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Abstract  

Attention-deficit/hyperactivity disorder (ADHD) is characterized by involuntary fluctuations 

of attention in continuous performance tasks (CPTs) wherein attention must be sustained over 

long periods of time. The neuronal basis underlying aberrant attentional fluctuations in time 

scales from seconds to minutes have remained poorly understood. Neuronal alpha- and gamma-

band oscillations are thought to implement attentional and top-down control of sensorimotor 

processing. We hypothesized that aberrant behavioral fluctuations in ADHD would be caused 

by aberrant endogenous brain dynamics in alpha and gamma-band oscillations and specifically 

by their aberrant long-range temporal correlations (LRTCs). We measured brain activity with 

magnetoencephalography (MEG) from adult participants diagnosed with ADHD (N = 19) and 

from healthy control subjects (N = 20) during resting state and two CPTs; a threshold stimulus 

detection task and a Go/NoGo task. We then estimated LRTCs of neuronal oscillations and 

behavioral fluctuations with detrended fluctuation analysis (DFA).  ADHD was associated with 

aberrant LRTCs in both behavioral performance and of neuronal oscillations. LRTCs were 

correlated with symptom severity with a U-shaped correlations indicating that the LRTCs were 

largest with moderate symptom scores. These data demonstrate the presence of aberrant 

temporal dynamics of neuronal oscillations in adult ADHD patients, which may underlie 

involuntary attentional fluctuations in ADHD. Taken that LRTCs are a hallmark of brain 

critical dynamics, these data show that moderate ADHD symptoms scores maximize brain 

criticality which is thought to be beneficial for performance. 
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Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is a heritable neurodevelopmental condition 

that is characterized by detrimental levels of impulsive, inattentive and/or hyperactive traits.1,2 

ADHD affects 2.5–3.4 % of the adult population worldwide and its incidence has increased 

markedly in the last decade.3 Current diagnostic tools for ADHD are largely based on 

subjective appraisals such as clinical interviews, self-reports, and observations by caregivers. 

However there are no reliable biomarkers that would enhance either the precision or accuracy 

of the diagnosis.4 The development of reliable biomarkers and diagnostic criteria for ADHD 

are critically dependent on understanding the neuronal substrates of the disease symptoms, 

which may reveal ADHD-specific neuronal biotypes, or neurotypes, with abnormalities in 

neuronal dynamics despite no clear differences in behavioral testing.5 

The cognitive functioning of individuals with ADHD is characterized by altered reaction times 

(RTs) and increased reaction time variability (RTV), which reflect the drifting of attention, loss 

of focusing, and failures in executive functions.6–8 Such cognitive deficits are especially 

observable in excessive performance fluctuations in continuous performance tasks (CPTs) 

where attention must be sustained for a longer period of time in a monotonous or “boring” 

environment.9,10 Elevated RTV and decreased response inhibition reflect individual differences 

in executive functioning and constitute an endophenotype in ADHD.8 Attentional and 

executive functioning drifts involve time scales from seconds to hundreds of seconds in both 

healthy subjects and clinical populations. Behavioral performance in CPTs is characterized by 

slow oscillations or “streaks” in RT time-series,8,11 and power-law long-range temporal 

correlations (LRTCs),12,13 which are likely driven by similarly individually variable LRTCs in 

endogenous brain dynamics.14 However, how behavioral LRTCs are associated with ADHD 

symptomatology or even how deficits in RTV and other psychophysical measures in ADHD 

patients are generally related to LRTCs have remained unclear. 
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Magnetic resonance imaging (MRI) of the brain has established that ADHD is associated with 

structural changes in surface-based morphometry (SBM) measures such as gyrification,15 as 

well as with structural and functional connectivity16 measures; albeit findings are somewhat 

inconsistent.17 At the functional level, evidence for abnormal neuronal dynamics in ADHD 

patients have been found in electro- (EEG) and magnetoencephalography (MEG).18–21 Alpha 

(8−12 Hz) and beta (13−30 Hz) band oscillations, which are fundamental for attention and top-

down control,21–26 show reduced task-dependent suppression and lateralization of local 

oscillation amplitudes in adults21,27–29 and children30 with ADHD.  Such aberrant modulation 

of oscillation amplitudes are thought to arise from decreased structural connectivity (SC) 

between fronto-parietal (FP) regions.28 However, even though these prior studies convergently 

indicate abnormal event-related and sub-second oscillation dynamics in ADHD, such short-

range dynamics do not directly explain the temporally long-range and long time-scale deficits 

in sustained attention.  

