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Abstract

Partial somatic cell reprogramming has been touted as a promising rejuvena-
tion strategy. However, its association with mechanisms of aging and longevity

at the molecular level remains unclear. We identified a robust transcriptomic
signature of reprogramming in mouse and human cells that revealed co-regulation
of genes associated with reprogramming and response to lifespan-extending
interventions, including those related to DNA repair and inflammation. We
found that age-related gene expression changes were reversed during repro-

gramming, as confirmed by transcriptomic aging clocks. The longevity and
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14 rejuvenation effects induced by reprogramming in the transcriptome were
15 mainly independent of pluripotency gain. Decoupling of these processes al-
16 lowed predicting interventions mimicking reprogramming-induced rejuvena-
17 tion (RIR) without affecting somatic cell identity, including an anti-inflammatory
18 compound osthol, ATGS5 overexpression, and C60RF223 knockout. Overall,
19 we revealed specific molecular mechanisms associated with RIR at the gene
20 expression level and developed tools for discovering interventions that support
21 the rejuvenation effect of reprogramming without posing the risk of neoplasia.

» Introduction

23 Aging is associated with the buildup of molecular damage and a gradual loss of function, culmi-
2« nating in chronic age-related diseases and ultimately death (/). Searching for safe and efficient
25 interventions that can slow down or partially reverse the aging process is a major challenge in
26 the aging field (2—6). In this regard, reprogramming of somatic cells into induced pluripotent
27 stem cells (iPSCs) has been proposed as a candidate longevity intervention due to its potential

28 to rejuvenate cells in a targeted way (7, 8).

29 Pluripotency can be achieved in vitro by the ectopic expression of four transcription factors:
0 OCT4, SOX2, KLF4, and MYC, known as OSKM or Yamanaka factors (YFs). It was demon-
31 strated that OSKM support the generation of murine iPSCs (9) using retroviral transduction as a
32 delivery system and mouse embryonic fibroblasts (MEF) as the initial cell culture. Although this
33 original experiment was inefficient in terms of the percentage of cells that terminally achieved
s« the pluripotent state (<0.1%), more advanced in vitro approaches resulted in a greatly improved
ss efficiency, e.g. by down-regulation of methyl CpG-binding domain 3 (MBD?3) levels (/0). In

s parallel, other approaches have been developed to induce pluripotency. In particular, the expres-
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37 sion of seven other transcription factors (7F: Jdp2-Jhdm1b-Mkk6-GlisI-Nanog-Essrb-Sall4) re-
ss sulted in high efficiency of reprogramming (/7). Therefore, it appears that the reprogramming
s process can be attained by using different cell culture conditions, transcription factors, and small

40 molecules (12).

41 Invivo cell reprogramming could be accomplished by using transgenic mice with doxycycline-
22 inducible OSKM (73, 14). However, continuous expression of OSKM factors in mice leads to
a3 severe forms of teratoma. Partial reprogramming protocols can overcome this problem. Some
s« of these techniques rely on the incomplete set of reprogramming factors, e.g., OSK reprogram-
s ming (15), while others are based on a transient or temporarily controlled expression of OSKM
s factors (16—18). The problem of oncogenesis during in vivo reprogramming is associated with
47 the loss of somatic cell identity in pluripotent cells. Thus, it is crucial to avoid the reset of
ss the somatic epigenetic program in order to make this technique applicable in clinical practice.
s Recent in vitro experiments (19, 20) show that the decrease in epigenetic age of reprogrammed
so cells measured by epigenetic aging clocks (27) occurs mostly prior to the stabilization phase
st when the pluripotent state is established. However, even a short-term use of OSKM factors has
52 been shown to produce the detectable subpopulation of cells where late-stage pluripotent genes
s3 are expressed (22). Therefore, independent interventions that would support Reprogramming-

s« Induced Rejuvenation (RIR) without inducing pluripotency may be of a high clinical value.

55 Since the first reprogramming experiment conducted in 2006, a massive amount of high-throughput
ss molecular data have accumulated, shedding light on the details of gene regulatory pathways
s7 and their dynamics during reprogramming. These data comprise transcriptome, methylome,
ss chromatin conformation, chromatin accessibility, and other omics datasets, including single-
so cell transcriptomes (22, 23). The resulting data on reprogramming allowed the construction of

e various mathematical models (24-26) describing some aspects of reprogramming. However,
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st models that offer specific molecular mechanisms responsible for RIR have been lacking.

e2 Here, we describe transcriptomic changes that occur in cells during reprogramming and their
es association with mechanisms of aging and longevity. We conducted a comprehensive meta-
s« analysis of time-course gene expression datasets of mouse and human cells during multi-factor
es reprogramming and identified robust transcriptomic signatures associated with this process. By
es integrating them with the signatures of aging and lifespan-extending interventions, we revealed
o7 genes and functional processes specifically associated with the rejuvenation and longevity ef-
es fects of reprogramming. Using multi-tissue transcriptomic aging clocks developed for humans
e and mice, we further observed a significant reduction of the transcriptomic age (tAge) for both
70 human and mouse cells in response to OSKM, OSK and 7F reprogramming. Remarkably, most
71 genes responsible for the rejuvenation and longevity effects of reprogramming were not in-
72 volved in the loss of somatic identity and gain of pluripotency, suggesting that these processes
73 can be separated. This allowed us to identify specific gene expression signatures of RIR and use
74 them to discover candidate chemical and genetic interventions that may induce reprogramming-

75 associated rejuvenation effects without affecting somatic cell identity.

» Results

~» Reprogramming gene expression signature captures dynamics towards

» pluripotency

79 We gathered 41 gene expression datasets of time-course cell reprogramming from 14 studies,
so including 29 datasets for mouse cells and 12 datasets for human cells (Suppl. Table S1, Suppl.
st Fig. S1). Each dataset represented a continuous cell reprogramming experiment conducted on a
g2 specific cell line with a particular treatment, including OSKM, OSK or 7F. Most murine datasets
ss  were MEF-1PSC reprogramming, whereas human studies used different types of cells. To iden-

s¢ tify genes, whose expression was robustly changed during the reprogramming process across
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ss the datasets, we utilized mixed-effect linear models previously used to discover transcriptomic

ss signatures of lifespan-extending interventions and aging (see Methods, Fig. 1A, (27)).

&7 Using this approach, we identified mouse- and human-specific gene expression signatures of
s reprogramming, as well as common reprogramming signatures conserved across species. In
so total, 3087, 7531, and 4807 genes changed their expression in the cells from mice, humans,
o0 and both species, respectively, during reprogramming (BH-adjusted p-value < 0.05). A higher
o1 number of significant genes for humans may be related to batch effects, since all corresponding
92 time-course datasets have been created by the same research group. Therefore, in this study we
93 mostly focus on the mouse signature, as it offers more reproducible and robust biomarkers of

o« cellular reprogramming.

o5 To assess the quality of signatures, we checked if they recapitulate gene expression changes in
9 individual datasets used for their construction (Fig. 1B, Suppl. Fig. S2A). Both murine and
o7 human signatures demonstrated a significant positive Spearman correlation with each utilized
98 dataset (tho > 0.66). Clusters were generally formed by datasets from the same source (i.e.,
99 the same GSE ID) and based on the same type of treatment. Thus, classical Yamanaka factors
100 (YF), including OSKM and OSK treatments, clustered together and were separate from the 7F
101 intervention (/7). In addition, human datasets clustered mainly by tissue type (Suppl. Fig.
102 S2A). Overall, the correlation analysis suggested that the constructed reprogramming signature

103 captured consistent gene expression changes observed in multiple independent experiments.

