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Abstract 
Biological age is typically estimated using biomarkers whose states have been observed to 
correlate with chronological age. A persistent limitation of such aging clocks is that it is 
difficult to establish how the biomarker states are related to the mechanisms of aging. Somatic 
mutations could potentially form the basis for a more fundamental aging clock since the 
mutations are both markers and drivers of aging and have a natural timescale. Cell lineage trees 
inferred from these mutations reflect the somatic evolutionary process and thus, it has been 
conjectured, the aging status of the body. Such a timer has been impractical thus far, however, 
because detection of somatic variants in single cells presents a significant technological 
challenge.  
Here we show that somatic mutations detected using single-cell RNA sequencing (scRNA-seq) 
from thousands of cells can be used to construct a cell lineage tree whose structure correlates 
with chronological age. De novo single-nucleotide variants (SNVs) are detected in human 
peripheral blood mononuclear cells using a modified protocol. A default model based on 
penalized multiple regression of chronological age on 31 metrics characterizing the 
phylogenetic tree gives a Pearson correlation of 0.81 and a median absolute error of ~4 years 
between predicted and chronological age. Testing of the model on a public scRNA-seq dataset 
yields a Pearson correlation of 0.85. In addition, cell tree age predictions are found to be better 
predictors of certain clinical biomarkers than age alone, for instance glucose, albumin levels 
and leukocyte count. 
The geometry of the cell lineage tree records the structure of somatic evolution in the individual 
and represents a new modality of aging timer. In addition to providing a numerical estimate of 
‘Cell Tree Age’, it unveils a temporal history of the aging process, revealing how clonal 
structure evolves over life span. Cell Tree Rings complements existing aging clocks and may 
help reduce the current uncertainty in the assessment of geroprotective trials. 
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Introduction 
Aging refers to the systematic decline in cellular and organismal function over time. The 

ubiquity of age-related disease makes chronological age the single most important risk factor 

for morbidity and mortality [1]. Interventions to slow, delay or even reverse the aging process 

thus have the potential to mitigate multiple age-related pathologies [2].  

To quantify the effectiveness of such interventions it is necessary to have a reliable measure of 

biological age. Aging timers, or clocks, accomplish this by using specific biomarkers whose 

states change systematically with chronological age. A variety of biomarker modalities have 

been studied, particularly epigenetic, but also transcriptomic, proteomic and metabolomic, 

among others [3, 4]. A necessary step in the development of current aging clocks is to show 

that the chosen biomarker states are associated with chronological age across a population. This 

correlation captures the average changes over lifespan and establishes a baseline to which 

individuals can be compared. A desirable property of these biomarker timers is that they be 

directly linked to the hallmarks of aging [5]. This potentially allows the biomarker states to be 

interpreted in terms of the mechanisms of aging.  

Genome instability due to somatic mutations is the first hallmark of aging [5]. In blood, 

mutations can lead to somatic mosaicism and eventually clonal hematopoiesis, where cell 

populations harbouring particular allele variants outgrow others. Animal models of clonal 

hematopoiesis have been shown to contribute to disease progression [6]. More generally, 

diseases characterized by accelerated aging typically involve the increased accumulation of 

DNA damage [7]. The idea that somatic mutations can drive clonal expansion has stimulated 

renewed interest in the mutational theory of aging. This represents a new mechanism by which 

mutations can lead to aging phenotypes [8, 9] and is distinct from earlier proposals which 

treated absolute mutation burden as a sufficient cause for organismal aging [10]. Given its 

importance as a driver of aging, it would seem that somatic evolution could form the basis for 

a new type of aging timer.  

Somatic mutations (single-nucleotide variants, SNVs, and copy-number variants, CNVs) are 

naturally-occurring barcodes [11] that enable phylogenetic inference of cell lineage trees (cell 

trees from now on). Cell trees are a representation of the mitotic branching order and clonal 

structure of a sampled cell population [12, 13]. These partial cell trees are subtrees of the whole 

organismal cell lineage tree which in an adult human consists of tens of trillions of cells [14]. 
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The shape of a tree refers to the ordering and length of its branches and reflects the clonal 

structure and evolutionary distances between cells. 

The central conjecture behind our proposed aging timer is that the structure, or “shape”, of cell 

trees is a representation of the biological aging process [Csordas, 2019, 

https://doi.org/10.7287/peerj.preprints.27821v7]. There are two reasons for this hypothesis. 

The first is that phylogenetic systematics has long shown how genetic distances between 

species existing today reflect evolutionary changes in the past. It is reasonable then to expect 

that genetic distances between single cells can be used to infer the somatic evolutionary history 

of cells, a driver and indicator of aging. The second is that biomedical life history can leave its 

imprint on the cell tree [15], providing a record of major transitions in the aging process. An 

additional benefit of cell trees is that they provide an intuitively appealing representation of the 

dynamics of aging that naturally lends itself to interpretation. 

Using human peripheral blood cells from healthy individuals (n=18, age range 21-82 years of 

age) we have developed a new aging timer called Cell Tree Rings (CTR) with the following 

characteristics: 

1. Naturally occurring somatic single nucleotide variants (SNVs) are used to build cell 

trees using standard phylogenetic algorithms, 

2. SNVs are called directly and de novo from scRNA-seq data from hundreds or thousands 

of cells,  

3. A broad set of tree metrics is used to identify aspects of tree shape that are associated 

with chronological age using a penalized multiple regression model, 

4. The model is used to predict a Cell Tree Age for individuals. 

 

Two different types of phylogenetic algorithms, UPGMA and maximum likelihood, are shown 

to produce a working Cell Tree Age model, providing extra evidence for the hypothesis. 

Importantly, the model is validated with public data as an independent test set. The predicted 

Cell Tree Ages are also shown to correlate with some clinical blood biomarkers, for instance 

glucose, albumin, leukocytes and monocytes (See Supplementary Information: Clinical 

Markers). 
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Methods 
 

Experimental data and protocol 
Biological sample collection and isolation of cells: 18 blood samples, 5 ml each, have been 

collected by venipuncture at the Healthy Longevity Clinic (HLC) in Prague, Czech Republic. 