Oscillation amplitudes have been found to exhibit not only short-range correlations but also 

slow fluctuations over several seconds up to minutes. Similar to fluctuations in behavioral 

performance, these neuronal activity fluctuations are slowly decaying, scale-free (i.e. without 

characteristic temporal scale) and can be described with power-law LRTCs.14,31–35 LRTCs are 

thought to be the hallmarks of brain criticality36 and indicate that healthy brain activity is in the 

critical state between order and disorder that is thought to maximize the information processing 

capacity. Importantly, there are also large individual variability in neuronal LRTCs within 

healthy brain activity which predict variability of LRTCs in behavioral performance in CPT 

tasks and therefore predict the length of behavioral streaks in a trait-like manner.11,14,33 

Indicative of their critical role in healthy brain dynamics, LRTCs are attenuated in patients with 

epilepsy,37 Alzheimer’s disease,38 schizophrenia or schizoaffective disorders,39–41 autism 

spectrum disorder42,43 and major depression,44,45 compared to neurotypical control subjects. 

However, it remains unknown whether neuronal LRTCs are abnormal also in ADHD patients, 
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even though specifically this patient group struggles to sustain attention over long temporal 

durations and their behavioral performance is characterized by aberrant dynamics (e.g. 

increased RTV) especially in CPTs. 

We tested here whether ADHD would be characterized by aberrant neuronal LRTCs by 

recording MEG data during two different CPTs from adult ADHD patients. We estimated 

behavioral LRTCs from the CPT RT time-series, and neuronal LRTCs from MEG oscillation 

amplitude fluctuations, using detrended fluctuation analysis (DFA). We found altered neural 

LRTCs in oscillation amplitude fluctuations in ADHD patients and demonstrated that they 

were correlated with both the variability in behavioral LRTCs and the severity of ADHD 

symptoms. 

 

Methods and Materials 

Participants 

The sample comprised of N = 23 healthy neurotypical control participants (mean: 33 years old, 

range: 18-57; 15 females, 1 left-handed), and N = 23 patients with prior diagnosis of ADHD 

(mean: 36 years old, range: 26-59; 13 females, 3 left-handed) recruited from a previous study46 

and from the University of Helsinki students. The sample size was known to induce reliable 

LRTCs based on a previous study.14 Inclusion criteria for all participants were: aged 18-60 

years, male or female, normal or corrected to normal vision, and compatibility with MEG and 

MRI. Exclusion criteria included any substance abuse or medications active in the central 

nervous system and ADHD patients were asked to refrain from medications 24 hours before 

the MEG recordings. The control group exclusion criteria included any neurological or 

neuropsychiatric disorder and for the ADHD group any comorbid neurological or 

neuropsychiatric disorder or IQ < 80. This research was conducted in compliance with the 
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Declaration of Helsinki and approved by the Research Ethics Board at Helsinki University 

Central Hospital. All participants gave written informed consent prior to participation. 

 

Psychopathology. The severity of ADHD in all participants was assessed with Barratt 

Impulsiveness Scale (BIS),47 Brown Attention-Deficit Disorder Rating Scale (BADDS),48 and 

Adult ADHD Self-Report Scale (ASRS)49; see Supplementary Table 1.  

 

Tasks and Experiments 

MEG data was collected during resting state (RS) activity and during two visual CPTs collected 

on separate days. Both tasks were presented in a projector screen inside a magnetically shielded 

room during MEG recordings. 

 

Resting state. Eyes-open 10 min resting state MEG data, during which participants fixated 

at the fixation cross in the center of the screen, were collected before task data collection. Data 

for RS were collected from N = 23 control participant and N = 23 ADHD participants.  

Visual Threshold of Stimulus Detection Task (TSDT). Participants were instructed 

to maintain fixation and detect the presence of stimuli presented at the visual threshold14 and 

individually pre-calibrated to achieve a 50% detection rate using the adaptive QUEST 

algorithm (Supplementary Table 1).50 Here misses reflect lapses in sustained attention. TSDT 

task was generated using Psychtoolbox-3. Visual stimuli of two shapes (50 % probability) were 

presented in any orientation with duration of 0.1 seconds in slowly-varying gradient noise with 

a diameter of 10° 51 and with a random stimulus onset asynchrony (SOA) of 1.5 – 4.5 s (Fig. 

1A). During MEG, 500 stimulus trials were collected for each subject during a run of ~25 min. 

Go/NoGo task. Go/NoGo task is as in,12 where commission errors (i.e., erroneous responses 

to NoGo stimuli) constitute a measure of lack of sufficient cognitive control. The task was 
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coded using Presentation™ software (Neurobehavioral Systems, Inc., Albany, CA, USA). The 

stimulus was presented with a size of 1° for 0.1 s on a grey background with mean luminance 

of 107 cd/m2 (Fig. 1B). The Go (75% of trials) and NoGo (25% of trials) stimuli were 

distributed randomly in the stimulus stream with SOA of 1 s.12 Participants were instructed to 

respond as quickly as possible for the Go and withhold the responses for NoGo stimuli (Fig. 

1B). A total of 1000 trials were collected for each participant.  

