicitly model bound
small molecules (see conclusion), the substrate can be implicitly modeled using an external
potential to guide the generation of “pockets” around the active site. As a demonstration, we
scaffold a retroaldolase active site triad while implicitly modeling its substrate (Fig. S7).

Symmetric functional-motif scaffolding for metal coordinating assemblies and antiviral
therapeutics and vaccines

A number of important design challenges involve the scaffolding of multiple copies of a
functional motif in symmetric arrangements. For example, many viral glycoproteins are trimeric,
and symmetry matched arrangements of inhibitory domains can be extremely potent41–44.
Conversely, symmetric presentation of viral epitopes in an arrangement that mimics the virus
could induce new classes of neutralizing antibodies45,46. To explore this general direction, we
sought to design trimeric multivalent binders to the SARS-CoV-2 spike protein. In previous work,
flexible linkage of a binder to the ACE2 binding site (on the spike protein receptor binding
domain) to a trimerization domain yielded a high-affinity inhibitor that had potent and broadly
neutralizing antiviral activity in animal models41. Ideally, however, symmetric fusions to binders
would be rigid, so as to reduce the entropic cost of binding while maintaining the avidity benefits
from multivalency. We used RFdiffusion to design C3 symmetric trimers which rigidly hold three
binding domains (the functional motif in this case) such that they exactly match the ACE2
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binding sites on the SARS-CoV-2 spike protein trimer.  Design models were confidently
predicted by AF2 to both assemble as C3-symmetric oligomers, and to scaffold the AHB2
SARS-CoV-2 binder interface with high accuracy (Fig. 5A).

The ability to scaffold functional sites with any desired symmetry opens up new approaches to
designing metal-coordinating protein assemblies. Divalent transition metal ions exhibit distinct
preferences for specific coordination geometries (e.g., square planar, tetrahedral, and
octahedral) with ion-specific optimal sidechain–metal bond lengths. RFdiffusion provides a
general route to building up symmetric protein assemblies around such sites, with the symmetry
of the assembly matching the symmetry of the coordination geometry. As a first test, we sought
to design square planar Ni2+ binding sites. We designed C4 protein assemblies with four central
histidine imidazoles arranged in an ideal Ni2+-binding site with square planar coordination
geometry. Diverse designs starting from various different C4-symmetric histidine square planar
sites (Fig. 5B, Fig. S8A,B,C) had good in silico success (Fig. S8D), with the histidine residues in
near ideal geometries for coordinating metal in the AF2 predicted structures (Fig. 5E Fig.
S8B,C,E,F).

We expressed and purified 44 designs in E. coli., and found that 37 had SEC chromatograms
consistent with the intended oligomeric state (Fig. S9B). 36 of these designs were tested for Ni2+

coordination by isothermal titration calorimetry. 18 designs bound Ni2+ with dissociation
constants ranging from low nanomolar to low micromolar (Fig. 5C,E and Fig. S9A). The
inflection points in the wild-type isotherms indicate binding with the designed stoichiometry, a
1:4 ratio of ion:monomer. While most of the designed proteins displayed exothermic metal
coordination, in a few cases binding was endothermic (Fig. 5E, left, Fig. S9A), suggesting that
Ni2+ coordination is entropically driven in these assemblies. To confirm that Ni2+ binding was
indeed mediated by the scaffolded histidine 52, we mutated this residue to alanine, which
abolished or dramatically reduced binding in all cases (Fig. S9A,C and Fig. 5C,E) . We
structurally characterized by nsEM a subset of the designs – E1, C10, G3, and A5 – that
displayed histidine-dependent binding. All four designs exhibited clear 4-fold symmetry both in
the raw micrographs and in 2D class averages (Fig. 5D,E), with design E1 also clearly
displaying 2-fold axis “side-views” with a measured diameter approximating the design model. A
3D reconstruction of E1 was in close agreement to the design model (Fig. 5D).

Design of de novo protein-binding proteins

The design of high-affinity binders to target proteins is a grand challenge in protein design, with
numerous therapeutic applications47. A general method to de novo design binders to protein
binders from target structure information alone using the physically-based Rosetta method was
recently described12. Subsequently, utilizing ProteinMPNN for sequence design and AF2 for
design filtering was found to improve design success rates26. However, experimental success
rates were low, requiring many thousands of designs to be screened for each design
campaign12, and the approach relied on pre-specifying a particular set of protein scaffolds as the
basis for the designs, inherently limiting the diversity and shape complementarity of possible
solutions12. To our knowledge, no deep-learning method has yet demonstrated experimental
general success in designing completely de novo binders.
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We reasoned that RFdiffusion might be able to address this challenge by directly generating
binding proteins in the context of the target. For many therapeutic applications, for example
blocking a protein-protein interaction, it is desirable to bind to a particular site on a target
protein. To enable this, we fine-tuned RFdiffusion on protein complex structures, providing as
input a subset of the residues on the target chain (called “interface hotspots”) to which the
diffused chain binds (Fig. 6A, Fig. S10A,B). To enable control over binder scaffold topology, we
fine-tuned an additional model to condition binder diffusion on secondary structure and
block-adjacency information, in addition to conditioning on interface hotspots (Fig. S10C-D,
Methods 4.3).

To compare RFdiffusion to previous binder design methods, we performed binder design
campaigns against 4 targets: Influenza A H1 Hemagglutinin (HA) 48 (HA), Interleukin-7
Receptor-ɑ (IL-7Rɑ)12, Programmed Death-Ligand 1 (PD-L1)12, and Tropomyosin Receptor
Kinase A (TrkA) 12 (we also designed against the insulin receptor, and although these binder
designs expressed solubly and monomerically (Fig. S15), we were not able to obtain suitable
target receptor for experimental testing). We designed putative binders to each target, both with
and without conditioning on compatible fold information, with high success rates (Fig. S10E,F).
Designs were filtered by AF2 confidence in the interface and monomer structure26, and 95 were
selected for each target for experimental characterization.

