New Results
Using machine learning to detect coronaviruses potentially infectious to humans
Georgina Gonzalez-Isunza, M. Zaki Jawaid, Pengyu Liu, Daniel L. Cox, Mariel Vazquez, Javier Arsuaga
doi: https://doi.org/10.1101/2022.12.11.520008
Georgina Gonzalez-Isunza
1University of California, Department of Microbiology & Molecular Genetics, Davis, CA, USA
M. Zaki Jawaid
4Department of Physics, University of California, Davis, USA
Pengyu Liu
1University of California, Department of Microbiology & Molecular Genetics, Davis, CA, USA
Daniel L. Cox
4Department of Physics, University of California, Davis, USA
Mariel Vazquez
1University of California, Department of Microbiology & Molecular Genetics, Davis, CA, USA
3Department of Mathematics, University of California, Davis, CA, USA
Javier Arsuaga
2University of California, Department of Molecular & Cellular Biology, Davis, CA, USA
3Department of Mathematics, University of California, Davis, CA, USA

Article usage
Posted December 12, 2022.
Using machine learning to detect coronaviruses potentially infectious to humans
Georgina Gonzalez-Isunza, M. Zaki Jawaid, Pengyu Liu, Daniel L. Cox, Mariel Vazquez, Javier Arsuaga
bioRxiv 2022.12.11.520008; doi: https://doi.org/10.1101/2022.12.11.520008
Subject Area
Subject Areas
- Biochemistry (10821)
- Bioengineering (8065)
- Bioinformatics (27374)
- Biophysics (14020)
- Cancer Biology (11160)
- Cell Biology (16105)
- Clinical Trials (138)
- Developmental Biology (8807)
- Ecology (13329)
- Epidemiology (2067)
- Evolutionary Biology (17394)
- Genetics (11705)
- Genomics (15961)
- Immunology (11057)
- Microbiology (26155)
- Molecular Biology (10679)
- Neuroscience (56730)
- Paleontology (422)
- Pathology (1737)
- Pharmacology and Toxicology (3012)
- Physiology (4567)
- Plant Biology (9666)
- Synthetic Biology (2699)
- Systems Biology (6994)
- Zoology (1513)