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Proteins are evolved polymers that minimize their free energy
upon folding to their native states. Still, many folded proteins
display energetic conflict between residues in various regions
that can be identified as highly frustrated, and these have been
shown to be related to several physiological functions. Here we
show that small-ligand binding sites are typically enriched in
locally frustrated interactions in the unbound state. We built
a tool using a simple machine learning algorithm named Frus-
traPocket that combines the notion of small-molecule binding
pockets and the localization of clusters of highly frustrated
interactions to identify potential protein-ligand binding sites
solely from the unbound forms.
Availability and implementation (github):
https://github.com/CamilaClemente/FrustraPocket/
Docker container:
https://hub.docker.com/r/proteinphysiologylab/frustrapocket
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Background
The Energy Landscape Theory of protein folding (1) states
that natural occurring proteins are evolved systems that can
robustly fold, in biological compatible times, due to the exis-
tence of a strong energetic bias towards their native states.
The shape of the energy landscape of most globular pro-
teins resembles a rough funnel where the free energy rapidly
drops when interactions that are present in the native state
are formed, according to the "Principle of Minimum Frus-
tration". However, upon folding, natural proteins may not
be able to completely solve all energetic conflicts among
their residues and some conflicting interactions may remain
in their native states (2).
Along evolutionary times, proteins have not been optimised
to fold but to function and often protein stability and function
are in conflict with each other (3). In the last years, it has been
shown that unresolved energetic conflicts in the native state
of proteins, a.k.a highly frustrated interactions, are of great
relevance to many functional aspects. Protein-protein inter-
actions (2), allosteric sites (4), catalytic sites and co-factors
binding (5), disease associated mutations (6), protein dynam-

ics (7), disorder-to-order transitions in protein complexes (8)
or evolutionary patterns in protein families (9) are some of the
many functional aspects that have been related to the concept
of energetic local frustration. Basically, if a protein will bind
and recognise a defined substrate, we expect that there will
be a set of residues near the binding site that may be in con-
flict with their local environment, that may become stabilised
once the recognition takes place.
Identification of protein ligand binding sites (LBSs) consti-
tutes an important step towards the elucidation of protein
functions, understanding of how pathogens interact with their
hosts or to grasp insights for the rational design of drugs tar-
geting specific proteins.
In recent years, several approaches to predict LBSs have been
developed. Most are based on a geometric definition of the
protein’s pockets to which small-ligands bind. However, the
amount of pockets that most of the tools predict is too large
and their identification, based on geometric means, does not
provide an intuitive way to distinguish the best candidate
protein-ligand pocket.
We have developed FrustraPocket, a machine learning based
algorithm that combines the notion of protein pockets and
the identification of highly frustrated patches and machine
learning algorithm to predict protein-ligand binding sites.

Methods

Dataset, local frustration and local density. To char-
acterize the LBSs, we selected from BioLiP database (10)
all entries that had their EC Number annotated in order to
select only enzymatic proteins. The enzymes were classi-
fied according to their oligomeric status and a non-redundant
dataset of 1007 monomeric enzyme proteins was finally se-
lected (the PDBids used are available in GitHub Camila-
Clemente/FrustraPocket/).
The protein structures were downloaded from the PDB
(https://www.rcsb.org/), the frustration patterns and local
density (LD) were calculated using the protein Frustratome-
teR (11, 12) (www.frustratometer.tk).
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Pair distribution function to quantify local frustration
patterns. The Mutational Frustration Index (MFI) is a mea-
sure that is assigned to the interaction between two residues
(2). Therefore, to quantify the density of contacts of each
frustration type (i.e highly frustrated, neutral or minimally
frustrated) around a binding residue, or any residue in gen-
eral, we create virtual particles (VPs) to represent the frustra-
tion assigned to the interaction between every pair of residues
in contact. VPs coordinates correspond to the middle point
along the euclidean distance between the interacting residues
Cα atoms. For each protein structure we obtained the list
of contacts in each frustration type and calculated their VPs
coordinates. Subsequently, distances from the Cα from the
selected residues, binding residues or control, or co-factor
molecules were calculated with respect to the VPs coordi-
nates. Pair distribution functions G(r) in all cases g(r) values
were normalized such that g(20) = 1.

Feature extraction methods.

Dataset. In order to build the dataset for the training and test-
ing for our machine learning algorithm, we used the frus-
tration calculation for all residues in the dataset. Further-
more, residues were classified as those that are annotated
to form protein-ligand interactions (class 1) and those that
do not form protein-ligand interactions (class 0). Because
the amount of residues that are of protein-ligand interaction
(class 1) is a very small percentage with respect to the total
length of the protein, to avoid an unbalanced dataset, we used
an undersampling technique. For this experiment, we have
used NearMiss-1, this version selects the examples from the
majority class with the smallest distance to the three closest
examples from the minority class. The final dataset contain-
ing 97246 (48623 for class 1 and 48623 for class 0) amino
acids and the features used are in table 1.

