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ABSTRACT 

 

As of early December 2022, COVID-19 had a significant impact on the lives of people all around 

the world, with over 630 million documented cases and over 6 million deaths. A recent clinical 

analysis revealed that under certain conditions, a patient's disease symptoms are more likely to 

persist. Long COVID is characterised by many symptoms that continue long after the SARS-

CoV-2 infection has resolved. This work utilised computational methods to analyse the 

persistence of COVID symptoms after recovery and to identify the relevant genes. Based on 

functional similarity, differentially expressed genes (DEGs) of SARS-CoV-2 infection and 255 

symptoms of long covid were examined, and potential genes were identified based on the rank 

of functional similarity. Then, hub genes were identified by analysing the interactions between 

proteins. Using the identified key genes and the drug-gene interaction score, FDA drugs with 

potential for possible alternatives were identified. Also discovered were the gene ontology and 

pathways for 255 distinct symptoms. A website (https://longcovid.omicstutorials.com/) with a 

list of significant genes identified as biomarkers and potential treatments for each symptom was 

created. All of the hub genes associated with the symptoms, GNGT1, GNG12, GNB3, GNB4, 

GNG13, GNG8, GNG3, GNG7, GNG10, and GNAI1, were discovered to be associated with G-

protein coupled receptors. This demonstrates that persistent COVID infection affects various 

organ systems and promotes chronic inflammation following infection. CTLA4, PTPN22, KIT, 

KRAS, NF1, RET, and CTNNB1 were identified as the common genes that regulate T-cell 

immunity via GPCR and cause a variety of symptoms, including autoimmunity, cardiovascular, 

dermatological, general symptoms, gastrointestinal, pulmonary, reproductive, genitourinary, 

and endocrine symptoms (RGEM). Among other functions, they were found to be involved in 
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the positive regulation of protein localization to the cell cortex, the regulation of triglyceride 

metabolism, the binding of G protein-coupled receptors, the binding of G protein-coupled 

serotonin receptors, the heterotrimeric G-protein complex, and the cell cortex region. These 

biomarker data, together with the gene ontology and pathway information that accompanies 

them, are intended to aid in determining the cause and improving the efficacy of treatment. 

 

Keywords: SARS-CoV-2, long COVID, COVID-19, biomarkers, therapeutic alternatives 
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INTRODUCTION 

 

The coronavirus disease 2019 (COVID-19) has had a huge impact on people's lives 

globally, with over 630 million recorded cases and over 6 million deaths as of early December 

2022 (Del Rio, Collins, & Malani, 2020). Severe Acute Respiratory Syndrome Coronavirus 2 

(SARS-CoV-2) infects human cells through the angiotensin-converting enzyme 2 (ACE2) 

receptor on the cell membrane. Once within the body, the virus replicates and matures, triggering 

an inflammatory response defined by the activation and infiltration of immune cells by a 

cytokine storm. The presence of the ACE2 receptor in numerous cells across the human body 

suggests that SARS-CoV-2 can affect multiple organs. (Crook, Raza, Nowell, Young, & Edison, 

2021). Recent clinical research has revealed some cases in which the symptoms of this condition 

tend to stay in the affected individual. Before these discoveries, it was considered that symptoms 

that persisted, much alone worsened, were exceptional. This disorder has been termed long 

COVID, post-acute sequelae of COVID (PASC), or post-acute COVID-19 syndrome (PACS) 

by researchers since it is defined by the existence of a variety of persistent symptoms long after 

the acute SARS-CoV-2 infection (Deer et al., 2021). 

 

Long COVID has been shown to affect patients of all ages, ranging from those with very 

mild symptoms to those with chronic or severe symptoms. Similar to acute COVID-19, chronic 

COVID can affect multiple organs or organ systems, including the cardiovascular, respiratory, 

neurological, musculoskeletal, and nervous systems, among others. The most frequently 

reported symptoms are cardiac or pulmonary abnormalities, sleep disturbances, emotional and 

mental disorders, dyspnea, muscle and joint pains, and cognitive impairment (Table 3). 

