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Abstract 47 

Staphylococcus aureus is one of the leading causes of hospital acquired infections, 48 

many of which begin following attachment and accumulation on indwelling medical 49 

devices or diseased tissue. These infections are often linked to establishment of 50 

biofilms, but another often overlooked key characteristic allowing S. aureus to establish 51 

persistent infection is formation of planktonic aggregates. Such aggregates are 52 

physiologically similar to biofilms and protect pathogen from innate immune clearance 53 

and increase its antibiotic tolerance. The cell wall-associated protein SasG has been 54 

implicated in biofilm formation via mechanisms of intercellular aggregation, but the 55 

mechanism in the context of disease is largely unknown. We have previously shown 56 

that expression of cell wall-anchored proteins involved in biofilm formation is controlled 57 

by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS 58 

two-component system controls aggregation, by repressing expression of sasG by 59 

activation of the global regulator MgrA. We also demonstrate that SasG must be 60 

proteolytically processed by a non-native protease to induce aggregation, and that 61 

strains expressing functional full-length sasG aggregate significantly upon proteolysis by 62 

a mucosal-derived host protease found in human saliva. We used fractionation and N-63 

terminal sequencing to demonstrate that human trypsin within saliva cleaves within the 64 

A domain of SasG to expose the B domain and induce aggregation. Finally, we 65 

demonstrated that SasG is involved in virulence during mouse lung infection. Together, 66 

our data point to SasG, its processing by host proteases, and SasG-driven aggregation 67 

as important elements of S. aureus adaptation to host environment.  68 

69 
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Introduction 70 

 Staphylococcus aureus asymptomatically colonizes the nostrils, throat, and skin 71 

of ~30% of the population, and a portion also carry S. aureus in their oral cavity [1-5]. 72 

Nasal carriage is a significant risk factor for developing nosocomial infections [6, 7], with 73 

~80% of infections caused by the patient’s colonizing strain [8-10]. S. aureus is one of 74 

the leading causes of healthcare-associated infections, such as surgical site infections 75 

and central line-associated bloodstream infections [11], imposing a substantial burden 76 

on the healthcare system. While these infections are often challenging to treat, the rise 77 

of methicillin-resistant S. aureus (MRSA), which causes over 119,000 of these 78 

infections annually in the US, has further exacerbated treatment challenges and 79 

increases healthcare costs by nearly one billion dollars annually [12-15].  80 

S. aureus is one of the most prevalent pathogens in chronic wound infections 81 

[16-18], and is one of the first pathogens to colonize in the cystic fibrosis (CF) lung [19]. 82 

The occurrence of chronic and persistent S. aureus infections is in part due to 83 

aggregation mechanisms and the ability of this pathogen to adhere to indwelling 84 

medical devices as a biofilm [20, 21]. However, in the absence of an implanted medical 85 

device, S. aureus can form free-floating aggregates that are physiologically similar to 86 

biofilms and are likewise more antibiotic resistant [22, 23]. It has been suggested that 87 

bacterial aggregates predominate in chronic infections such as osteomyelitis [24], 88 

chronic wounds [25], and in the lungs of cystic fibrosis (CF) patients [26, 27]. Intensive 89 

efforts to clear MRSA lung infections in CF patients, sometimes using up to five different 90 

antibiotics, has shown some promise, although ~15% of patients still harbor MRSA at 91 

the end of the intervention period [28-30]. A better understanding of S. aureus biofilm 92 
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formation and aggregation may lead to alternative therapies for these difficult to treat 93 

infections. 94 

MRSA aggregation observed in clinical infections has been described as groups 95 

of closely attached cells that are not surface attached, and similarly to mature biofilms 96 

they provide protection from environmental stress and allow for persistence [22]. 97 

Aggregates and biofilms are difficult to treat in part because they are up to 1000-fold 98 

more resistant to antibiotics than planktonic cells [22, 31, 32]. This increased tolerance 99 

is thought to be due to a combination of slowed diffusion of antibiotics through the 100 

extracellular matrix and slower growth of cells within the community of cells [33]. In 101 

addition, aggregates are more resistant to clearance by the innate immune system, in 102 

part due to their large size, which impedes phagocytosis, and their ability to secrete and 103 

concentrate toxins that target leukocytes [34-37].  104 

One of the key drivers of biofilm formation and aggregation in S. aureus is the 105 

large, cell wall-attached surface protein G (SasG) [38-40]. SasG, and its S. epidermidis 106 

homolog Aap, consist of multiple domains with distinct functions (Fig. 1A). The A 107 

domain, which has 59% identity to Aap, is implicated in binding to corneocytes [41] and 108 

nasal epithelial cells [42], and has a short, variable repeat region and an L-type lectin 109 

subdomain. In full-length SasG, the B domain, which has 60-67% identity to Aap 110 

depending on B-repeat number, consists of 2-17 repeats of alternating G5 subdomains 111 

and E spacers [38, 43, 44]. These G5-E repeats can dimerize in a Zn-dependent 112 

manner to form a twisted cable structure that facilitates intercellular interactions [45]. In 113 

S. epidermidis, the Aap A domain is removed by the metalloprotease SepA, allowing the 114 

exposed B domains to dimerize and promote biofilm accumulation [46]. Exogenous 115 
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addition of the host proteases trypsin and cathepsin G can also enhance S. epidermidis 116 

biofilm formation through processing of Aap [43]. Whether SasG also needs to be 117 

proteolytically processed is not known, although it appears that none of the known 118 

proteases secreted by S. aureus can specifically target SasG [38]. 119 

Expression of sasG is variable across S. aureus clinical isolates. SasG is 120 

constitutively expressed by some clinical isolates [47], and the presence of anti-SasG 121 

human antibodies demonstrates its expression during infection [48, 49]. However, 122 

commonly used laboratory strains either lack functional SasG, or do not express it 123 

under laboratory conditions [47, 50]. Recently, it has become apparent that this lack of 124 