The samples have been taken with informed consent from healthy patients of the clinic. The 

Healthy Longevity Clinic Ethical Committee has reviewed and approved the Tree Ring Pilot 

observational study protocol with the reference number 20220301_001. The age range of the 

volunteers was 21-82 years old at the time of blood collection, 10 volunteers were males and 8 

were females. Samples were processed by the same protocol. In the following the data related 

to the first 6 samples are detailed. Viable peripheral blood mononuclear cells (PBMCs) were 

isolated from the collected biological sample. 4 ml of peripheral blood was diluted with 4 ml 

of 2% Fetal bovine serum (FBS) in Phosphate buffered saline (PBS). Subsequently, 8 ml of 

diluted peripheral blood was carefully layered on top of 4 ml of a density gradient (such as 

Lymphoprep™) and centrifuged at 300 g for 30 min. The cells were carefully harvested from 

the interface with a plastic pasteur pipette. Then, another 6 ml of 2% FBS/PBS was added to 

the cells and centrifuged at 300 g for 8 min discarding the supernatant and resuspending the 

cells in 1 ml of lysis solution. After one-minute incubation on ice, 4 ml of 2% FBS/PBS was 

added to the cells and centrifuged at 300g for 5 min discarding the supernatant and 

resuspending the cells in 1 ml of 2% FBS/PBS. Subsequently, the vitality and concentration of 

cells was determined through Acridine Orange and Propidium Iodide assay at LUNA 

Automated Cell Counter. Cell concentration range was between 3.72x106 – 6.35x106 b/ml, and 

cell viability was between 99.1-99.7%. 

Labeling the cells with CellPlex: The cells were labelled with molecular tags or CellPlex 

(according to original protocol CG000391 Cell Labeling with Cell Multiplexing Oligo RevA). 

Later, a specific volume of each sample was transferred into new 2 ml tubes and, after labeling, 

the cells were washed 3 times with 2% FBS/PBS (compared to 2 times in the original protocol). 

After the last wash, the cells were resuspended in 600 μl of 2% FBS/PBS and counted at LUNA. 

Cell concentration range was between 3.15x106 – 3.95x106 b/ml, and cell viability was between 

99.3-99.7%, post labeling.  

The samples were pooled proportionally, and the final pool was passed through a 30 μm filter. 

Finally, the cells were counted and diluted to optimal concentration. 
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Loading and library preparation: Cells were loaded on the Chromium Controller and libraries 

prepared according to the original protocol CG000390 Chromium Next GEM Single Cell3 v3.1 

Cell Surface Protein Cell Multiplexing RevB, aiming for 16000 recovered cells. Some library 

preparation steps were modified slightly. During cDNA amplification, the polymerization step 

was extended to 1.5 min. After cDNA purification, the samples were split into two aliquots (A 

and B) that were processed in parallel and differed only in the implementation of size selection. 

After fragmentation, double size selection was modified for samples according to Table 1 

below. 

Step Sample Volume of 
1. SPRI [μl] 

Transfer 
volume [μl] 

Volume of 2. 
SPRI [μl] 

After 
fragmentation 

A 20 (0.4x) 65 15 (0.7x) 
B 25 (0.5x) 70 5 (0.6x) 

After PCR A 50 (0.5x) 140 10 (0.6x) 
B 50 (0.5x) 140 10 (0.6x) 

Table 1. Double-sided size selection using SPRIselect beads 

After PCR amplification, both samples were purified using SPRIselect beads according to 

Table 1. Finally, the quality and quantity of libraries was determined using the Fragment 

Analyzer and QuantiFluor dsDNA System. 

The various chemicals or kits used were Next GEM Chip G Single Cell Kit, Next GEM Single 

Cell 3’ Gel Beads Kit v3.1, Next GEM Single Cell 3’ GEM Kit v3.1, Dynabeads MyOne 

Silane, Next GEM Single Cell 3’ Library Kit v3.1, Single Index Kit T Set A, 3’ CellPlex Kit 

Set A, 3’ Feature Barcode Kit, and Dual Index Kit NN SetA.  

Sequencing: Library pools were sequenced on an Illumina NovaSeq 6000 using the S4 300-

cycle kit and with 150 bp long R2. 

 

Bioinformatics Processing of the experimental data 
The output sequencing files have been processed with Cell Ranger v6.0.2 and the indexed 

paired-end bam files have been converted into fastq files with bamtofastq v2.30.0. The fastq 

files and the identified barcode list were used for further processing. 

 

General schematics of the Cell Tree Rings computational workflow 
 

The Cell Tree Rings computational pipeline involves four consecutive steps, names of the sub-

pipelines highlighted in bold.  
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1. Tizkit: Barcode specific calling of SNVs with scSNV and germline filtering. 

2. Tiznit: Generating fasta files and phylogenetic inference of cell trees. 

3. AgeTreeShape: Compute tree features and univariate regression on age. 

4. CellTreeAge: Building multiple penalised regression model and Cell Tree Age prediction. 

The following four sections provide further details of this workflow. 

 

Somatic mutation calling de novo from scRNA-seq 
We have used scSNV v1.0b [16] to call somatic mutations, specifically single nucleotide 

variants, directly from 10x Genomics scRNA-seq data through collapsed molecular duplicates 

to increase mutation coverage. The GRCh38 (hg38) reference human genome build was used 

for mapping and alignment, specifically GENCODE Release 44, GRCh38.p14. Potential 

germline variants over 1% of minor allele frequency have been removed using the latest version 

110 release of the 1000GENOMES vcf file using the Ensembl ftp directory. The ‘V3’ 

parameter was set to process 3-prime libraries. The default setting of scSNV has been used 

with Maximum Variant Allele Fraction set to 0.999. To reduce the number of false positive 

calls two important consecutive filters were introduced. First, only somatic variants detected 

by at least 8 different UMIs per barcode have been used, and second, only somatic variants that 

were present in at least 4 barcodes were considered further for phylogenetic tree generation. 