 

Because the underlying causes and symptom patterns vary from individual to individual, 

it has become increasingly difficult for patients and medical professionals to identify and classify 

long COVID. To combat this, the definition of long COVID has been expanded to include the 

onset of new symptoms and chronic diseases (Deer et al., 2021), symptomatic infection (four to 

twelve weeks after initial acute infection), and symptoms developing twelve weeks after initial 

acute infection (Crook et al., 2021).  
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Several risk factors increase the likelihood that a patient who has recently recovered from 

acute COVID-19 will develop long-term COVID. To the COVID-19 rapid guideline written by 

the National Institute for Health and Care Excellence (NICE), the female gender, non-white and 

Asian ethnicities, poor pre-pandemic mental health, poor general health, the prevalence of 

asthma, overweight/obesity, smoking and/or vaping habits, and hospitalization history, to name 

a few. In addition, the number of acute symptoms not only determines the severity of the illness 

but also whether the patient will develop long-term COVID, the greater the number of 

symptoms, the greater the risk. Additionally, the presence of comorbidities preceding the 

progression of COVID-19 is a risk factor. 

 

Although the advent of long-term symptoms following a SARS-CoV-2 infection may 

appear unexpected or unusual, it is a common occurrence of some viral infections. The persistent 

symptoms or chronic diseases of some infected people were linked to previously identified viral 

and bacterial infections (Proal & VanElzakker, 2021). For example, the Ebola virus has been 

associated with a severe illness that develops after the acute infection, with reservoirs still being 

discovered in human tissue years after viral clearance from the patient's blood (Wilson et al., 

2018). This example is analogous to long COVID remains long after the SARS-CoV-2 virus has 

been eliminated from the blood of a "recovered" patient. 

 

After the acute stage of infection and risk factors that make a person more susceptible to 

developing long COVID symptoms, the future management of patients and evaluation of their 

treatment options will depend on additional research into the long-term impact of long COVID 

symptoms (Brown, Yahyouche, Haroon, Camaradou, & Turner, 2022). 
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MATERIALS AND METHODS 

 Dataset Retrieval and Construction 

 

 We have searched through all publications that reported for long COVID 

symptoms- systematic reviews, meta-analyses, and other publications (citing above all 

articles) from public repositories such as PubMed, LitCovid database, Embase database, 

etc. and have collected 255 symptoms of long COVID displayed in patients, published in 

peer-reviewed journals. 

 

A gene list for the SARS-CoV-2 virus was created using data retrieved from the 

SARS-CoV-2 Infection Database (https://sarscovidb.org/), containing all differentially 

expressed genes (DEGs) identified after the SARS-CoV-2 infection, mined from various 

published articles in renowned scientific repositories, and H2V 

(http://www.datjar.com:40090/h2v/), which is a database containing all human 

proteins/genes that respond to SARS-CoV-2, SARS-CoV, and MERS-CoV. For this 

investigation, only the DEGs from each database were collected and merged. 

 

Human Phenotype Ontology (HPO) concepts are increasingly being used to aid in 

the definition of patient phenotypes in diagnostic settings. Many HPO keywords are now 

mapped to putative causative genes with binary associations, and the HPO annotation 

database is routinely updated to offer precise phenotype information on a wide range of 

human diseases. Individual gene associations were extracted from the Human Phenotype 

Ontology (HPO) database (https://hpo.jas.org/app/) for each of the 255 symptoms 

included in this study. Each HPO ID corresponds to a phenotypic abnormality. After 

retrieving the individual gene lists, each symptom was categorized according to the organ 

system that was reported. The categories include autoimmunity, cardiovascular, 

dermatological, gastrointestinal, general symptoms, head, eyes, ears, nose, and throat 

(HEENT), lab, neuropsychiatric, pulmonary, and reproductive-genitourinary-

endocrinological metabolism (Figure 1). 
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 Gene Ranking 

 

