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1. Abstract
Alternative  transcription  increases  transcriptome  complexity  by  expression  of  multiple

transcripts per gene and thus fine tunes  cellular identity and function. Annotation and

quantification  of  transcripts  at  complex  loci  using  short-read  sequencing  is  non-trivial.

Recent long-read sequencing methods such as those from Oxford Nanopore Technologies

(ONT)  and  Pacific  Biosciences  aim at  overcoming  these  problems by  sequencing full

length  transcripts.  Activation  of  BAT  thermogenesis  involves  major  transcriptomic

remodelling  and  positively  affects  metabolism  via  increased  energy  expenditure  and

endocrine  factors.  Here  we  comprehensively  benchmark  features  of  ONT  long-read

sequencing protocols  compared to  Illumina shortread sequencing assessing  alignment

characteristics,  gene  and  transcript  detection  and  quantification,  differential  gene  and

transcript expression, transcriptome reannotation and differential transcript usage (DTU).

We find that ONT sequencing is superior to Illumina for transcriptome reassembly and

reduces the risk of false-positive events due to the ability to unambiguously map reads to

transcripts, at the expense of  statistical power for calling differentially expressed features.

We identified novel isoforms of genes undergoing DTU in cold-activated BAT including
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Cars2, Adtrp, Acsl5, Scp2, Aldoa and Pde4d, validated by RT-qPCR. Finally, we provide a

reannotation of  the murine iBAT transcriptome as a valuable resource for  researchers

interested in the molecular biology underlying the regulation of BAT.

2. Key words

Brown adipose tissue; metabolism, transcriptional regulation, alternative splicing, full length RNA-

Seq 

3. Abbreviations
BAT brown adipose tissue

cDNA complementary DNA

DTU differential transcript usage

iBAT interscapular brown adipose tissue

lncRNA long non-coding RNA

mRNA messenger RNA

ONT Oxford Nanopore Technologies

PCR polymerase chain reaction

qPCR quantitative polymerase chain reaction

RNA ribonucleic acid

TSS transcription start site

4. Introduction
Alternative transcription (AT) is a post-transcriptional process in which multiple transcripts

arise  from  a  single  gene  locus  by  using  alternative  transcription  start  sites,  altered

polyadenylation sites and alternative splicing, thereby increasing the transcriptomic and

translatomic complexity in a cell  (de Klerk & ‘t  Hoen, 2015). Alternative transcription is

estimated  to  occur  within  92%  to  94%  of  human  genes,  substantially  expanding  the

catalogue of co-expressed mRNAs  (Pan et al., 2008; E. T. Wang et al., 2008). In line,

sequencing of ribosome attached translated mRNAs (Ribo-seq) and proteomics studies

confirmed  that  many  RNA  species  produced  by  AT  are  translated  and  contribute  to

increased proteome diversity  (Floor & Doudna, 2016; Lau et al., 2019; Rodriguez et al.,

2020; Weatheritt et al., 2016). Interestingly, AT is tissue specific (Rodriguez et al., 2020;

2/51

35

40

45

50

55

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 14, 2022. ; https://doi.org/10.1101/2022.12.14.520420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520420


Xu et al., 2002) or marks specific cellular states (Fiszbein & Kornblihtt, 2017; Robinson et

al., 2021), indicating a seminal role for AT in regulation of cellular identity and function.

Adipose tissue depots can be broadly classified into brown and white depots: While white

adipocytes mainly function to store energy as triglycerides in large unilocular lipid droplets

and coordinate energy metabolism by secretion of endocrine factors, brown adipocytes are

densely packed with mitochondria and morphologically present multiple small lipid droplets

(Rosen & Spiegelman, 2014). Upon sympathetic nervous system activation e.g., upon cold

stimulus,  brown  adipocytes  upregulate  lipolysis,  where  the  ensuring  free  fatty  acids

activate Uncoupling Protein 1 (UCP1) and generate heat by increasing the uncoupling of

oxidative respiration from ATP generation. Additionally, sympathetic activation of brown

adipocytes  (BA)  residing  in  brown  fat  and  in  inguinal  white  adipose  tissue  (so-called

brown-in-white  or  ‘brite’  adipocytes)  leads  to  profound  changes  in  gene  expression

(Cannon & Nedergaard, 2004). Recent evidence suggests, that not only differential gene

expression, but also the regulation of differential transcript usage (DTU) by RNA-binding

proteins i.e., changes in the relative abundance of transcripts originating from one gene, is

crucial  for  e.g.,  the  regulation  of  adipocyte  thermogenesis  (Vernia  et  al.,  2016).