104 To investigate the expression dynamics of top genes associated with reprogramming, we vi-
15 sualized normalized expression of 5 up- and 5 downregulated genes with the lowest p-values
10s (Fig. 1C, Fig. S2B). We observed saturation of gene expression dynamics after 10 days of
107 reprogramming in mice, while in human cells top genes demonstrated sigmoid-like dynamics

1s with the saturation point at 20th day. Interestingly, several top up- and downregulated genes
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100 captured by our signatures were previously shown to be associated with aging and included
1o in the GenAge database (28). Thus, Parpl is known as an antagonistic pleiotropic gene (29)
111 regulating genome maintenance and inflammation processes. At the same time, in cooperation
112 with Sox2 it can function as an alternative splicing regulator during reprogramming (30). An-
113 other example is the downregulated Zmpste24 gene, whose deficiency in mice results in nuclear

114 architecture abnormalities and signs of accelerated aging (31).

115 For additional validation of our signatures, we examined the distribution of pluripotency-associated
11e genes (see Table S2 for a full list of pluripotency genes) among those significantly perturbed
117 during reprogramming (Fig. 1D, Fig. S2C and S2D; see Table S3 for the list of top genes in
11s the signature). Notably, significantly upregulated genes (BH-adjusted p-value < 0.001) were
119 enriched by the markers of pluripotency (Fisher exact test p-value < 171%). In particular, Zic3,
120 Gdf3, Utfl, Tfap2c were reported to maintain the pluripotency state (32, 33); Dnmt3l, Dnmt3b
121 are DNA methylases, while Tet] is a demethylation enzyme (32); Epcam and Cdhl are mes-
122 enchymal—epithelial transition genes (34). In total, 60% (27 out of 44) pluripotency genes
123 were significantly upregulated during reprogramming according to the mouse signature. On
124 the other hand, no markers of pluripotency have been detected across significantly downregu-
125 lated genes with the exception of 3 genes (Ccndl, Ccnd2 and Cdknla) known to be activated
126 during the early stage of reprogramming and suppressed afterwards (35). Such enrichment of
127 pluripotency-associated genes within the subset of upregulated, but not downregulated, genes

128 indicates that our signature correctly characterizes the reprogramming process.

120 Finally, to compare reprogramming-associated gene expression changes across species, we ex-
130 amined the intersection of statistically significant genes (BH-adjusted p-value < 0.05) from the
131 mouse and human cell reprogramming signatures (Fig. 1E). Fisher’s exact test showed signif-

132 icant co-regulation of genes during reprogramming in different species (p-value < 10e-10). In
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133 particular, 4 out of the top 5 upregulated mouse genes (Parpl, Rcor2, Jarid2, Epcam) were
13« also significantly upregulated in the human signature. Similarly, 3 out of the top 5 downregu-
135 lated mouse genes (Zmpste24, Msrb3, Tbc1d8b) were significantly downregulated in the human
136 signatures. Therefore, although there are certain species-specific reprogramming features (36),
137 this process appears to be highly similar in human and mouse cells at the level of gene expres-
138 sion. The obtained signatures allow investigating the interplay between molecular mechanisms

139 of reprogramming and other traits, including aging and longevity.

w0 Reprogramming signatures are associated with biomarkers of longevity
w1 and aging

142 To explore the association between reprogramming, aging and longevity, we expanded our
1.3 analysis with the gene expression signatures of mammalian aging and established lifespan-
124 extending interventions identified previously (27). Aging signatures represent age-related gene
15 expression changes in individual organs (liver, brain, muscle) of mice, rats and humans; com-
146 mon changes across different tissues within a certain species (mouse, rat, human), and a global
147 signature characterizing common age-related changes across different tissues and species. Sig-
18 natures of longevity interventions include biomarkers of individual lifespan-extending interven-
149 tions (caloric restriction (CR), rapamycin, growth hormone (GH) deficiency), common biomark-
150 ers of interventions (Common) and genes, whose level of expression is correlated with mouse

151 median and maximum lifespan (Median; Maximum) (27).

152 We observed significant positive correlations between several signatures of longevity interven-
153 tions and reprogramming (mean rho = 0.11, p.adjusted < 0.05) (Suppl. Fig. S3). At the same
154 time, aging-related changes demonstrated substantial negative correlation with both reprogram-
155 ming and lifespan-extending interventions (mean rho = -0.13, p.adjusted < 0.05). As expected,

156 the reprogramming signatures, including human-specific, mouse-specific and the combined sig-
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157 nature, clustered together, pointing to the general similarity of this process across species.
15 Aging and longevity signatures also formed separate clusters. Interestingly, reprogramming-
150 associated changes clustered together with established lifespan-extending interventions, sug-
10 gesting that in general reprogramming indeed recapitulates molecular mechanisms of longevity.
161 Thus, clustering analysis of signatures agreed with the longevity and rejuvenation effects in-

1e2 duced by reprogramming (Suppl. Fig. S3).

16a  We next aggregated signatures within groups (Reprogramming, Aging, and Interventions) into
164 combined meta-signatures to measure statistical significance of their co-regulation. There was
165 a significant enrichment of co-regulated genes associated with reprogramming and longevity
s interventions (Fisher’s exact test, p-value = 0.00027, Fig. 2A, left panel), providing addi-
1e7  tional evidence of functional coherence of these two processes. Moreover, this co-regulation
e was preserved even after removal of all pluripotency genes or epithelial-mesenchymal transi-
160 tion genes from the analysis (not shown). This suggests that the longevity-associated effect of
170 reprogramming may be uncoupled from pluripotency or the somatic identity program. Since
171 reprogramming and aging signatures demonstrated significant negative correlations in our clus-
172 tering analysis (Suppl. Fig. S3), we did not expect to find an enriched overlap of genes showing
173 the same direction of expression dynamics between aging and reprogramming. Consistently,
172 we observed a rather opposite, although not statistically significant, trend (Fisher’s exact test,

175 p-value = 0.21, Fig. 2A, right panel).

176 We examined specific genes responsible for the discovered associations (Fig. 2B). For each
177 group of signatures (Reprogramming, Aging and Interventions), we selected top genes with
178 the lowest geometric mean of p-values. The first gene well-known for its association with
179 aging and longevity, Rela, was downregulated upon reprogramming and in response to longevity

180 interventions and upregulated during aging. Rela is a proto-oncogene, encoding a subunit of
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181 NF-xB, and its human ortholog is known to influence age-related inflammation (37). The role
1.2 of Rela downregulation during reprogramming is coupled with inhibition of NF-xB pathway,

18 which was reported to block a successful reprogramming in aged and progeria cells (38).

18 Mrpll 1 encoding the 39S subunit component of mitochondrial ribosome showed the opposite
185 behavior, being positively regulated during reprogramming and by longevity interventions but
1ss downregulated with age. According to the GenAge database (28), deletion of this gene in S.
157 cerevisiae decreases lifespan (39), suggesting that its level may affect longevity. However, the

188 precise mechanistic role of this gene during aging and reprogramming remains unknown.

180 The other interesting example is Rragc, which has positive expression dynamics in the case
190 of interventions and aging, but is downregulated during reprogramming. Rragc participates
191 1n the relocalization of mMTORCI1 to the lysosomes and its subsequent activation by the GTPase
192 Rheb (40,41). Rragc upregulation in longevity interventions and in the aging liver signature can
193 be explained by the duality of Rag-GATOR pathway mechanism (42), depending on the source
194 of amino acids. Downregulation of Rragc during reprogramming may be associated with tran-
195 sient mTOR pathway suppression influencing autophagy process (43). Interestingly, although
196 expression of the gene coding for Insulin Like Growth Factor 1 (Igf1) was downregulated by

197 the established longevity interventions, it wasn’t significantly perturbed during reprogramming.