 

Behavioral Data analysis 

Detection Hit Rates (HRs) and Reaction times (RTs) for TDST were computed as the 

proportion of correct detection, with a response provided between 200–1500 ms from stimulus 

onset. Despite the calibration before experiments, HRs for participants varied and participants 

with HR < 25% were excluded from the analysis leaving N=19 ADHD and N=19 control 

subjects. HRs for the Go/NoGo task, were computed for the correctly responded Go-trials 

(‘Hits’) and incorrectly responded NoGo-trials (‘Commission errors’ i.e false alarms) for 

responses provided between 150–800 ms from the stimulus onset. Here, high HRs are 

indicative of successful task performance and HR < 70% for the Go stimuli were excluded 

leaving N=19 ADHD and N=20 control participants. Reaction time variability (RTV) was 

derived by computing standard deviations over the individual RTs in Go-trials. In the TSDT 

task, behavioral LRTCs were computed over the continuous sequence of Hit and Miss trials as 

in14. In the Go/NoGo task, RTs for Hits, and Commission Errors i.e. False Alarms (FA) were 

all included in the RT timeseries, as in12. LRTCs were then estimated from the RT time-series 

using Detrended Fluctuation Analysis (DFA) as in52. The scaling exponent β is a measure of 

temporal clustering such that higher β values indicate stronger temporal dependencies while 

values closer to 0.5 are associated with uncorrelated noise.  

 

MEG and MRI Recordings 
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MEG data were recorded in the BioMag laboratory in HUS Medical Imaging Centre using 306-

channel MEG (Elekta Neuromag TRIUX) with a sampling rate of 1000 Hz and online passband 

of 0.03-330 Hz. Electro-oculography (EOG) data were recorded to detect and then remove 

ocular artifacts. Behavioral responses were recorded with electromyography of abductor/flexor 

of pollicis brevis muscle and detected with an automatic algorithm. T1-weighted anatomical 

MRI scans for cortical surface reconstruction models were obtained for each subject at a 

resolution of 1 x 1 x 1 mm (MP-RAGE) with a 1.5-T MRI scanner (Siemens, Germany).  

 

MEG preprocessing, source analysis, and surface parcellations 

Source reconstruction and data analysis followed previously published procedures.53–55 

Maxfilter software (Elekta Neuromag) was used to suppress extra-cranial noise and interpolate 

bad channels. Independent component analysis (ICA) (MATLAB) was used for identifying 

and extracting ocular and heartbeat artefacts. The MEG data were Morlet-wavelet filtered 

between, fmin = 3 Hz … fmax = 148 Hz with m = 5. Freesurfer software was used for volumetric 

segmentation of the MRI data, surface reconstruction, flattening, and cortical 

parcellation/labeling with the Destrieux atlas. MNE software56 was used for MEG-MRI co-

localization, and preparation of the forward and inverse operators. Noise-covariance matrices 

(NCMs) were computed with a regularization constant of 0.05 using 200–250 Hz filtered 

baseline data (-0.75 - 0.25 s) for both TSDT and RS-data for the Go/NoGo task (4x1 min for 

NCM and 2x1 min for ADHD). Source-model dipoles had fixed orientation with 5 mm 

resolution. Source source-space vertices were collapsed into 400 cortical parcels using fidelity 

optimized parcellations57 before further data-analysis.  

 

Analysis of LRTCs from Neuronal MEG Data 
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To estimate the LRTCs of oscillation amplitude fluctuations, we applied DFA on the amplitude 

envelope of the Morlet-wavelet filtered parcel time-series signals52 by segmenting data into 

time windows Δt from 1 to 225 seconds. Each segment of integrated data was then locally fitted 

similarly as for behavioral DFA.  

 

Statistical analysis of behavioral data  

Non-parametric Mann-Whitney U-test was used to test differences between the control and 

ADHD groups. The correlation between performance and the clinical total scores were assessed 

with Spearman’s ranked correlation test. The correlation between behavioral DFAs and the 

clinical scores, and RTV in the Go/NoGo -task, were assessed with Spearman’s ranked 

correlation test. 

 

Statistical analysis of MEG data 

Before statistical testing, the MEG data were collapsed into 200 parcels to decrease the impact 

of individual variability in brain functional anatomy. To identify the most significant and robust 

effects, statistical analyses were performed separately for each frequency and parcel. Within-

group differences between task-state and resting-state activity were obtained with Wilcoxon 

signed-ranked test while group differences were obtained using Welch’s t-test. The correlations 

between clinical scores and neuronal and behavioral scaling laws were estimated with 

Spearman rank correlation and quadratic correlations tests. Multiple comparisons were 

controlled with false discovery rate (FDR) correction at given the alpha-level (i.e., 5% at α = 

0.05). In addition, we applied a Q threshold to indicate the proportion of significant 

observations that could thereafter arise by chance in any of the wavelet frequencies. Only 

events that were above both corrected thresholds were considered significant.    
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Data availability statement  

Anonymized data underlying figures will be made available upon publication.  