Transcriptomic studies have shown that DTU is required for adipogenesis, the process of

differentiation of preadipocytes into mature adipocytes (Fiszbein & Kornblihtt, 2017; Yi et

al., 2020). Moreover, AT events in key brown adipocyte genes such as the transcription

factors  Pparg and  Prdm16 have been reported  to  play  a  role  in  the control  of  brown

adipocyte function (Chi & Lin, 2018; D. Li et al., 2016).

However, most studies focussing on AT and DTU so far have used Illumina short-read

sequencing.  Short-read sequencing inherently  underperforms in  relation  to  assembling

transcripts,  since  the  single  reads  only  span  a  fraction  of  a  transcript,  and  therefore

requires complex computational post processing for transcriptome reassembly. This poses

a conceptual problem: If two individual AT events in one gene occur too far away from

each other to be spanned by a single short read, it is challenging to unambiguously decide

if both AT events happen (i) in conjunction, (ii) arise independently from each (iii) or are

mutually exclusive  (Byrne et al., 2019). Short-read sequencing also suffers in respect to

transcript level quantification required for analysis of DTU, as only reads mapping to parts

of a gene unique to a single transcript can be unambiguously assigned to a transcript,

while all others must be assigned based on statistical models (Bray et al., 2016; Patro et

al.,  2017).  Long-read  sequencing  methods  such  as  those  developed  by  Pacific

Biosciences  (Eid et al., 2009; Sharon et al., 2013) and Oxford Nanopore Technologies

(ONT;  Garalde  et  al.,  2018) generate  full-length  isoform  reads  that  mitigate  these
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limitations,  allowing  for  simple  transcriptome  reannotation  and  unambiguous  read

assignment (Stark et al., 2019). Importantly, thousands of novel transcripts across a large

collection  of  different  human  tissues  have  recently  been  revealed  using  long-read

sequencing with ONT, enabling an understanding of functionally distinct protein isoforms

that different transcripts can give rise to  (Glinos et al., 2022). Reference databases like

GENCODE are based on a limited number of tissue transcriptomes (Robinson et al., 2021;

Xu et al., 2002). Since alternative transcription is tissue and cell state specific, it is of high

biological interest to reannotate transcriptomes in cell types such as brown adipocytes,

which are not represented in reference annotations, in order to identify and quantify tissue

specific transcript isoforms. Long-read sequencing methods like ONT sequencing on the

other hand,  suffer from lower throughput and lower base calling accuracy, resulting in

failure to detect lowly expressed isoforms and fuzzy splice junction annotation (Stark et al.,

2019).  Accordingly,  algorithms  that  combine  short  and  long  reads  for  improved

transcriptome  reassembly,  either  de  novo or  using  a  reference  genome,  have  been

developed (Fu et al., 2018; Kovaka et al., 2019; Tang et al., 2020) and consortia such as

GENCODE  have  started  incorporating  long-read  sequencing  in  their  reference

transcriptome annotation pipelines (Frankish et al., 2021).

Here,  we  have  compared  three  different  library  preparation  methods  using  the  ONT

platform and assessed their  ability  for  transcript  detection,  quantitation and differential

expression  calling  in  addition  to  performing  transcriptome reassembly  and  analysis  of

differential  transcript  usage.  Using  RNA isolated from murine  iBAT,  we identified  cold

induced isoform switches in genes regulating thermogenic  β3 adrenergic receptor (AR)

signalling  at  multiple  levels  including  regulation  of  cAMP levels  (Pde4d)  and  receptor

signalling (Adtrp), lipid metabolism/signalling (Scp2, Mlixpl) and protein sorting (Ergic1).

Finally, using FLAIR/ChIP Seq we identified a novel alternative transcription start site in

the  in  the  mitochondrial  respiration  regulating  protein  cysteinyl-tRNA synthetase  gene

(Cars2) and validated coding potential  for an alternative (shorter)  transcript  (Cars2-AT)

using  the  Coding-Potential  Assessment (CPA)  Tool  and determined functional  domain

structure using pfam. As an example which demonstrates the potential of the ONT long

read iBAT transcriptome reannotation reported here, we show that sgRNAs targeting the

Cars2-AT  promoter,  are  efficient  in  inducing  the  expression  of  Cars2-AT   in  brown

adipocytes  in  vitro.  Thus,  we provide a reannotation of  the murine iBAT transcriptome

which can be a valuable resource for researchers interested in iBAT biology by facilitating

them to target the relevant isoforms of a gene in study and detect novel DTU events in
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cold activated murine iBAT, demonstrating the contribution of AT in the regulation of brown

adipocyte activity.

