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Abstract

Motivation: gene co-expression networks have been widely applied to identify critical genes and
pathways for neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Now, with the
advent of single-cell RNA-sequencing, we have the opportunity to create cell-type specific gene
co-expression networks. However, single-cell RNA-sequencing data is characterized by its sparsity,
amongst some other issues raised by this new type of data.

Results: We present scCoExpNets, a framework for the discovery and analysis of cell-type specific
gene coexpression networks (GCNs) from single-cell RNA-seq data. We propose a new strategy to
address the problem of sparsity, named iterative pseudo-cell identification. It consists of adding the
gene expression of pairs of cells that belong to the same individual and the same cell-type while the
number of cells is over 200, thus creating multiple matrices and multiple scGCNs for the same
cell-type, all of them seen as alternative and complementary views of the same phenomena. We
applied this new tool on a snRNA-seq dataset human post-mortem substantia nigra pars compacta
tissue of 13 controls and 14 Parkinson’s disease (PD) cases (18 males and 9 females) with 30-99
years. We show that one of the hypotheses that support the selective vulnerability of dopaminergic
neurons in PD, the iron accumulation, is sustained in our dopaminergic neurons network models.
Moreover, after successive pseudo-celluling iterations, the gene groups sustaining this hypothesis
remain intact. At the same time, this pseudo-celulling strategy also allows us to discover genes whose
grouping changes considerably throughout the iterations and provides new insights. Finally, since
some of our models were correlated with diagnosis and age at the same time, we also developed our
own framework to create covariate-specific GCNs, called CovCoExpNets. We applied this new
software to our snRNA-seq dataset and we identified 11 age-specific genes and 5 diagnosis-specific
genes which do not overlap.

Availability and implementation: The CoExpNets implementations are available as R packages:
scCoExpNets for creating single-cell GCNs and CovCoExpNets for creating covariate-specific GCNs.
Users can either download the development version via github
https://github.com/aliciagp/scCoExpNets and https://github.com/aliciagp/CovCoExpNets

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.13.514863doi: bioRxiv preprint 

https://github.com/aliciagp/scCoExpNets
https://github.com/aliciagp/CovCoExpNets
https://doi.org/10.1101/2022.12.13.514863
http://creativecommons.org/licenses/by-nc-nd/4.0/


Contact: alicia.gomez1@um.es

Supplementary information: supplementary data is available online.

Keywords: weighted gene co-expression networks, single-nucleus RNA-sequencing,
sparsity/pseudo-cells, Parkinson’s disease, selective vulnerability, dopaminergic neurons, lasso
regression

Introduction

Parkinson disease (PD) is the second-most common neurodegenerative disorder that affects
2-3% of the population ≥65 years of age1. In 2016, 6.1 million (95% uncertainty interval [UI] 5,0–7,3)
individuals had Parkinson's disease globally2, which projects to a staggering 12.9 million affected by
20403. In most populations, 3-5% of PD is explained by rare variants identified in more than 20 genes,
that is, representing monogenic PD4. On the other hand, 90 genetic risk variants collectively explain
16-36% of the heritable risk of non-monogenic PD5. PD diagnosis is clinically based. The Movement
Disorder Society PD Criteria signals motor parkinsonism as the core feature of the disease, defined as
bradykinesia plus rest tremor or rigidity. Lately, increasing recognition has been given to non-motor
manifestations incorporated into both the current criteria and particularly into separate criteria for
prodromal PD6. There is convincing evidence that the PD neurodegenerative process begins at least
20 years before the motor manifestations7, however, the accuracy of the clinical diagnosis of PD is
still limited, especially in the early stages, when cardinal symptoms are not conclusive8. An accurate
diagnosis of PD remains challenging and the characterisation of the earliest stages of the disease is
ongoing.

The degeneration of midbrain dopaminergic neurons (DNs) within the substantia nigra pars
compacta (SNpc) is a pathological hallmark of PD and Lewy body dementia9. However, not all
dopamine-containing neurons at that region degenerate. This leads to the question of what are the
molecular features that underlie selective neuronal vulnerability (SNV) of DNs in PD. Previous
studies have suggested four different hypotheses to explain why DNs are more vulnerable in PD
compared to other cell types. These are: i) dopamine can be toxic in certain conditions through the
generation of reactive quinones during its oxidation; ii) iron is known to be able to generate reactive
oxygen species (ROS) by the Fenton reaction and has been shown to accumulate with age at the
SNpc; iii) pacemaking activity in SNpc DNs is accompanied by slow oscillations in intracellular
calcium concentrations, causing extensive calcium entry and promoting chronically high levels of
ROS production; iv) the massive scale of their axonal arborization, leads to very high numbers of
axon terminals, elevated energetic requirements, and chronically high oxidant stress10–12.

In this paper, we look for evidence supporting any of these four SNV hypotheses using
single-nucleus RNA-sequencing (snRNA-seq) data from human post-mortem SNpc tissue of 13
controls and 14 PD cases. From those we generate gene co-expression networks (GCNs) of specific
cell types, to characterize the role of each cell type in conditions of normal and disrupted homeostasis
(disease). GCN models identify gene co-expression/co-regulation patterns for the discovery of novel
pathways and gene targets in both biological processes and complex human diseases13. Many methods
have been proposed for constructing GCNs from both microarray and bulk RNA-Seq gene
expression14, where weighted gene co-expression network analysis (WGCNA)15 has been widely used
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for the study of neurological diseases such as PD13,16–19, Alzheimer’s disease20, and Amyotrophic
Lateral Sclerosis21,22. Bulk tissue datasets don’t have cell-type level granularity, but sc/snRNA-seq can
give us the granularity we need to study the selective vulnerability at cell type level. Unfortunately,
scRNA-seq comes with its own data hurdles, mainly high sparsity, i.e. large percentage of zeros, most
of them being technical (dropouts events)23. In spite of that, GCN methods for bulk-based RNA-seq
data can still be useful on sc/sn RNA-seq data. For example, WGCNA, perhaps the most widely used
method for bulk expression data, has been applied to create sc/snRNA-seq GCNs24–29. On the other
hand, some scRNA-seq specific methods address the sparsity problem. For example, scLink uses a
filtering process to select only accurately measured read counts30. COTAN focuses directly on the
distribution of zero UMI counts instead of focusing on positive counts31. HBFM generates latent
factors to adjust the each cell´s gene expressions to alleviate from the zero-inflated and overdispersed
attributes of scRNA-seq data32. Finally, scWGCNA uses aggregated expression profiles in place of
potentially sparse single cells, where ‘metacells’ are constructed from specific cell populations by
computing the mean expression from 50 neighboring cells using k-nearest neighbors33.