 

Results 

Clinical evaluations and Symptom data  

We first validated that the ADHD participants had clinical symptoms as defined by ASRS, BIS, 

and BADDS scores, and that subjects in the control group had scores defined for neurotypical 

groups (Supplementary Table 1). For the ADHD group, the mean and standard deviation (SD) 

were 78.22 ± 12.88 for BIS, 67 ± 19.88 for BADDS, and 16.5 ± 3.68 ASRS (Fig. 1E). For the 

control participants, total scores were for ASRS were 8.79 ± 2.74 and for BIS were 59.58 ± 

10.00, both of which were significantly lower than in the ADHD group (ASRS, Mann-Whitney 

U-test, p = 2.1E-7, BIS, Mann-Whitney U-test, p = 3.8E-5, Fig 1E). Although these symptom 

scores are not officially part of any diagnosis criterium for ADHD, be it ICD-10 or DSM-5, 

and have been used mostly for screening purposes or evaluating the response for treatments, it 

has been suggested that a total BIS sum of 72 or above should be used to classify an individual 

as highly impulsive.58 In the case of ASRS, the maximum total score is 30, but for screening 

purposes certain questions weigh more than others. In this study, there were only two out of 23 

control subjects who fulfilled these screening criteria. Taken together, these data show that 

ADHD symptoms in the control participants were mostly below or in the subclinical regime.  

 

Behavioral task performance  

We first assessed the classical behavioral measures of ADHD using TSDT (Fig. 1A) and 

Go/NoGo (Fig. 1B) tasks by estimating measures from the behavioral time-series data (Fig. 
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Figure 1. Task schematics and behavioral data. Schematics of (A) Threshold of Stimulus

Detection Task (TSDT) and (B) Go/NoGo task experiments. (C) A short snapshot period of Hit-

Miss time-series of a representative subject in TSDT. (D) Reaction Time (RT) series of a

representative subject for each trial in Go/NoGo. Circles in the lower line above the time-series

represent commission errors and circles in the upper line are trials with successful inhibition. (E)

Distribution of BIS and ASRS scores for N = 21 ADHD patients (orange) and N = 23 neurotypical

control (blue) subjects. (F) Distribution of Hit rate (HR), and RT distributions separately for TSDT

and Go/NoGo tasks. (G) False Alarm (FA) rate and Reaction Time Variability (RTV). (H)

Behavioral DFA (Detrended Fluctuation Analysis) exponents for a representative subject (top) and

for the Ctrl and ADHD groups (bottom). Figure displays subject means ± 25 % for each

psychophysical parameter. The parenthesis above the figure illustrates significant difference

between the groups for the RTs (two-tailed Mann-Whitney U-test (U = 132), p = 0.043)) and RTVs

(two-tailed Mann-Whitney U-test, p = 0.012).
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1C-D). Taken that the TSDT task performance was pre-calibrated to a 50% stimulus-detection 

rate (Hit Rate, HR), as expected, the between-group differences in HRs were not significant 

for TSDT (Fig. 1F) (Control group (Ctrl) 40.35 ± 11.76  % (mean ± SD),  ADHD patients 49.45 

± 16.24%, Mann-Whitney U-test, p = 0.087) nor were there differences in reaction times (RTs) 

(Ctrl 0.56 ± 0.0455 s, ADHD 0.54 ± 0.058 s, Mann-Whitney U-test, p = 0.26). In the Go/NoGo 

task, HRs (Ctrl 91.5 ± 8.31 %, ADHD 91.27 ± 6.86 %, Mann-Whitney U-test, p = 0.77) nor 

RTs (Control 0.27 ± 0.039 s, ADHD 0.28 ± 0.035 ms, Mann-Whitney U-test, p = 0.14) were 

significantly different between the groups neither were the False alarms (FA) (Fig 1 E) (Ctrl 

0.12 ± 0.08 %, ADHD patients 0.18 ± 0.14 %, Mann-Whitney U-test, p = 0.14, Fig. 1G). 

However, as found previously, the reaction time variability (RTV) was larger for the ADHD 

group compared to the control group (Ctrl 0.076 s ± 0.022, ADHD patients 0.089 s ± 0.022, 

Mann-Whitney U-test, p = 0.038, Fig. 1G).  

We then identified long-range temporal correlations (LRTCs), or “streaks”, in behavioral Hit 

Miss times-series (Fig. 1C) and RT time-series (Fig. 1D) data for the TSDT and Go/NoGo 

tasks, respectively, by using DFA (Fig 1H). DFA exponents did not differ between control and 

ADHD groups for TSDT (0.74 ± 0.095 and 0.78 ± 0.086 respectively, Mann-Whitney U-test, 

p = 0.34, Fig 1H), but in the Go/NoGo task, DFA exponents were larger in the control than in 

the ADHD group (0.74 ± 0.066 in the control group and 0.69 ± 0.06 in the ADHD group, 

Mann-Whitney U-test, p = 0.018). 