5. Results

Comparison of Nanopore-based approaches for transcript resolution of 
cold-activated BAT 
We isolated RNA from iBAT of 20-week old, male C57BL/6N mice cold treated for 24 h at

4 °C or  housed at  room temperature (n  = 3).  To evaluate different  library preparation

methods for the ONT sequencing platform, we prepared libraries using  (i) direct cDNA

sequencing, which is PCR-free and avoids bias introduced by the amplification (Chen et

al., 2021; Stark et al., 2019) and (ii) TeloPrime sequencing, which uses a 5’ cap specific

template switching oligo to enrich for full-length RNA but requires PCR amplification. All

samples were multiplexed, and library pools sequenced on two separate flow cells per

library preparation method on a ONT GridION to assess the variability in performance of

the flow cells. Additionally, the samples were pooled within the respective treatment group

and (iii) sequenced following ONT’s direct RNA protocol on one flow cell each. Finally, (iv)

we  performed  strand  specific,  paired-end  short-read  sequencing  following  Illumina’s

TruSeq  protocol  as  reference  (Fig. 1A).  To  the  best  of  our  knowledge,  this  analysis

represents  the  most  comprehensive  characterization  of  full-length  transcripts  and

transcript diversity to date in the murine BAT depot, both at basal levels and upon cold

activation. Low quality ONT reads with a minimum average Phred Quality Score below 7

(20 %  base  call  accuracy)  were  removed,  leaving  13.5×106 reads  from  TeloPrime

sequencing, 12,7×106 reads from direct cDNA sequencing, and 3,0×106 from the direct

RNA sequencinq (Tab. 1). Interestingly, we observed a high variability in the number of

high-quality reads produced per flowcell, varying by 41 % for direct cDNA-Seq and 16 %

for TeloPrime-Seq, even though the same libraries were used, and flow cells run in parallel

(Fig. 1B). Similar variability in MinION flow cell  performance has been noticed in other

studies (Ip et al., 2015; Oikonomopoulos et al., 2016; Sessegolo et al., 2019). Noteworthy,

a  striking  difference  in  high  quality  read  numbers  was  seen  between  the  samples

harvested from mice housed at room temperature compared to those from cold treated

animals in TeloPrime-Seq. Read length distributions were similar between samples and

flow cells within one library preparation method (Fig. 1C). In good agreement with other

reports  (Udaondo et al.,  2021),  average read lengths were similar  for  direct  RNA-Seq

(1,033 nt) and direct cDNA-Seq (1,141 nt) but longer for TeloPrime (1,326 nt). The read
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length  distribution  of  the  TeloPrime method  however  was  multimodal,  while  the  other

distributions  were  unimodal.  Average  read  quality  was  similar  between  samples,  but

interestingly depended on the flow cell used (Fig. 1D), in agreement with the number of

high-quality  reads  received.  Thus,  our  comparisons  show that  the  TeloPrime  protocol

enriches for longer RNA molecules compared to other long-read protocols, but also reveal

substantial technical variation between flow cells.

Fig. 1. Characterisation of ONT reads. A Experimental design. RNA was either sequenced by the Illumina 

short-read platform or by three different ONT long-read library preparation protocols: TeloPrime, direct cDNA

sequencing (cdna) or direct RNA sequencing (rna). See results and methods for details. B;C;D Total number

of reads (B), read length distribution (C) and read quality distribution (D) by ONT sequencing method, flow 

cell and housing temperature.

ONT teloprime improves coverage of full-length transcripts
We next aligned the quality filtered long reads to the murine genome and transcriptome

using  minimap2.  Overall,  alignment  rates  were  high  and  independent  of  whether  the

alignment was performed using the transcriptome or genome as reference, ranging from

93 % for the direct cDNA-Seq method to > 99 % for TeloPrime (Tab. 1), emphasizing one

of  the  main  advantages  for  long-read  RNA-seq.  In  line  with  other  reports,  we  noted

accompanying supplementary alignments i.e., reads not mapping linearly to the reference