We propose a fast and multi-model method based on the notion of pseudo cell, i.e., new
virtual cells created by adding, gene-wise, the counts of pairs of individual cells from the same type
and individual. From the original matrix of n cells of a specific cell type, we get a new matrix of
approximately n/2 pseudo cells aggregating all predecessor cells pairwise, within each donor. We
repeat this while the size is still large enough. We create multiple expression matrices and the
corresponding GCN for each. This implies managing multiple GCNs from the same experiment and
cell type, which requires new ways of using the networks (i.e., new approach, new tools, and new
methodology). While doing this, our assumption is simple: all GCNs obtained through this process
may give us very robust findings (i.e. those that we repeatedly see across all GCNs) and alternative
findings (i.e. those that emerge at one GCN and remain across the successors). Summing up all
models' new findings, we notably increase data insights while alleviating the sparsity bias. This
approach has been implemented at the open source scCoExpNets R package and it has been applied
mainly to the DNs population from our own cohort. In association with scCoExpNets, we have
implemented the CovCoExpNets R package to help dissect subsets of genes within gene modules
associated  with more than one covariate (e.g., age and disease).

Methods

Post-mortem substantia nigra pars compacta samples used

The models we develop in this paper, both the cell-type GCNs and the covariate-specific
models, are created using a discovery cohort of human PD cases and controls (N=27). To validate our
results, we used a smaller, similar cohort (N=7).

The discovery cohort consists of post-mortem human SNpc tissues from 27 donors collected
from the Oregon Health and Science University (OHSU), a total of 13 controls (8 males, 5 females)
with 30-93 years and 14 cases diagnosed with PD (10 males, 4 females) with 57-99 years
(supplementary Figure 1.a, b, c). RNA integrity number (RIN) ranges in 7.13 (6.93-7.33) and
postmortem interval (PMI) in 20.94 (14.63-27.24) hours. The diagnosis (PD or control) was
confirmed by a neuropathologist at OHSU after histological examination of the brain tissue. All
postmortem brains were examined globally for plaques and tangles. Controls are non-neurological
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controls, meaning that they do not have any other observable neurological conditions at the time of
death. All PD samples have Lewy body presence in midbrain and limbic brain areas while 44.4% also
had it in the neocortical area. Amyloid plaque abundance was also evaluated for PD cases and
represented in the scale 0-3, where 50% of the samples were classified at level 0, 42.86% at level 1
and 7.14% at level 2. Neurofibrillary tangles abundance was also evaluated for PD cases and
represented in the scale 0-6, where 21.43% of the samples were classified at level 1, 14.29% at level
2, 21.43% at level 3 and 42.86% at level 4 (supplementary Figure 1.c.).

On the other hand, the replication dataset consists of post-mortem human SNpc tissues
dissected from 7 samples provided by the Sepulveda brain bank. They are all male, 3 healthy controls
with 70-88 years, and 4 PD donors with 61-79 years. RIN ranges in 7.13 (6.93 - 7.33) and PMI in
20.94 (14.63 - 27.24) hours.

Single-nuclei RNA-sequencing

The tissue samples were processed at the Vlaams Instituut voor Biotechnologie (VIB), in
Flanders, Belgium where the sample libraries were prepared. 2 mm biopsy punches were collected
from the SNpc, nuclei were isolated and prepared, as per Mathys et al., 2019. The single-nuclei
libraries were sequenced using Illumina HiSeq4000 10X Genomics Single Cell V2. The raw data
were preprocessed using the 10x Genomics Cell Ranger 3.0.2.35. To quantify the unspliced mRNA
present in the single nuclei RNA-Seq, we built a custom transcriptome using the GRCh38 reference
that includes intronic regions. After generating single nuclei gene counts for each of the samples, we
aggregated all samples with equalized read depth (via subsampling reads) to avoid batch effects
introduced by different sequencing depths.

Clustering and cell type identification

Data preprocessing for both discovery and replication purposes is the same. Raw UMI counts
were generated by the Cellranger software. We used Seurat v3 R package36 to (1) remove MALAT1,
which is known to be very highly expressed in single nuclei RNA-seq data and can drive the cell
clustering, (2) to calculate the percentage of UMI counts coming from mitochondrially encoded genes
for each cell and (3) filter out cells that have a unique feature (gene) count below 500 and above 6000
(this is the interval we defined to say that a gene is minimally expressed) and have a mitochondrial
percentage (calculated in step 2) of above 5%.

Cell type identification was carried out following these steps: (1) perform SCT normalization
for each sample separately (in this step, the mitochondrial percentage of each cell was also regressed
out); (2) integrate the cells across all samples; (3) run PCA on integrated data; (4) run UMAP on a
number of principal components; (5) cluster the cells based on principal components (supplementary
Figure 1.d.); (6) exploring the expression of known marker genes, and finding differentially expressed
genes (DEGs) between the cell clusters using the findMarkers function using the Wilcox method
(supplementary Figure 1.e.). The Seurat R package in combination with an internal catalog of brain
cell type markers was used to assign cell types to single nuclei. The genes used to identify cell types
in the SNpc were SYT1 (neurons), GAD2 (GABA neurons), TH (DNs), SLC17A6 (glutamatergic,
GLU, neurons), VCAN (oligodendrocyte progenitor cells, OPCs), DCN (connective tissue cells),
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MBP (oligodendrocytes), AQP4 (astrocytes), FLT1 (endothelial cells), CD74 (microglia) and
THEMIS (T cells).

Pseudo-cells approach to tackle sparsity: generating multiple scGCNs

We propose a new strategy to tackle sc/snRNA-seq data sparsity based on creating
pseudo-cells. A pseudo-cell is the result of adding the gene expression of two cells that belong to the
same individual and the same cell type cluster. We start from the initial gene expression matrix of a
cell type and generate a GCN, denoted as T0 GCN. We create a new gene expression matrix in which
each new pseudo-cell is created with pairs of cells of the same individual from the previous iteration
(the new matrix has approximately half the cells than iteration T0) and create the corresponding GCN,
denoted as T1 GCN. We repeat this process while the newly created expression matrix Ti (i > 1) has
more than 200 pseudo-cells in size (Figure 1.a.). Let m be the minimum pseudo-cells to create a
scGCN and n the number of T0 cells, we create up to log2(n/m) scGCNs.