 

Neuronal LRTCs differ between ADHD and control groups  

Oscillation amplitude envelopes were extracted from Morlet-wavelet filtered time-series of 

source-reconstructed MEG data (Fig. 2A) and used detrended fluctuation analysis (DFA) to 

identify DFA exponents (Fig. 2B). We first conducted a whole-brain-level analysis of neuronal 

LRTCs from oscillation amplitude envelopes such that the neuronal DFA scaling exponents 
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Figure 2. Differential modulations of neuronal DFA exponents in ADHD and control groups at the

whole-brain level. (A) Example of unfiltered neuronal time-series (top) and filtered oscillation

amplitude time-series (bottom, gray trace) with the amplitude envelope (bottom, black trace) (B) DFA

exponents extracted from oscillation amplitude envelope for a representative subject. (C) Group-level

mean DFA -exponents averaged over all parcels as a function of frequency for ADHD (orange) and

control (blue) groups during TSDT (Threshold of Stimulus Detection Task) and Go/NoGo tasks. Lines

above indicate significant differences between the groups. Gray shading shows 95% confidence

intervals. (D) Group-level differences in the DFA exponents between control and ADHD groups

estimated separately for each cortical parcel (Welch t-test, p < 0.05, FDR corrected). The y-axis shows

the fraction of cortical parcels (P) in which the difference was significant. Grey lines indicate Q -level

of 0.025 for 95th percentile for FDR correction indicating the proportion that could arise by change. (E)

Cortical regions in which the differences in theta/alpha (θ-α, 6-13 Hz) were observed in TSDT and in

theta (q) -band (5-8 Hz) DFA exponents were observed. The blue color indicates the fraction of time-

frequency elements (P-) that were significantly suppressed and red the fraction of time-frequency

elements (P+) that were significantly increased.

Fig. 2
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were computed across all parcels for the task. The whole-brain mean DFAs averaged across all 

parcels (brain areas) peaked in the alpha-band (, 8−13 Hz) in both tasks (Fig. 2C).  

To assess the group differences at parcel-level anatomical resolution, we computed parcel-wise 

differences in LRTCs between the groups. In line with the whole-brain-average analysis, the 

DFA exponents were smaller for control than for the ADHD group in the theta-alpha (−, 6-

10 Hz) band in the TSDT task and in the low theta ( − Hz) band in the Go/NoGo task (Fig. 

2D) (Welch’s t- test, p < 0.05, FDR corrected). Stronger LRTCs of theta-alpha oscillations in 

ADHD patients than in control participants were found in the occipital cortex in both tasks and 

during the TSDT task additionally in posterior parietal cortex (PPC) and temporal cortex (Fig. 

2E).  

 

Different task-dependent modulation of LRTCs in ADHD patients  

We then asked in parcel-level resolution whether these differential task effects between groups 

on LRTCs would be caused by different task dependent modulation compared to rest within 

the groups. In the control group, the theta-alpha (− 6-13 Hz) band DFA scaling exponents 

were suppressed in the task conditions compared to the in resting-state (RS) and increased from 

the RS in the wide gamma-band (, 30−60 Hz) (Fig. 3A) (Wilcoxon signed rank test, p < 0.05, 

FDR corrected). In the ADHD group there was only a slight suppression in the theta-alpha 

band DFAs and a robust increase in the wide gamma-band DFAs) during task compared to RS 

in both tasks (Fig. 3A). These differences in the task dependent modulations of DFA exponents 

were significantly different between the groups (Welch’s t- test, p < 0.05, FDR corrected).  

The suppression of theta-alpha band DFAs in TSDT task was widespread in the control group 

but restricted to somatomotor (SM) system in ADHD patients (Fig. 3B). This suggests that, 

during the performance of sensory detection task, ADHD patients successfully inhibit LRTCs 

only in the motor system, but not in other brain regions like the control group. In the Go/NoGo 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.14.519751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.519751


3 5 10 20 30 50 100

Frequency (Hz)

−1.0

−0.5

0.0

0.5

1.0

P
 T

a
s
k
 >

 R
e
s
t

TSDT

3 5 10 20 30 50 100

Frequency (Hz)

−1.0

−0.5

0.0

0.5

1.0

Go/NoGo

Ctrl

ADHD

A

B q-a -band DFA

C g-band DFA

C
tr
l

A
D
H
D

C
tr
l

A
D
H
D

Fig. 3

0 1.0
P-

0 1.0
P+

Figure 3. Task dependent modulations of neuronal DFA exponents. (A) Differences in DFA

exponents between task and rest for control (blue) and ADHD patients (orange) groups (Wilcoxon

signed rank test, p < 0.05, FDR corrected). The positive values indicate the DFA exponents that were

larger for the task than rest and vice versa for the negative values. Axis and shading as in Figure 2D. The

black bars above the plot indicate significant differences between the control and ADHD group (Welch

t-test, p < 0.05, FDR corrected). Grey shading displays Q -level of 0.025 for 95th percentile. (B)

Cortical regions in which the DFA exponents were reduced in theta/alpha (θ-α, 6-13 Hz) by task

performance and (C) increased in the gamma (g) band (30-60 Hz). The colors as in Figure 2E.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.14.519751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.519751


 

task, in which successful performance is dependent on inhibition and on the activity of PFC, 

the suppression of theta-alpha band DFAs was restricted to SM in control group but was also 

found in the PFC in the ADHD group, pointing to abnormal regulations of LRTCs in the key 

region underlying task performance (Fig. 3B). In contrast to suppressed theta-alpha DFAs, 

gamma band DFAs in both tasks were slightly increased during task performance in the control 

group (Fig. 3A) (Wilcoxon signed rank test, p < 0.05, FDR corrected) in visual and PFC regions 

(Fig. 3C), but robustly increased in ADHD group in nearly all brain regions (Fig. 3C). 