19¢  Of particular interest are the genes showing the same direction of expression in all three sig-
199 nature groups: e.g. upregulated Trappc6a (encoding a trafficking protein particle complex that
200 tethers transport vesicles to the cis-Golgi membrane) (44). Surprisingly, we found one gene,
201 Ugcrq, with negative dynamics in aging and reprogramming, and positive in longevity inter-
202 ventions (Fig. 2B). This gene encodes a subunit of ubiquinol-cytochrome C reductase complex

203 I, which is part of the mitochondrial respiratory chain (44).
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2« Functional enrichment analysis reveals processes associated with
25 reprogramming-induced rejuvenation

206 'To reveal functional processes associated with reprogramming, aging and longevity, we con-
207 ducted gene set enrichment analysis (GSEA) of identified signatures (45). Similar to the indi-
208 vidual meta-slopes (Suppl. Fig. S3), functional changes induced by reprogramming and estab-
200 lished lifespan-extending interventions generally demonstrated a significant positive correlation
210 with each other (mean rho = 0.23, adjusted p-value < 0.05) and were negatively associated with
211 age-related changes (mean rho = -0.22, adj. p-value < 0.05) (Fig. 2C). Remarkably, normalized
212 enrichment scores of functions were correlated even stronger than meta-slopes of individual

213 ZE€Nes.

214 Certain functional terms well characterized the identified reprogramming signature (Fig. 2D).
215 For example, we observed downregulation of genes related to the Epithelial mesenchymal tran-
216 sition (EMT), the process which was shown to be suppressed during reprogramming (23, 46).
217 Among the pathways downregulated by reprogramming but upregulated with age, we observed
218 several terms related to inflammation: Inflammatory response, IL6/JAK/STAT3 signaling path-
219 way, TNFa signaling via NFxB (adjusted geometric mean p-value < 0.007 for each term and
220 signature group). On the other hand, terms corresponding to mitochondrial function (Mitochon-
221 drial translation, ATP metabolic process) were upregulated in response to lifespan-extending
222 interventions and reprogramming but downregulated with age (adjusted p-value < 0.03 for each
223 term and signature group). This analysis pointed to the specific cellular processes associated
224 with the longevity and rejuvenation effects of reprogramming. However, reprogramming did not
225 appear to be a typical longevity intervention. In particular, it did not induce upregulation of the
26 p53 pathway (adjusted p-value = 0.004), one of the common biomarkers of lifespan-extending
227 interventions. Besides, it was also associated with downregulation of certain pathways upreg-

228 ulated by longevity interventions (27), including Heme metabolism, Hypoxia and Apoptosis

10
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220 (adjusted p-value < 0.008 for each term in reprogramming group).

=0 Clustering analysis of gene expression dynamics during reprogramming
231 reveals specific trajectories of longevity-associated genes

232 To investigate specific dynamics of expression of longevity-associated genes during reprogram-
233 ming, we performed a clustering analysis. First, we aggregated time series datasets of iPSC
23 generation in mouse cells and calculated average trajectory for each gene significantly per-
235 turbed during reprogramming (see Methods). Next, we clustered genes by their trajectory using
236 an agglomerative clustering approach. This approach resulted in 4 gene clusters selected using
237 the Elbow criterion (Fig. 4A,B). Two major clusters (2 and 3) included genes that were almost
233 monotonously up- or downregulated with time, respectively. Consistent with the data in Figure
239 1C, their expression followed a hyperbolic trajectory with a characteristic saturation at approx-
2e0 1mately 10th day of reprogramming. The expression of genes from two other clusters (1 and
241 4) followed U-shaped curve, starting from a transient up- or downregulation, respectively, and
22 gradually returning back to the initial expression value afterwards. These genes reached their

a3 peak expression value after approximately 4-6 days of reprogramming.

244 Then, each of the clusters was assessed for enrichment of longevity- and aging-associated genes
2¢s  obtained from the previously described signatures using Fisher exact test (Fig. 4C). Upregu-
26 lated and downregulated signature genes were analyzed separately. The most significant asso-
247 ciation was observed between clusters 2-3 and signatures of longevity interventions, including
28 biomarkers of CR and GH deficiency as well as genes associated with murine median and max-
249 1mum lifespan signatures (adjusted p-value < 0.05). Remarkably, genes from both of these
250 clusters were regulated by longevity interventions in the same direction. Thus, genes up- and
251 downregulated during reprogramming (clusters 2 and 3) were enriched for genes up- and down-

252 regulated in response to lifespan-extending interventions, respectively. Functional enrichment

11
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253 analysis of the clusters revealed that genes in 2 clusters upregulated during reprogramming in-
254 cluded replication activating E2F target genes as well as genes involved in base excision repair
255 and G2-M checkpoint (adjusted p-value < 0.0032). Cluster 3, downregulated during repro-
256 gramming, was enriched with genes related to EMT, Inflammatory response and Myogenesis
257 (adjusted p-value < 0.001). Genes in clusters 1 and 4 were associated with several signatures
258 including CR (co-regulation with 1) and aging in brain and in rats (opposite regulation with 1
259 and 4). Cluster 1 following U-shape behavior was enriched for genes involved in the TNF-alpha
260 signaling pathway, Hypoxia, Protein secretion and Myogenesis (adjusted p-value < 0.003). Fi-
261 nally, cluster 4 demonstrating the opposite dynamics was functionally associated with G2-M

262 Checkpoint, E2F targets, Myc targets, and mitochondrial translation (adjusted p-value < 0.003).

263 Thus, our cluster analysis of murine cell reprogramming suggests that genes monotonously
264« changed during reprogramming show a significant co-regulated association with the biomarkers
265 Of lifespan extension. Interestingly, these genes were mostly perturbed during the first 6 days of
266 reprogramming, suggesting that even transiently reprogrammed cells may acquire a longevity-

267 associated transcriptomic phenotype, consistent with the experiments in vivo (15, 16).

s Transcriptomic clock reveals the rejuvenation effect of reprogramming

260 To estimate the systemic rejuvenation occurring during reprogramming, we utilized our recently
270 developed mouse and human multi-tissue gene expression aging clocks (unpublished). These
271 transcriptomic clocks (tClocks) were constructed based on more than 2,000 samples from 94
272 datasets across multiple tissues of mouse and human. We applied the clocks to predict the
273 change of transcriptomic age (tAge) during reprogramming of mouse (Fig. 3A, B) and human
274 cells (Fig. 3C). We also compared tClocks predictions with with epigenetic ages estimated using
275 Horvath clock ( (21)) utilizing the dataset with both DNA methylation and gene expression

276 measured at once (47). We observed a significant positive correlation between the predictions

12
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277 (Suppl. Fig. S5), showing consistent behavior of clocks developed using different types of

27 molecular data.