The inputs were fastq files and the outputs were sparse SNV count matrices for alternative and 

reference alleles along with annotated SNV files in csv and vcf format.  

Phylogenetic Tree Inference  
The matrices and csv files generated in the previous step are used to generate fasta alignments. 

Fasta files are generated from all the cells and a subset of the cells with SeqKit v2.1.0 [17]. To 

track within-sample variability of the trees we generate 5 replicate trees from each sample with 

each tree being constructed from a random selection of 700 out of the ~1400 cells from that 

sample. Because these subsets of 700 cells are partially overlapping with each other, each tree 

is a pseudo-replicate. We will refer to a pseudo-replicate tree as a “partial tree”   

For phylogenetic inference with UPGMA, the R package phangorn v2.8.1 [18] was used with 

helper functions from the ape package v5.6.2. We used the p-distance (the proportion of sites 

that differ between a sequence pair) to determine branch lengths by setting the evolutionary 

substitution model to ‘raw’.  The matrix of pairwise distances was computed with the dist.dna 

function of the ape package. Tree inference provided rooted, ultrametric trees by default. The 

trees were stored in newick files. 
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For Maximum Likelihood, IQ-TREE multicore version 2.2.0-beta COVID-edition was used. 

The substitution model was JC69. 

Cell Trees have been visualised with version 1.4.4 of the FigTree tree figure drawing tool. 

Cell Tree Metrics 
The tree metrics, or features, can be split into 5 groups based on their technical properties 

(details in Supplementary Information: Tree Metrics). Group I contains spectral tree metrics 

that are based on the transform matrices of the cell trees which are discrete analogues of the 

generalized Fourier [19] and Laplacian transforms [20], respectively. Group II contains 

specialised phylogenetic features focusing on aggregated branch length statistics and their 

derivatives, including entropy-based metrics. Group III includes well-known general 

phylogenetic tree statistics used in the biodiversity literature. Group IV focuses on branch 

length values specifically and generates summary statistics based on the distance matrix 

between the tips of the tree. Finally, Group V has 2 powergraph based features generating the 

Laplacian transforms of the square of the tree graphs, similar to Group I. 

Regression Analysis 
 
Elastic net regression 

To build a predictor model we regress chronological age on 31 tree statistics in addition to Sex, 

giving a total of 32 features. We allow pairwise interactions between Sex and each tree statistic 

giving a total of 32+31=63 predictors.  

In line with the majority of previous aging timers [21, 22, 23, 3] we employ elastic net 

regularization [24, 25]. This requires solving  

 

which is a convex program when the hyperparameters λ (the regularization constant) and α (the 

lasso fraction) are fixed. Here xij is a predictor and yij is the chronological age for pseudo-

replicate j in sample i. β is the vector of regression coefficients, μ is the constant offset, Ns is 

the number of samples, ni is the number of replicates in sample i and 𝑁tot = ∑ 𝑛!
"!
!#$  is the total 

number of replicates across all samples. 
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Eq. 1 is solved using the elastic-net routine from scikit-learn [26] (version 1.3.0) in Python3 

[27] (version 3.11.5).  

Nested cross validation: To test predictive accuracy using this model we implement a nested 

cross validation scheme [28, 29]. We used leave-one-out cross-validation in both outer and 

inner loops: since there are 18 samples this means there were 18 folds in the outer loop and 17 

folds in the inner loop (a fold partitions data into a training and test set with each sample 

assigned to a test set exactly once). All pseudo-replicates from a sample are assigned the same 

chronological age and are never split across training and test sets.  

Hyperparameter grid search: Hyperparameters are determined by solving Eq. 1 multiple times, 

each time with different hyperparameter value combinations. Hyperparameter values are 

chosen from the sets λ ∈ {0.1,0.3,1,3,10} and α ∈ {0.6,0.7,0.8,0.9,1} in an exhaustive grid 

search. The hyperparameter combination giving the lowest mean absolute error, as found by 

cross validation in the inner loop, is chosen as optimal. Once the optimal hyperparameters have 

been found for a given outer training set, Eq. 1 is solved for one step in the outer loop. The 

procedure is then repeated for other steps in the outer loop, calculating a new set of 

hyperparameters each time.  

Regression coefficients and prediction accuracy: Each step in the outer loop produces a vector 

of regression coefficient estimates, β', and a subset of test sample predictions, 𝑦)!%. Prediction 

accuracy is calculated from the full set of predicted and chronological age pairs, {𝑦)!% , 𝑦!%}. 

Performance metrics used are the mean absolute error (mae), median absolute error (mdae), 

root-mean-squared error (rmse), and Pearson correlation (r) defined as follows:  

 

where, for compactness, we write the double sum ∑ ∑&"%#$
"!
!#$ as ∑!%  
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This nested cross validation generates a single age prediction for each pseudo-replicate. 

Because the outer loop has 18 folds, each regression coefficient is estimated 18 times. Results 

are shown in Figure 2A, 2B. 

 

Testing on public data: A final step in testing the model is to examine its prediction on an 

external dataset. This involves, in essence, just one step in the outer loop of the nested cross 

validation where all the 18 HLC samples are used as a single training set, and all the 18 AIDA 

samples are used as a single test set. Cross validation is still performed in the inner loop to 

optimize the hyperparameters.  

Feature pre-selection  

The regularized regression procedure described above combines feature selection and 

coefficient estimation in a single optimization step. This can result in biased predictions since 

the regularization required to shrink the weaker predictors also shrinks the better predictors 

[25]. This bias can be mitigated by pre-selecting features in an initial step, prior to elastic net 

regression [30]. The basic idea is that, by removing some of the weaker predictors prior to 

regression, the degree of regularization needed in the coefficient estimation step is decreased, 

thus reducing prediction bias.  