 ToppGene Suite (https://toppgene.cchmc.org/), a portal for gene list 

enrichment analysis and candidate gene ranking based on functional annotations and 

protein interaction networks, was used to compare each symptom dataset to the SARS-

CoV-2 dataset. The training gene set was comprised of SARS-CoV-2 DEG 

(differentially expressed genes), while the test gene set was comprised of symptom 

genes. GO: Molecular function, GO: Cellular component, GO: Biological process, 

Human phenotype, Mouse phenotype, Pathway, PubMed, Interaction, co-expression 

atlas (human protein atlas), ToppCell atlas, and Disease were selected as training 

parameters. The following sub-parameters were chosen for the ToppCell atlas: 

 

Bronchoalveolar lavage atlas of COVID-19 patients, bronchoalveolar lavage atlas of 

severe obstructive pulmonary disease COVID-19 patients, COVID-19 patients' CD8+ 

memory T cells, COVID-19 autopsy atlas (lung, liver, kidney, heart), COVID-19 B cell 

and plasma cell atlas in PBMC and BAL, COVID-19 autopsy atlas (lung, liver, kidney, 

heart), COVID-19 BAL atlas, COVID-19 leukocytes derived from cerebrospinal fluid, 

COVID-19 lung atlas, COVID-19 lung autopsy data, COVID-19 PBMC myeloid cell 

atlas, COVID-19 PBMC neutrophil cell atlas, and COVID-19 PBMC platelet cell atlas, 

COVID-19 cDC atlas, COVID-19 T cell atlas (PBMC), and COVID-19 T cell atlas 

(BAL). 

 

 Combining five COVID-19 peripheral blood mononuclear cell (PBMC) 

datasets, Integration of multiple COVID-19 patient sampling locations Large-scale 

integration of immune-mediated diseases (COVID-19 + Influenza + Sepsis + multiple 

sclerosis) COVID-19 single-cell data, PBMC atlas of patients with COVID-19, and 

PBMC atlas of patients with COVID-19 and influenza. Human cell lines infected with 

SARS-CoV-2, upper airway, and bronchi atlas of COVID-19 patients. 
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Individual symptoms- Key genes identification using Protein-Protein Interaction 

analysis 

 

The resulting prioritized genes were recorded from the Toppgene suite and 

further studied for hub genes using network analysis using Cytoscape. 

 

The prioritized gene lists for each of the 255 long covid symptoms were, in turn, 

analyzed through Protein-Protein network analysis and the key genes were analyzed 

using CytoHubba (Chin et al., 2014) tool, which is a plugin in Cytoscape. It was used to 

rank the top 10 nodes for each symptom, from their respective STRING protein-protein 

interaction networks. CytoHubba uses 11 topological analysis methods, which cover 

Degree, Edge Percolated Component, Maximum Neighbourhood Component, Density 

of Maximum Neighbourhood Component, and Maximal Clique Centrality (six 

centralities). For this investigation, MCC was used. 

 

All 255 symptoms Gene prioritization based on phenotype and hub gene 

identification 

 

It has been reported that Long Covid has multiple symptoms that last longer. For 

this aspect, we are hoping to analyze all reported symptoms that can be used to infer 

prioritized genes and to comprehend the underlying mechanism. 

 

The HPO IDs retrieved from the HPO database were entered into the Phen2Gene 

tool (https://phen2gene.wglab.org/), which is a real-time phenotype-based gene 

prioritization tool using HPO IDs. Using the default weight model criterion, which 

weights HPO terms by skewness, Phen2Gene ranked all the genes; the top 1000 genes 

as test set genes were then prioritized using functional similarity analysis against the 

training gene set of SARS-CoV-2 DEG (differentially expressed genes) in ToppGene 

Suite. The resulting prioritized genes from the Toppgene suite were analyzed using 

protein-protein interaction analysis for the identification of hub genes using Cytoscape. 