279 We found significant transcriptomic rejuvenation of murine cells during reprogramming in-
250 duced by YF (Fig. 3A). Different variants of YF treatment, including OSKM and OSK, resulted
281 1n a significant decrease of tAge during reprogramming (p-value < 0.05), with the exception of
282 OK+9MS (48) treatment and OSKM accompanied by Mbd3f knockout (49) (Suppl. Fig. S4A).
283 Treatment of cells with the full set of 7 reprogramming factors also led to a decrease in tAge
234 (p-value = 1.43e-05) (Fig. 3C, Fig. S4A). At the same time, one-by-one removal from the cock-
285 tail of these factors displayed diverse behavior. Specifically, removals of Esrrb, Nanog, Mkk6,
286 Kdm2b (also known as Jhdmlib), Jdp2 did not diminish the RIR effect, whereas removals of
257 Glis and especially Sall4 blocked the rejuvenation process. Interestingly, removal of Sall4 at
233 the same time resulted in a dramatic decrease in reprogramming efficiency (/7). On the other
289 hand, removal of Esrrb also led to a significant decrease in reprogramming efficiency but did
200 not impair rejuvenation according to the transcriptomic clock, suggesting that the rejuvenation
201 effect can be at least partly decoupled from the pluripotency state induction. Remarkably, the
202 final tAge of reprogrammed cells subjected to YF and 7F was close to O for most datasets (av-
203 erage tAge =-0.0087 on day 19), which is consistent with the epigenetic data (/9). It suggests
204 that features of aging are reset during reprogramming both at the gene expression and DNA

205 methylation levels.

206 'To explore specific genes, whose expression change resulted in RIR, we measured the change in
207 tAge after removing each individual gene from the mouse tClock model (see Methods), further
208 referred to as a rejuvenation effect (RE) of a gene. We calculated RE for all genes with non-zero
299 coefficients in the model (337 genes in total) across all datasets where significant rejuvenation

a0 was observed (adjusted p-value < 0.05). We identified 84 genes with the positive and significant

13
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st (adjusted p-value < 0.05) rejuvenation effect. Enrichment analysis of this set of genes indicated
302 a strong relation to Epithelial-Mesenchymal Transition (EMT) and processes involved in Ex-
a3 tracellular matrix organization, including Collagen formation, Integrin cell surface interaction,

s« and others (adjusted p-value < 0.05 for all presented terms) (Fig. 3E).

s0s INext, we searched for genes contributing primarily to rejuvenation according to the mouse
s tClock model. Surprisingly, only one pluripotency-associated gene - Ezh2 - was found among
a7 the top 10 predictors of RIR (Fig. 3F). However, Polycomb-group gene Ezh2 (50) contributed
a8 19% of the total rejuvenation effect on average across datasets (adjusted p-value=0.0004). Other
a9 genes in the top 10 were associated mostly with EMT (i.e., Col3al, Igfbp4, Postn, Fnl). We
a0 further assessed the RE after removing all genes related to EMT or pluripotency from the
a1 model (Fig. 3G). We observed a significant reduction of the rejuvenation effect by 37% on
a2 average after removing EMT genes (p-value = 1.193e-05) and 35% on average after removing
s13  pluripotency-associated genes (p-value = 1.18e-04). It’s worth noting that EMT and pluripo-
314 tency gene sets have no common genes. These results provide an estimate of the impact of
a5 pluripotency and EMT related genes on reprogramming-induced rejuvenation, suggesting that
ste the major part of RIR is not explained by the perturbed expression of genes associated with

317 somatic identity.

a8 An analogous analysis of human cell reprogramming following OSKM treatment produced sim-
a9 1lar results (Fig. 3C). Using a human multi-tissue tClock, we observed a significant rejuvenation
s20 (adjusted p-value < 0.05) in almost all cell lines during reprogramming. The only exception was
a1 a dataset on foreskin fibroblasts containing very few data points. Interestingly, the rejuvenation
a2 effect of individual genes demonstrated high variance across human cell lines (data not shown),
323 suggesting that the rejuvenation process during reprogramming may be achieved through regu-

324 lation of various genes depending on the tissue. Consistently, human rejuvenating genes were
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325 not significantly enriched in any functional terms, supporting high heterogeneity of RIR across

326 tissues.

327 'To compare the rejuvenating trajectories of human and mouse cells subjected to OSKM treat-
328 ment, we aggregated normalized tAge values across the datasets for each species and applied a
320 moving average smoothing approach (Fig. 3D). We observed a rapid decrease of transcriptomic
a0 age of murine cells following the shape of exponential decay. On the other hand, rejuvena-
s31 tion of human cells followed a sigmoid curve. Although the transcriptomic age of cells from
a2 both species was close to zero at the end of reprogramming, the RIR of human cells required
a3 more time. Remarkably, this time difference was consistent with the duration of the repro-
3¢ gramming process, lasting, on average, for 14 and 30 days for mouse and human cell lines,

a5 respectively (36).

s Reprogramming signature uncovers new geroprotective interventions

s37 To identify treatments that induce reprogramming-associated rejuvenation at the gene expres-
ass  sion level, we selected genes displaying contrasting expression patterns according to aging and
a9 reprogramming signatures (Fig. 2A, right panel). We then used these genes as a query for the
a0 Connectivity MAP (CMAP) database (57) (see Methods). CMAP database contains gene ex-
a1 pression profiles of human cells treated with different genetic or chemical interventions. CMAP
a2 connectivity analysis provides connectivity scores as a measure of similarity between a given

a3 gene set and transcription changes induced by perturbations from the database.

s We selected top 20 perturbations showing the most significant positive or negative association
a5 with the reprogramming-associated rejuvenation signature for each type of perturbation: over-
ass expression of a particular gene, treatment with a particular compound, knockdown of a gene via
a7 ShRNA, and knockout of a gene via CRISPR-Cas9 system. To validate the rejuvenation effect

as  of identified interventions, we applied the human and mouse aging tClocks to gene expression
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a9 profiles of untreated and treated samples from the CMAP database separately for each available
sso  cell line. We then aggregated the obtained tAge values across cell lines using linear regression
st models (see Methods). In the end, we obtained two estimates of rejuvenation effects for each
352 treatment, including aggregated connectivity scores from the CMAP analysis and aggregated

a3 tAge values from aging clocks (Fig. SA).

s« Among interventions that demonstrate significant rejuvenation effects based on the connectiv-
355 ity score as well as both mouse and human tClocks we observed overexpression of HAVCR2
sse  (TIM3), which encodes a cell surface receptor implicated in modulating innate and adaptive im-
357 mune response (adjusted p-value = 0.028). Interestingly, overexpression of TIM3 was shown to
sss  alleviate inflammation in human patients with thyroid-associated ophthalmopathy via suppress-
sse  ing the Akt/NF-xB signaling pathway (52). At the same time, 7im3 overexpression resulted in
se0 deterioration of neuroinflammatory and neurocyte apoptosis in a rat subarachnoid hemorrhage
st model (53). Together, these observations suggest that 7IM3 plays a significant role in regula-
se2 tion of age-associated inflammatory processes, and its overexpression can be considered as a

ss  treatment against inflammaging.

sss Knockdown of ERRFII (MIG-6) was also found to decrease the cellular transcriptomic age ac-
ses cording to both our clocks (adjusted p-value = 1.24e-8). Expression of ERRFII, which encodes
s a negative regulator of EGFR signaling, is upregulated during the cell growth (54). Interest-
s7 ingly, overexpression of MIG-6 was shown to be sufficient to trigger premature cellular senes-
ses cence (55). In contrast, knockdown of MIG-6 delayed the initiation of Ras-induced cellular

a0 senescence (56), supporting our conclusion derived from tClock.