(Tab. 1; Fig. 2A; Fig. S1A-C). Reads with supplementary alignments were most common
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in  direct  cDNA-Seq  and  these  were  longer  (Fig. 2C;  Fig. S1E)  and  showed  larger

unaligned parts (Fig. 2D; Fig. S1F) then reads from the other methods. Supplementary

alignments  can  arise  from  reads  mapping  to  different  chromosomes,  indicative  for

chromosomal rearrangements (Klever et al., 2020; Leung et al., 2021). However, in direct

cDNA-Seq, supplementary alignments mostly mapped anti-sense to the same transcript as

the primary alignment (Fig. 2B; Fig. S1D), indicating that the second strand of the cDNA

was sequenced subsequently  to  the first  strand.  Next,  we compared the ability  of  the

different long-read sequencing methods to cover full transcripts. Comparison of the read

length distribution  of  the different  methods to  the hypothetical  distribution of  transcript

lengths as inferred from Illumina-Seq transcript abundances revealed that the direct cDNA-

Seq method generated a read length distribution shifted towards shorter reads (Fig.  S1G).

This was less prominent for the TeloPrime and direct RNA-Seq methods. Investigation of

gene  body  coverages  revealed  that  Illumina  short-read  sequencing mostly  covers  the

middle part of transcripts,  with reduced coverage at the 3′  and 5’ of the gene body in

comparison to ONT sequencing, as demonstrated previously (Fig. 2E;  Leshkowitz et al.,

2022; Soneson et al., 2019; Wright et al., 2022). All long-read libraries showed decreasing

coverage from the 3’ end of transcripts towards the 5’ end. Of note, this decrease was

markedly reduced in TeloPrime-Seq, which is meant to enrich for full length transcripts. To

assess the fraction of transcripts covered by reads and the proportion that represent full-

length transcripts, a coverage fraction was calculated. We defined coverage fraction as the

observed  transcript  length  (alignment  length)  divided  by  the  original  known  transcript

length. We observed that both the coverage fraction as well as the fraction of full length

reads markedly decreased with transcript length, in line with previous reports (Soneson et

al.  2019; Fig. 2F; Fig. S1H). This could have been caused by RNA degradation during

library preparation protocols or software artefacts during the base-calling process (Kovaka

et al., 2019; Sessegolo et al., 2019). Overall, coverage was higher in TeloPrime-Seq as

reported (Sessegolo et al., 2019). Direct cDNA-Seq showed both the lowest coverage and

the smallest  fraction of full  length reads. As expected,  the coverage of  supplementary

mappings was lower compared to primary alignments, although full-length supplementary

alignments  were  present  in  all  three  ONT  methods.  Thus,  we  demonstrate  that  the

TeloPrime protocol enriches for longer, potentially full length, transcripts compared to other

two full-length sequencing protocols due to its dedicated library preparation method.
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Fig. 2. Characterisation of read alignments. A Fraction of reads classified by whether the primary alignment 

against the genome has at least one supplementary alignment attached to it. B Fraction of supplementary 

alignments against the genome stratified by their relation to the corresponding primary alignment. C Read 

length distribution for reads aligned to the genome. D Aligned length vs read length for primary alignments to

the genome. E Percentile wise coverage of the gene body based on primary genome alignments. 

F Smoothed average transcript coverage of alignments mapped to the transcriptome for transcripts > 350 nt.

8/51

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 14, 2022. ; https://doi.org/10.1101/2022.12.14.520420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520420


Tab. 1. Alignment characteristics. Number of total reads (Q > 7), alignment 

rates, rate of reads with supplementary alignments and number of 

supplementary alignments for the three long-read sequencing methods, 

stratified by mapping to the genome (GRCm38.p6) or transcriptome 

(GENCODE M22).

ONT direct RNA and cDNA protocols show less bias for gene/transcript 
detection compared with TeloPrime
We next compared the ability of the different sequencing methods to detect expressed

genes and transcripts  based on the  reference annotation.  In  agreement  with  previous

reports (Sessegolo et al., 2019), direct cDNA and RNA-Seq detected a similar number of

features  as  short-read  sequencing  at  any  given  sequencing  depth  far  outperforming

TeloPrime-Seq (Fig. 3A and B). While differences in sequencing depth explain the large

sets of genes detected by Illumina-Seq or by direct cDNA-Seq and Illumina-Seq alone, we

also  observed  1447 genes  only  in  direct  RNA-Seq,  indicating  technical  biases  of  the

different methods. Similarly, most transcripts were observed in direct cDNA and Illumina-

Seq. However, the share of transcripts only detected using one but not the other protocol

was even more pronounced then on gene level,  indicating differences in the transcript

identification potential of the different technologies (Fig. 3C). To detect the cause of these

differences, we stratified the transcript detection rates by transcript length and transcript

biotype (Fig. 3D).  As reported, detection rates for Illumina, direct cDNA-Seq and direct

RNA-Seq increased with transcript size (Soneson et al., 2019). TeloPrime-Seq detection

rates on the other  hand were highest  for  transcripts  ranging from 1000 nt  to  3000 nt.