Cytohubba was used to identify the key top 10 genes in the network. 
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Identification of FDA of approved drugs for drug repurposing 

 

The Drug Gene Interaction Database-DGIdb ((https://www.dgidb.org/), a web 

resource that provides information on drug-gene interactions and druggable genes from 

articles, databases, and other web-based sources, was then used to enter each set of hub 

genes for all 255 symptoms as a list. This was done to identify at least one drug approved 

by the US Food and Drug Administration for each gene. The DGIdb compiled 

information from 22 different databases, 43 different gene categories, and 31 different 

types of interactions. Only drugs with an interaction value of more than 0.8 with the 

genes were included in the results (Supplementary File 1). 

 

Gene Enrichment Analysis 

 

Gene enrichment or functional enrichment refers to identifying enriched or over-

represented genes in a list of ranked genes, that have an association with a particular 

disease and its phenotypes. For this stage, gene ontology tables on biological processes, 

molecular function, and cellular components and KEGG pathway tables for each set of 

hub genes were retrieved from Enrichr (https://maayanlab.cloud/Enrichr/), a suite of 

gene set enrichment analysis tools (Supplementary File 2: individual symptoms, Table 

2: overall symptoms). 
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RESULTS 

 

From various online repositories, a collection of systematic reviews, meta-

analyses, and cohort studies were obtained and studied. A total of 255 symptoms (Figure 

1) were identified, compiled, and analyzed further. As a result, gene lists corresponding 

to each symptom were downloaded from the Human Phenotype Ontology (HPO) 

database, along with the SARS-CoV-2 gene list. These lists were divided into ten 

categories based on the phenotypes with which the symptoms were associated. 

 

The overall workflow is shown in Figure 2. Gene prioritization was performed 

utilizing the ToppGene Suite to rank the candidate genes we had collected against all the 

parameters associated with the SARS-CoV-2 virus and the COVID-19 infection, followed 

by a gene enrichment analysis utilizing Enrichr to identify the most frequent genes on the 

list. This eliminated the genes that did not have a high frequency and therefore did not 

likely influence the phenotype of a symptom as strongly as the enriched genes. The 

enriched genes were ranked using Cytoscape and the 11 scoring methods developed by 

Cytohubba, a Cytoscape plugin. The Drug Gene Interaction Database-DGIdb was used to 

find therapeutic suggestions approved by the US Food and Drug Administration for each 

ranked gene. Only drugs with a score of 0.8 or higher with each gene are included. 
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CTLA4, BTK, ABCA12, CERS3 

Neurological 

abnormalities 

Refer to Supplementary File 1/Supplementary File 3 

Urinary symptoms HP:0000020 KIF5A, NIPA1, KIAA0196, SPG11, RTN2, SPAST, ATL1, 

GJC2, ALDH18A1, KCNT1 

Dysphagia HP:0002015 ATXN2, C9orf72, NEFH, FUS, SPG11, ALS2, NEK1, 

MATR3, SETX, FIG4 

Speech disturbances HP:0030784 

HP:0002381 

HP:0002427 

HP:0002167 

HP:0001350 

MAPT, TREM2, C9orf72, PLP1, MAPT, BPTF, GRIN2A, 

TRIP12, SCN1A, PLP1, C9orf72, POLR1D, POLR1C, KRAS, 

C9orf72, MAPT, TREM2, NPRL3, GJB1, DRC1, CCDC65, 

HYDIN, RSPH4A, RSPH1, CCDC103, HEATR2, DYX1C1, 

DNAI2, CCDC40, MAPT, KCNA1, MOG, GRIN2A, 

DNAJC6, KCND3, ATXN1, SETD2, ACOX2, HCRT 

 

 

 

FIGURE 1: The schematic diagram of reported 255 symptoms of long covid 
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FIGURE 2: Overall workflow of identification of key genes of 255 reported long covid 

symptoms and identification of FDA-approved repurposed drugs. 
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FIGURE 3: Protein-protein interaction network overview built using STRING in Cytoscape. 

Nodes represent proteins, edges represent the interaction between two nodes (proteins). The 

top 10 key hub genes of 255 symptoms of long covid are related to G-protein coupled receptors 

shown in circular nodes in pink. 
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