a0 Among top interventions inducing a significant rejuvenation effect across different cell lines
a7t according to the human clock, we identified knockdown of PRKCE (adj. p-value = 1.7e-5),

sz knockout of C6ORF223 (adj. p-value = 1.9e-4) as well as a treatment with a chemical com-
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a73 pound osthol applied at 10 uM dose for 6 hours (adj. p-value = 0.0038). Interestingly, osthol has
a7+ been shown to demonstrate anti-inflammatory effects by blocking the activation of NF-xB and
srs. MAPK/p38 pathways (57). In addition, osthol prevents accumulation of advanced glycation end
a7e  products (AGE) via the induction of Klotho expression (58). The rejuvenation effect of PRKCE
a7 knockdown and C60RF223 knockout was also supported by experimental data. Thus, inhibi-
a7s  tion of PKC signaling was shown to maintain self-renewal and pluripotency of rat embryonic
a7 stem cells (59), while C6ORF223 accumulation was associated with age-related macular de-
ss0 generation (60) and was correlated in expression levels with a well-known human aging-related
st gene VEGF (61,62). Remarkably, one of the top interventions predicted by our model was over-
a2 expression of ATGS5 showing a strong rejuvenation effect by human clocks (adjusted p-value =
s 1.75e-12). ATG5 gene product is involved in autophagy, mitochondrial quality control, regula-
ss¢ tion of the innate immune response and other cell processes. In fact, ATG5 overexpression was

sss  shown to increase lifespan of healthy mice by enhancing autophagy (63).

s Finally, to investigate whether the treatments described above induce expression of pluripotency-
ss7  associated genes, we performed GSEA analysis testing if genes differentially expressed in re-
a8 sponse to interventions are enriched for pluripotency genes from (64) (see Methods). After
s obtaining NES scores for each cell line, we aggregated them using average and applied t-test
a0 to assess significance of the aggregated score. As a positive control, we performed a similar
so1 analysis in 2 models of overexpression of MYC, known to partially induce the pluripotency
a2 program in cells (9, 22). The latter treatment showed a significant upregulation of pluripotency
a3 genes (p-value < 8.94e-5), while it did not result in a significant reduction of cellular tAge. On
se4 the other hand, ATG5 overexpression induced a rejuvenation effect according to tClock with-
se5 out activation of pluripotency genes. In fact, it even slightly suppressed pluripotency program,
a6 though insignificantly (p-value = 0.083). Similar significant rejuvenation combined wifth neu-

o7 tral effect on pluripotency (p-value = 0.128) was produced by knockout of IncRNA C60ORF223.
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sss  These examples confirm that rejuvenation and loss of somatic identity associated with repro-
a9 gramming can be decoupled, and interventions separately affecting each of these processes may

a0 be developed.

o Discussion

a2 Reprogramming-induced rejuvenation is a fundamental concept denoting a family of cell repro-
s03 gramming approaches focused on their capacity for rejuvenation (65). These approaches gained
s04 much attention in recent years as they have the potential for radical interference into aging and
a5 longevity (2-7). Therefore, it is essential to understand precisely which processes during re-
a6 programming lead to rejuvenation and how they can be decoupled from the loss of somatic
s07 1dentity. In this study, we investigated these processes and provided a systemic view on reju-
a8 venation during reprogramming by analyzing signatures identified from multiple time-course
a0 reprogramming datasets and revealing their interplay with biomarkers of aging and lifespan

410 extension (Fig. 6A).

411 We were able to construct robust reprogramming signatures and show that: (i) mouse and human
a1z signatures are well correlated with each other and share a significant number of genes regulated
#13 1n the same direction (Fig. 1E); and (i1) reprogramming signatures are positively correlated with
414 longevity interventions and negatively correlated with various aging signatures. In addition,
415 we discovered co-regulation of particular genes in response to reprogramming and established
a6 lifespan-extending interventions including downregulation of Rela and upregulation of Mrpll 1
s17 previously shown to be significant biomarkers of murine longevity (28,37, 38). The associations
#18 between three groups of signatures - reprogramming, interventions, and aging - persist and are
419 even amplified at the level of functional enrichment (Fig. 2C, 6B). Most conspicuous functions

a0 (Fig. 6C) demonstrate that reprogramming may act as a longevity intervention but not in all
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a1 aspects. Of note, these results are generally consistent with those obtained from single-cell
a2 analysis (22). Namely, we observed that the reprogramming suppressed genes were associ-
«3 ated with inflammatory response. On the other hand, upregulation of fatty acid metabolism
224 observed after transient reprogramming of mouse mesenchymal stem cells was not prominent
s25 1n our signatures. Multiple studies have previously demonstrated that the DNA methylation
w26 age (mAge) decreases during the reprogramming process (15, 18, 19, 66). However, only a few
227 studies (20) attempted to reproduce these results at the transcriptome level using single-tissue
228 clocks (see (67) for details). To fill this gap, we utilized mouse and human clocks trained on
220 multiple tissues to predict transcriptomic age (tAge) of cells during the whole reprogramming
a0 process (Fig. 6D). As expected, we observed a systematic decrease of tAge for the majority of
st reprogramming datasets for both mouse and human cell lines (Fig. 6E, 3C,D). Notably, some
a2 treatments that failed to result in successful reprogramming during the original experiment (e.g.
a3 7F-Sall4, (11)), did not lead to the decrease of tAge with time. On the other hand, some of
s34 the treatments that didn’t lead to the gain of pluripotency significantly decreased transcriptomic
a5 age of somatic cells (e.g. 7F-Esrrb, (/7)). This is consistent with results of (22) reporting
s3s  that induction of only SK factors decreases aging score without loss of mesenchymal identity.
a7 Such results support the possibility of decoupling reprogramming-induced rejuvenation from

a8 the changes involved in the loss of somatic identity.

a9 Next, we explored genes responsible for RIR by conducting in silico knockout experiments.
w0 We identified several genes that contributed the most to the rejuvenation process. Among the
a1 top 10 genes, there was only one pluripotency-associated gene - Ezh2 (Fig. 3F). We also ob-
a2 served several genes associated with EMT, e.g., Col3al, Igfbp4, Postn, Fnl. In total, 37% of
a3 RIR, on average, was explained by the EMT genes, and 35% of the RIR was affected by the
a4 pluripotency-associated genes. Therefore, the tClock model suggests that although a part of

a5 the RIR is achieved through the deregulation of genes involved in the maintenance of somatic
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as 1dentity, a significant portion of it is orthogonal to this process. Genes responsible for that effect

a7 represent perspective biomarkers allowing to search for new geroprotectors.

«s  To discover such interventions, we conducted CMAP (57) connectivity analysis and revealed
a9 treatments that produced rejuvenation-associated gene expression changes similar to repro-
w0 gramming. We validated our hits using human transcriptomic clocks and revealed several in-
ss1 terventions with a potential rejuvenation effect. Consistently, some of them, including ATGS5
a2 overexpression, COORF223 knockout and osthol treatment, have been previously shown to have
453 a positive effect on lifespan (57, 58, 60, 63). In addition, we tested these and other rejuvenating
54 interventions in silico for their ability to induce pluripotency program (5C) and observed that
a5 ATGS overexpression and C6ORF223 knockout did not significantly affect the expression of
a6 these genes across multiple cell lines (Fig. SH). Therefore, according to our data, these treat-
a7 ments appear to produce RIR without affecting somatic cell identity. Interestingly, MYC over-
a8 expression demonstrated the opposite effect, producing no significant rejuvenation effect but
459 Inducing the pluripotency program, in agreement with its role as one of Yamanaka’s factors but
a0 interfering with results of (22) where induction of this factor showed little loss of mesenchymal

st 1dentity but also small decrease in aging score.

w2 Taken together, these results indicate that the reprogramming process contains a rejuvenation
a3 component that can be expressed in the gene or function dynamics. Recent in vivo reprogram-
s64 ming demonstrated no systemic rejuvenation of all murine tissues with the exception of skin
a5 and kidney tissues (/8). The authors hypothesize that this is due to some tissues being more
a6 susceptible to OSKM reprogramming than others. It can even be assumed that the OSKM set
se7 of factors may not be suitable for in vivo reprogramming. Moreover, the fact that this set of
a8 factors is known to be oncogenic forces researchers to develop complex treatment protocols.

a0 This complexity can be avoided if the oncogenic aspect is completely excluded, which is pro-
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a0 posed in the RIR concept. Today, several of the possible ways to solve this problem include the
an - use of OSK reprogramming (/5), reprogramming until the maturation phase achieved (20) or
a2 even chemical reprogramming (/2). However, understanding the mechanisms of rejuvenation
a73 achieved during reprogramming may provide us with better solutions. Future rigorous studies
474 should reveal which gene networks are responsible for the regulation of the RIR process. Anal-
475 ysis of epigenetic aspects of RIR, such as methylation or histone modifications accompanying
a7e  expression dynamics, may be a future direction. The ultimate solution would be to construct
477 a dynamic mathematical model of RIR to predict not only a subset of transcription factors (or

a7s - small molecule compounds) but also other characteristics necessary for successful treatment.