Gene co-expression network construction

We create a new GCN for each expression matrix T0, T1, T2 … For each Ti, we followed the
same three steps: data preprocessing, network construction and network annotation (Figure 1.b). Data
preprocessing consists mainly of correcting for confounding effects of variables that are not of interest
(technical and/or biological) with a surrogate variable analysis37. Specifically, our SNpc samples were
corrected for RIN and PMI. Then, we created each network following the CoExpNets approach38,
based on WGCNA. We first constructed a network N of gene-gene co-expression in the form of a
squared nxn matrix, where n is the number of genes in the study and each N(i, j) is the interaction
strength between the corresponding pair of genes (i.e. adjacency). Then, we used this as the basis for
obtaining a new squared distance matrix with the distance between genes, ready to be used for
obtaining clusters. These are built with a combination of hierarchical and k-means clustering. Finally,
the modules of each GCN were annotated. First, we performed a functional enrichment analysis with
gProfiler239 including as databases the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and the Reactome Pathway database (REAC). The modules are also annotated
using a phenotype enrichment analysis using the PhenoExam tool40, including as databases the Human
Phenotype Ontology (HPO), Mouse Genome Informatics (MGI), CRISPRBrain, CTD, ClinGen,
OrphaNET, UniProtm PsyGeNET, CGI and Genomics England. Finally, we added the module
membership information for each gene in each module.

Analysis of multiple scGCNs

We need the appropriate tools to simultaneously analyze a set of networks, derived from a set
of pseudo-celluling expression matrices. We assume that all networks created through pseudo-cell
technique may be potentially useful. And because the focus of the paper is studying SNV on DNs, we
focus on networks built on DNs. And within the networks, we focus on specific modules of interest.
These are modules mainly associated with PD and enriched for DNs markers (Figure 1.c.).
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To identify modules associated with a sample trait, we checked if the module eigengenes (i.e.
the first principal component of the expression profiles of all genes in a given module), were
significantly correlated with the trait, e.g., clinical diagnosis, age.

To identify modules that are DN-specific or enriched for disease genes, we used a gene set
enrichment analysis (GSEA) using the fgsea R package41. For such a purpose, we curated a list of
gene sets as follows. Firstly, we included a list of PD genes, made up of PD genes from the latest PD
GWAS5, PD genes with high or very high confidence obtained from the Blauwendraat et al., 2020
review and PD genes obtained from the Parkinson Disease and Complex Parkinsonism panel from
Genomics England PanelApp. Secondly, we also included the Neurology and neurodevelopmental
disorders gene panel (level 2), made up of 28 gene panels, from the Genomics England PanelApp
(accession in February 2022). We also included all cell type markers lists in the CoExpNets package.
We added as well the differentially expressed genes (DEGs) at DNs for PD cases and controls
detected by the Wilcox test as implemented in the Seurat package. Finally, we added our own
manually curated sc/snRNA-seq DNs marker list based on the literature from the last 5 years (see
supplementary table 1), including genes curated from 10 references42–51. This compounds a list of DNs
markers in a variety of conditions, including species (human, mouse or even iPSc and models), brain
areas (SNpc, VTA, midbrain) and inclusion criteria (clustering markers, based on literature, important
for dopamine release...). Overall, we use 46 marker gene sets with variable sizes [10-1706] genes. We
discarded not SNpc-specific gene sets and embryo and developmental stage markers.

In order to validate the modules of our GCNs, we apply a preservation test on an independent
dataset, the Sepulveda dataset. The preservation test is implemented in the CoExpNets R package and
is based on the WGCNA test for module preservation and generates a Z.press score. Under the null
hypothesis of no module preservation, Z.press is below 2 while a Z summary greater than 5 (or 10)
indicates moderate (strong) module preservation52. We use this same test to identify gene modules
that, discovered at T0, remain throughout the successive iterations T1, T2...Tn.

Gene segregation based on covariates

Aging is a well known factor for PD53–56. Hence, it is common to detect gene modules
associated with PD diagnosis and their age simultaneously (see results). We developed the
CovCoExpNets R package to identify the genes that are exclusive to each association (but mainly to
identify genes associated only with PD and not age) through the glmnet R package with LASSO
optimization and create a covariate-specific GCN based on the genes detected (i.e. predictors with
non-zero coefficients) (Figure 2, supplementary Figure 2).

To create the age-specific GCN with CovCoExpNets (i.e. genes just associated with age but
not PD), we obtained a LASSO model using as predictors, the individual-level expression matrix
joined with the covariables of interest (i.e., clinical diagnosis and gender in this case) using age as the
variable to model. We split the dataset into train (2/3 of the examples) and test (1/3) sets with 3-fold
cross-validation within the cv.glmnet R function. Due to the small sample set, we repeated the train
and test sampling 10 times, and the sampling for cross-validation, also 10 times. We then selected the
best model based on the R2 on the validation set, made up of the remaining discovery samples (test)
and the independent similar cohort from Sepulveda brain bank. We used predictors with non-zero
coefficients as hub genes at the new GCN modules. Each hub gene generated a new module in the
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age-specific GCN. To complete the composition of each gene module with the rest of the genes, we
created a basic linear model for the hub gene s

age ~ b0 + b1s + ε

and kept adding genes to the model, choosing amongst the genes with highest correlation with the hub
s. We do this while the R2 of the model improves. Each new module´s gene set was annotated with
gProfiler2 with the sources GO, KEGG and REAC. We used a similar procedure to create the PD
specific GCN.