Our approach to pre-selecting features is to use the output from the elastic net itself. We take 

the features selected by the procedure described above and use them in a second (elastic net) 

regression. This two-step regression approach is similar to adaptive regularization methods 

where an initial regression step is used to determine feature-specific regularization parameters 

[31, 32]. In our scheme, the first regression (the selection step) produces a ranking of features 

based on the magnitude of their regression coefficients. The second regression (the estimation 

step) is performed with only the top k ranked features. It is the model fit from this second step 

that is used for prediction.  

To determine the optimal value of k, we repeat the estimation step across different k, finding 

the value that maximizes performance. Technically, the number of features k is a 

hyperparameter of the model and should be determined in the inner cross-validation loop, along 

with α and l1. This would help account for the uncertainties in post- selection inference [33, 
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34] and reduce the risk of overfitting. However, for our exploratory purposes, we simply 

perform the estimation step at several different values of k and use the k that gives the best 

performance.  

We find that feature pre-selection does improve predictability, albeit only slightly (see 

Supplementary Figure 1 in Supplementary Information: Tree Metrics). Thus, for simplicity, 

our default model uses all features, without pre-selection. Nevertheless, demonstrating that a 

subset of the features provides as good, if not slightly better, predictability as all the features is 

helpful for reducing the number of regression coefficients that need to be interpreted (see 

Discussion). 

Processing Public Datasets 
 
The Asian Immune Diversity Atlas (AIDA) public Human Cell Atlas (HCA) scRNA-seq 

dataset has been used to process candidate samples for model validation 

[https://data.humancellatlas.org/explore/projects/f0f89c14-7460-4bab-9d42-22228a91f185]. 

Fastq files have been downloaded from the HCA site. Filtered barcode lists have been directly 

downloaded from the CellRanger output available at the Chan Zuckerberg CELLxGENE 

Collections at the following URL: https://cellxgene.cziscience.com/collections/ced320a1-

29f3-47c1-a735-513c7084d508 For scSNV, the ‘V2_5P’ parameter was set to process the 10X 

V2 5-prime libraries.  

 

Results 
 

Cell trees  
Phylogenetic trees were inferred using the distance matrix algorithm UPGMA and maximum 

likelihood. To characterise the variability in trees sampled from a single individual in the HLC 

dataset, we construct trees from 5 subsets of 700 randomly sampled cells rather than a single 

tree from all ~1400 cells per individual. Because the sets of 700 cells are partially overlapping, 

we refer to these “partial” trees as pseudo-replicates. Each partial tree is generated using the 

same filters as described in Somatic mutation calling de novo from scRNA-seq in the Methods 

section. The regression model fit to the HLC dataset is tested on samples from the AIDA dataset 

using 5 pseudo-replicate trees, each generated from 700 cells per individual.  
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For visualisation, Figure 1 shows the complete trees utilising information from all ~1400 

barcoded cells from each individual in the HLC cohort. The circular rendering, which places 

the root at the centre and the cells around the perimeter, provided inspiration for the name `Cell 

Tree Rings’. 

 

 
 
Figure 1: Complete cell trees from each of the 18 HLC participants in the study. 

Cell tree metrics 
The central hypothesis of the study is that the shape of cell trees is a measure of biological age. 

Here shape refers to the combination of topology (branching order) and branch lengths. 

Topology, in the case of cell lineage trees, corresponds to branching patterns of mitotic division 

in somatic cells. Branch lengths represent the amount of evolutionary change and are usually 

defined as the product of mutation rates and a suitable unit of time.  

Different tree metrics capture either topology-only, branch-length-only, or a combination of 

both. We have applied a set of 31 tree metrics to characterize the shape of cell trees built from 

somatic mutations from human peripheral blood mononuclear cells (See Supplementary 
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Information: Tree Metrics). This set of measures comprises both traditional tree metrics used 

in phylogenetics and some that were developed specifically for this study.   

 

 

Model building and Prediction Results 
 

An age predictor has been constructed by regressing chronological age on the 31 tree metrics, 

along with Sex. Elastic Net regularization and nested leave-one-out cross validation were used 

to validate and test the model (See Regression Analysis in Methods section).  The resulting 

prediction errors, correlation coefficient, p-values and explained variance were estimated by 

comparing Cell Tree Ages to chronological ages.  

 

Figure 2 shows the performance of the default Cell Tree Age model cross-validated on the 18 

samples from the HLC data. In this default model, UPGMA is used for phylogenetic tree 

inference, 5 pseudo-replicate trees are used per sample, and all 32 features are used in the 

regression. For this model, r=0.813, p=0.00004, R2=0.660, MAE=7.625, MdAE=4.396, and 

RMSE=10.760. 

 

The Supplementary Information shows how feature pre-selection can slightly improve 

performance and how using Maximum Likelihood instead of UPGMA for tree inference affects 

results. 
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Figure 2: Panel A: Comparison of predicted versus chronological age for 18 human HLC blood samples. 
Dots represent predictions for each of the 5 pseudo-replicates per sample while crosses represent the 
mean prediction for each sample. The dotted red line is the reference for perfect prediction (y=x). Panel 
B: Performance metrics, MAE (mean absolute error), MdAE (median absolute error), RMSE (root mean 
square error), r (Pearson’s Correlation Coefficient).  
 
 
The slope of predicted to chronological age is less than 1, indicating that low ages are 

systematically overestimated while high ages are systematically underestimated. This is, in 

large part, due to regularization which biases the regression coefficients towards zero and thus 

biases predictions towards the mean of the data. Figure 3A illustrates this trend by showing 

how the age difference (predicted minus chronological age) is positive below and negative 

above the mean age of ~47 years. This bias in age prediction can be characterised by a linear 

trend line (green dashed).  It has become customary to refer to the difference between the 

predicted age and this linear trend line as the “age acceleration” [22], shown in Figure 3B. 