479 We propose a geometric metaphor to better represent the essence of rejuvenation during cell
w0 reprogramming (Fig. 6G). We represent the reprogramming process as a vector R in the space
ss1 of transcriptomic signatures. We assume that this vector can be decomposed into two non-
a2 orthogonal components: rejuvenation 7 and pluripotency p (here we mean the cumulative sig-
s nature towards pluripotency). Their sum gives the original reprogramming vector R = 7 + p.
ass¢ It follows from our analysis that pluripotency may proceed without rejuvenation (Suppl. Fig.
a5 3A), and rejuvenation can occur without successfully achieved pluripotency (exemplified by
a6 the 7F-Essrb treatment Fig. 3B). It means that rejuvenation and pluripotency have co-directed
a7 components (projections onto the reprogramming vector) and also have orthogonal components
a8 (e.g., projection of rejuvenation vector onto the axis orthogonal to pluripotency). We argue that
as9  for successful rejuvenation without the risk of pluripotency-induced tumorigenesis, we need to
a0 1dentify the signature of "pure rejuvenation" 7 L p, i.e., a set of genes with corresponding levels
a9t of expression that causes cell rejuvenation without notable shift towards pluripotency. The re-
a9z sults obtained in this study using transcriptomic clock suggest that such genes include Col3al,
a3 Fnl, Cd24a, while Ezh2 is an example of a gene contributing to rejuvenation but being also

s94 a marker of pluripotency. Using a multitool of transcriptomic signature analysis, we made a
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a95  step towards decomposing rejuvenation and pluripotency vectors that may lead to the safe and

a6 efficient reprogramming-induced rejuvenation.

« Methods

s Data collection

a9 We collected publicly available cell reprogramming datasets containing more than three time
so0 points across the reprogramming process (Table S1). ESC and iPSC states were excluded since
s they were not corresponding to any particular time point of reprogramming. We used only

so2 preprocessed data (e.g., read counts) provided in the GEO database by datasets’ contributors.

s Data preprocessing

s« To aggregate multiple datasets into a joint signature, we utilized an approach as in our earlier
sos  work (27). It consists of several steps (Fig. 1A). First, each dataset was normalized using a
sos conventional normalization technique appropriate for the given data type. RLE normalization
so7 followed by log transformation was applied for RNA-seq data. Log transformation of intensi-
so8  ties followed by scaling and quantile normalization was used for microarray data. Second, for
so9 each gene changing its expression value with time, a linear regression model was constructed
sto using the limma package (68). Third, slope coefficients, their standard errors and related statis-
s11 tics were extracted from models and used to represent corresponding gene regulation (positive
stz or negative). Thus, a positive or negative slope corresponds to an increasing or decreasing
s13  expression of a particular gene with time in a given dataset, respectively. Finally, slope val-
sia  ues from different datasets were aggregated using the mixed-effects model constructed by the
sis  metafor package (69), with GEO ID introduced as a random term. For every gene, this model
si6  produced a meta-slope, being a weighted average of slopes across all analyzed datasets. Cor-

si7 responding p-values were adjusted for multiple comparisons using Benjamini-Hochberg (BH)
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sis approach (70). Genes with adjusted p-value < 0.05 were considered significant and included in

sto  the final reprogramming signature.

=0 Selection of datasets for the aggregated signature

s21 The critical step for constructing a correct aggregated signature is filtering out non-concordant
s22 datasets. We used the Spearman correlation of dataset slopes as a concordance measure and
s2s  calculated pairwise correlation coefficients between all 29 mouse and 12 human datasets using
s24 the union of top 350 genes in each dataset ranked by the correlation p-value of slopes. The
s2s threshold of 350 genes was identified to be optimal for noise removal since it maximized the
s number of significant pairwise correlations (Benjamini-Hochberg adjusted p-value < 0.05 and
s27 absolute p > 0.1). Finally, we used the agglomerative clustering approach based on the Eu-
s2s clidean distance with complete linkage to extract the largest cluster among all 29 mouse and 12
s20 human datasets (Suppl. Fig. S1). As a result, 19 out of 29 mouse datasets and 11 out of 12
ss0  human datasets passed the selection criteria (formed a dominant cluster, see also supplementary

ss1 figure S1 and Methods).

52 Signature construction

sss  Prior to signature construction, we normalized slope coefficients from different datasets based
s« on the following algorithm. First, Spearman correlation of reprogramming-related gene ex-
ss5  pression changes was calculated for each pair of datasets. For that, we obtained the top 350
ss6  statistically significant reprogramming-associated genes ranked by the correlation p-values in
ss7 each dataset and then formed a union of two such gene lists within a pair of datasets. Then,
sss  multiple Deming regression was calculated simultaneously for each pair of datasets with sig-
ss9 nificant correlations using the union of top 350 genes. During this step, the cumulative squared

ss0 loss across all significantly correlated pairs of datasets within a certain signature was minimized
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se1 using the L-BFGS-B method in the R function optim. Normalization coefficients were allowed
se2  to vary between 0.01 and 100. To establish the global minimum of the error function, multiple
sss Deming regression was calculated 10 times with random initial sets of normalization coeffi-
ssa  cients, and final coefficients were chosen from the run with the smallest cumulative regression
ss5  error. Among these 10 runs, the error minimum was the same for most runs, indicating that the

se6  global minimum was achieved for each signature.

s7 Then we used the rma.mv function in the metafor package (69) to construct intercept-only
sss  multilevel mixed-effects model with nested random effects (7). As a response variable, we
se9  used Deming-normalized slopes derived for each dataset. Since datasets originated from diverse
ss0  sources, we had to account for their heterogeneity across different experiments (i.e., different
sst GSE IDs) and within the same experiment (i.e., the same GSE ID), implying the multilevel
ss2 embedded structure of the model. Fixed effects were not considered within this model. The

ss3  final model can be described with the following formula:

Sij = 1+ Cinaseyij + Cowase)j + €ij (D)

s« Where 5;; is an estimate of the true effect size s;;; p is an actual mean of the slopes’ distribution;
ss5 term 47 denotes that some effect size 7 is nested in cluster j; ((ingsE)i; 1S Tandom term cor-
ss6  responding to a within-GSE-ID heterogeneity; (wask); 18 a random term corresponding to a
ss7 between-GSE-ID heterogeneity; €;; is a sampling error of individual datasets, which can be es-
sss  timated from a standard error of a corresponding slope. We applied this model for construction
sse  of mouse, human, and combined signatures. Following the principle mentioned in the previous
sso paragraph, we selected 19 datasets for mouse signature, 11 datasets for human signature, and

se1 30 datasets (19 mouse + 11 human datasets) for the combined signature.
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<2 Aggregation of p-values across the signatures

ses The aggregation of p-values within each group of signatures was conducted using the harmonic
s« mean (72). Subsequently, we adjusted aggregated p-values using BH method. We selected
ses significant genes (adjusted p-values < 0.05) to investigate the overlap of genes between repro-
se6  gramming signature and signatures of aging and lifespan-extending interventions. The statisti-

se7 cal significance of the overlap was assessed with Fisher’s exact test.