The designed binders were expressed in E. coli and purified, and binding was assessed through
single point biolayer interferometry (BLI) screening at 10μM binder (Fig. 6B). In each case a
positive control was included that binds to the site targeted by the designs on the target
protein12. The overall success rate, as defined by binding at 10μM at or above 50% of the
maximal response for the positive control, was 18% (this is a conservative estimate as some
designs which showed binding had insufficient material to permit screening at 10μM (Fig. 6B)).
This is a success rate increase of approximately 2 orders-of-magnitude over our previous
Rosetta-based method on the same targets (Fig. 6C). Binders were identified for all 4 targets,
with fewer than 100 designs tested per target compared to thousands in previous studies. Full
BLI titrations for a subset of the designs showed moderate to high affinities with no further
experimental optimization, including HA and IL-7Rɑ binders with affinities of approximately
30nM (Fig. 6D). To assess binder specificity, 6 of the highest affinity IL-7Rɑ binders were
assessed via competition BLI, and all 6 competed for binding with the structurally validated
positive control (Fig. S14).

Conclusion

RFdiffusion is a major improvement over current physically-based and deep learning protein
design methods over a wide range of design challenges. Substantial progress was recently
made using Rosetta in designing binding proteins from target structural information alone12, but
this required testing tens of thousands of designs. RFdiffusion achieves experimental success
rates that are two orders of magnitude higher. Consequently, high affinity binders (at least to the
targets experimentally characterized here) can be identified through testing only dozens of
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designs. In the accompanying paper (Vázquez Torres et al.), we demonstrate the ability of
RFdiffusion to design picomolar affinity binders to flexible helical peptides, further highlighting
the utility of RFdiffusion for de novo binder design. Vázquez Torres et al. also show that
RFdiffusion can be used to improve upon starting designs by partial noising and denoising,
which enables tunable sampling around a given input structure. For peptide binder design, this
enabled increases in affinity of nearly three orders of magnitude, without high-throughput
screening of designs.

There has been recent progress in scaffolding protein functional motifs using deep learning
methods (Hallucination, RFjoint Inpainting, and diffusion), but Hallucination becomes very slow for
large systems, inpainting fails when insufficient starting information is provided, and previous
diffusion methods had quite low accuracy. Our benchmark tests show that RFdiffusion
considerably outperforms all previous methods in the complexity of the motifs that can be
scaffolded, the ability to precisely position sidechains (for catalysis and other functions), and the
accuracy of motif recapitulation by AF2. The robust design of MDM2 binding proteins with three
orders of magnitude higher binding affinities than the scaffolded P53 motif experimentally
demonstrates the power of RFdiffusion for motif scaffolding.

For the classic unconstrained protein structure generation problem, RFdiffusion readily
generates novel protein structures with as many as 600 residues that are accurately predicted
by AF2 (and ESMFold), far exceeding the complexity and accuracy achieved by previously
described diffusion and other methods. Experimental data demonstrate that designs express
solubly, with CD spectra consistent with the design models. That the designs are also extremely
thermostable also shows that RFdiffusion designs retain the desirable ideality and stability of
previous de novo design methods, while achieving considerably increased complexity. The
versatility and control provided by diffusion models enabled extension of RFdiffusion
unconditional generation to higher order architectures with any desired symmetry (Hallucination
methods are primarily limited to cyclic symmetries); experimental characterization of a subset of
these designs using electron microscopy revealed structures very similar to the design models
and largely without precedent in nature. Combining the accurate motif scaffolding with the ability
to design symmetric assemblies, we were able to scaffold functional motifs spanning multiple
symmetrically arranged chains.

Overall, the complexity of the problems solvable with RFdiffusion and the robustness and
accuracy of the solutions (extensively validated both in silico and experimentally) far exceeds
what has been achieved previously. In a manner reminiscent of the generation of images from
text prompts, RFdiffusion makes possible, with minimal specialist knowledge, the generation of
proteins from very simple molecular specifications (for example, from a specification of a target
protein, high affinity binders to that protein, and from specification of a desired symmetry,
diverse protein assemblies with that symmetry).

The power and scope of RFdiffusion can be extended in several directions. RF has recently
been extended to nucleic acids and protein-nucleic acid complexes49, which should enable
RFdiffusion to design nucleic acid binding proteins, and perhaps folded RNA structures.
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Extension of RF to incorporate ligands should similarly enable extension of RFdiffusion to
explicitly model ligand atoms, allowing the design of protein-ligand interactions. The ability to
customize RFdiffusion to specific design challenges by addition of external potentials and by
fine-tuning (as illustrated here for catalytic site scaffolding, binder-targeting and
fold-specification), along with continued improvements to the underlying methodology, should
enable protein design to achieve still higher levels of complexity, to approach and – in some
cases – surpass what natural evolution has achieved.
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Figures

Figure 1: RFdiffusion is a denoising diffusion probabilistic model with RoseTTAFold
fined-tuned as the denoising network. A) Top panel: Diffusion models for proteins are trained
to recover structures of proteins corrupted with noise, and generate new structures by reversing
the corruption process through iterative denoising of initially random noise into a realistic𝑋

𝑇

structure . Middle panel: RoseTTAFold (RF, left) can be fine-tuned as the denoising network in𝑋
0

a DDPM. RFdiffusion (right) is trained from a pre-trained RF network with minimal architectural
changes. While in RF, the primary input to the model is sequence, in RFdiffusion, the primary
input is diffused residue frames. In both cases, the model predicts final 3D coordinates directly