Results

Cell-type composition and diversity in human SNpc

In the discovery cohort, 104,338 cells were identified, grouped into 14 major cell types and 24
annotated subclusters (supplementary Figure 1.d., supplementary table 2). We kept genes with reads
within the range [500-6000]. The average observed read counts were 1817(1811-1821) 95% CI, where
the highest values were detected in astrocytes/microglia 2640 (2531-2748) while the lowest values
were detected in DNs 1329 (1316-1343) and GABA neurons expressing GABA receptors 1277
(1248-1306) 95% CI (supplementary Figure 1.f., supplementary table 2). The majority of the nuclei
stem from oligodendrocytes (41.02%), followed by astrocytes (22.49%), microglia (14.51%) and
oligodendrocyte progenitor cells (6.74%). Neuronal populations are relatively small in our samples,
i.e. DNs are 6.29% of the total population (Table 3). The observed proportions in our data were
consistent with other human SNpc studies. For example, (Agarwal et al., 2020) observe a proportion
of 72% of oligodendrocytes in all glia they got from the SN of 5 healthy donors. (Wang et al 2022)
detected 51.3% of oligodendrocytes, 13.1% of neurons, 9.4% of microglia and 8.4% of astrocytes
from the SN of 23 idiopathic PD and 9 controls.

But we see a relatively high variability in cell proportion across samples, regardless of their
condition (supplementary Figure 1.g.). Oligodendrocytes show the highest inter-sample variability,
13.94 (11.51-16.37)% for controls and 13.94 (11.91- 15.97)% for PD cases while DNs show the
lowest differences, 8.06 (6.64-9.48)% for controls and 5.34 (4.27-6.41)% for PD cases. Interestingly,
we find statistically significant higher abundance of astrocytes in cases (Wilcoxon P<0.0193) and
lower abundance of DNs-like neurons in the same group (Wilcoxon P<0.0107). Astrocytes protect
neurons through the release of various neurotrophic factors but activated microglia can convert
neuroprotective astrocytes into neurotoxic astrocytes 57. Previous studies demonstrated that A1

astrocytes - which lose the ability to promote neuronal survival, outgrowth, synaptogenesis and
phagocytosis, and induce the death of neurons and oligodendrocytes - are abundant in various human
neurodegenerative diseases including PD 58. This is consistent with what we see in our data.

Networks are stable across pseudo-cell iterations

The original expression matrices of the different cell types (T0 expression matrices) have
77.22% (74.55-79.88) of zeros. We observed an association between sparsity and the number of
detected genes (Pearson correlation -0.643, P<0.01307). We deal with such sparsity by creating new
matrices of pseudo-cells named T1, T2, … with a minimum size of 200 pseudo-cells (see methods).
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The average reduction in zeros in each cell type expression matrix from Ti to Ti+1 is 14.84
(13.77-15.91)% (supplementary Figure 3). For each matrix, we created the corresponding GCN0,
GCN1, GCN2, … within each cell type. A total of 112 scGCNs were generated, for 24 subclusters,
grouped into 14 major cell-types. Networks were interpreted to be stable across pseudo-cell iterations
when we observed structural features (i.e. number of modules, module average size), and biological
features (i.e. number of functional enrichment terms per module) (see methods, supplementary Figure
3). We also observed that most of the modules at T0 were preserved across successive pseudo-cells
iterations (supplementary Figure 3). A notable exception is GABA neurons expressing GABA
receptors, where only 42.86% of the modules at T0 remain in T1, and only 33.33% of the modules at
T0 remain in T2 and T3. A possible explanation for this exception is that this cell type presented the
lowest number of genes detected (3150) but also one of the cell types with the highest number of
modules detected in T0 (21 modules).

The T0 dopaminergic neuron scGCN

Our main focus is to examine the evidence within our snRNA-seq data supporting any of the
four selective vulnerability hypotheses of DNs in SNpc (see the introduction). Therefore, the rest of
the manuscript focuses on the DN GCNs.

The DN scGCN at T0 is created from 6565 cells and 3890 genes. The network has 9 gene
modules (432 genes per module on average). The criteria we used to identify interesting modules (see
methods) is based on: (1) the association of the module eigengenes with clinical diagnosis and age; (2)
enrichment on case/control DNs DEGs; (3) enrichment on cell type markers from both bulk and
sc/snRNA-seq studies and (4) preservation of module structure in an independent dataset. Based on
this, module M1 stood out as the most interesting module. It has 729 genes, it is correlated with
clinical diagnosis (P<2.811 10-218), age (P<1.156 10-244) and sex (P<1.319 10-229) (Figure 3a). It· · ·
showed a significant GSEA enrichment (see methods) with case/control DNs DEGs (P<5.744 10-7). It·
als showed a significant GSEA for bulk RNA-seq DNs markers: the DNs markers collected from the
CoExpNets R package (P<2.358 10-3) and the top 10% most specific SNpc genes for the bulk GTEx·
dataset (P<5.609 10-5) 44. M1 also presented the highest number of significant GSEA tests for·
sc/snRNA-seq DNs markers with a total of 18 significant tests, followed by M2 with 13 significant
tests (Figure 3.b). This suggests M1 is DNs-specific. Moreover, the M1 module from T0 is preserved in
the Sepulveda dataset with a Z summary pres > 2 (Z summary pres=3.393) (Figure 3c, supplementary
table 3). Finally, M1 generated an abundant annotation term set from the functional enrichment
analysis (438 terms, 23.06% of all terms) and from the phenotype enrichment analysis (74 terms,
18.00% of all terms).

Evidence from M1 supports the iron accumulation hypothesis

Iron is highly abundant in the human body and a crucial component of hemoglobin. It is
involved in the metabolism of catecholamine neurotransmitters and in the formation of myelin59.
Selective accumulation of iron occurs in several brain regions and cell types in healthy aging and
binds to ferritin and neuromelanin60–62. But abnormal accumulation of iron in specific brain regions
occurs in many neurodegenerative diseases63. Different studies have shown that the accumulation of
iron in PD patients is higher than in controls, especially in the SNpc and DNs64–67. Iron toxicity is due
to its strong redox activity68. It easily reacts to H2O2 through the Fenton reaction producing neurotoxic
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intermediates or the end-products such as O2
- and OH.69. Since SNpc DNs are characterized by a high

iron-content64–67, this leads to a higher production of Reactive Oxygen Species (ROS), piling up to the
large amount of ROS produced in basal conditions which is necessary to support DN’s structure
characterized by the massive arborization of their dendrites70. All this leads to an imbalance between
ROS production and antioxidant defense inducing oxidative stress. This imbalance causes cell
dysfunction and ultimately cell death68. Specifically, ROS contributes to ferroptosis, an
iron-dependent non-apoptotic mode of cell death71,72.