SasG expression might be due to its repression by an ArlRS – MgrA regulatory cascade 125 

under in vitro conditions [49, 51]. 126 

In this project, we took advantage of the high level of SasG expression in a S. 127 

aureus ΔmgrA strain to investigate the role of SasG in aggregation and virulence. We 128 

identified that the presence of SasG increases S. aureus virulence during lung infection, 129 

and that the cleavage of the N-terminal portion of the A domain of SasG is necessary 130 

for S. aureus to aggregate. Since S. aureus does not appear to cleave SasG on its own, 131 

SasG cleavage during infection must be mediated by host proteases. Such cleavage 132 

leads to SasG-mediated aggregation of S. aureus, which is reflected as increased 133 

virulence of SasG-expressing strain during lung infection. Overall, the host-driven 134 

cleavage of SasG establishes an unusual and novel way of sensing and responding to 135 

the host environment. 136 

  137 
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Results 138 

SasG saliva interaction and expression levels across S. aureus strains 139 

Aspiration of saliva is often a precursor to lung infections [52-55], leading us to 140 

investigate how MRSA reacts to the presence of human saliva. We made a somewhat 141 

surprising observation that a USA400 MRSA ∆mgrA mutant strain aggregated to high 142 

levels when the cells were resuspended in human saliva, while the WT strain remained 143 

in suspension (Fig. 1B). Knowing there is differential surface protein expression in 144 

∆mgrA mutants [49], we ran Coomassie protein gels (Fig. 1C) and observed dramatic 145 

salivary processing of a large protein that we reasoned might be surface protein G 146 

(SasG).  Upon constructing a MRSA ∆mgrA ∆sasG double-mutant, the protein and 147 

aggregation phenotype both disappeared (Fig. 1B,C), demonstrating this phenotype is 148 

due to SasG.  Additionally, the aggregation could be complemented by providing mgrA 149 

on a plasmid (Fig. 1D).   150 

We next investigated the generality of this phenotype in S. aureus.  We 151 

compared sequenced S. aureus strains containing functional chromosomal copies of 152 

sasG including community-acquired MRSA (CA-MRSA) USA400 strain MW2, Newman, 153 

502a, and a CF clinical MSSA isolate AH4654. We also included strains that expressed 154 

a truncated form of SasG such as those of USA300 strain LAC and USA100 strain 155 

N315. Finally we included strains lacking a copy of the sasG gene altogether, such as 156 

USA200 strains MN8 and MRSA252, as controls for comparison.  Strains with a 157 

functional, full-length version of SasG protein exhibited high levels of saliva-induced 158 

aggregation in the absence of mgrA (Fig. 1E) and we observed abundant SasG in cell 159 

wall preparations (Fig. 1F).  The CF clinical isolate AH4654 exhibited lower expression 160 
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levels and intermediate aggregation (Fig. 1E), although the genetic composition is 161 

almost identical to MW2, the functionality of the ArlRS-MgrA system in relation to SasG 162 

is not clear in this strain. Unexpectedly, Newman exhibited no visible expression of 163 

SasG protein (in WT or ∆mgrA mutant) and little aggregation despite having a full-length 164 

version of SasG encoded in the genome (Fig 1E, F). N315 expressed a protein of size 165 

to SasG but did not clump at all.  These data were confirmed by qPCR quantifying sasG 166 

expression (Fig. 1G). In general, our observations indicate that S. aureus strains with a 167 

full-length SasG, under conditions that induce sasG gene expression, will aggregate in 168 

the presence of human saliva. 169 

 170 

Molecular details of MgrA repression of sasG gene 171 

To investigate transcriptional control of sasG in the (CA-MRSA) USA400 strain MW2, 172 

we constructed a PsasG-sGFP reporter plasmid (pHC127) with sasG promoter fused to a 173 

gene encoding sGFP. This plasmid was transformed into mutants of the ArlRS and 174 

MgrA regulatory systems, previously suspected to repress the expression of SasG, and 175 

the expression levels were monitored over 24 h (Fig. 2A). The highest expression was 176 

observed in the ∆mgrA mutant, followed by the ∆arlRS mutant, with minimal expression 177 

in WT. The high expression in ∆mgrA mutant was confirmed at the protein level (Fig. 178 

2B). We analyzed the sasG promoter region by 5’RACE to identify a putative 179 

housekeeping promoter and transcriptional start site (Fig. 2C). Putative MgrA repressor 180 

binding sites are shown that overlap the promoter region. Overall, our findings confirms 181 

that expression of SasG in laboratory growth media is repressed by the ArlRS – MgrA 182 

regulatory cascade.  183 
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 184 

SasG processing after A-domain repeats promotes aggregation in human saliva  185 

As noted in Figure 1, a large protein consistent with the size of SasG was 186 

upregulated in the ∆mgrA mutant and processed to a smaller version after incubation 187 

with human saliva (Figs. 1C & 3A).  These observations suggest that proteases present 188 

in saliva could process SasG to smaller sizes. A previous report suggested that SasG 189 

possessed self-processing capability and that this cleavage occurred at multiple sites 190 

within the B domain [38].  While the self-processing might be occurring in other 191 

experimental conditions, we did not observe background processing in our experiments 192 

when bacteria were incubated in PBS (Fig. 1C). In contrast, our results indicate that 193 

SasG may be processed by a host protease(s), and there may be a single cleavage site 194 

near one end of the protein, similar to what is seen with Aap [46]. 195 

To determine the location of the cleavage site within SasG, we cloned and 196 

purified the extracellular portion of SasG. The LPXTG cell wall anchor was replaced 197 

with a hexahistidine tag, and the protein was expressed in a S. aureus strain that lacks 198 

secreted proteases [56]. Purified SasG was incubated with saliva and then re-purified 199 

before N-terminal sequencing to determine the cleavage site. The results revealed a cut 200 

site after Arg-144, which falls between the A repeats and lectin subdomain (Fig. 3A). 201 