s Clustering analysis

se9 1o cluster genes by their expression dynamics, we first scaled all gene expression values, trans-
s70 forming them into z-scores. Next, we grouped observations into 2-day periods and applied
s71 - one-way ANOVA considering 2-day intervals as a factor variable, testing a null hypothesis
s72  that average expression is equal over all intervals. Genes with the BH adjusted p-value < 0.05
s73 were considered to demonstrate significant expression change over time. We excluded genes
s7+  with constant expression and clustered the remaining genes using agglomerative approach with
s75  correlation distance metric and complete linkage, considering time intervals as features. The

s76  scikit-learn Python package (73) was used for this analysis.

s Prediction of transcriptomic age

s7s 10 investigate the dynamics of gene expression biomarkers of aging during cellular reprogram-
s79 ming, we utilized multi-tissue transcriptomic mouse and human clocks based on signatures of
ss0 aging across different tissues identified as explained in (27). The applied clocks were based
ss1on elastic net linear models that were designed to predict relative chronological age calcu-
ss2 lated as a real age divided by the maximum lifespan for a given species (48 months and 122
ss3  years for mouse and human, respectively). The missing values were omitted with the precal-

ss4 culated average values from the clock. Using the mouse and human clocks, we then calculated
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ses the transcriptomic age (tAge) for each mouse and human sample, respectively. Change of the
sss  tAge with time during reprogramming within each dataset was assessed using linear regression
ss7 model. The slope of the tAge change with time was considered significant if the corresponding
sss BH adjusted p-value < 0.05. For normalization of the tAge values across several OSKM-based
ss0 reprogramming datasets, relative tAge values were divided by the average tAge value of the first
s0 time point within each dataset. After that, aggregated tAge trajectories for human and mouse
so1 data were smoothed using 3-day period moving average. Standard errors were calculated for

s smoothed tAge values in each time point.

s Estimation of rejuvenation effect of a gene

s+ To estimate the rejuvenation effect of a specific gene in a particular dataset, the following
ses pipeline was carried out: 1) in silico knockout was performed by making the expression of
se6 this gene equal to O for all of the samples; 2) tClock was used to calculate tAge for all samples
se7 in the given dataset before and after the "knockout"; 3) linear model was fitted to predict time-
ses dependent tAge trajectory before and after "knockouts"; 4) the maximum difference between
se9 tAge estimates obtained from the linear model before and after "knockouts" was calculated;
s0 J) the difference was normalized to the total rejuvenation effect in the dataset (the difference
o1 between the tAge value at the first time point and the tAge value at the final day of reprogram-
s2 ming). Thus, the result of this procedure demonstrates how the removal of certain gene affects
s the magnitude of tAge decrease during reprogramming, corresponding to its rejuvenating effect.
s+ The same approach was used to calculate the rejuvenation effect after "knocking out" the whole

s gene set (e.g., EMT or pluripotency-associated genes).
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os Aggregated analysis of rejuvenation-inducing interventions based on CMAP

o7 'To identify treatments mimicking RIR at the gene expression level, we used CMAP query API
ss  (57). As aquery, genes upregulated in combined reprogramming signature but downregulated in
soo combined aging signature ('Up’ subset), and genes downregulated in combined reprogramming
s10 signature but upregulated in combined aging signature ('Down’ subset) were used. We will

11 refer to these gene subsets as the RIR gene set.

sz The result of a CMAP query is essentially a list of perturbagens ordered by the score of as-
s13  sociation between differentially-expressed gene set and the query gene set. A positive score
s14 1ndicates a similarity between the query and effect of the given perturbagen applied to the cer-
e15 tain cellular line, while a negative score indicates that these two signatures are the opposite to
st6 each other (i.e., genes that are increased by treatment with the perturbagen are decreased in the
s17 query, and vice versa). The magnitude of the score corresponds to the magnitude of similar-
18 ity or dissimilarity between the treatment and query. Therefore, top and bottom hits in these
s19 lists represent interventions that have the strongest positive and negative associations with the
s20 query, respectively. These treatments appear to be of the highest interest for the subsequent

621 Investigation.

e22 At the next step, we aggregated connectivity scores for each intervention with the same dosage
e2s and treatment time across different cell lines using simple averaging of connectivity scores. The
e24 statistical significance of the positive or negative association of the intervention across cell lines
e2s  was assessed using t-test with the null hypothesis that the mean of connectivity scores across
e2s cell types is equal to zero. We then selected the top 20 positive and top 20 negative aggregated
e27 interventions from each of four intervention types (gene overexpression, chemical compound

e2s treatment, gene knockdown with shRNA, and gene knockout with CRISPR) for further analysis.
s29  We downloaded gene expression data for the selected interventions and further applied tran-
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ss0 scriptomic clocks to the gene expression profiles induced by these treatments as well as control
ss1  samples. Specifically, we obtained quantile normalized data from the CMAP level 3 data pre-
ss2 processing step. We downloaded treatment data and corresponding control data for a given
33 unique intervention-dosage-duration group indicator. After an additional data normalization
s« procedure (see "Prediction of transcriptomic age" section for details), we applied the mouse
s3s and human transcriptomic clocks to the gene expression vectors. The obtained relative age

sss values were aggregated with a linear model of the following form:

Age ~ Cell Line + Treatment, 2)

ss7 Where Age is the relative tAge value, Cell Line is the name of corresponding cell line from
sss CMAP (factor variable), and T'reatment is the binary variable, which indicates whether the
39  given relative tAge value is from the control or treatment subset. We fitted this model using
ss0  Statsmodels python package (74). The resulting coefficient of the T'reatment variable can be
s+t Interpreted as an average change in the relative tAge in response to a given intervention across
sz cell lines, while its p-value reflects the statistical significance of this change. Thus, negative
s T'reatment coefficient corresponds to "rejuvenation” effect while positive reflects "aging" ef-
ssa fect. We paid particular attention to interventions with negative significant coefficient of the
sss treatment variable coupled with the positive aggregated connectivity scores. Such interventions
sss result in the gene expression response similar to reprogramming and opposite to aging and,
sa7 at the same time, contribute to rejuvenation according to the transcriptomic clock, being of a

ess  particular interest.

ss0  Among the identified interventions, we searched for those not inducing the expression of pluripotency-
eso related genes. First, we obtained differential gene expression data from the CMAP level 5 data
est  preprocessing step for each of our top hits. Then, we performed gene set enrichment analysis

es2 (GSEA) using fGSEA package (75) testing if the gene expression response induced by a cer-
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es3  tain treatment is enriched for the set of pluripotency-associated genes obtained from (64). The
es+ calculated Normalized Enrichment Scores (NES) were then aggregated using simple averaging.
es5s The statistical significance of enrichment across cell lines was assessed using t-test with the null