A functional enrichment analysis on the 729 genes of M1 generated annotation terms like
Parkinson disease (KEGG:05012, P<5.390 10-34), Ribosome (KEGG:03010, P<5.069 10-62), but also· ·
Oxidative phosphorylation (KEGG:00190, P<1.395 10-36), mitochondrial protein-containing complex·
(GO:0098798, P<3.380 10-51) (supplementary table 4). Interestingly, we repeated the functional·
enrichment analysis on the top 25 genes, i.e., the hub genes, based on their module membership. It
turns out hub genes were enriched for Iron uptake and transport (REAC:R-HSA-917937, P<0.00274),
Ferroptosis (KEGG:04216, P<5.612 10-4), Glutathione metabolism (KEGG:00480, P<0.01627),·
ferritin complex (GO:0070288, P<5.986 10-5) and intracellular sequestering of iron ion (GO:0006880,·
P<9.761 10-4) (see Figure 3d). To gain more insight about the possible connection of M1 with iron·
metabolism and ferroptosis, we crossed its genes with a list of 111 ferroptosis markers obtained from
FerrDb, a manually curated resource for regulators and markers of ferroptosis73. We found 24/111
markers as detected genes in our DNs dataset (Figure 3e.). Half of them were found at M1 (12/24)
(Fisher Exact Test P<0.0262), where 58.33% (7/12) of them showed a percentile in MM over 90%.
The most relevant genes included Ferritin heavy chain (FTH1) and Glutathione peroxidase 4 (GPX4)
(Figure 3f and 3g). GPX4 plays a pivotal role in the occurrence of ferroptosis, it converts GSH into
oxidized glutathione and reduces the cytotoxic lipid peroxides (L-OOH) to the corresponding alcohols
(L-OH). Inhibition of GPX4 activity can lead to the accumulation of lipid peroxides, a hallmark of
ferroptosis72,74. GPX4 is down-regulated in our case/controls DEGs (P<4.647 10-13, log2FC= -0.182).·
All this evidence may suggest that ferroptosis is disrupted in PD DNs (Figure 3h.).

Evidence of M1 as a well-preserved module across iterations

We observed that module M1 is stable across successive pseudo-cell matrices and scGCNs,
suggesting that M1 is a transcriptional signal robust to the underlying data rather than simply an
artifact. Supplementary Figure 4a. includes a visual representation of this by means of a sunburst
plot75. The inner ring shows M1 at T0, composed of 729 genes, the largest in this network. M1 at T1

keeps 598 of those genes, 595 at T2, and so on until it reaches 491 at T6. Therefore, this module is
robust against data sparsity. In consequence, the features of these modules in terms of cell type
markers enrichment and case/control DNs DEGs enrichment is quite similar through pseudo-cells
iterations (see supplementary Figure 4c.). In addition, M1 module from T0 is preserved in the
Sepulveda dataset in most of the iterations with a Z summary press of 2.497 (1.955 - 3.040) (only T1 Z
summary press is slightly under the cutoff).

Non-preserved modules provide new insights

Some modules at T0 DNs GCN changed their gene composition considerably, throughout the
pseudo-cell iterations. Supplementary Figure 4b. shows the example of a module which is made up of
300 genes in T0 but, after pseudo-cells iterations, only 49 of these genes remain grouped together in
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the last iteration, while the rest of the genes are regrouped into other modules. This has the potential
of transforming some of them into newly relevant modules. For the module highlighted at at that
figure, we can see how its association with disease gets sharper across iterations together with its
association with age and sex. We also see how it improves its enrichment in both case/control DNs
DEGs and DNs markers (supplementary Figure 4d.). Another interesting phenomena emerged when
we studied enrichment of the 26 PD-related HPO terms (OMIM:168600) (see supplementary table 5)
across pseudo-cell iterations in this same module. Interestingly, movement related terms like rigidity
(HP:0002063), tremor (HP:0001337) or parkinsonism (HP:0001300) became less significant across
pseudo-cell iterations. Notably, this includes iterations where the correlation with the diagnosis is the
highest (T2 and T3). Just the opposite happened with HPO terms like mask-like facies (HP:0000298),
dysarthria (HP:0001260) or dystonia (HP:0001332). This suggests that pseudo-cell iterations have the
potential to specialize modules into more specific aspects of PD. Actually, we found that 26.92% of
the HPO terms are just found on DNs GCNs other than that of T0. They include dysarthria
(HP:0001260), hallucinations (HP:0000738), mask-like facies (HP:0000298), sleep disturbance
(HP:0002360), sporadic (HP:0003745) and urinary urgency (HP:0000012).

Segregating gene-level associations across relevant covariates

M1 from the T0 scGCN emerged as the most interesting module at T0. This module showed
associations with clinical diagnosis, age and sex (Figure 3a). Conventional co-expression analyses
would assign all genes within M1 to all three covariates. We wanted to disentangle these associations
mainly to identify genes in M1 just associated with PD, and genes just associated with age. For such a
purpose, we designed the concept of covariate-specific gene co-expression networks (see methods)
and created a DNs PD-specific GCN and an age-specific GCN. We started by integrating the DNs
expression matrices from the discovery cohort (Oregon dataset) and the replication cohort (Sepulveda
dataset) into a single expression matrix to normalize genes across samples. The UMAP plot in Figure
4a. shows both cohorts integrated across the space. By collapsing cells into donors by averaging gene
expression per individual, we created a donor-level expression matrix, with the 35 donors (28 Oregon
samples and 7 Sepulveda samples) and 2529 genes. A total of 3 donors emerged as outliers in a PCA
plot (Figure 4b). Amongst the outliers, one of the samples had the highest PMI (61 h) and,
accordingly, the lowest RIN (6.4). A second sample was just 30 years old (medium age is 78 years).
And all three donors had less than 5 DNs each. After removing them from the dataset, we repeated the
PCA analysis and found no undesired association with any covariate (see Figure 4c.).