 

 
Figure 3: Age difference (Panel A) and age acceleration (Panel B) from the default Cell Tree Age 

prediction model in Figure 2. The linear trend of predicted to chronological age is given by the green 

linear. Age difference is predicted age minus chronological age. Age acceleration is the difference 

between predicted age and the linear fit of predicted to chronological age. 

 

Public Validation of Cell Tree Age Model 
 

Having developed the Cell Tree Age Model on HLC data, we then tested it on a public scRNA-

seq dataset. For this we used 18 peripheral blood samples from the Asian Immune Diversity 
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Atlas (AIDA). This involved 10 females and 8 males ranging in age between 21 – 65 years old. 

For these data, as with the HLC data, we used UPGMA to generate 5 pseudo-replicate trees 

from each sample where each pseudo-replicate used 700 cells randomly selected from the 

sample. The default model was trained on all 18 of the HLC data (see Testing on Public Data 

in the Regression Analysis section). The resulting performance metrics were r=0.853, p = 

0.00001, R2=0.728, MAE=12.791, MdAE=13.636, RMSE=14.081. 

 
Figure 4: Panel A: Comparison of predicted vs chronological ages for 18 independent human blood 
samples from the public AIDA dataset. The default model, without feature pre-selection, was trained 
on 18 samples from the HLC dataset. As in Figure 2, dots represent predictions for each of the 5 pseudo-
replicates per sample while crosses represent the mean prediction for each sample. The dotted red line 
is the reference for perfect prediction (y=x). Panel B: Performance metrics, MAE (mean absolute error), 
MdAE (median absolute error), RMSE (root mean square error), r (Pearson’s Correlation Coefficient).  

 
 

Discussion 
We have shown that cell trees constructed using SNVs from human peripheral blood 

mononuclear cells can predict chronological age. The SNVs underlying these trees can be 

directly called from the most accessible single-cell sequencing approach, scRNA-seq. 

Importantly, the trained Cell Tree Age model was validated on an independent test set and the 

predicted Cell Tree Age was found to be significantly associated with several blood markers 

(see Supplementary Information: Clinical Markers). 

 

The resulting new molecular aging timer, Cell Tree Rings, requires dozens of cell tree metrics 

as inputs. Performance of this default model can be improved by ranking the features and 
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regressing on a subset of them (See Feature Pre-Selection in Regression Analysis section). 

Figure 1 of Supplementary Information Tree Metrics shows that pre-selection of between 5-12 

features improves predictive accuracy. At peak accuracy, using 6 regressors (Sex, 

'tipDistNorm', 'mMax_eigengap', 'mMaxEigen', 'AC_2', 'tipRootPatr') results in predictions 

with a median absolute error of ~3.5 years, a correlation coefficient of 0.9 and ~82% explained 

variance. Note that accuracy rapidly declines with fewer predictors such that univariate 

prediction, even with the single best regressor, has poor accuracy.  

 

Feature selection is useful for identifying the metrics important for prediction. 

‘mMax_eigengap’ has been used as a heuristic to identify different modes of divisions or 

modalities within the tree [20]. 'AC_2' is the algebraic connectivity of a graph, a well-known 

feature of graph robustness. Overall, these tree metrics may represent a conceptually new and 

experimentally verifiable class of quantitative predictors of age. 

 

The Maximum Likelihood method for phylogenetic inference serves as important additional 

phylogenetic evidence to justify the Cell Tree Age model approach. On the HLC data the best 

performing model contained 6 predictors with performance metrics r=0.797, p = 0.00007, 

mae=8.260, mdae=5.654 (See Supplementary Figure 3 Supplementary Information: Tree 

Metrics). 

 

Most importantly, the Cell Tree Age model, trained on the HLC data, when tested on samples 

from the public AIDA dataset gave an r of 0.85 indicating that the model does generalize to 

existing public data. To further the generalizability, the HLC data came from a Central 

European cohort, the AIDA data were from an East Asian cohort. However, despite this strong 

correlation between predicted and chronological age, the clock appears to systematically 

overestimate age in the AIDA data (see Figure 4). Although feature pre-selection reduces this 

bias (See Supplementary Figure 2 in Supplementary Information: Tree Metrics), there is still a 

clear overestimate of age.  

 

There are differences between the HLC training set and the AIDA test set that might account 

for this batch effect. While the HLC data used 10x V3 3’ prime-end libraries, the AIDA data 

used 10X V2 5’ prime-end libraries. This means that the former method detects variants in the 

3’ end region of the genes, including UTR regions, the latter detects variants from the 5’ prime 

end region, including regulatory elements. Furthermore, the AIDA dataset is primarily 
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restricted to the 20-50 year old age range, with just a single sample over 60. Further 

investigations are needed to understand this batch effect. 

 

We believe Cell Tree Rings to be the only existing natural barcoding approach that can build 

larger trees from thousands of cells using somatic mutations called de novo from scRNA-seq 

data alone as well as from all autosomes, sex chromosomes and the mitochondrial genome 

combined. Representative cell trees can capture multiple clonal events in different parts of the 

accessible cellular genomes, reaching a higher resolution in cell population history than 

possible with targeted genomics approaches alone. 

 

Another advantage of Cell Tree Rings is its potential to extract both lineage histories and gene 

expression levels from the same cells using a single method and lab protocol. Combining 

lineage and phenotypic expression information from the same sample is a considerable 

challenge and existing approaches offer complex solutions combining different protocols [36]. 

 

We have also examined the association of Cell Tree Age with 21 clinical blood markers (see 

Supplementary Information: Clinical Markers). Of the 8 markers that show significant 

associations with Cell Tree or chronological age, 6 of them are better correlated with Cell Tree 

age than chronological age. These results provide a preliminary indication of how Cell Tree 

Age could provide valuable clinical indicators. Ultimately, clocks measuring biological age 

must be better predictors of clinical markers than chronological age. Not all of these 

associations were related to explicit immune functions, for instance the glucose and albumin 

associations suggest that if these results are confirmed on bigger cohorts, then Cell Tree Rings 

might provide a measure of broader multi-tissue and multi-organ age modalities.    