This is similar to one of the two reported cleavage locations in Aap [46], but it is 202 

somewhat surprising because removal of the entire A domain was thought to be 203 

required for both Aap and SasG B domain homodimerization and subsequent 204 

aggregation [43, 46]. The cleavage of SasG by saliva was found to be dose-dependent 205 

(Fig. 3B), suggesting presence of specific cleaving protease(s) inside the saliva. 206 
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Therefore, purified SasG was incubated with saliva and protease inhibitors to identify 207 

the responsible protease(s). Minimal inhibition was seen with EDTA or PMSF alone, but 208 

in combination they almost completely inhibited cleavage of SasG (Fig. 3C). This result 209 

suggests that saliva contains at least two proteases, a metalloprotease and a serine 210 

protease, that process SasG and promote bacterial aggregation. 211 

To test if this truncated form of SasG could promote aggregation, we cloned both 212 

full-length and truncated versions of sasG and expressed them in strain USA300 LAC, 213 

which does not express a functional SasG on its own due to a frameshift mutation in its 214 

sasG gene. While expression of full-length SasG had only minimal effect on aggregation 215 

in buffer, and required saliva to facilitate a full-scale aggregation, the truncated version 216 

of SasG facilitated aggregation in buffer alone (Fig. 3D). This confirmed that removal of 217 

the 94 N-terminal amino acids of the A repeat region is sufficient to allow SasG to 218 

dimerize and promote aggregation. 219 

 220 

Fractionation to identify host proteases processing SasG 221 

Clarified saliva was concentrated, filtered, and passed over multiple columns to 222 

separate the proteins into fractions. First, we used anion exchange chromatography 223 

followed by size exclusion chromatography. These fractions were then tested to see if 224 

they could cleave purified SasG by running the reactions on SDS-PAGE gels and 225 

looking for a shift in SasG size (Fig. 4A). The level of SasG cleavage was highest in 226 

fractions 19-22 and these fractions were used going forward. In parallel, we tested the 227 

response of the isolated active saliva fraction with protease inhibitors to determine the 228 

exact class of the enzyme. The most inhibition was observed with AEBSF, Antipain, and 229 
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Leupeptin, suggesting the enzyme present in the active fractions is a serine protease 230 

(Fig. 4B).  After electrophoresis separation of fractions with highest activity (Fig. 4A), 231 

individual bands were extracted from the gel and the protein(s) identified by MALDI 232 

mass spectrometry. Seven proteases were detected in these bands with significant 233 

peptide coverage, including trypsin-1, prostasin, serine protease 27 and various 234 

cathepsins (Supp. Table 1). Considering the protease inhibitor patterns (Fig. 4B) , the 235 

best hit from the proteomics assessment was human trypsin. 236 

 237 

Validation of identified proteases 238 

We used commercially available trypsin to test SasG processing and promotion of S. 239 

aureus aggregation.  A range of trypsin concentrations (0-200 μg/mL) was incubated 240 

with purified SasG, and dose-dependent SasG processing was visualized on SDS-241 

PAGE (Fig. 5A). In parallel we performed aggregation assays at the same doses of 242 

protease (Fig. 5B).  At 0.2 μg/mL we started observing cleavage of SasG, which 243 

correlated with an increase in aggregation.  The levels of cleavage and aggregation 244 

increased at 2 μg/mL trypsin and remained fairly constant at 20 μg/mL (Fig. 5A, B).  245 

These findings demonstrated that trypsin can recapitulate the phenotype of SasG 246 

processing and promote aggregation.  At 200 μg/mL trypsin, the whole SasG protein 247 

was becoming degraded (Fig. 5A), and the aggregation phenotype was mostly lost 248 

(Fig. 5B).   249 

 250 

 251 

 252 
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Role of SasG in pneumonia model 253 

To examine the biological relevance of SasG in vivo, we intratracheally infected 254 

mice with MW2 ∆mgrA (thus, SasG-expressing) or with ∆mgrA ∆sasG double mutant 255 

(Fig. 6). No evidence of systemic dissemination was observed in this model (Fig. 6A). 256 

The mice that were infected with the double mutant lacking SasG showed decreased 257 

number of colonies in the lungs (Fig. 6B), compared to the ∆mgrA strain expressing 258 

SasG. At the same time markers of inflammation and tissue damage, that is number of 259 

leukocytes (Fig. 6C) and level of protein (Fig. 6D) in the bronchoalveolar lavage (BAL) 260 

remain similar irrespective of the injected strain. The same trend of decreased bacterial 261 

counts and not significantly affected leukocytes and protein levels was also observed 262 

when a lower dose of S. aureus was used for infection (Supplementary Fig. 1A-C). 263 

Overall, this suggests that during lung infection the presence of SasG on S. aureus 264 

surface has no effect on host response or local damage, but it does benefit survival of 265 

the pathogen when faced with host immune response. Overall, the mouse pneumonia 266 

data indicate that presence of SasG contributes to S. aureus virulence in vivo. 267 