 

Neuronal LRTCs predict LRTCs in behavioral performance  

We next tested whether neuronal LRTCs could predict LRTCs in behavioral task performance. 

Neuronal and behavioral DFAs in the TSDT task showed significant robust positive 

correlations for ADHD group in alpha and beta bands, which was not seen for the control group 

(Fig. 4A, Spearman rank correlation, p < 0.05, FDR corrected). In the Go/NoGo task behavioral 

and neuronal DFAs were correlated positively with performance in the control group in the 

alpha band (Fig. 4A) while in ADHD group there was a negative correlation between theta-

alpha band DFAs and task performance.  In ADHD patients, these correlations arised from the 

activity in visual systems (Fig. 4B-C) while in control group positive correlations arised from 

the PFC.  

 

Neuronal LRTCs correlate with the ADHD symptom scores 

Finally, to test whether aberrant LRTCs were clinically relevant, we investigated if LRTCs 

were correlated with ADHD symptoms as quantified with ASRS and BIS scores. In both tasks, 

neuronal DFAs in the theta-beta band were negatively correlated with ASRS and BIS scores in 

ADHD patients (Fig. 5A). This indicated that smaller DFA exponents in patients were found 

to accompany worse ADHD symptoms in several parcels. In contrast, in healthy participants 
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Figure 4. Correlations between the neural and behavioral DFA exponents. (A) Group-level

correlation of neural and behavioral DFA exponents within subjects for TSDT and Go/NoGo tasks

(Spearman-Rank correlation test, p < 0.05, FDR corrected). The y-axis shows the fraction of cortical

parcels (P) with significant correlations and grey shading Q-level of 0.025 for 95th percentile (B)

Cortical regions in which neural DFA exponents were correlated with behavioral LRTCs in ADHD

patients in TSDT (Threshold of Stimulus Detection Task) tasks in the alpha (α, 8-13 Hz) and beta (b, 14-

30 Hz) bands. (C) Cortical regions in which neural DFA exponents were correlated with behavioral

LRTCs in the Go/NoGo task in Control subjects in the alpha band, and (D) in ADHD subjects in the

theta band. Colors as in Figure 3B and 3C.
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larger DFA exponents accompanied non-clinical increase in the ASSR and BIS scores (Fig 

5B). To further understand this bimodal distribution, we next averaged DFAs over all cortical 

parcels at a peak correlation frequency of 17 Hz and plotted the correlation of DFA exponents 

with ASRS and BIS scores (Fig. 5C). Taken the opposite correlations between LRTCs and 

symptom scores in the healthy controls and ADHD groups, we tested whether the correlations 

would be explained by an inverted U-shaped curve (i.e parabolic) where largest LRTCs are 

obtained with intermediate symptom score values. To this end, we estimated the partial 

quadratic correlations by regressing out the linear components between DFA exponents with 

ASRS and BIS scores. As predicted, quadratic correlations were significant both in TSDT and 

Go/NoGo tasks, demonstrating that maximal LRTCs values are obtained in the border between 

neurotypical behavior and ADHD symptoms (Fig. 5C).    

 

Discussion 

LRTCs are a characteristic feature of behavioral performance and healthy brain activity59  while 

their aberrancies are a characteristic feature of many brain diseases.37–45 We investigated 

whether aberrant behavioral fluctuations in sustained tasks in ADHD could arise from aberrant 

long-range temporal neuronal dynamics. We show here that behavioral LRTCs are decreased 

in ADHD in Go/NoGo task measuring response inhibition and cognitive control, this being 

paralleled by aberrant LRTCs of oscillation amplitude fluctuations. The deviant neuronal 

LRTCs were correlated with inter-individual variability in behavioral LRTCs both in TSDT 

and Go/NoGo CPTs, suggesting that aberrant neuronal fluctuations can be the cause of aberrant 

behavioral fluctuations in adult ADHD patients. Overall, these data demonstrate that altered 

LRTCs in oscillation amplitudes might constitute to the aberrant involuntary fluctuations of 

attention of adults with ADHD. 
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Figure 5. ADHD symptom scores predict neuronal LRTCs with an inverted U-shaped curve. (A)

Correlation of neuronal DFA values obtained from task data (solid line) and resting state data (dashed

line) with total ASR (N = 20) and BIS (N = 18) scores in the ADHD group (Spearman rank correlation

test, p < 0.05, FDR corrected) for TSDT and Go/NoGo tasks. Grey shading displays Q -level of 0.025

for 95th percentile. (B) The same as in A but for the control group. (C) Scatter plots of the correlations

between 17 Hz DFA and ASRS and BIS scores for for both TSDT and Go/NoGo data.
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ADHD patients had aberrant LRTCs in alpha and gamma-band oscillation amplitude 

fluctuations compared to neurotypical controls, both during resting-state and CPT execution. 