(denoted in RFdiffusion). In RFdiffusion, the model receives its previous prediction as a 𝑋
^

0

template input (“self-conditioning”, see Methods 2.4). Bottom panel: At each timestep “t” of a

design trajectory (typically 200 steps), RFdiffusion takes and from the previous step and𝑋
𝑡

𝑋
^

0

𝑡+1

then predicts an updated structure ( ). The coordinate input to the model at the next time𝑋
0

𝑋
^

0

𝑡

step ( ) is generated by a noisy interpolation toward . B) RFdiffusion is of broad𝑋
𝑡−1

𝑋
^

0

𝑡
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applicability to protein design. RFdiffusion generates protein structures either without additional
input (top row), or by conditioning on: symmetric inputs to design symmetric oligomers (second
row); a binding target (third row); protein functional motifs (fourth row); symmetric functional
motifs to design symmetric oligomers scaffolds (bottom row). In each case random noise, along
with conditioning information, is input to RFdiffusion, which iteratively refines that noise until a
final protein structure is designed.
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Figure 2: Outstanding performance of RFdiffusion for monomer generation. A) An
example trajectory of an unconditional 300 amino acid design, depicting the input to the model

(Xt) and the corresponding prediction. At early timesteps (high t), predictions bear little𝑋
^

0
𝑋
^

0

resemblance to a protein, but are gradually refined into a protein structure. B) RFdiffusion can
generate new monomeric proteins of different lengths (left: 300, right: 600) with no conditioning
information. Gray=design model; colors= AlphaFold2 (AF2) prediction. RMSD AF2 vs design
(Å), left to right: 0.90, 0.98, 1.15, 1.67. C) Unconditional designs from RFdiffusion are novel and
not present in the training set as quantified by highest TM score to the protein data bank (PDB).
Designs are increasingly novel with increasing length. D) Unconditional samples are closely
re-predicted by AF2. Beyond 400 amino acids, the recapitulation by AF2 deteriorates. E)
RFdiffusion significantly outperforms Hallucination (with RoseTTAFold) at unconditional
monomer generation (two-way ANOVA & Tukey’s test, p<0.001). While Hallucination
successfully generates designs up to 100 amino acids in length, success rates rapidly
deteriorate beyond this length. F) Ablating pre-training (by starting from untrained RF),
self-conditioning, or MSE losses (by training with FAPE) each dramatically decrease the
performance of RFdiffusion. RMSD between design and AF2 is shown, for the motif-scaffolding
problem “5TPN” (see Methods 5.2). G) Two example 300 amino acid proteins that expressed as
soluble monomers. Designs (gray) overlaid with AF2 predictions (colors) are shown on the left,
alongside CD spectra (top) and melt curves (bottom) on the right. The designs are highly
thermostable. H) RFdiffusion can condition on fold information. An example TIM barrel is shown
(bottom left), conditioned on the secondary structure and block-adjacency of a previously
designed TIM barrel, PDB: 6WVS (top left). Designs have very similar CD spectra to 6WVS (top
right), and are highly thermostable (bottom right).
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Figure 3: Design and experimental characterization of high-order symmetric oligomers.
A) RFdiffusion-generated assemblies overlaid with the AF2 structure predictions based on the
designed sequences; in all 5 cases they are nearly indistinguishable. Symmetries are indicated
to the left of the design models. The octahedral symmetries were validated by their C3 subunits
only, as shown in panel A. B-C) Designed assemblies characterized by negative stain electron
microscopy. Model symmetries: B) Cyclic: C3 (HE0822, 350 AA/chain); C6 (HE0626, 100 AA/
chain); C8 (HE0675, 60 AA/ chain) C) Dihedral: D3 (HE0490, 80 AA/ chain); and D4 (HE0537,
100 AA/ chain). From left to right: 1) symmetric design model, 2) AF2 prediction of design
following sequence design with ProteinMPNN, 3) 2D class averages showing a combination of
(at minimum) top and side views (scale bar = 60 Å for all class averages), 4) 3D
reconstructions from class averages with the design model fit into the density map. The overall
shapes are closely consistent with the design models, and confirm the intended oligomeric
state. As in A), the AF2 predictions of each design are nearly indistinguishable from the original
diffusion model (backbone RMSDs (Å) for HE0822, HE0626, HE0490, HE0675, and HE0537,
are 1.33, 1.03, 0.60, 0.74, and 0.75, respectively). D) Two orthogonal side views of HE0537 by
cryo-EM. Representative 2D class averages from the cryo-EM data are shown to the right of the
predicted 2D projection images of the computational design model (lowpass filtered to 8 Å),
which appear nearly identical to the experimental data. Scale bar shown is 60 Å for all images.
E) Characterized icosahedral particle (HE0902, 100 AA/ chain) by negative stain electron
microscopy. The design model, including the AF2 prediction of the C3 subunit are shown on the
left. nsEM data are shown on the right: on top, a representative micrograph is shown alongside
2D class averages representing each axis of symmetry (C3, C2, and C5, from left to right) with
their corresponding 3D reconstruction map views shown directly below and demonstrating high
agreement to the design model.
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Figure 4: Scaffolding of diverse functional-sites with RFdiffusion. A) RFdiffusion has state
of the art performance across 25 benchmark motif scaffolding problems collected from six
recent publications, encompassing a broad range of motifs (Supplementary Table 9). Success
was defined as AF2 RMSD to design model < 2Å, AF2 RMSD to the native functional site (the
“motif”) < 1Å, and AF2 predicted alignment error (pAE) < 5, and the examples are ordered by
success rate with RFdiffusion (with noise scale = 0). 100 designs were generated per problem,
with no prior optimization on the benchmark set (some optimization was necessary for the