  268 
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Discussion 269 

 Roughly one-third to half of healthy individuals are colonized by S. aureus in the 270 

nasal cavity and/or nasopharynx [57-59].  While S. aureus colonization is benign in 271 

healthy adults, presence of S. aureus in the respiratory tract is the major risk factor for 272 

developing pneumonia in the intensive care unit [60, 61]. Despite the high rate of S. 273 

aureus carriage in the oral cavity, only preliminary studies have been performed with S. 274 

aureus interactions with human saliva proteins [62, 63].  S. aureus predominantly binds 275 

human proteins using microbial surface components recognizing adhesive matrix 276 

molecules (MSCRAMMs) [64].  We have previously shown that the ArlRS/MgrA 277 

regulatory cascade controls expression of MSCRAMMs and other surface proteins that 278 

function in adhesion and immune evasion [65].  Strains lacking either arlRS or mgrA 279 

overexpress these surface proteins, and in this work we made the surprising discovery 280 

that a S. aureus mgrA mutant aggregates in the presence of human saliva. We found 281 

that intercellular aggregation is dependent on expression of SasG, but also requires 282 

host factors in saliva to process SasG. 283 

In previous studies we demonstrated that full-length SasG is sufficient to block 284 

clumping and adhesion of cells by physically interfering with other surface proteins’ 285 

ability to bind to host matrix components [49, 51, 66, 67]. However, SasG expression is 286 

low in S. aureus laboratory strains under standard in vitro conditions, which masks 287 

these clumping interference and aggregation phenotypes. Through our mapping of the 288 

sasG promoter and transcriptional reporter assay, we show that sasG expression is 289 

repressed by ArlRS/MgrA, and we identify a potential MgrA binding site that overlaps 290 
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with the sasG promoter. Therefore, inactivation of the ArlRS-MgrA cascade allows for 291 

high expression levels of sasG.   292 

We also found that there is significant variation in sasG expression and 293 

molecular characteristics among strains: not all S. aureus strains have a functional (full-294 

length) copy of SasG, and of the strains that have the functional gene, not all express 295 

SasG at detectable levels. USA400 MW2 and 502a encode full length, surface-attached 296 

copies of SasG with 5 B-repeats which aggregate with high efficiency. Bioinformatic 297 

analysis of the CF isolate AH4654 genome revealed the sasG, mgrA, and arlRS genes, 298 

and their respective promoter regions are all essentially identical to MW2. Interestingly, 299 

this CF isolate expresses SasG and aggregates natively (Fig. 1), similar to other S. 300 

aureus isolates that that fall into ST15/CC15 grouping [47].  In contrast strain Newman, 301 

despite encoding a full-length SasG, does not present it on its surface and does not 302 

aggregate with or without MgrA. The reason SasG is not functional in Newman is 303 

unclear at this time.  Strains such as USA300 LAC and N315 have truncated copies of 304 

SasG due to frameshift mutations and therefore cannot aggregate. Other strains like 305 

MN8 and MRSA252 do not possess sasG and any observed aggregation was likely due 306 

to another surface protein.  307 

SasG is one of the key drivers of biofilm formation in S. aureus [38, 40, 45, 47]. 308 

SasG, and its S. epidermidis homolog Aap, consist of multiple domains with distinct 309 

functions (Fig. 1A). In S. epidermidis the Aap A domain is known to be removed by the 310 

secreted metalloprotease SepA to facilitate biofilm accumulation [46], but native S. 311 

aureus secreted proteases have not been found to cleave SasG in the same manner 312 

[38]. Previous studies on S. epidermidis Aap also showed that exogenously added host 313 
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proteases, such as trypsin and cathepsin G, could cleave Aap and enhance biofilm 314 

formation through processing [43]. Our studies have found a parallel role for host 315 

proteases in cleaving S. aureus SasG and triggering aggregation. 316 

During infection, S. aureus uses mechanisms of aggregation and biofilm 317 

formation as survival strategy to protect itself long-term in response to environmental 318 

stressors, such as antimicrobials or host immune factors. Our data demonstrates that 319 

upregulation of sasG is associated with increased aggregation upon interaction with 320 

human saliva, which is known to contain numerous proteases [68]. Considering that the 321 

aspiration of saliva secretions is a common precursor to lung infection [69], our findings 322 

indicate that salivary proteases are capable of cleaving SasG at a single site within the 323 

A domain. This processing removed the 94 amino acids that compose the A-repeats, 324 

exposing the A-lectin and B-domains to interact on neighboring cells and homodimerize.  325 

We fractionated the proteases to identify human trypsin and validated with commercially 326 

available trypsin. However, additional serine and metalloproteases may also contribute 327 

to processing of SasG.  From an adaptive standpoint, S. aureus may have evolved a 328 

surface protein like SasG that is proteolytically labile, which can sense environmental 329 

conditions and facilitate aggregation to protect S. aureus under stress.  330 

 Despite significant biochemical and structural studies on SasG, accompanied by 331 

experiments in vitro, there are no studies determining its contribution to virulence in 332 

animal models of infection. However simultaneous deletion of SasG and Eap did reduce 333 

insect mortality in a silkworm infection model [70]. In this work, we provide evidence that 334 

SasG contributes to S. aureus in establishment of a lung infection. We demonstrated 335 

that SasG is important for S. aureus to survive and proliferate at the infection site. 336 
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However, the presence of SasG did not impact the host response or damage to host, 337 

suggesting it is solely important for S. aureus survival in a stressful environment. 338 

In summary, we have shown that the global regulator MgrA controls expression 339 

of the surface protein SasG. There is variation in the type and amount of sasG 340 

expressed among S. aureus strains, but expression of full-length SasG is associated 341 

with increased aggregation which is dependent on the presence of host proteases.  We 342 

identified the serine protease human trypsin as a component of saliva that can process 343 

SasG A-domain to trigger aggregation.  Finally we showed that SasG is important for 344 

full virulence in a S. aureus lung infection.  345 

 346 

347 
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Material and Methods 348 

Reagents and growth conditions 349 

S. aureus strains and plasmids used in this work are listed in Table 1. AH4654 is one of 350 

75 clinical isolates, isolated from 10 pediatric CF patients and kindly gifted by the 351 

Starner Lab, University of Iowa. S. aureus was cultured in tryptic soy broth (TSB) or 352 

brain heart infusion (BHI) broth, and E. coli was cultured in lysogeny broth (LB) at 37 °C 353 

with shaking at 200 rpm. Antibiotics were added to the media at the following 354 

concentrations: chloramphenicol (Cam), 10 μg/mL; erythromycin (Erm), 5 μg/mL; and 355 

tetracycline (Tet), 1 μg/mL. E. coli strains with plasmids were maintained on media 356 

supplemented with ampicillin at 100 μg/mL; kanamycin, 50 μg/mL; or spectinomycin at 357 