Model construction and evaluation. Extreme Gradient
Boosting (XGBoost) is a machine learning method which
is widely used for data science (13). This method is a
gradient boosting decision tree. The XGBoost algorithm is
a Python library that implements a collection of machine
learning algorithms. It provides parallel tree boosting and
is one of the most important machine learning libraries
for classification or regression tasks, among others. This
algorithm was developed to maximize its accuracy and
scalability, as well as to push the limits of computing power
improving its performance and computational speed. In
addition, the implementation of these models has given very
good results in previous works related to this topic (14, 15)
and also, because our dataset is of structured type.
The data set was randomly split into a training set (80% of
the data set) and a test set (20% of the data set) using the
train_test_split() function of the Sklearn library. Predictions
were made on the test set. In order to check the success
of the models AUC, accuracy, precision, recall, kappa and
f1-score were calculated. The parameters used for XGBoost
model, were,
learning_rate=0.01, n_estimators=1500, max_depth=6,

Feature Name Description

Number of contacts Number of contacts that
each residue makes

Local Density Local density value of the
residue

% of Highly Frustrated
Contacts

Percentage of highly frus-
trated contacts that the
residue makes with other
residues of the residue

% of Highly Frustrated
Contacts around of a 5Å
sphere

Percentage of highly frus-
trated contacts with 5Å
sphere around the Cα

% of Minimally Frustrated
Contacts around of a 5Å
sphere

Percentage of minimally
frustrated contacts with 5Å
sphere around the Cα

% of Neutral Frustrated
Contacts around of a 5Å
sphere

Percentage of neutral frus-
trated contacts with 5Å
sphere around the Cα

Class
Indicates if the amino acid
is a P-L interaction residue
(1) or not (0)

Table 1. Features used for XGBoost training and testing.

subsample=0.7, colsample_bytree=1, gamma=1
This was implemented using Python 3.6 and a Linux
operating system.

Implementation
Algorithm workflow. FrustraPocket
is available in a github repository
(https://github.com/CamilaClemente/FrustraPocket/) and is
coded in python3. It is also implemented in a docker con-
tainer (proteinphysiologylab/frustrapocket). The workflow
used to construct FrustraPocket is in Figure 1. The input of
FrustraPocket should be a protein structure or a PdbID.

Pocket predictions steps. The input file is only the PDBID or
a custom PDB file generated by the user. Step 1: Download
of the protein structure. Step 2: Calculation of MFI (11) and
the corresponding proportion of highly frustrated interactions
per residue MFI_hprop and the LD (16) of the protein. Frus-
tratometeR calculates the percentage of the different frustra-
tion contact types (i.e highly frustrated, neutral or minimally
frustrated) around a sphere of 5 Å, centered in the Cα atom
of the residue (5Adens). Step 3: Run the prediction using the
XGBoost ML model. Step 4: Once the prediction is done, a
pocket is defined by at least 5 close residues that are all of
class 1, in case there are no class 1 residues close to each
other no pocket is defined. The output files, include the frus-
tration calculation, the pockets in PDB format, a pymol script
to visualize the pockets in the protein structure and the center
of mass for each pocket.

Results
Protein–ligand binding sites are spatially surrounded
by highly frustrated interactions. To analyse the local
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Fig. 1. The workflow of FrustraPocket algorithm. Step 1: Download the PDB (only in the case that the PDB file is not provided for the user). Step 2: Mutational frustration
calculation using FrustraR (11). Step 3: all the necessary features are obtained from the frustraR outputs. Step 4: predictions are made using the defined model. The results
of the prediction are filtered and the pockets are defined.

frustration distribution in enzymatic protein–ligand binding
sites, we collected all entries from the BioLiP database (10),
we divided the dataset according to the oligomeric state of
proteins and monomeric proteins were selected (1007 non-
redundant entries). Monomeric enzymes were selected be-
cause their local frustration patterns were already analyzed
(5) and we selected monomers due to their topological sim-
plicity.Then, we calculated the local frustration patterns using
the FrustratometeR package (11).
To quantify the local frustration patterns we calculated the
pair distribution functions g(r) for the various classes of con-
tacts as classified by the frustration index. The g(r) calculates
the density of VPs (see methods) corresponding to the differ-
ent types of contacts as a function of distance relative to the
Cα of the binding residues.