Hallucination results). Supplementary Table 10 presents full results. B) Four examples of
designs for benchmarking problems where RFdiffusion significantly outperforms existing
methods. Teal: native motif; colors: AF2 prediction of an RFdiffusion design. Metrics (RMSD
AF2 vs design / vs native motif (Å), AF2 pAE): 5TRV Long: 1.17/0.57, 4.73; 6E6R Long:
0.89/0.27, 4.56; 7MRX Long: 0.84/0.82 4.32; 1PRW: 0.77/0.89, 4.49. C) RFdiffusion can
scaffold the native p53 helix that binds to MDM2 (left) and makes additional contacts with the
target (right, average 31% increased surface area). D) Biolayer interferometry (BLI)
measurements demonstrate high affinity (0.7nM and 0.5nM) binding to MDM2 for the two
designs shown in C; the native p53 helix affinity is 600nM40. E) Experimental success rates were
high, with 55/95 designs showing significant binding to MDM2 (> 50% of maximum response).
F) After fine-tuning on a task that mimics active-site scaffolding (Methods 4.2), RFdiffusion can
scaffold a broad range of enzyme active sites. Three examples are shown (Enzyme Classes,
EC, 1-3; ref [50]). Left to right: native enzyme (PDB: 1A4I, 1CWY, 1DE3); catalytic site (teal);
RFdiffusion output (gray: model, colors: AF2 prediction); zoom of active site. G) In silico success
rates on active sites derived from EC1-5 (AF2 Motif RMSD vs native: backbone < 1Å,
backbone and sidechain atoms < 1.5Å, RMSD AF2 vs design < 2, AF2 pAE < 5). H) Zoom in
views of two further successful designs, for EC4 and EC5 (active sites from PDB: 1P1X, 1SNZ).
Metrics for examples in (F) and (H) (AF2 vs design backbone RMSD, AF2 vs design motif
backbone RMSD, AF2 vs design motif full-atom RMSD, AF2 pAE): EC2: 0.93Å, 0.50Å, 1.29Å,
3.51; EC3: 0.92Å, 0.60Å, 1.07Å, 4.59; EC4: 0.93Å, 0.80Å, 1.03Å, 4.41; EC5: 0.78Å,
0.44Å, 1.14Å, 3.32.
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Figure 5: Symmetric motif scaffolding with RFdiffusion. A) Design of C3-symmetric
oligomers to scaffold the binding interface of the designed ACE2 mimic, AHB2 (left, teal),
against the SARS-CoV-2 spike trimer (left, gray). Starting from AHB2 bound to each of the three
ACE2 binding sites on the spike trimer, RFdiffusion was used to generate C3-symmetric
oligomers that hold the three AHB2 exactly in place to simultaneously engage the binding sites
on all three spike subunits.The first 55 amino-acids of each minibinder copy are used as the
symmetric motif input to RFdiffusion (middle). The method produces designs whose AF2
predictions (right) recapitulate the mini-binder motif with high accuracy on the asymmetric unit
(0.6 Å RMSD) and good accuracy the symmetric motif (2.9 Å RMSD). B) Design of
C4-symmetric oligomers to scaffold a theoretical Ni2+ binding motif (left). Starting from a
square-planar set of histidine rotamers within three-residue helical fragments (Methods 5.9) and
C4-symmetric noise, an RFdiffusion trajectory iteratively builds a symmetric oligomer scaffolding
the theoretical Ni2+ binding domain (middle). AF2 predictions (color) overlaid with the
RFdiffusion design model (gray) agree closely, with backbone RMSD for the particular example
< 1.0 Å (right). C) Isothermal titration calorimetry (ITC) binding isotherm of design (“E1”) and
corresponding H52Α mutant. The inflection point of the wild-type isotherm (blue) displays an
estimated dissociation constant of less than 20 nM at the designed metal:monomer
stoichiometry of 1:4. Importantly, the H52A mutant isotherm (pink) displays complete ablation of
binding, indicating the scaffolded histidine at position 52 of each protomer is critical for metal
binding. D) 2D class averages (left) and corresponding 3D reconstruction with the model of
design E1 docked into the 3D reconstructed density (right). The four-fold symmetry and general
shape of the designed oligomer can be readily identified in the 2D class averages, with both
top-down views and side views captured (scale bar = 60 Å). E) Additional experimentally
characterized Ni2+ binding oligomers G3 (left), C10 (middle), and A5 (right) from RFdiffusion
show structural diversity in successful designs. Design models and binding-site zoom (top, AF2
in colors and ideal motif in teal) show close recapitulation of the motif sidechains by AF2. 2D
nsEM class averages (middle, scale bar = 60 Å), and binding isotherms for wild-type and H52A
mutant (bottom) indicate tight Ni2+ binding mediated directly by the scaffolded histidines at the
designed 1:4 stoichiometry.
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Figure 6: Design of de novo protein-binding proteins. A-B) De novo binders were designed
to four protein targets; Influenza Hemagglutinin A, IL-7 Receptor-ɑ, PD-L1, and TrkA receptor.
A) RFdiffusion generates protein binders by conditioning on interface hotspot residues.
Additionally, the general topology of the binders generated by RFdiffusion can be controlled
using fold-conditioning. B) De novo protein binders were identified for all four of the targets for
which we could obtain suitable target protein (see Fig. S15 for expression data on Insulin
receptor binders). Designs that bound at 10μM during single point BLI screening with a
response equal to or greater than 50% of the positive control were considered binders.
Concentration is denoted by hue for designs that were screened at concentrations less than
10μM and thus may be false negatives. C) RFdiffusion designed binders have very high
experimental success rates compared to the previous design campaigns against the same
targets. For IL-7Rɑ, PD-L1, and TrkA, RFdiffusion has success rates ~2 orders-of-magnitude
higher than the original design campaigns. D) For each target, the highest affinity binder is
shown alongside a BLI titration series. Reported KDs are based on global kinetic fitting with fixed
global Rmax. Yellow/orange: target/hotspot residues; gray: design model; purple: AF2 prediction
(RMSD AF2 vs design, left to right: 0.7Å, 0.9Å, 1.2Å, 0.7Å).
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Supplementary Figures