50 μg/mL. Porcine trypsin and the Protease Inhibitors Set (Roche) were purchased from 358 

Sigma. Stimulated saliva was collected over 10-30 min by chewing on paraffin wax. 359 

Particulate material was removed by centrifugation, and this clarified saliva was stored 360 

at 4°C for up to 2 days. 361 

 362 

Recombinant DNA and genetic techniques 363 

E. coli DH5α and DC10B were used as a cloning host for plasmid constructions.  364 

Restriction enzymes, DNA ligase, and Phusion DNA polymerase were purchased from 365 

New England Biolabs.  The plasmid mini-prep and gel extraction kits were purchased 366 

from Invitrogen. S. aureus genomic DNA was purified using the Puregene 367 

yeast/bacteria kit B (Qiagen). Lysostaphin, used for S. aureus DNA extractions, was 368 

purchased from Sigma.  Plasmids were purified from S. aureus RN4220 or E. coli 369 

DC10B and electroporated into MRSA LAC strains as described previously [71, 72]. 370 
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Bacteriophage transductions between S. aureus strains were performed with phage 11 371 

as described previously [73]. All oligonucleotides were ordered from IDT (Coralville, IA) 372 

and are listed in Table 2.  Routine DNA sequencing was performed at the University of 373 

Iowa DNA Core Facility or the Molecular Biology Service Center at the University of 374 

Colorado Anschutz Medical Campus. Whole genome sequencing was performed at the 375 

University of Iowa DNA Core Facility with the Illumina MiSeq platform followed by de-376 

novo contig generation with the SPAdes genome assembler [74], and quality assessed 377 

with QUAST [75].  Assemblies were annotated with Prokka [76]w.  The draft genome of 378 

AH4654 was deposited to NCBI and Illumina data is available in Genbank (accession 379 

no. JAPQKW000000000). 380 

 381 

RNA purification and RT-qPCR 382 

Bacterial cultures were grown overnight in TSB and then subcultured to an OD600 of 1.5. 383 

Cells were then pelleted and washed with RNAprotect Bacterial Reagent (Qiagen). To 384 

extract RNA, cells were lysed with lysostaphin for 30 minutes at room temperature, and 385 

RNA was purified using the RNeasy Mini Kit (Qiagen). Following RNA purification, 386 

genomic DNA was then removed using the Turbo DNase Kit (Ambion). cDNA was then 387 

generated from DNase treated RNA template using the iScript cDNA synthesis kit (Bio-388 

Rad). To perform quantitative PCR (qPCR), Primers KK15 and KK16 were used for 389 

sasG, and KK23 and KK24 for DNA gyrase (gyrB), as described previously [49]. qPCR 390 

was performed by amplifying cDNA in 20 µL reaction volumes with iTaq Universal 391 

SYBR Green Supermix (Bio-Rad) in the CFX96 Touch Real-Time PCR System (Bio-392 

Rad) under the following conditions: 3 min at 95°C, 40 cycles of 10 s at 95°C and 30 s 393 
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at 59°C, followed by a dissociation curve. No template and no reverse transcription 394 

controls were performed in parallel. Experiments were performed in biological triplicate 395 

with two technical replicates, expression was normalized to gyrB. 396 

 397 

sasG promoter mapping and GFP fusion plasmid 398 

The sasG promoter was mapped using rapid amplification of 5’ cDNA ends (5’ RACE) 399 

[77]. Template RNA was purified from MW2 ΔmgrA using the RNeasy Mini Kit (Qiagen) 400 

as previously described [49]. Primers used were the general 5’ RACE primers [77] 401 

HC608, HC609, and HC610, and the sasG-specific primers HC611, HC612, and 402 

HC613.  To generate the PsasG-GFP fusion plasmid, the region upstream of sasG was 403 

amplified using primers HC598 and HC599. The fragment was digested using XbaI and 404 

KpnI before ligating into pCM29 [78]. The resulting plasmid, pHC127, encodes the sasG 405 

promoter upstream of an optimized ribosome binding site and codon optimized gene for 406 

superfolder GFP. To assess expression, overnight cultures were diluted 1:100 in TSB 407 

containing chloramphenicol in a black 96-well plate. Plates were incubated at 37 °C with 408 

shaking in a humidified microtiter plate shaker (Stuart). A Tecan Infinite M200 plate 409 

reader was used to periodically measure OD600 and fluorescence intensity with 410 

excitation at 495 nm and emission at 515 nm. Values represent averages and standard 411 

deviations of triplicate wells. 412 

 413 

S. aureus aggregation assay 414 

S. aureus cultures (5 mL) were grown overnight in TSB with shaking at 37 °C. One mL 415 

of culture was harvested by centrifugation and the media was discarded. The cells were 416 
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resuspended in 1 ml of either phosphate buffered saline or clarified human saliva. 417 

Tubes were allowed to sit for 1 h at room temperature, and then aggregation was 418 

visually assessed. For quantification of aggregation, 100 μL of liquid was removed from 419 

the top of the tube at 0 h and 1 h, and the optical density at 600 nm was measured in a 420 

96-well plate in a Tecan infinite M200 plate reader. Measurements represent averages 421 

and standard deviations of experiments performed on three separate days. 422 

 423 

Cell wall preparations 424 

For preparation of cell wall proteins after aggregation assays, the tubes were 425 

centrifuged, and the cells were washed twice with PBS. The cells were resuspended in 426 

500 μL of protoplasting buffer (10 mM Tris pH 8, 10 mM MgSO4, 30% raffinose). 427 