In Fig.2A we show the pair distribution function g(r) for
those residues that are annotated as protein - ligand binding
residues. We can see an enrichment of neutral and highly
frustrated interactions, relative to the contacts topology of the
protein (black lines). The distribution of interactions around
the binding residues displays two characteristic peaks, one lo-
cated around 1 Å, corresponding to those interactions of the
binding residues themselves (first shell), and a second peak
between 2 and 4 Å, which comprises interactions between
residues that coordinate the binding (second shell). However,
the enrichment of highly frustrated interactions in the second
shell is higher than what is expected by the protein topology
(black line). Note that in both first and second shells there is a
depletion of minimally frustrated interactions. These results
show that the specific sites for protein-ligand recognition are
typically frustrated in the unbound state.
In Fig.2B, we observe the g(r) for a control set that was gen-
erated using random residues that are not involved in bind-

Fig. 2. Pair distribution functions, g(r), between the Cα of a) the annotated binding
residues and the center of mass of the contacts and b) control residues. Green,
minimally frustrated contacts; red, highly frustrated contacts; gray, neutral contacts;
black, all contacts. g(r) plots were adjusted in their axis ranges to enhance vi-
sualizations; however, in all cases g(r) values were normalized such that g(20) =
1. A Residues that are annotated as protein - ligand binding residues. B Control
residues, defined as randomly selected residues that are no annotated as protein -
ligand binding residues. In gray are shown the 1st shell and the 2nd shell, respec-
tively.
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ing sites that shows no enrichment, in contrast to what is
observed for ligand binfing residues Fig.2A. Based on this
and in previous work where we observed an enrichment of
highly frustrated interactions around protein-ligand interac-
tion residues and also at catalytic sites (5) we decided to ex-
ploit this feature and use it to predict protein-ligand interac-
tion and catalytic sites by combining information of the local
frustration patterns and the local density of residues in a pro-
tein structure.

Performance of the model. In order to the evaluate the ef-
fectiveness of the XGBoost model implemented in this work,
we used the Receiver Operating Characteristic (ROC) curve
(Fig. 3). The True Positive rate is defined as TP/(TP+FN) and
the False Postive rate is defined as FN/(FN+TP), where TP is
the True Positive and FN is the False Negative. The values
for accuracy, precision, recall, kappa, f1-score are provided
in Table 2. The AUC obtained by XGBoost is 0.70, indicating
that our method does not select residues randomly. These val-
ues indicate that our model correctly detects approximately
70% of the ligand-protein binding residues, solely based on
their local frustration patterns in the unbound states.

Fig. 3. The ROC curve of XGBoost applied to the local frustration patterns of
monomeric enzymes. The true negative rate is the probability that an actual positive
will test positive and the false negative rate is the probability that a true positive will
be missed by the test

Metric Value
AUC 0.70
Acuracy 0.64
Precision 0.64
Recall 0.66
Kappa 0.29
f1-score 0.65

Table 2. Metrics used to evaluate the performance of the model.

Particular Example. As an example, we have applied Frus-
traPocket to the ATP-dependent DNA ligase (PdbID: 1A0I).
Fig.4A-B represents the first step of the tool where Fig.4A
shows the mutational frustration frustratogram and Fig.4B
shows the LD of each residue of the protein. Fig.4C rep-

Fig. 4. Example PdbID: 1A0I. A. The backbones of the proteins are shown as
gray cartoons, minimally frustrated contacts are depicted with green lines, highly
frustrated interactions with red lines. Neutral interactions were omitted to help in-
terpretation. B. Residues with lower local density are shown in blue and residues
with higher local density are shown in orange. C. Output of the tool, in gray the
crystallised ligand, in different colors the predicted pockets. D. Center of mass for
each pocket.

resents the output of the nine predicted pockets of the protein
and fig.4D the center of mass for each predicted pocket.

Discussion and conclusion

The identification of small-ligand binding sites in a protein
structure is a central theme to protein physiology and has
been the subject of an increasing number of studies in the
last decade. Currently there are many predictors, most of
them based on geometry and until now there was no method
based on the analysis of the protein only energetics. Ener-
getic local frustration is a biophysics-based concept related
to various functional aspects of proteins (2, 4–9), especially
to the interactions between proteins or proteins and their lig-
ands. Hence, we consider that frustration is an intuitive con-
cept that can improve prediction of LBSs as we have shown
in this article.
Here we calculated and characterize the frustration patterns
for monomeric enzymes (n = 1007) that have their LBSs an-
notated in BioLiP database (10). We have found that the
residues that are implicated in protein - ligand interactions
are enriched in highly frustrated interactions.
Thus, Frustrapocket may be a valuable tool to identify un-
known potential ligand-binding sites. Indeed, the fact that in
most cases we identify pockets for which no ligand is known
may be hinting that several cryptic binding sites are present
in many proteins.
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