Figure S1: RFdiffusion learns the distribution of the denoising process. Analysis of
simulated forward (noising) and reverse (denoising) trajectories shows that the distribution of Cɑ

coordinates and residue orientations closely match, demonstrating that RFdiffusion has learned
the distribution of the denoising process as desired. Left to right: i) average distance between a
Cɑ coordinate at Xt and its position in X0; ii) average distance between a Cɑ coordinate at Xt and
Xt-1; iii) average distance between adjacent Cɑ coordinates at Xt; iv) average rotation distance
between a residue orientation at Xt and X0; v) average rotation distance between a residue
orientation at Xt and Xt-1.
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Figure S2: Training ablations reveal determinants of RFdiffusion success. A-C)
RFdiffusion can generate high quality large unconditional monomers. Designs are routinely
accurately recapitulated by AF2 (see also Fig. 2D), with high confidence (A) for proteins up to
approximately 400 amino acids in length. B) Further orthogonal validation of designs by
ESMFold. C) Recapitulation of the design structure is often better with ESMFold compared with
AF2. For each backbone, the best of 8 ProteinMPNN sequences is plotted, with points therefore
paired by backbone rather than sequence. D) Comparing RFdiffusion trained with MSE loss on
Cɑ atoms and N-Cɑ-C backbone frames (Methods 2.5), rather than with FAPE loss8,21. The two
models were benchmarked on motif scaffolding problems (see Methods 5.2 for justification of
this decision), and across all cases, AF2 recapitulation of the structure (left) and AF2 confidence
(right) was improved when RFdiffusion was trained with MSE loss. Two-way ANOVA: Success
rate p<0.001. E) Allowing the model to condition on its X0 prediction at the previous timestep
(see Methods 2.4) improves designs. Designs with self-conditioning (pink) have improved
recapitulation by AF2 (left) and better AF2 confidence in the prediction (right). Two-way ANOVA,
in silico success rate: p<0.001. F) RFdiffusion leverages the protein representations learned
during RF pre-training. RFdiffusion fine-tuned from pre-trained RF (pink) comprehensively
outperforms a model trained for an equivalent amount of time, from untrained weights (gray).
Training RFdiffusion without pre-training (for 5 epochs) showed no significant improvement (in
terms of in silico success rates) compared with generating ProteinMPNN sequences from
random Gaussian-sampled coordinates (white, two-way ANOVA & Tukey’s test, p<0.001;
Random noise vs no pre-training, p=0.9 (n.s.); Random noise vs with pre-training, p<0.001;
Pre-training vs not, p<0.001). Note that the data in pink in D-F is the same data, reproduced in
each plot for clarity. G) The median (by AF2 RMSD vs design) 300 amino acid unconditional
sample highlighting the importance of self-conditioning and pre-training. Without pre-training,
RFdiffusion outputs bear little resemblance to proteins (gray, left). Without self-conditioning,
outputs show characteristic protein secondary structures, but lack core-packing and ideality
(gray, middle). With pre-training and self-conditioning, proteins are diverse and well-packed
(pink, right). H) Greater coherence during unconditional denoising may partly explain the effect
of self-conditioning. Successive X0 predictions are more similar when the model can
self-condition (lower RMSD between X0 predictions, pink curve). Data are aggregated from
unconditional design trajectories of 100, 200 and 300 residues. I) During the reverse
(generation) process, the noise added at each step can be scaled (reduced). Reducing the
noise scale improves the in silico design success rates (left, middle; two-way ANOVA & Tukey’s
test: p<0.001, 0 vs 0.5: p=0.13, 0 vs 1: p<0.001; 0.5 vs 1: p<0.001). This comes at the expense
of diversity, with the number of unique clusters at a TM score cutoff of 0.6 reduced when noise
is reduced (right). Note throughout this figure the 6EXZ_long benchmarking problem is
abbreviated to 6EXZ for brevity.
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Figure S3: Optimizing inference and improving metrics for in silico success. A-B) TM
score between a design and a subsequent orthogonal prediction (e.g. AF2), has been
previously used, typically with a threshold of > 0.5, as a metric for design success. A)
RFdiffusion designs have high TM score agreement to both the AF2 (left) and ESMFold (right)
predictions of the unconditional structures, with TM > 0.5 for a significant fraction of designs
even up to 1000 amino acids in length. B) TM score is, however, much less stringent than
RMSD alignment. Depicted here are three unconditional RFdiffusion designs of 600 amino acids
in length (gray), overlaid with the AF2 prediction (colors), with TM scores of 0.983, 0.757 and
0.506 respectively. While a TM score of 0.5 clearly shows some resemblance to the designed
structure, it differs significantly and should not be classed as “successfully designed”. RMSD
with a strict threshold (for example, 2Å) is significantly more stringent. RMSDs for the displayed
designs are 1.15Å, 9.78Å and 21.4Å respectively. C-D) While RFdiffusion is trained to
generate samples over 200 timesteps, in many cases, trajectories can be shortened to improve
computational efficiency. C) Bigger steps can be taken between timesteps at inference. While
decreasing the number of timesteps typically reduces the per-design success rate (left), when
normalized for compute budget (right), it is often more efficient to run more trajectories with
fewer timesteps. For example, while generating 100 amino acid unconditional proteins, using a
schedule with just 10 timesteps (as opposed to 200) allows the generation of 1584 in silico
successful designs in the time taken to generate 86 successful designs with 200 timesteps. As
problems get more challenging, however, this no longer remains the case (for example, fourth
column, with generation of 300 amino acid designs). D) An alternative to taking larger steps is to
stop trajectories early (possible because RFdiffusion predicts X0 at every timestep). In many
cases, trajectories can be stopped at timestep 50-75 with little effect on the final success rate of
designs (left), and when normalized by compute budget (right), success rates per unit time are
typically higher generating more designs with early-stopping. For example, in the 6EXZ_Long
benchmarking motif-scaffolding problem, stopping trajectories at t=100 allows the generation of
128 in silico successful designs in the time it takes to generate 42 successful designs running
full trajectories.
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Figure S4: RFdiffusion designs are diverse and dissimilar to proteins in the PDB. A)
Comparing unconditional designs to one another (100 designs per length) demonstrates that, by
TM score alignment, designs are diverse (medians 100-400aa: 0.39, 0.36, 0.37, 0.35). B-C)
Designs also bear little resemblance to the training set (PDB). B) Example of the most diverse
(lowest TM score hit) to the PDB for a set of 300 amino acid designs. The folds of the design
(left) and native protein (middle) are highly dissimilar, aligning only across a portion of the