Detection rates of the direct cDNA-Seq method reached the detection rates of short-read

sequencing  for  coding  genes  longer  than  5000 nt  but  not  for  long  noncoding  RNAs

(lncRNAs). Genes and transcripts detected by either long- or short-read sequencing alone

were enriched for noncoding RNA as compared to those detected by both sequencing

types (Fig. S2A,B). Since coding genes are generally higher expressed than other classes

of RNA (Cabili et al., 2011), we assessed a potential effect of expression level on the gene

and transcript detection rates by the ONT methods (Fig. 3E; Fig. S2C). Both genes and

transcripts  detected  by  short-read  sequencing  and  long-read  sequencing  showed  on

average a higher expression measured by Illumina-Seq compared to features detected by

short-read  sequencing  only.  However,  there  were  also  highly  expressed  genes  and
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Method Total reads Reference Alignm. rate Prim w/ sup Sup alignm.
teloprime 13495575 M22 99.6% 7.3% 1109736
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transcripts  that  were  not  detected  by  the  ONT  sequencing  protocols  (Fig. S2D;E).

Interestingly, there were also features with high expression in the ONT datasets that were

not  detected  by  short-read  sequencing,  more  prominently  for  transcripts  compared  to

genes. Thus, direct cDNA-Seq and direct RNA-Seq had comparable gene and transcript

detection rates, which were proportional to gene and transcript length, whilst TeloPrime

yielded lower detection rates with a non-linear relationship to transcript length.

Fig. 3. Feature detection. A Feature detection rate by library size. A feature is counted as detected if there is 

at least one primary alignment to it. B;C Overlap of detected genes (B) and transcripts (C) between the 

different sequencing methods. D Transcript detection rate by transcript length and biotype. 100 % is any 

transcript detected in any of the sequencing datasets. E Abundance in the Illumina dataset of genes either 

detected or not by the different ONT library preparation methods.
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Direct RNA- and cDNA-Seq is superior to TeloPrime for gene/transcript 
quantification
RNA-Seq and cDNA-Seq correlated very well on gene (R2 = 0.92; Fig. 4) and transcript

level (R2 = 0.92; Fig. S4A). However, the situation was different when comparing the long-

with short-read sequencing: While direct cDNA and RNA-Seq results correlated well with

the  abundance  measured  by  Illumina  sequencing on  gene level  (R2 = 0.85  and  0.87),

larger differences occurred on transcript level (R2 = 0.54, both). The estimation of transcript

abundance  is  challenging  as  transcripts  from  one  gene  share  large  parts  of  their

sequence, causing ambiguity in read assignments when using short-reads (Soneson et al.,

2016). TeloPrime-Seq quantification correlated less with the other methods. Noteworthy,

the slope of the ratio of TeloPrime counts to those of other methods was larger than 1,

indicating that the TeloPrime method overestimates the expression of  highly abundant

features and underestimates lowly expressed features, an observation also made in ONT

RNA-Seq using PCR amplification  (Chen et al., 2021). As we sequenced all TeloPrime

and direct  cDNA samples on two different  flow cells,  we could make use of  technical

replicates to assess the variability in sequencing performance between different flow cells.

While sequencing counts for TeloPrime sequencing correlated very well among the two

flow cells  (R2 = 0.86 to 0.90;  Fig. S3B), the direct cDNA-Seq method showed a higher

variation (R2 = 0.75 to 0.77; Fig. S3C) reflecting the variability in read quality and length

distributions (Fig. 1B-D). Thus, we find that direct RNA and direct cDNA protocols are most

similar, reflecting a more unbiased representation of the transcriptome in comparison to