We then used the CovCoExpNets R package to generate models of age from the training
samples. The best model for predicting age had 0.765 R2 on the training set. Figure 4d. shows
predicted vs observed age in years for each individual, grouped by set (train, test or replication set).
We then plotted all donors in a PCA space using only the 11 age-specific genes detected by
CovCoExpNets. The 1st PCA showed a Pearson correlation with age of 0.565 (P<7.637 10-4) using all·
the samples (Figure 4f.). The selected genes for predicting age are used as hub genes for initially
empty modules. At the end, 28 genes (11 hubs plus 17 new genes) made up the age-GCN
(supplementary table 6). We found a total of 1404 annotations, where 37.61% of them belong to the
PARK7 module, 34.40% to the APOE module and 11.04% to the PSMD6 module (supplementary
table 7).

ApoE participates in the distribution/redistribution of lipids among various tissues and cells of
the body by serving as the ligand for binding to specific cell-surface receptors76. A relationship
between aging and the APOE-4 allele has been previously described. Honea et al., 2009 demonstrated
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that, in nondemented older adults with the E4 allele, cognitive performance was reduced, and atrophy
was present in the hippocampus and amygdala compared to APOE4 negative participants. Moreover,
Y. J. Li et al., 2004 demonstrated that the APOE-4 allele increases risk and decreases age at onset of
PD, an association that may not be dependent upon cognitive impairment. The APOE module is
implicated in signaling by ERBB4, APOE gene transcription is stimulated by ERBB4s8079, and
regulation of transport across the blood-brain barrier (see Figure 4.h.).

On the other hand, Thomas et al., 2011 demonstrated that loss of DJ-1 (PARK7) leads to loss
of mitochondrial polarization, fragmentation of mitochondria and accumulation of markers of
autophagy (LC3 punctae and lipidation) around mitochondria in human dopaminergic cells. These
effects are due to endogenous oxidative stress, as antioxidants will reverse all of them. In this regard,
the most relevant annotations of the PARK7 module are implicated in the autophagy of mitochondria
(see Figure 4.h). Initially, Van Duijn et al., 2001 identified PARK7 as a novel locus for autosomal
recessive Early-Onset Parkinsonism. More recently, Gialluisi et al., 2021 identified 28 disrupting
variants in 26 candidate genes for late-onset PD, where PARK7 gene was also included, suggesting
that PARK7 mutations are not exclusive to early onset forms of PD. In addition, they noticed that, in
several families, single mutations in recessive genes such as PARK2, PINK1, PARK7, were
co-inherited with variants in other candidate genes, suggesting that they might play a role as risk
factors in the heterozygous status.

In regard to the model of PD, the best model for predicting diagnosis correctly classified all
controls and all PD cases of our train set. Furthermore, this model correctly classified most controls
(3/5) as well as most PD cases (5/7). And even more interesting is that this model correctly classified
all the samples coming from the replication set. All the confusion matrices are represented in Figure
4e. We also demonstrated that we are able to segregate the 32 donors per clinical diagnosis in a PCA
space using only the 5 diagnosis-specific genes (Figure 4g.). Donors from the replication dataset
follow this same trend. Then, we created the diagnosis-GCN, made up of 12 genes. We found a total
of 676 annotations, where 78.85% of these annotations belong to the SNCA module. SNCA is
considered as the major causative gene involved in the early onset of familial Parkinson’s disease
(FPD) characterized by five missense mutations identified so far83. The normal function of
α-synuclein remains enigmatic, despite more than 25 years of research, however, α-synuclein’s
presynaptic localization and its interaction with highly curved membranes and synaptic proteins
strongly suggests a regulatory function associated with the synapse84. In this regard, the top most
relevant annotations of this module are associated with synaptic vesicle membranes (see Figure 4.h.).

Interestingly, we found no overlap between the 11 age-specific genes and the 5
diagnosis-specific genes, that is, they are specific to each covariate (Figure 4.i).

Discussion

SnRNA-seq is just starting to show all its possibilities as a means to enable bioinformatic
analyses on the right cell type in the right space and time85,86. One of the main challenges of
snRNA-seq data is the sparsity of gene expression matrices23, e.g, we find around 75% of zeros, on
average, in our expression matrices. Therefore, we developed the scCoExpNets R package with this in
mind. It is focused on using single-cell gene expression´s natural sparsity to our own advantage.
scCoExpNets reduces sparsity through pseudo-cells, i.e. pairwise aggregation of cells within the same
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cell type and donor. By using this technique, we introduce the idea of multiple models through the
creation of successive network models across T0, T1, …, Tn expression matrices. Thanks to this we
obtain transcriptomic signals that are robust to sparsity versus signals that are artificial, increasing our
trust in them and also  modules which evolve towards potentially more interesting gene groups.

We applied scCoExpNets on a snRNA-seq dataset human post-mortem SNpc tissue of 13
controls and 14 PD cases (18 males and 9 females) with an age range of 30 to 99 years. All the
samples in the discovery cohort yielded a cell population of 104338 cells, segregated into 14 main cell
types. Out of all these cells, we generated and studied models for all the cell types. In this paper, we
focused on the population of DNs as we were looking for evidence to shed light on the selective
vulnerability in that cell type. The M1 model from iteration T0 emerged as the most interesting of all
DN modules. This module is preserved in an independent cohort of 7 males, which makes it more
reliable. Moreover, the gene composition of this module is maintained through the pseudo-cells
iterations, therefore, it is quite robust to sparsity. All the evidence emerging from the analyses we have
performed on M1 points towards suggesting that the weakest point in DNs within PD cases lies on the
dysregulation of iron metabolism.

In the brain, iron is involved in many fundamental biological processes including oxygen
transportation, DNA synthesis, mitochondrial respiration, myelin synthesis, and neurotransmitter
synthesis and metabolism63. In healthy ageing, selective accumulation of iron occurs in several brain
regions and cell types, with iron mainly bound within ferritin and neuromelanin. Total iron
concentrations increase with age in the SNpc, putamen, globus pallidus, caudate nucleus, and cortices.
Moreover, in the SNpc, ferritin heavy chain (FTH1) and ferritin light chain (FTL) concentrations
increase with age, whereas these are constant in the locus coeruleus; therefore iron could contribute to
neurodegeneration in the substantia nigra more than in the locus coeruleus63. Interestingly, we have
detected FTH1 and FTL as hub genes in the M1 module. When iron levels exceed the cellular iron
sequestration capacity of storage proteins or other molecules, iron is loosely ligated (“labile”) and able
to participate in redox reactions collectively referred as “Fenton chemistry”, a series of reactions
where labile iron reacts with endogenously produced H2O2 or O2