-sheet. C) Example designs demonstrating extrapolation beyond the training set for generating
novel folds. Gray: closest protein in the PDB by TM score, colors: RFdiffusion design model,
overlaid by TM alignment. For each protein length, the median and most diverse samples are
shown (the 300aa design is the same as in B). While for short proteins, designs typically show
some similarity to known protein folds, with increasing length, designs become increasingly
dissimilar to the PDB. TM score (closest PDB, TM score; median, most diverse): 100aa:
5WVE_A, 0.71; 4W5T_A, 0.59; 200aa: 4AV3_A, 0.58; 4CLY_A, 0.47; 300aa: 4PEW_B, 0.53;
4RDR_A, 0.46; 400aa: 4AIP_A, 0.49; 6R9T_A, 0.42.
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Figure S5: RFdiffusion can condition on fold information to generate specific scaffold
types. A-B) 6WVS is a previously-described de novo designed TIM barrel (left). A fine-tuned
RFdiffusion model can condition on 1D and 2D inputs representing this protein fold, specifically
secondary structure (B, bottom) and block-adjacency information (B, top) (see Methods 4.3.2).
C) RFdiffusion readily conditions on fold information and generates a diverse set of TIM barrels.
D-F) Purification of the three designs depicted in (C) show elution at the predicted volume (D),
circular dichroism (CD) spectra very similar to 6VWS (E), and very high thermal stability (F).
Note that E) and F) are reproduced from Fig. 2H, for clarity. G) TIM barrels are generated with
an in silico success rate of 42.5% (left bar). Success incorporates AF2 metrics and a TM score
vs 6WVS > 0.5. G-H) NTF2 folds are useful scaffolds for de novo enzyme design, and can also
be readily generated with fold-conditioning in RFdiffusion. Designs are diverse (H) and designed
with an in silico success rate of 54.1% (G, right bar). NTF2 fold design success also included
both AF2 metrics and a TM score vs PDB: 1GY6 > 0.5. Gray: RFdiffusion design, colors: AF2
prediction.
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Figure S6: Symmetric oligomer design with RFdiffusion. A) Due to the (near-perfect - see
Methods 3.1) equivariance properties of RFdiffusion, X0 predictions from symmetric inputs are
also symmetric, even at very early timepoints (and becoming more symmetric through time;
RMSD vs symmetrized: t=200 1.20Å; t=150 0.40Å; t=50 0.06Å; t=0 0.02Å). Gray:
symmetrized (top left) subunit; colors: RFdiffusion X0 prediction. B) In silico success rates for
symmetric oligomer designs of various cyclic and dihedral symmetries. Success is defined here
as the proportion of designs for which AF2 yields a prediction from a single sequence that has
mean pLDDT > 80 and backbone RMSD over the oligomer between the design model and AF2
< 2 Å. Note that 16 sequences per RFdiffusion design were sampled. C) Box plots of the
distribution of backbone RMSDs between AF2 and the RFdiffusion design model with and
without the use of external potentials during the trajectory. The external potentials used are the
“inter-chain” contact potential (pushing chains together), as well as the “intra-chain” contact
potential (making chains more globular). Using these potentials dramatically improves in silico
success (Student’s unpaired t-test, p<0.001). D) Designs are diverse with respect to the training
dataset (the PDB). While the monomers (typically 60-100aa) show reasonable alignment to the
PDB (median 0.72), the whole oligomeric assemblies showed little resemblance to the PDB
(median 0.50). E) Additional examples of design models (left) against AF2 predictions (right) for
C3, C5, C12, and D4 symmetric designs (the symmetries not displayed in Fig. 3) with backbone
RMSDs against their AF2 predictions of 0.82, 0.63, 0.79, and 0.78 with total amino acids 750,
900, 960, 640. F) Additional nsEM data for symmetric designs. The model is shown on the left
and the 2D class averages on the right for each design. Scale bars shown (white) are 60 Å.
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Figure S7: External potentials for generating pockets around substrate molecules.