 

Potential directions for improvement in CTR 

 

The version of CTR reported here represents a basic proof-of-principle. Here we discuss some 

of the improvements envisioned. The current version of Cell Tree Rings has been achieved 

with direct and de novo scRNA-seq alone without the aid of any bulk sequencing approach. At 

a technical level, bulk exome sequencing data can improve true mutation calls at the single cell 

level and filter out more noise. 
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In the future, some of this residual variation in predicated age could be explained by individual 

medical histories or phenotypes, when they become available. In addition, as mentioned above, 

gene expression information can be extracted from the same cellular barcodes and from the 

very same genes whose SNVs have been used to generate the cell tree. Efforts are currently 

underway to see how much of the currently unexplained variation can be accounted for by the 

cellular phenotypes and the individual medical histories. 

 

Translational geroscience seeks to identify which elements of the aging process are irreversible 

under current available treatments and which are amenable to modification by existing 

therapeutic interventions. The tree features involved in Cell Tree Rings may be valuable in 

diagnosing the influence of a particular intervention by examining its effect on tree shape. 

 

When extending Cell Tree Rings to other tissues an important question is how spatial aspects 

of the tree can be incorporated. Cellular elements in complex biofluids, such as blood and 

saliva, have considerable freedom of movement throughout the human body. In contrast, 

resident cells of compact, solid tissues in the kidney, intestine, liver for instance are under 

considerable spatial restrictions. The infiltrating immune cells of compact tissues are less 

constricted spatially than the resident cells, but more constricted than circulating blood cells. It 

is an open question how tree shape metrics contributing to the age regression model will change 

in a more restricted spatial environment. Spatial restrictions have been shown to be important 

in cancer where evolutionary phylodynamic models have been applied to model boundary-

driven solid tumor growth [37]. Combining spatial information with the temporal information 

of cell trees could thus help improve the ability of cell trees to quantify biological age.  

 

Questions that Cell Tree Rings can help answer 

 

One surprising finding in the phylogenetic tree-aided developmental biology literature is the 

degree of asymmetry in phylogenetic lineage trees [38, 39]. These studies showed how, at least 

on the few samples studied, there can be a substantial difference in the number of surviving 

progeny between offspring of the first or first few cell divisions, the asymmetry reaching 

sometimes as large as 10:90%. Cell Tree Rings can help quantify this developmental imbalance 

further and separate it from changes in later life. 
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Somatic mutations in a small set of (growth and cancer associated) genes have been shown to 

propagate clones that become dominant in the hematopoietic system of older individuals [35] 

and have been directly linked to increased risk of cancer and other chronic diseases [40]. 

Additionally, somatic mosaicism has been shown, in multiple tissues, to rise with age and to 

predict disease in animal models [6]. 

 

From the perspective of designing interventions, it is important to understand which of the 

somatic mutations are simply passive indicators and which are active drivers of the aging 

process. In addition, it will be important to establish which can be targeted with clinical 

interventions. 

By providing a way to quantify the different aspects of tree shape, Cell Tree Rings can be used 

to identify early indicators of clonal hematopoiesis and diagnose why certain individuals 

display resilience to the effects of somatic mutation and experience reduced chronic age-

associated disease. 

 

Cell Tree Rings and the timescales and convergence of different clocks 

 

When evaluating the effectiveness of different biological aging clocks, it is important to 

address the question of what the minimal meaningful temporal unit of biological aging is. 

While clocks with high temporal resolution can evaluate the short-term effects of interventions, 

these effects can often be difficult to distinguish from physiological noise. On the other hand, 

lower temporal resolution over longer time windows may miss important short-term signals 

[41]. Cell Tree Rings captures the long-term dynamics of somatic evolution that relates to the 

decades-long processes usually associated with aging but is insensitive to processes that are 

shorter than the characteristic timescale for detecting somatic mutations. It is an open question 

whether clocks based on different mechanisms and with different time resolutions can be 

combined and merged, but ultimately the results from different clocks should be reconciled. 

Our hope is that Cell Tree Rings may provide a baseline integrative framework for different 

aging hallmarks and clocks. There are three reasons this may be possible: 

First, Cell Tree Rings operate on the fundamental genome-instability level by tracking somatic 

mutations in hundreds or thousands of single cells. Importantly, it is the use of the tree structure 

to constrain these mutations that helps to improve their detection accuracy. 

Second, Cell Tree Rings is based on a foundational construct, the somatic evolutionary cell 

tree, that relates the tens of trillions of somatic cells of a human body to each other and to time.  
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Third, without identifying the damage somatic mutations cause, it is difficult to design healthy 

longevity therapies and regimens. Cell Tree Rings captures and organizes this basic mutation 

information at different levels of the tree hierarchy, potentially providing signposts for which 

interventions are likely to be most effective.  

Cell Tree Rings is thus not simply another aging timer. It aims to provide a foundational 

principle for clocks. There is considerable uncertainty about whether epigenetic aging clocks 

can inform us about biological age reversals in clinical trials [42]. Adding Cell Tree Rings as 

a single-cell resolution clock component might mitigate this uncertainty and improve the 

assessment of geroprotective trials. 

 

Contributions  
A.Cs. conceived the project and wrote the original manuscript. D.G.H. and B.S. edited the 

manuscript. B.S. produced the core software pipeline. A.Cs., B.S. and D.G.H. designed the 

study, the methodology and wrote software. A.Cs. and D.G.H. performed the statistical analysis 

and supervised the study. A.V collected the blood and F.Z supervised the clinical procedure. 

T.K and B.T. performed library preparation and scRNA-seq. T.K. wrote the original draft of 

the Experimental protocol. All authors read and approved the final version of the manuscript. 