This shows that in ADHD, oscillation dynamics is altered across time scales from seconds to 

minutes, in addition to the previously found sub-second time scale abnormalities in alpha band 

for adult,21,27,29 adolescent60,61 and child ADHD patients,30 and in theta-62 and gamma-bands 

for adult ADHD.20 These results are also in line with a recent study reporting intrinsic temporal 

variability in functional connectivity in ADHD patients63 and show that aberrant temporal 

dynamics is also a characteristic of local neuronal processing. ADHD patients had larger alpha 

band LRTCs in RS compared control group suggestive of longer periods of mind wandering64,65 

In contrast, while in the control group alpha-band LRTCs were suppressed in task compared to 

RS-activity, this suppression was not evident in ADHD group. Instead, increased gamma-band 

LRTCs in the Go/NoGo task compared to RS was only observed in the ADHD group. This 

differential pattern of alpha and gamma frequency band LRTCs changes in response to task 

performance suggests that ADHD patients might have developed a compensatory mechanism 

to overcome the deficits in sustaining attention in experimental conditions.66 The localization 

of LRTCs was widespread across cortical regions, in line with prior studies of LRTCs 

location14 and results showing that altered neuronal processing in ADHD characterizes multiple 

brain systems in terms of fMRI BOLD signal strength67–75 and functional connectivity16,70,73,76 

as well as MEG oscillation power and connectivity28,77 analyses. DAN (Dorsal Attention 

Network) hyperactivation and stronger within-network connectivity of both VAN (Ventral 

Attention Network) and DAN78 have previously been interpreted as either a compensatory 

mechanism79 or deficient segregation of these networks. This implies that ADHD patients are 

challenged in engaging whichever network is more relevant for current behavioral goals. This 

supports the idea that increased task-dependent gamma-band LRTCs found in Go/NoGo task 

for ADHD patients reflect a compensatory mechanism to overcome difficulties in task 

performance demanding cognitive control. Opposite changes of alpha- and gamma-band 

LRTCs could lead to the behavioral deficits observed in ADHD, such as the increased attention 
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to distracting information reflected in stronger ERPs80 and a tendency for mind wandering81. 

In line with this idea, alpha and beta band LRTCs were correlated with behavioral DFA during 

task performance in TSDT task more strongly in ADHD patients. This suggest that sensory-

driven task differences in LRTCs in oscillation amplitude fluctuations could lead to aberrant 

behavioral fluctuations observed previously to characterize ADHD.82 These findings are in line 

with hypoarousal and unstable vigilance regulation as a possible factor contributing to ADHD 

symptoms.83,84 

Importantly, neuronal LRTCs predicted the ASRS and BIS symptom scores with quadratic 

correlations indicating inverted U-shaped correlations where LRTCs are maximal for 

intermediate symptom scores in the regime between neurotypical features and mild ADHD 

symptoms. In contrast, both low symptom scores in control subjects and high symptom scores 

in ADHD patients were associated with smaller  LRTCs. As high LRTCs are the hallmarks of 

brain criticality,36 this demonstrates that moderate symptom scores and mild ADHD are 

associated with the brain operating closer to the critical point. Since, brain criticality is thought 

to maximize flexible routing of information, storage capacity,36 and optimal performance in 

behavioral data,12 this suggest that moderate ADHD symptoms scores are associated with these 

optimal brain states and are obtained in neurotypical controls with strong ADHD features and 

in ADHD patients with mild symptoms. In contrast, neurotypical controls with low ADHD 

symptom scores and ADHD patients with high symptoms scores were associated with smaller 

DFA exponents are thought to reflect suboptimal brain dynamics that might be detrimental for 

behavioral performance, yielding to less flexible information processing and storage capacity. 

These data constitute evidence that altered LRTCs are not only a core disease mechanism 

causing ADHD symptoms and behavioral deficits, but also leads to behavioral variability and 

putatively to personality characteristics in the healthy neurotypical population.  

Importantly excitation-inhibition (E/I) (E/I ratio) is the main control parameter of critical 

dynamics such that it emerges at E/I balance, while excess inhibition or excitation leads to sub- 
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or super-critical dynamics, respectively85–91. In line with this framework, LRTCs are influenced 

by pharmacological modulations of neuronal excitability92–95 as well as by polymorphism in 

neuromodulatory genes96. Aberrant LRTCs in ADHD could hence arise via mechanisms that 

influence the E/I ratio at the systems level or in specific neuronal circuits. Specifically, the 

norepinephrine (NE) system modulates attentional allocation97 and NE reuptake inhibitor are 

used for treatment of ADHD.98 Modulation of NE levels would therefore be a plausible 

candidate mechanisms influencing LRTCs. However, taken the inverted U-shaped correlations 

between the LRTCs and ADHD symptoms, the optimal dose giving rise to maximal LRTCs 

are likely to grossly vary across individuals.   
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Figure legends 

Figure 1. Task schematics and behavioral data. Schematics of (A) Threshold of Stimulus 

Detection Task (TSDT) and (B) Go/NoGo task experiments. (C) A short snapshot period of 

Hit-Miss time-series of a representative subject in TSDT. (D) Reaction Time (RT) series of a 

representative subject for each trial in Go/NoGo. Circles in the lower line above the time-series 

represent commission errors and circles in the upper line are trials with successful inhibition. 