Enzymes generated from a retroaldolase active site triad [TYR1051-LYS1083-TYR1180] of a
retro-aldolase: PDB: 5AN7. A) The potential used to implicitly model the substrate, which has
both a repulsive and attractive field (see Methods 4.4). B) Left: Kernel densities demonstrate
that without using the external potential (pink), designs often fall into two failure modes: (1) no
pocket, and (2) clashes with the substrate. Right: clashes (substrate < 3A of the backbone) &
pockets (no clash and > 16 Cα within 3-8A of substrate) with and without the potential.
Two-proportion z-test: clashes p<0.03, pocket p<0.02. Each datapoint represents a design
already passing the stringent success metrics (AF2 motif RMSD < 1Å, AF2 backbone RMSD <
2Å, AF2 pAE < 5). C) Designs close to the labeled local maxima of the kernel density estimate.
Without the potential, the catalytic triad is predominantly (1) exposed on the surface with no
residues available to provide substrate stabilization or (2) buried in the protein core, preventing
substrate access. With the potential, the catalytic triad is predominantly (3), partially buried in a
concave pocket with shape complementary to the substrate. Backbone atoms within 3Å of the
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substrate are shown in red. D) A variety of diverse designs with pockets made using the
potential, with no clashes between the substrate and the AF2-predicted backbone. The
functional form and parameters used for the pocket potential are discussed in Methods 4.4. In
each case the substrate is superimposed on the AF2 prediction of the catalytic triad.
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Figure S8: Symmetric motif scaffolding for square-planar Ni2+ binding. A) Symmetrized
imidazole groups of varying amounts of shear used for constructing the square-planar motifs to
scaffold, with 2.2 Å between the theoretically Ni2+ coordinating nitrogen and the symmetry axis.
B) Depiction of a subset of the C4-symmetrized backbone-dependent (𝝋 = -40o, 𝝍 = -60o)
rotamers51 (“inverse rotamers”, Methods 5.9) used as motifs from set #1 input to RFdiffusion for
symmetrically scaffolding the theoretical Ni2+ binding site (teal, top). AF2 predictions of selected
in silico successes scaffolding the C4 inverse rotamers show significant structural diversity in
RFdiffusion solutions (colors, bottom). All AF2 structures have full-atom RMSD < 1.0 Å between
AF2 predictions and the input motif, AF2 PAE < 6, and AF2 pLDDT > 90. C) Depiction of a
different subset of the C4-symmetrized backbone-dependent (𝝋 = -40o, 𝝍 = -60o) inverse
rotamers51 used as motifs from sets #2 and #3 (top), with AF2 predictions of selected in silico
successes (bottom). All AF2 structures have full-atom RMSD < 1.0 Å between AF2 predictions
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and the input motif, AF2 PAE < 6, AF2 pLDDT > 90 D) In silico success count for the inverse
rotamers from set #1 depicted in panel B. An in silico “success” here is defined as an AF2
prediction for a single sequence which has (1) full-atom RMSD over the four histidine residues
between the AF2 prediction and the ideal C4 motif of < 1.0 Å and (2) an AF2 pAE < 10. E)
Overlay of various AF2 predictions for designs scaffolding motifs derived from imidazole groups
with no shear (panel A, left) shows a diverse array of RFdiffusion solutions can all place the
histidine imidazole groups at near-ideal distances from a theoretical nickel ion. F) Overlay of
various AF2 predictions for motifs derived from imidazole groups with shear (panel A, middle
and right) again displays diverse backbone solutions for placing the imidazole groups at
near-ideal distances from the theoretical Ni2+ ion.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2022. ; https://doi.org/10.1101/2022.12.09.519842doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519842
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2022. ; https://doi.org/10.1101/2022.12.09.519842doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519842
http://creativecommons.org/licenses/by-nd/4.0/