Lysostaphin (25 μg) was added and the cells were incubated for 1 h at 37 °C. The tubes 428 

were centrifuged for 3 min at max speed, and 500 μL of supernatant was transferred to 429 

a new tube. Proteins were precipitated by adding 125 μL of cold trichloroacetic acid and 430 

leaving on ice for 2 h. Precipitated proteins were pelleted by centrifuging at max speed 431 

for 10 min. The pellet was washed twice with 500 μL of cold 100% ethanol and then 432 

inverted to dry. The pellets were resuspended in 36 μL of SDS-PAGE loading dye, 433 

heated to 85°C, and then 10 μL was loaded on a 7.5% acrylamide gel. 434 

 435 

Purification of full-length SasG 436 

The sasG gene from S. aureus MW2 was amplified using primers HC416 and HC418 437 

(Table 2), which remove the last 33 amino acids of SasG, including the LPXTG cell wall 438 

anchor, and replace them with a glycine followed by six histidine residues. This C-439 
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terminally tagged, secreted version of sasG was cloned into pALC2073 under the 440 

control of an anhydrotetracycline-inducible promoter, generating pHC90. We decided to 441 

purify this version of SasG from S. aureus LAC, which does not have an intact copy of 442 

sasG on the chromosome. To avoid potential proteolysis, we used a previously 443 

developed strain of LAC lacking secreted proteases (AH1919). Additionally, we modified 444 

AH1919 to be resistant to anhydrotetracycline by integrating the empty vector pLL29 445 

[79] in the phage 11 attachment site, generating host strain AH4607. 446 

 For expression of SasG, pHC90 was moved into AH4607 and a 5 mL culture was 447 

grown overnight at 37 °C in TSB with chloramphenicol. This overnight culture was used 448 

to inoculate 1 L of TSB supplemented with chloramphenicol and 0.15 μg/mL 449 

anhydrotetracycline. The culture was grown with shaking for ~6.5 h at 37°C. Cells were 450 

removed by centrifugation, and the culture supernatant was concentrated to ~30 mL 451 

using an Amicon stirring pressure concentrator with a 100 kDa cutoff filter. The 452 

supernatant was dialyzed twice against binding buffer (50 mM sodium phosphate, 300 453 

mM NaCl, pH 8). SasG-His6 was then purified using a pre-packed 5 ml IMAC cartridge 454 

(Bio-rad) on a Bio-rad FPLC. SasG-His6 was eluted with a linear gradient up to 100% 455 

elute buffer (50 mM sodium phosphate, 300 mM NaCl, 250 mM imidazole, pH 8). The 456 

protein was then concentrated and dialyzed against storage buffer (20 mM sodium 457 

phosphate, 150 mM NaCl, pH 7.5). Glycerol was added to 20% before flash freezing 458 

and storing at -80°C. 459 

 460 

SasG processing assays 461 
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Purified, full-length SasG was diluted 10-fold in phosphate buffered saline, and 2 μL of 462 

this dilution was combined with 2 μL of water and16 μL of clarified saliva or saliva 463 

fraction. Reactions were incubated for 1 h at 37 °C unless otherwise indicated. 464 

Processing was then quenched by adding 7 μL of SDS-PAGE loading buffer and 465 

heating to 65 °C. 10 μL of this was then loaded on a 7.5% or 10% gel, or a 4-20% 466 

gradient gel. For calculating the percentage of SasG processed, Coomassie-stained 467 

gels were scanned and quantified using Image Studio Lite (LiCor). 468 

 469 

Identifying the cleavage site within SasG 470 

A large SasG cleavage reaction was setup using 100 μL of purified SasG-His6, 900 μL 471 

of PBS, and 4 ml of clarified, filtered saliva. The reaction was allowed to incubate for 1.5 472 

h at 37 °C. The solution was then exchanged to binding buffer (same as above) using a 473 

100 kDa molecular weight cutoff filter (Amicon). SasG-His was then re-purified using 474 

HIS-Select resin (Sigma) and eluted with bind buffer containing increasing 475 

concentrations of imidazole. Fractions containing SasG-His were pooled and 476 

concentrated to ~0.5 mL, and 2, 4, 6, and 8 μL aliquots were mixed with SDS-PAGE 477 

buffer, boiled, and run on a 4-15% gradient gel. Proteins were then transferred to a 478 

PVDF membrane using a Trans-blot Turbo transfer system (Bio rad) and the membrane 479 

was stained with Coomassie. N-terminal sequencing of cleaved SasG was carried out 480 

by Edman degradation using a Shimadzu PPSQ-53A Gradient Protein Sequencer at the 481 

Protein Facility at Iowa State University. 482 

 483 

Partial purification of proteases from human saliva 484 
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Stimulated saliva (~90 ml) was collected over one day and centrifuged at 30,000* g to 485 

remove debris. Clarified saliva was filtered and then concentrated to ~3 mL using 486 

30,000 MWCO centricon concentrators (Amicon) and dialyzed against buffer A (20 mM 487 

Tris pH 8, 2 mM NaCl). The sample was then separated by anion exchange 488 

chromatography using a HiScreen Capto Q column (GE Life Sciences), eluting with a 489 

linear gradient up to 100% buffer B (20 mM Tris pH 8, 1 M NaCl). Fractions were tested 490 

using the SasG processing assay described above, except that tubes were incubated 491 

for 2 h at 37 °C before running on an SDS-PAGE gel. Active fractions were pooled, 492 

concentrated to ~350 μL, and loaded on an SEC70 size exclusion column (Bio-rad). 493 

The running buffer consisted of 20 mM Tris pH 8 and 100 mM NaCl. 0.5 ml fractions 494 

were collected and tested for their ability to cleave SasG as described above, and a 495 

couple fractions (20 and 21) was selected for further analysis.  Protease inhibitors 496 

(Sigma) were used according to manufacturer’s instructions.  For protein identification, 497 

bands were excised from an SDS-PAGE gel and analyzed at the University of Colorado 498 