- to form oxygen radicals (i.e.
hydroxyl and peroxyl)87, both able to generate a lipid peroxide (ROOH)88. Lipid peroxidation is the
key downstream feature of ferroptosis, a non-apoptotic, iron dependent form of regulated cell death74.
The key regulators of lipid peroxides in cells are the glutathione peroxidase (GPx) enzymes,
particularly GPx4, which uses GSH as a co-substrate to reduce lipid peroxides to the corresponding
alcohols, therefore, inactivation of this enzyme results in the accumulation of lipid peroxides and
often cell death88. In this regard, the GPX4 gene has been detected as a hub gene in the M1 module.
Dixon et al., 2012 also identified a distinct set of genes that regulate the ferroptotic mechanism,
including ribosomal protein L8 (RPL8), iron response element binding protein 2 (IREB2), and ATP
synthase F0 complex subunit C3 (ATP5G3). In the M1 module, we have detected RPL8 and ATP5MC3
as hub genes (ATP5G3 is the previous symbol for ATP5MC3 gene). Finally, Do Van et al., 2016
demonstrated that ferroptosis is an important cell death pathway for DNs in PD. In addition,
treatments that protect against ferroptosis have shown therapeutic potential in PD90,91.

On the other hand, the CovCoExpNets, in association with scCoExpNets, helps in dissecting
the nature of gene modules associations with more than one covariate or factor (e.g., age and disease).
In this paper, it is particularly useful to select genes exclusively associated with a condition, e.g., PD,
or age. For that, we create covariate-specific gene-co-expression networks. We believe that many
co-expression based studies can benefit from using this new type of analysis when network modules
are so complex and need breaking down into simpler and more specific gene sets.

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.13.514863doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?HIve2C
https://www.zotero.org/google-docs/?ufRZ07
https://www.zotero.org/google-docs/?T2OTMo
https://www.zotero.org/google-docs/?DT4j1s
https://www.zotero.org/google-docs/?CRnDf6
https://www.zotero.org/google-docs/?35tZge
https://www.zotero.org/google-docs/?jVEK6u
https://www.zotero.org/google-docs/?HE78F2
https://www.zotero.org/google-docs/?W0tKHv
https://doi.org/10.1101/2022.12.13.514863
http://creativecommons.org/licenses/by-nc-nd/4.0/


To this end, we have applied the LASSO regularization mechanism to detect the age-specific
genes and the diagnosis-specific genes separately on the training set (2/3 of discovery dataset) and we
have tested the predictive capacity of these models in the test and the replication sets. In this regard,
we have identified 11 age-specific genes and 5 diagnosis-specific genes that do not overlap and can be
used to segregate the donors in a PCA space. We have used these hub genes to create the
corresponding age-specific GCN and diagnosis-specific GCN, respectively. We have detected that the
age-specific modules led by PARK7, APOE and PSMD6 are the most annotated ones. The same
happens for the diagnosis-specific module led by SNCA.

Interestingly, we found no overlap between the 11 age-specific genes and the 5
diagnosis-specific genes, suggesting that we were able to differentiate age-specific and PD-specific
signals in our gene models. For example, initially, PARK7 was identified as a causal gene for
early-onset PD but we have identified it as age-specific, therefore, which would lead to future avenues
of research regarding the role of this gene in late-onset PD. More research is needed to develop a
strategy to ensure that we are controlling for the age when predicting diagnosis and vice versa.