 

Acknowledgements  
This work was solely supported by AgeCurve Limited. Special acknowledgement goes to Petr 

Sramek, of LongevityTech.Fund for providing crucial infrastructure in the Czech Republic. 

We would also like to acknowledge the patients of Healthy Longevity Clinic, who volunteered 

to provide blood. Special thanks to Gavin Wilson for insights on the scSNV pipeline. 

 

Competing interests 
AgeCurve Limited has filed UK and PCT patents called Cell Tree Rings: method and cell 

lineage tree based aging timer for calculating biological age of a biological sample. A.Cs. is a 

shareholder, D.G.H. and B.S. are option holders of AgeCurve Limited. 

 

 

References 
 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2022.12.14.520419doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520419


 20 

1. Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. 
Nature. 2018 Sep;561(7721):45-56. doi: 10.1038/s41586-018-0457-8.  

2. Kaeberlein M. Translational geroscience: A new paradigm for 21st century medicine. 
Transl Med Aging. 2017 Oct;1:1-4. doi: 10.1016/j.tma.2017.09.004. 

3. Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. 
Nat Rev Genet 23, 715–727 (2022). https://doi.org/10.1038/s41576-022-00511-7. 

4. Macdonald-Dunlop E, Taba N, Klarić L, Frkatović A, Walker R, Hayward C, Esko T, 
Haley C, Fischer K, Wilson JF, Joshi PK. A catalogue of omics biological ageing 
clocks reveals substantial commonality and associations with disease risk. Aging 
(Albany NY). 2022 Jan 24;14(2):623-659. Doi: 10.18632/aging.203847. 

5. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: 
An expanding universe. Cell. 2023 Jan 19;186(2):243-278. doi: 
10.1016/j.cell.2022.11.001. 

6. Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated 
disease. Physiol Rev. 2023 Jan 1;103(1):649-716. doi: 10.1152/physrev.00004.2022. 

7. Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, Kwon M, Sherman 
MA, Vitzthum CM, Luquette LJ, Yandava CN, Yang P, Chittenden TW, Hatem NE, 
Ryu SC, Woodworth MB, Park PJ, Walsh CA. Aging and neurodegeneration are 
associated with increased mutations in single human neurons. Science. 2018 Feb 
2;359(6375):555-559. doi: 10.1126/science.aao4426. 

8. Vijg J, Dong X. Pathogenic Mechanisms of Somatic Mutation and Genome 
Mosaicism in Aging. Cell. 2020 Jul 9;182(1):12-23. doi: 10.1016/j.cell.2020.06.024. 

9. Massaar S, Sanders MA. The etiology of clonal mosaicism in human aging and 
disease. Aging and Cancer. 2023 doi: 10.1002/aac2.12061.  

10. Szilard L. On the nature of the aging process. Proc Natl Acad Sci U S A. 1959 
Jan;45(1):30-45. doi: 10.1073/pnas.45.1.30. 

11. Sankaran VG, Weissman JS, Zon LI. Cellular barcoding to decipher clonal dynamics 
in disease. Science. 2022 Oct 14;378(6616):eabm5874. doi: 
10.1126/science.abm5874. 

12. Salipante SJ, Horwitz MS. Phylogenetic fate mapping. Proc Natl Acad Sci U S A. 
2006 Apr 4;103(14):5448-53. doi: 10.1073/pnas.0601265103. 

13. Wasserstrom A, Frumkin D, Adar R, Itzkovitz S, Stern T, Kaplan S, Shefer G, Shur I, 
Zangi L, Reizel Y, Harmelin A, Dor Y, Dekel N, Reisner Y, Benayahu D, Tzahor E, 
Segal E, Shapiro E. Estimating cell depth from somatic mutations. PLoS Comput 
Biol. 2008 May 9;4(4):e1000058. doi: 10.1371/journal.pcbi.1000058. 

14. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria 
Cells in the Body. PLoS Biol. 2016 Aug 19;14(8):e1002533. doi: 
10.1371/journal.pbio.1002533. 

15. Stadler T, Pybus OG, Stumpf MPH. Phylodynamics for cell biologists. Science. 2021 
Jan 15;371(6526):eaah6266. doi: 10.1126/science.aah6266. 

16. Wilson GW, Derouet M, Darling GE, Yeung JC. scSNV: accurate dscRNA-seq SNV 
co-expression analysis using duplicate tag collapsing. Genome Biol. 2021 May 
7;22(1):144. doi: 10.1186/s13059-021-02364-5. 

17. Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for 
FASTA/Q File Manipulation. PLoS One. 2016 Oct 5;11(10):e0163962. doi: 
10.1371/journal.pone.0163962. 

18. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011 Feb 
15;27(4):592-3. doi: 10.1093/bioinformatics/btq706. 

19. Hicks DG, Speed TP, Yassin M, Russell SM. Maps of variability in cell lineage trees. 
PLoS Comput Biol. 2019 Feb 12;15(2):e1006745. doi: 10.1371/journal.pcbi.1006745. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2022.12.14.520419doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520419


 21 

20. Lewitus E, Morlon H. Characterizing and Comparing Phylogenies from their 
Laplacian Spectrum. Syst Biol. 2016 May;65(3):495-507. doi: 
10.1093/sysbio/syv116. 

21. Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., 
Bibikova, M., Fan, J.-B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., 
Ideker, T., and Zhang, K. (2013). Genome-wide methylation profiles reveal 
quantitative views of human aging rates. Molecular Cell, 49(2):359–367.  

22. Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome 
Biology, 14(10):3156.  

23. Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, 
L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. 
P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., and Horvath, S. (2018). An epigenetic 
biomarker of aging for lifespan and healthspan. Aging, 10(4):573–591.  

24. Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic 
net. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 
67(2):301–320.  

25. Hastie T, Tibshirani R, Wainwright M. Statistical Learning with Sparsity: The Lasso 
and Generalizations, CRC Press, 2015. 

26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: 
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.  

27. Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace, 
Scotts Valley, CA.  

28. Varma, S. and Simon, R. (2006). Bias in error estimation when using cross-validation 
for model selection. BMC Bioinformatics, 7(1):91.  

29. Cawley, G. C. and Talbot, N. L. (2010). On over-fitting in model selection and 
subsequent selection bias in performance evaluation. J. Mach. Learn. Res., 11:2079–
2107.  

30. Doherty, T., Dempster, E., Hannon, E., Mill, J., Poulton, R., Corcoran, D., Sugden, 
K., Williams, B., Caspi, A., Moffitt, T. E., Delany, S. J., and Murphy, T. M. (2023). A 
comparison of feature selection methodologies and learning algorithms in the 
development of a dna methylation-based telomere length estimator. BMC 
Bioinformatics, 24(1):178.  

31. Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American 
Statistical Association, 101(476):1418–1429.  

32. Zou, H. and Zhang, H. H. (2009). On the adaptive elastic-net with a diverging number 
of parameters. The Annals of Statistics, 37(4):1733 – 1751.  

33. Berk, R., Brown, L., Buja, A., Zhang, K., and Zhao, L. (2013). Valid post-selection 
inference. The Annals of Statistics, 41(2):802 – 837.  

34. Kammer, M., Dunkler, D., Michiels, S., and Heinze, G. (2022). Evaluating methods 
for lasso selective inference in biomedical research: a comparative simulation study. 
BMC Medical Research Methodology, 22(1):206.  

35. Mitchell E, Spencer Chapman M, Williams N, Dawson KJ, Mende N, Calderbank EF, 
Jung H, Mitchell T, Coorens THH, Spencer DH, Machado H, Lee-Six H, Davies M, 
Hayler D, Fabre MA, Mahbubani K, Abascal F, Cagan A, Vassiliou GS, Baxter J, 
Martincorena I, Stratton MR, Kent DG, Chatterjee K, Parsy KS, Green AR, Nangalia 
J, Laurenti E, Campbell PJ. Clonal dynamics of haematopoiesis across the human 
lifespan. Nature. 2022 Jun;606(7913):343-350. doi: 10.1038/s41586-022-04786-y. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2022.12.14.520419doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520419


 22 

36. Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, 
Vallejos CA, Campbell KR, Beerenwinkel N, Mahfouz A, Pinello L, Skums P, 
Stamatakis A, Attolini CS, Aparicio S, Baaijens J, Balvert M, Barbanson B, 
Cappuccio A, Corleone G, Dutilh BE, Florescu M, Guryev V, Holmer R, Jahn K, 
Lobo TJ, Keizer EM, Khatri I, Kielbasa SM, Korbel JO, Kozlov AM, Kuo TH, 
Lelieveldt BPF, Mandoiu II, Marioni JC, Marschall T, Mölder F, Niknejad A, 
Raczkowski L, Reinders M, Ridder J, Saliba AE, Somarakis A, Stegle O, Theis FJ, 
Yang H, Zelikovsky A, McHardy AC, Raphael BJ, Shah SP, Schönhuth A. Eleven 
grand challenges in single-cell data science. Genome Biol. 2020 Feb 7;21(1):31. doi: 
10.1186/s13059-020-1926-6. 

37. Lewinsohn MA, Bedford T, Müller NF, Feder AF. State-dependent evolutionary 
models reveal modes of solid tumour growth. Nat Ecol Evol. 2023 Apr;7(4):581-596. 
doi: 10.1038/s41559-023-02000-4. 

38. Bizzotto S, Dou Y, Ganz J, Doan RN, Kwon M, Bohrson CL, Kim SN, Bae T, 
Abyzov A; NIMH Brain Somatic Mosaicism Network, Park PJ, Walsh CA. 
Landmarks of human embryonic development inscribed in somatic mutations. 
Science. 2021 Mar 19;371(6535):1249-1253. doi: 10.1126/science.abe1544. 

39. Fasching L, Jang Y, Tomasi S, Schreiner J, Tomasini L, Brady MV, Bae T, Sarangi 
V, Vasmatzis N, Wang Y, Szekely A, Fernandez TV, Leckman JF, Abyzov A, 
Vaccarino FM. Early developmental asymmetries in cell lineage trees in living 
individuals. Science. 2021 Mar 19;371(6535):1245-1248. doi: 
10.1126/science.abe0981. 

40. Marongiu F, DeGregori J. The sculpting of somatic mutational landscapes by 
evolutionary forces and their impacts on aging-related disease. Mol Oncol. 2022 
Sep;16(18):3238-3258. doi: 10.1002/1878-0261.13275. 

41. Gabbutt C, Schenck RO, Weisenberger DJ, Kimberley C, Berner A, Househam J, 
Lakatos E, Robertson-Tessi M, Martin I, Patel R, Clark SK, Latchford A, Barnes CP, 
Leedham SJ, Anderson ARA, Graham TA, Shibata D. Fluctuating methylation clocks 
for cell lineage tracing at high temporal resolution in human tissues. Nat Biotechnol. 
2022 May;40(5):720-730. doi: 10.1038/s41587-021-01109-w. 

42. Higgins-Chen AT, Thrush KL, Wang Y, Minteer CJ, Kuo PL, Wang M, Niimi P, 
Sturm G, Lin J, Moore AZ, Bandinelli S, Vinkers CH, Vermetten E, Rutten BPF, 
Geuze E, Okhuijsen-Pfeifer C, van der Horst MZ, Schreiter S, Gutwinski S, Luykx JJ, 
Picard M, Ferrucci L, Crimmins EM, Boks MP, Hägg S, Hu-Seliger TT, Levine ME. 
A computational solution for bolstering reliability of epigenetic clocks: Implications 
for clinical trials and longitudinal tracking. Nat Aging. 2022 Jul;2(7):644-661. doi: 
10.1038/s43587-022-00248-2. 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2022.12.14.520419doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520419