Mass Spectrometry Proteomics Shared Resource Facility. 499 

 500 

Pneumonia model 501 

All mouse experiments were conducted in accordance with National Institutes of Health 502 

guidelines and previously approved by the University of Colorado Institutional Animal 503 

Care and Use Committee. Wild-type (WT) female BALB/c, 6-8 weeks old, were 504 

purchased from Jackson Laboratories (Bar Harbor, ME).  Mice were anesthetized with 505 

isoflurane inhalation and challenged with approximately 2*108 colony-forming units 506 

(CFU)/30 μL of either mutant (ΔmgrA or ΔmgrA ΔsasG) S. aureus MW2 strain 507 
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intratracheally. A blunt-tipped, bent 18-g Hamilton syringe was used to administer 30 µL 508 

of S. aureus directly into the lungs. Mice were left to recover for 24 hours after which 509 

were euthanized using lethal dose of ketamine/xylazine. Trachea was cannulated and 510 

the right lobes were tied off allowing for unilateral bronchial alveolar lavage (BAL) fluid 511 

isolation from the left lung. The right lobes were weighed then homogenized for CFU 512 

determination. As a measure of lung inflammation and injury, leukocytes and protein in 513 

BAL fluid were measured. 514 
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Table 1. Bacterial strains and plasmids 525 

Strain/plasmid Genotype/properties Reference 
E. coli 

DH5α Cloning strain Protein Express 
DC10B Cloning strain (dcm-) [71] 
T7 Express Protein expression strain NEB 

S. aureus 
RN4220 Restriction deficient cloning host [80] 
MW2 USA400 CA-MRSA [81] 
AH3422 MW2 ΔmgrA [49] 
AH3989 MW2 ΔmgrA ΔsasG [49] 
AH1263 USA300 CA-MRSA ErmS (LAC*) [82] 
AH3375 LAC ΔmgrA [49] 
AH1919 LAC* Δaur ΔsspAB ΔstaphopainA 

Δspl::erm 
[56] 

AH4607 LAC* Δaur ΔsspAB ΔstaphopainA 
Δspl::erm φ11att::tet 

This work 

502a ST5 MSSA  
AH3625 502a ΔmgrA::tetM [49] 
Newman MSSA [83] 
AH3472 Newman ΔmgrA::tetM [49] 
N315 USA100 MRSA [84] 
AH3473 N315 ΔmgrA::tetM [49] 
MN8 USA200 MSSA [85] 
AH3480 MN8 ΔmgrA::tetM [49] 
MRSA252 USA200 HA-MRSA [86] 
AH3483 MRSA252 ΔmgrA::tetM [49] 
AH4654 MSSA CF Isolate This work 
AH4728 AH4654 ΔsasG::Tn Erm This work 

Plasmids 
pALC2073 Tetracycline-inducible shuttle vector, CamR [87] 
pRMC2 Tetracycline-inducible shuttle vector, CamR [88] 
pCM28 Empty vector control for pCM29, CamR [82] 
pCM29 sGFP expression vector, CamR [78] 
pTEV5 Expression vector with TEV-cleavable His6 

tag, AmpR 
[89] 

pHC66 mgrA complementation vector, CamR [49] 
pHC89 pALC2073-sasG This work 
pHC90 pALC2073-sasG-His6 (secreted) This work 
pHC108 pTEV5 sasG B repeat This work 
pHC116 pALC2073-sasG ΔN This work 
pHC127 PsasG-sGFP, CamR This work 
   

526 
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Table 2. Primers 527 
Code Name Sequence 
HC233 sasG Tn (up) 

confirmation 
ACTGTAAGCAAAGTGGAAAATATGG 

HC233 sasG 
Tn(down) 
confirmation 

CTCTGAACCTTTCAAGTCAGTTCTC 

HC416 MW2 sasG 5’ 
KpnI 

GTTGGTACCCACTGTAAGTAAAGTGGAAAATATGGAA 

HC418 MW2 sasG 
His 3’SacI 

GTTGAGCTCTTAATGATGATGATGATGATGACCTTCTGCTCGTT
TTTTCTCTTGAT 

HC598 PsasG 5’XbaI GAAGTTCTAGAAGTATGTTTCGAGATTTTAATATCTTGG 
HC599 PsasG 3’KpnI GTTGAGGTACCCTTTTTCCATATTTTCCACTTTACTTAC 
HC608 QT CCAGTGAGCAGAGTGACGAGGACTCGAGCTCAAGCTTTTTTTTT

TTTTTTTT 
HC609 QO CCAGTGAGCAGAGTGACG 
HC610 QI GAGGACTCGAGCTCAAGC 
HC611 sasG GSP-RT TGGACATTATCTTTTAATGTAGTTGGATTCTC 
HC612 sasG GSP1 AGTTCCCAAATACATTAGTGAGCC 
HC613 sasG GSP2 TAGATGCTGTTCCAACTGTAAATTTTC 
KK015 sasG RT-