ess hypothesis that the mean of NES across cell types is equal to zero.
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Fig.1. Construction and validation of the reprogramming signature. (A) Schematic illustration of the
signature construction workflow. (B) Clustering analysis of individual mouse reprogramming datasets
and the aggregated signature. GSE IDs of the datasets are accompanied by the description of reprogram-
ming factors applied in corresponding experiments (for details, see Table S1). Cells are colored based on
Spearman’s correlation coefficient. (C) Expression trajectory of top five upregulated and downregulated
genes with the lowest BH-adjusted p-value according to the mouse reprogramming signature. Upregu-
lated and downregulated genes are shown in red and blue, respectively. (D) Volcano plot of meta-slope
values extracted from the signature and corresponding BH-adjusted p-values. Each dot represents a sin-
gle gene. Pluripotency markers are highlighted in green. Significantly upregulated and downregulated
genes are shown in red and blue, respectively. The horizontal dashed line represents the significance
cut-off (BH adjusted p-value < 0.001), while vertical lines represent meta-slope cut-offs (llogFCl > 2.5).
(E) The overlap of significantly upregulated and downregulated genes between murine and human sig-
natures. Only uniquely mapped orthologs according to Ensembl were considered for analysis. Numbers
within cells demonstrate the observed numbers of overlapping orthologous genes, while color represents
the difference between observed and expected number of genes in the corresponding cell. The p-value is
calculated using Fisher’s exact test.
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Fig. 2. The interplay between reprogramming, aging and longevity signatures. (A) The overlap
of upregulated and downregulated genes between groups of signatures. Numbers within cells show
the observed numbers of overlapping genes, while color reflects the difference between observed and
expected values. p-values are calculated using Fisher’s exact test. CR: caloric restriction, GH: growth
hormone. (B) Barplots demonstrating the behavior of six particular genes across different signatures.
Error bars represent standard errors of normalized meta-slopes. Annotation: * p.adjusted < 0.05; **
p.adjusted < 0.01; *** p.adjusted < 0.001. (C) Spearman correlation matrix of Normalized Enrichment
Scores (NES) obtained using GSEA. (D) Functional terms across different signatures. Color represents
NES values. Only the terms with at least one significant enrichment (adjusted p-value < 0.1) are shown.
Dashed lines separate reprogramming and aging signature groups from the others.
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Fig. 3. Clustering analysis of murine cell reprogramming-associated gene expression changes.
(A) Normalized gene expression during reprogramming. Only genes with statistically significant non-
constant expression during reprogramming (ANOVA adjusted p-value < 0.05) are shown. Each row
corresponds to a single gene. Colors represent four clusters chosen with the Elbow criterion. (B) Dy-
namics of cluster centroids during reprogramming. Error bars represent the standard error of the mean.
The colors of clusters correspond to panel A. (C) Cluster enrichment analysis. Top panel: enrichment
of clusters by genes associated with aging and longevity. Enrichment by up- and downregulated genes
is reflected by the direction of triangles. The statistical significance of the overlap is assessed using
Fisher’s exact test. Overrepresentation and underrepresentation are shown in red and blue, respectively.
The absence of triangle reflects non-significant results (BH-adjusted p-value >= 0.05). Only signatures
with significant enrichment in at least one cluster are shown. Triangle size represents the proportion of
genes corresponding to a particular signature within a cluster. Middle panel: cluster centroids schematics
(from B). Bottom panel: functional enrichment of clusters assessed with hypergeometric test. Only terms
with significant enrichment in at least one cluster are shown. Color represents statistical significance of
association, while size of the bubbles reflects odds ratio.
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Fig. 4. The evaluation of gene expression age during reprogramming using multi-tissue transcrip-
tomic clocks. (A) Transcriptomic age (tAge) changes during reprogramming of mouse cells induced
by Yamanaka factors. Lines represent the fitted linear model for the corresponding type of treatment.
Stars indicate the significance level of the corresponding linear model slope. Relative age is defined as a
chronological age divided by the maximum lifespan for a given species. (B) tAge changes during repro-
gramming of mouse cells induced by 7 factors from (/7). All notations are the same as in panel A. (C)
tAge changes during reprogramming of human cell lines. All notations are the same as in panel A. Each
color represents a certain cell type. (D) Aggregated trajectories of rejuvenation induced by reprogram-
ming for mouse and human cells. The curve is smoothed using moving average and normalized by the
average tAge at the first point of time. Errorbars represent standard errors of the mean. (E) Functional
enrichment analysis of genes from the mouse tClock model with significant effect on rejuvenation dur-
ing reprogramming. The black line shows the significance threshold (adjusted p-value=0.05). Hallmark
(epithelial-mesenchymal transition), KEGG (focal adhesion), Reactome (integrin cell surface interac-
tions, extracellular matrix organization, collagen formation), and GO:BP (cristae formation) terms are
presented on the barplot. (F) Distributions of rejuvenation effects of top genes associated with murine
RIR across the datasets. The top 10 genes are sorted by their average contribution to rejuvenation (see
Methods) according to the mouse tClock model. (G) The portion of RIR effect caused by the regulation
of EMT (green) and pluripotency-associated (orange) genes. Each boxplot reflects the distribution across
individual datasets. ASC: Adipose-derived stem cell, A: human astrocytes, BEC: bronchial epithelium
cells, DF: dermal fibroblasts, FF: foreskin fibroblasts, PrEC: Prostate epithelium cells, EMT: Epithelial-
Mesenchymal transition, Pluri: pluripotency-associated genes. * P<0.05, ** P<0.01, *** P<0.001
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Fig. 5. Identification of rejuvenation-associated interventions using CMAP. (A) Schematic illus-
tration of CMAP analysis workflow. (B) Relative age change for different types of interventions. Age
change corresponds to the Treatment coefficient from the aggregation model (see Methods). Whiskers
correspond to the 95% confidence interval. The significance score is computed as -Log10(P-value) *
Sign(Treatment coefficient). Grey points indicate insignificant coefficients. Circles correspond to coin-
ciding directions of signature connectivity and tClock analysis, while other symbols correspond to oppo-
site directions. (C) Rejuvenation- and pluripotency-inducing effects of selected interventions. Rejuve-
nation effect was assessed using tClock while pluripotency effect was determined with GSEA. Whiskers
correspond to the 95% confidence interval. oe: overexpression, NES: Normalized Enrichment Score, h:
hours, sh: gene knockdown with short hairpin RNA, xpr: gene knockout with CRISPR.
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Fig. 6. Summary of the work. (A) Gene expression signatures of cellular reprogramming in mouse and
human were constructed via aggregation of multiple datasets by meta-analysis technique. (B) Repro-
gramming signature was positively correlated with biomarkers of longevity interventions and negatively
correlated with signatures of aging (meta-slopes correlation). The strength of these associations was
amplified at the functional level (NES correlation). (C) Functional behavior of signatures in selected on-
tological terms. Red and blue arrows denote positive (upregulation) and negative (downregulation) NES
scores, respectively. (D) tClock models trained on the mouse or human aging gene expression datasets
were used to predict the tAge of reprogramming cells across time. (E) OSK, OSKM Yamanaka factors,
and 7F factors consistently decrease tAge of murine and human cells during reprogramming. However,
removal of certain factors, such as Sall4, may result in abrogation of both reprogramming and rejuvena-
tion. (F) Genes contributing to the rejuvenation effect of reprogramming were identified. Pluripotency
and EMT-associated genes are responsible for approximately 35-37% of RIR. (G) Reprogramming can
be considered as a vector being a sum of two components: one moving cell toward pluripotency and the
second moving cell to a rejuvenated phenotype. Investigation of gene expression signatures allows to
decouple these processes. (H) New interventions affecting one of the reprogramming-induced compo-
nents can be discovered using instruments provided in this work. Rep: Reprogramming; Int: Lifespan-
extending interventions; Pluri: Pluripotency; EMT: Epithelial-mesenchymal transition.
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Table S1. (separate file) Datasets used in this study.
Table S2. (separate file) Table of pluripotency-associated genes for mouse and human.

Table S3. (separate file) Top 1000 genes from the mouse reprogramming signature sorted by

statistical significance.


https://doi.org/10.1101/2022.12.12.520058
http://creativecommons.org/licenses/by/4.0/