(E) Distribution of BIS and ASRS scores for N = 21 ADHD patients (orange) and N = 23 

neurotypical control (blue) subjects. (F) Distribution of Hit rate (HR), and RT distributions 

separately for TSDT and Go/NoGo tasks. (G) False Alarm (FA) rate and Reaction Time 

Variability (RTV). (H) Behavioral DFA (Detrended Fluctuation Analysis) exponents for a 

representative subject (top) and for the Ctrl and ADHD groups (bottom). Figure displays 

subject means ± 25 % for each psychophysical parameter. The parenthesis above the figure 
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illustrates significant difference between the groups for the RTs (two-tailed Mann-Whitney U-

test (U = 132), p = 0.043)) and RTVs (two-tailed Mann-Whitney U-test, p = 0.012).  

 

Figure 2. Differential modulations of neuronal DFA exponents in ADHD and control 

groups at the whole-brain level. (A) Example of unfiltered neuronal time-series (top) and 

filtered oscillation amplitude time-series (bottom, gray trace) with the amplitude envelope 

(bottom, black trace) (B) DFA exponents extracted from oscillation amplitude envelope for a 

representative subject. (C) Group-level mean DFA -exponents averaged over all parcels as a 

function of frequency for ADHD (orange) and control (blue) groups during TSDT (Threshold 

of Stimulus Detection Task) and Go/NoGo tasks. Lines above indicate significant differences 

between the groups. Gray shading shows 95% confidence intervals. (D) Group-level 

differences in the DFA exponents between control and ADHD groups estimated separately for 

each cortical parcel (Welch t-test, p < 0.05, FDR corrected). The y-axis shows the fraction of 

cortical parcels (P) in which the difference was significant. Grey lines indicate Q -level of 

0.025 for 95th percentile for FDR correction indicating the proportion that could arise by 

change. (E) Cortical regions in which the differences in theta/alpha (θ-α, 6-13 Hz) were 

observed in TSDT and in theta () -band (5-8 Hz) DFA exponents were observed. The blue 

color indicates the fraction of time-frequency elements (P-) that were significantly suppressed 

and red the fraction of time-frequency elements (P+) that were significantly increased. 

 

Figure 3. Task dependent modulations of neuronal DFA exponents. (A) Differences in 

DFA exponents between task and rest for control (blue) and ADHD patients (orange) groups 

(Wilcoxon signed rank test, p < 0.05, FDR corrected). The positive values indicate the DFA 

exponents that were larger for the task than rest and vice versa for the negative values. Axis 

and shading as in Figure 2D. The black bars above the plot indicate significant differences 
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between the control and ADHD group (Welch t-test, p < 0.05, FDR corrected). Grey shading 

displays Q -level of 0.025 for 95th percentile. (B) Cortical regions in which the DFA exponents 

were reduced in theta/alpha (θ-α, 6-13 Hz) by task performance and (C) increased in the gamma 

() band (30-60 Hz). The colors as in Figure 2E.  

 

Figure 4. Correlations between the neural and behavioral DFA exponents. (A) Group-

level correlation of neural and behavioral DFA exponents within subjects for TSDT and 

Go/NoGo tasks (Spearman-Rank correlation test, p < 0.05, FDR corrected). The y-axis shows 

the fraction of cortical parcels (P) with significant correlations and grey shading Q-level of 

0.025 for 95th percentile (B) Cortical regions in which neural DFA exponents were correlated 

with behavioral LRTCs in ADHD patients in TSDT (Threshold of Stimulus Detection Task) 

tasks in the alpha (α, 8-13 Hz) and beta (, 14-30 Hz) bands. (C) Cortical regions in which 

neural DFA exponents were correlated with behavioral LRTCs in the Go/NoGo task in Control 

subjects in the alpha band, and (D) in ADHD subjects in the theta band. Colors as in Figure 3B 

and 3C.  

 

Figure 5. ADHD symptom scores predict neuronal LRTCs with an inverted U-shaped 

curve. (A) Correlation of neuronal DFA values obtained from task data (solid line) and resting 

state data (dashed line) with total ASR (N = 20) and BIS (N = 18) scores in the ADHD group 

(Spearman rank correlation test, p < 0.05, FDR corrected) for TSDT and Go/NoGo tasks. Grey 

shading displays Q -level of 0.025 for 95th percentile. (B) The same as in A but for the control 

group. (C) Scatter plots of the correlations between 17 Hz DFA and ASRS and BIS scores for 

for both TSDT and Go/NoGo data. 
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