qPCR fwd 
GCAGAAGCAGCTGAAAACAA 

KK016 sasG RT-
qPCR rev 

GTGGTGCAGTGTCTTTGTTTG 

KK23 gyrB RT-
qPCR fwd 

AACGGACGTGGTATCCCAGTTGAT 
 

KK24 gyrB RT-
qPCR rev 

CCGCCAAATTTACCACCAGCATGT 
 

 528 

  529 
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Figures and Figure Legends 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 
Fig. 1. S. aureus aggregates in presence of human saliva and high SasG levels. (A) 545 
Schematic of SasG domains.  (B-D) Overnight cultures of the indicated MRSA MW2 546 
strains were spun down and resuspended in either phosphate buffered saline or 547 
clarified human saliva. (B) Photo shows aggregation of the ∆mgrA mutant after one hour 548 
of incubation at room temperature. (C) Coomassie stained SDS-PAGE gel shows cell 549 
wall preps from these same samples after one-hour incubation as described above. 550 
Experiment is representative of at least three replicates. (D) Quantification of 551 
aggregation of MW2 WT with the empty vector pCM28, or ∆mgrA mutant with either 552 
pCM28 or the complementation vector pCM28-mgrA (pHC66) in the presence of saliva. 553 
Data represent averages and standard deviations of three separate experiments. 554 
Statistical significance was calculated by One-way ANOVA. ****, p ≤ 0.0001; ns, not 555 
significant. (E) Various S. aureus strains with full-length, truncated or lacking sasG were 556 
incubated with human saliva and aggregation was measured following 2hrs of 557 
incubation. (F) Cell wall proteins were precipitated from overnight cultures and run on 558 
SDS PAGE to observe relative SasG expression levels. (G) Quantification of sasG gene 559 
expression of various S. aureus mgrA mutant strains relative to the respective wild-type 560 
sasG expression (n=3). Values are normalized to gyrB expression in each strain.   561 
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 569 
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 574 
 575 
 576 
 577 
 578 
Fig. 2. SasG expression is regulated by ArlRS and MgrA. (A) Expression of a PsasG-579 
GFP transcriptional reporter in the wild-type strain MW2 and isogenic ∆mgrA and 580 
∆arlRS mutants. (B) Coomassie-stained SDS-PAGE gel of shed surface proteins from 581 
MW2, as well as ∆mgrA and ∆mgrA ∆sasG mutants. The SasG band is indicated. (C) 582 
Transcription start site (in bold) of sasG determined using 5’RACE. The ATG start 583 
codon is boxed, and putative -35 and -10 elements are shaded in gray. A potential MgrA 584 
binding site is underlined.   585 
 586 
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 606 
 607 
 608 
 609 
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 611 
 612 
 613 
Fig. 3. Saliva cleaves SasG within the A domain. (A) The sasG gene from S. aureus 614 
MW2 was cloned with a C-terminal His6 tag in place of the cell wall anchor, allowing it to 615 
be purified from S. aureus culture supernatants. This purified, full-length SasG was then 616 
incubated with human saliva for 1.5 h, resulting in SasG cleavage (shown in 617 
Coomassie-stained gel on left). Cleaved SasG was re-purified and subjected to N-618 
terminal sequencing, which showed the cleavage site to be N-terminal to the lectin 619 
domain. (B) Human saliva was concentrated ~5-fold before generating a 2-fold dilution 620 
series. Purified SasG was then added, and the reactions were incubated for 1 h at 37 621 
°C. (C) Saliva was pre-incubated with either 2.5 mM EDTA, 2.5 mM PMSF, or both, 622 
before adding purified SasG. Reactions were incubated for 2 h at 37 °C before resolving 623 
on an SDS-PAGE gel. SasG bands were quantified, and the percentage processed to 624 
the shorter product was calculated. Results are averages of three experiments, with 625 
statistical significance calculated by ANOVA. ***, p < 0.001. (D) Aggregation of LAC 626 
strain, lacking its own SasG, and expressing from a plasmid either a full-length SasG 627 
construct, or SasG construct with truncated N-terminal domain what replicates the effect 628 
of saliva processing. Aggregation was measured on S. aureus from overnight cultures 629 
suspended in saliva or PBS buffer for 1h. N=7. Coomassie stained SDS-PAGE gels 630 
showing expression and processing of SasG constructs in each strain were prepared 631 
from cell wall preparations of the above mentioned samples after the incubation. 632 
 633 
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 648 
 649 
Fig. 4. Partial purification of SasG processing enzyme from human saliva. (A) Pooled 650 
active fractions from passing saliva over an anion exchange column were then passed 651 
over a size exclusion column. Coomassie stained gel shows SasG cleavage by selected 652 
fractions from the size exclusion purification. Fraction numbers are indicated above the 653 
gel, and bars show percent SasG cleavage for each fraction. Molecular weight 654 
standards in kDa are indicated on the left. (B) Aliquots of fraction 20 were pre-incubated 655 
with the indicated protease inhibitors for 15 min before adding SasG. Cleavage of SasG 656 
was measured after 1.5 h at 37°C by separating on an SDS-PAGE gel and quantifying 657 
percent cleavage. 658 
 659 
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 686 
Fig. 5. Trypsin can process SasG and promote S. aureus aggregation. (A) Purified full-687 
length SasG was incubated for 1 h with either human saliva or serial dilutions of trypsin 688 
before running on an SDS-PAGE gel and staining with Coomassie. (B) S. aureus MW2 689 
∆mgrA cells were resuspended in either saliva or PBS supplemented with trypsin and 690 
allowed to aggregate for 1 h. Measurements are averages and standard deviations of 691 
three separate experiments. 692 
 693 
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 717 
 718 
Fig. 6.  SasG is involved in S. aureus virulence in lung infection. Mice were infected 719 
intratracheally by S. aureus MW2 ∆mgrA and by its congenic strain ∆mgrA ∆sasG 720 
lacking SasG, and severity of pneumonia was assessed by weight loss (A), counting the 721 
CFU burden in lung homogenates (B), lung leukocyte recruitment in bronchoalveolar 722 
lavage (C), and protein infiltration in lavage fluid (D) after 24h. Results presented as 723 
means ± SEM, with statistical significance calculated by Mann-Whitney test. *, p < 0.05. 724 
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 747 
Fig. 7. Model of SasG transcriptional and post-translational regulation. (A) Expression 748 
of sasG is repressed by the ArlRS-MgrA regulatory cascade. At the post-translational 749 
level, host proteases such as trypsin can remove the N-terminal end of the A domain. 750 
(B) Removal of the end of the A domain (dark blue) allows SasG to oligomerize with 751 
SasG molecules on neighboring cells, resulting in aggregation of S. aureus. 752 
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