Code availability
The  scCoExpNets  R  package is available at https://github.com/aliciagp/scCoExpNets
The  CovCoExpNets  R  package is available at https://github.com/aliciagp/CovCoExpNets
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Fig. 1. The creation and characterization of multiple scGCNs.
a) Depicts the pseudo-cells approach of scCoExpNets R package to fight data sparsity. Gene expression cell
pairs from the same cell type and individual are added to create a pseudo-cells expression matrix, significantly
less sparse and with half the size than the predecessor. The scGCNs software repeats the process while the
number of cells is still over 200. Each T0, T1, …, T5 as in the figure a) are used to generate a GCN. b) Creating
the GCNs: technical covariates (i.e. RIN and PMI) are removed from gene expression using a surrogate variable
analysis. Genes are clustered and each GCN module annotated using both functional (GO, REACTOME,
KEGG) and phenotype (PhenoExam) enrichment analyses. c) Downstream analyses include identifying the most
interesting gene modules by performing additional annotations on them (see plot).
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Fig. 2. Overall pipeline for the creation of PD and age-specific GCNs from Oregon and Sepulveda
datasets.
The pipeline of the CovCoExpNets R package is described here. We follow a discovery and replication
approach to generate networks on the discovery cohort (Oregon) and perform validation on the replication
cohort (Sepulveda). We start with data preprocessing: we integrate discovery and replication datasets, and we
aggregate the gene expression per donor into a single sample. Then we add age, diagnosis and sex as covariates
to control for them and carry out a PCA at donor level to detect outliers and remove them if necessary. Once we
do that, we split the dataset to separate donors into discovery and replication. Now the data is ready to select the
best genes to be used as predictors for PD condition and age per donor. We call this feature selection: we split
the discovery dataset into train (⅔ of the donors) and test (the other ⅓). We use the train data to build a model
for age using as predictors the genes and controlling for diagnosis and sex using the cv.glmnet algorithm. We
repeat the data sampling into train and test and model generation process 10 times. Within training, we split into
three different folds for cross-validation. This is also repeated 10 times to alleviate variability of results. We
perform the same process to build the PD model. The best model as selected by cross-validation is yet evaluated
with the Sepulveda samples. For that, we test each model with both the test dataset and replication dataset and
select the best model for each covariate. Finally, we create the covariate-specific GCNs: separately for PD and
age models, we extract the selected predictors from the models (genes) and create a PCA based on the
corresponding donor-level expression matrix to see if donors segregate per covariate. We create a module for
each gene selected (see methods).
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Fig. 3. M1 module emerges as the most interesting SNpc DNs module.
The top panel (Fig 3 a., b. and c.) gathers all evidence we use to select M1, a module of the T0 GCN of DNs, as
the set of genes to focus on. a) Shows M1 (in pink) association with diagnosis, age and sex, in comparison to the
other modules at T0 plotted with a variety of colors. RMSE refers to the rooted mean squared error between real
and predicted values. b) Heat map with the significance level of annotation tests for each module (columns), M1
at the leftmost column (in pink). Bar height shows the number of genes per module. The green coloured
heatmap under shows each module’ statistical significance of the association with clinical diagnosis, age and sex
covariates, respectively. The rest of heat maps below show GSEA tests (see methods) with a variety of gene
markers 1) DNs DEGs between PD cases and controls, 2) cell types markers from bulk RNA-seq studies
obtained from CoExpNets R package and GTEx, and (3) DNs markers obtained from sc/snRNA-seq studies.
Just marker gene sets, with at least one test as significant, shown. c) Preservation analysis of T0 DNs modules on
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the replication dataset (7 male cohort of PD cases and controls). M1 (pink) is more preserved than the rest (see
methods), except done for blue. The bottom panel includes evidence linking M1 to the selective neuronal
vulnerability hypothesis of iron accumulation. d) Enrichment plot showing the most significant annotations for
M1 genes (left column) and the top 25 hub genes of M1 (right column); e) Venn Diagram between DN genes
detected in our data, genes from M1 and ferroptosis markers from FerrDb database (Fisher exact test P<0.0262,
see methods). f) Relevance of ferroptosis markers from FerrDb detected at M1 as measured in percentile of
module membership (see methods). g) Top 50 genes M1 co-expression network. h) Ferroptosis pathway
overview: loss of antioxidant system, iron overload and lipid peroxidation triggers ferroptosis.
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Fig. 4. Segregating donors per covariate.
a) UMAP projection of discovery and replication datasets integrated at single-cell level; b) PCA projection at
donors level including all the donors colored by dataset (discovery or replication); c) PCA projection at donors
level after removing the outliers (s.0147, s.0107, s.0103) colored by different criteria (dataset, age, sex,
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diagnosis, PMI, RIN); d) real vs predicted age for each individual is represented. Donors are colored by the set
they belong to (train, test or replication set). e) confusion matrix for the discovery dataset (train and test) and the
replication dataset (the lower diagonal represents the hits); f) PCA projection at donors level, where donors are
colored by their age and the shape represents the dataset where they belong. In the picture on the left, all the
features were used and we see no segregation per age. In the picture on the right, we only used the 11
age-specific genes selected and, as we move from left to right, we see donors from the youngest to the oldest. g)
PCA projection at donors level, where donors are colored by their age and the shape represents the dataset
where they belong. In the picture on the left, all the features were used and we see no segregation per diagnosis.
In the picture on the right, we only used the 5 PD-specific genes selected and donors are segregated per
diagnosis. h) top 5 most relevant annotations for the age-specific and diagnosis-specific most annotated
modules. x axis represents the leader of the module, y axis represents the term name and the color represents the
-log10(p-value). i) venn diagram represents the absence of overlap between age-specific genes and
diagnosis-specific genes selected with CovCoExpNets.
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Supplementary fig. 1. The substantia nigra single-nucleus RNA-seq dataset.
a) Number of donors per diagnosis and sex; b) age distribution per clinical diagnosis and sex; c) PD cases
plaques and tangles classification and lewy body presence in midbrain, limbic and neocortical areas; d) UMAP
projection of cells annotated per cell type; e) average expression of key cell specific markers across cell types
used; f) distribution of the number of genes detected per cell type; g) cell type proportion per sample and clinical
diagnosis.
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Supplementary fig. 2. Pipeline for the creation of PD and age-specific GCNs from Oregon and Sepulveda
datasets.
We represent the creation process of each GCN across two columns (left for PD, right for age), starting from top
to bottom. We started with the expression matrix of integrated single-cell samples from discovery and
replication datasets, with additional columns for sex, age and diagnosis. We splitted the discovery samples into
train (⅔) and test (⅓). The train samples were further splitted into 3 folds for cross-validation. We used the train
set for selecting the most relevant genes for predicting age or PD separately using cv.glmnet with LASSO
approach. We repeated the train and test split at least 10 times and the train split into three folds at least another
10 times. We selected the best model based on its performance on the test and replication sets. We then obtained
the overlap between genes selected for predicting age and PD. As we found no overlap between the gene sets we
then created the GCNs by using each selected gene as the leader of one module of the corresponding network.
For each module, we kept adding the genes with highest correlation with the leader into the module, while the
linear model R2 increases.
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Supplementary fig. 3. The creation of multiple scGCNs: reducing the sparsity while retaining the main
features.
Cell types within each plot column. X-axis of each plot refers to the iteration within which the scGCN was
created from T0 to Tn, where the maximum number of iterations is 6. Plots at rows correspond to the features
observed from networks including sparsity (%), scGCNs main features and the % of T0 modules that are
preserved in the rest of iterations based on Z summary press estimates.

28

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.13.514863doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.514863
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary fig. 4. Study  of scGCNs modules across iterations.
Sunburst plots at a) and b) show as many rings as pseudo-cells iterations of DNs. The inner ring represents T0,
the outer ring represents T6. All rings are divided into segments, one for each module of the corresponding
scGCN. The size of the segment represents the number of genes within the module. M1 in T0 is highlighted at
sunburst a). The majority of genes within M1 remain together across iterations. Colors at the segment show gene
correlation with clinical diagnosis. At b) we see, highlighted, a particular gene module, M2, whose gene
composition changes significantly across iterations just to get better association with clinical diagnosis at
iterations 3 and 4. Heatmaps at c) and d) show, for M1 and M2, respectively, the different sets of annotations (at
rows) as they evolve through iterations (at columns, from left to right). From top to bottom, we have
characterized the DNs modules showing the number of genes that make up each of these modules (bars height
across iterations) and their correlation with clinical diagnosis, age and sex covariates (in green). Then, we use
four different groups of gene markers to further annotate the modules: (1) DNs DEGs between PD cases and
controls, (2) cell type markers from bulk RNA-seq studies, (3) DNs markers obtained from sc/snRNA-seq
studies and (4) Parkinson’s disease associated terms obtained from the Human Phenotype Ontology (see
methods). Cells at the heatmap show results of the gene set enrichment analysis tests. Only marker lists with at
least one significant test are shown (see methods for the complete list). These plots are generated by the scGCNs
R package to help the analyst on studying all models.

29

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.13.514863doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.514863
http://creativecommons.org/licenses/by-nc-nd/4.0/