Figure S9: Additional Ni2+ binding C4 oligomers A) AF2 predictions of a subset of the
experimentally verified Ni2+ binding oligomers, with corresponding isothermal titration calorimetry
(ITC) binding isotherms for the wild-type (blue) and H52A mutant (pink) below. Wild-type
dissociation constants are displayed in each plot. We observe a mixture of endothermic (C1,
E12, G3) and exothermic isotherms. For all cases displayed we observe no binding to the ion
for H52A mutants, indicating the scaffolded histidine at position 52 is critical for ion binding. Kd
values in the isotherms indicate binding of the ion with the designed stoichiometry (1:4
Ni2+:protein). Note that each backbone depicted is from a unique RFdiffusion sampling
trajectory, and that models and data for designs G3, C10, A5 and E1 from Figure 5 are
duplicated here for ease of viewing. B) Size exclusion chromatograms for elutions from the 44
purifications indicate the vast majority of designs are soluble and have the correct oligomeric
state. C) Size exclusion chromatograms for 20 H52A mutants show that the mutants remain
soluble and retain the intended oligomeric state.
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Figure S10: Targeted unconditional and fold-conditioned protein binder design. A-B) The
ability to specify where on a target a designed binder should bind is crucial. Specific “hotspot”
residues can be input to a fine-tuned RFdiffusion model, and with these inputs, binders almost
universally target the correct site. A) IL-7Rɑ (PDB: 3DI3) has two patches that are optimal for
binding, denoted Site 1 and Site 2 here. For each site, 100 designs were generated (without
fold-specification). B) Without guidance, designs typically target Site 1 (left bar, gray), with
contact defined as Cɑ-Cɑ distance between binder and hotspot reside < 10Å. Specifying Site 1
hotspot residues increases further the efficiency with which Site 1 is targeted (left bar, pink). In
contrast, specifying the Site 2 hotspot residues can completely redirect RFdiffusion, allowing it
to efficiently target this site (right bar, pink). C-D) As well as conditioning on hotspot residue
information, a fine-tuned RFdiffusion model can also condition on input fold information
(secondary structure and block-adjacency information - see Methods 4.5). This effectively allows
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the specification of a (for instance, particularly compatible) fold that the binder should adopt. C)
Two examples showing binders can be specified to adopt either a ferredoxin fold (left) or a
particular helical bundle fold (right). D) Quantification of the efficiency of fold-conditioning.
Secondary structure inputs were accurately respected (top, pink). Note that in this design target
and target site, RFdiffusion without fold-specification made generally helical designs (right, gray
bar). Block-adjacency inputs were also respected for both input folds (bottom, pink). E)
Reducing the noise added at each step of inference improves the quality of binders designed
with RFdiffusion, both with and without fold-conditioning. As an example, the distribution of AF2
interaction pAEs (known to indicate binding when pAE < 10) is shown for binders designed to
PD-L1. In both cases, the proportion of designs with interaction pAE < 10 is high (blue curve),
and improved when the noise is scaled by a factor 0.5 (pink curve) or 0 (yellow curve). F) Full
in silico success rates for the protein binders designed to five targets. In each case, the best
fold-conditioned results are shown (i.e. from the most target-compatible input fold), and the
success rates at each noise scale are separated. In line with current best practice26, we tested
using Rosetta FastRelax52 before designing the sequence with ProteinMPNN, but found that this
did not systematically improve designs. Success is defined in line with current best practice26:
AF2 pLDDT of the monomer > 80, AF2 interaction pAE < 10, AF2 RMSD monomer vs design <
1Å.
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Figure S11: Size exclusion chromatography of symmetric oligomers. A-C) Size exclusion
chromatography (SEC) was used as a primary screening method for all RFdiffusion-generated
oligomers. Here, SEC traces from 608 oligomers are shown for each of the experimentally
tested symmetry groups, excluding the void volume. Panel A) shows dihedral symmetries, B)
shows cyclic symmetries, and C) shows all others. For each set of traces, on the left, data are
overlaid for all designs, and on the right, traces are normalized and stacked. As designs
increase in complexity (higher number of individual subunits), the amount of soluble protein
shown by SEC visibly decreases. For tetrahedral, octahedral, and icosahedral designs, many
have soluble protein peaks that are possibly dimer and trimer subunits (unassembled cages).
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Figure S12: SEC elution peaks of symmetric oligomers vs. calibration curves. Retention
volume for the major SEC peak versus molecular weight for each design are plotted in
comparison to a known calibration curve. The calibration curve is shown in gray, with shading
representing the 95% confidence interval. Total yield of each design is indicated by the scale bar
on the right of the graphs, and success rates for the 95% CI and 99% CI are denoted on each
graph per each symmetry. Given that MW is being used as a proxy for hydrodynamic radius, we
expect that some designs (e.g. cycles with large pores) may be true to their design model, but
deviate from the standard curve. These calibration curves provide a rough estimate of the
success rate of each symmetry group, and help guide the selection process for downstream
analysis of any design. In some cases, even though no designs are within the 99% CI, we still
selected designs to screen by nsEM. For example, we are able to confirm HE0822 (C3) by
nsEM despite misalignment between the theoretical and actual elution profiles (Fig. 3B).
Because of their size, the icosahedra were run on an S6 column with lower resolution; thus, the
calibration curve fit results in bigger confidence intervals compared to an S200 column, which
was used to screen all other oligomers (See Methods 6.2). We expect that for oligomers run on
the S200, reported success rates are fairly conservative, whereas for designs run on the S6,
experimental success rates are likely lower.
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Figure S13: Details of HE0537 cryo-EM data processing pipeline. 2D class averages
showing exclusively side-views of HE0537, and an ab initio reconstruction followed by a C1
non-uniform refinement yielding identifiable D4 features corresponding to the size and rough
secondary structure of the design model. Further data processing was attempted with D4
symmetry imposed, but the strong preferred orientation precluded generation of a reliable 3D
map for detailed structural analysis. At this time, only the predicted 2D projection images of the
design model are analyzed/compared alongside the corresponding experimental cryo-EM 2D
class average side views in Fig. 3D, which display strikingly high agreement to the design. A
representative raw cryo-EM micrograph is shown on the right along with nine example extracted
particles and characteristic 2D class averages used in the processing pipeline. An FSC
validation curve for the final reconstruction is shown along with the density map.

Figure S14: IL-7Rɑ Competition Assay
Positive control (known IL-7Rɑ binder from ref [12]) was amine conjugated to ar2g biosensor tips.
100nM IL-7Rɑ with 1μM of each design then was used as analyte. Positive control was also
included as an analyte as there should be no binding. Response is normalized to binding of
IL-7Rɑ on its own. All six diffusion-generated binders compete with the positive control,
indicating they bind to the intended site.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2022. ; https://doi.org/10.1101/2022.12.09.519842doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?zn637W
https://doi.org/10.1101/2022.12.09.519842
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2022. ; https://doi.org/10.1101/2022.12.09.519842doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519842
http://creativecommons.org/licenses/by-nd/4.0/


Figure S15: Analysis of Insulin Receptor Binding Campaign
A) Insulin Receptor binders are well-predicted by AF2. Yellow/orange: target/hotspot residues;
gray: design model; purple: AF2 prediction. B) Insulin Receptor binders are expressed with high
yield, in line with the rest of the binder campaigns. C) SEC elution profiles indicate most Insulin
Receptor binders elute as monomers, in line with the rest of the binder campaigns.
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