TeloPrime.
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Differential gene and transcript expression analysis in cold-activated 
BAT
The main goal  of  feature quantification is  to detect  differentially  expressed genes and

transcripts across biological samples. We compared the performance of the different ONT

library preparation methods and Illumina sequencing to detect such features between iBAT

of mice housed for 24 h either at room temperature or 4°C. Overall, the largest number of

differentially expressed genes and transcripts (989 and 1195, respectively) was detected

by  Illumina  sequencing  followed  by  TeloPrime-  (568  genes  and  552  transcripts)  and

cDNA-Seq (489 genes and 476 transcripts) (Fig. 5A). Each sequencing method detected a

unique set  of  features not  seen by the other  methods (312,  247 and 47 for  Illimuna,

TeloPrime  and  direct  cDNA,  respectively).  Of  note,  irrespective  of  the  method,  most

features  identified  as  differentially  expressed  were  protein  coding genes.  Interestingly,

Illumina and direct  cDNA performed better  in  detecting differentially  regulated lncRNA

genes compared with the TeloPrime protocol (Fig. 5B). Next, we compared the expression

levels  and  fold  changes  between  genes  called  to  show differential  gene  or  transcript

expression by one of the ONT methods alone, Illumina sequencing alone or both methods.

We  found  that  genes  differentially  regulated  according  to  Illumina  but  not  the  ONT

12/51

Fig. 4. Gene quantification. Scatter plots showing the correlation in gene quantification 

between the different sequencing methods.
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methods showed low expression in both types of analysis, but more evident in the long-

read method (Fig. 5C). On the other hand, genes detected to be differentially regulated by

the  ONT  methods  showed  similar  expression  levels  in  both  short-  and  long-read

sequencing,  independent  of  their  status  according  to  Illumina-Seq,  but  those features

called by both methods showed higher fold changes in Illumina-Seq upon cold treatment.

Thus, we observed that TeloPrime-Seq showed higher fold changes compared to Illumina-

Seq,  confirming  that  this  method  overestimates  highly  expressed  and  underestimates

lowly expressed features, and that transcripts (but not genes) called by either of the long

but not short-read sequencing methods showed lower expression on average in Illumina-

Seq (Fig. S4).
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Fig. 5. Differential gene expression analysis. A Overlap between genes showing differential gene expression

or genes with at least one transcript showing differential transcript expression over the two ONT methods 

and Illumina sequencing. B Biotypes of genes and transcripts showing differential gene and transcript 

expression respectively compared between the different sequencing methods. C Comparison of expression 

levels and fold changes of genes showing significant differential expression between direct cDNA/TeloPrime 

and Illumina sequencing.

ONT long read reannotation reveals novel features of the murine BAT 
transcriptome
The ability  of  long  reads  to  unambiguously  identify  expressed  isoforms  facilitates  the

analysis of  complex splicing events involving multiple exons. To reveal the nature and

magnitude of newly identified transcripts in murine brown adipose tissue, we applied two

transcriptome reassembly algorithms. FLAIR  (Tang et al.,  2020) corrects splice-sites of
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long-reads based on known, user-provided annotation e.g.,  from short reads, filters for

those long-reads starting at given transcription start sites (TSS) and then collapses the

long-reads to transcripts, keeping those with a minimum coverage of ONT reads. Stringtie

(Pertea et al., 2015; Shumate et al., 2021) creates a splice graph based on long-reads,

moves the splice junctions in this graph to the nearest junctions supported by short-read

sequencing, removing them if not supported, and uses both short and long reads to filter

for a minimum coverage. Each identified transcript was assigned to a structural category

describing the type of relationship to the reference transcript (Fig. 6A). Generally, stringtie

reannotated more transcripts compared to FLAIR (Fig. 6A), as shown previously (Kovaka

et al., 2019). Irrespective of the reannotation algorithm, direct cDNA sequencing yielded

the  highest,  while  direct  RNA  sequencing  gave  the  lowest  number  of  reannotated

transcripts, resembling the number of mapped reads (Fig. 3B-D), suggesting that transcript

identification is affected by the ONT sequencing protocol. In all  stringtie and the direct

RNA-Seq  FLAIR  reannotation,  most  reannotated  transcripts  fully  matched  reference

annotations ("full  splice match"; Fig. 6A). Novel transcripts not present in the reference

annotation ("novel in catalog") made up for the second largest set and were relatively more

prominent in FLAIR reannotations compared to stringtie reannotations, especially in the

FLAIR-TeloPrime reannotation. Transcripts missing exons from either the 3’ or 5’ end (i.e.

“incomplete splice match”; ISM) comprised the third largest class. Of note, the TeloPrime-

(FLAIR) dataset was almost devoid of ISM transcripts, most likely because of its selective

enrichment  for  full-length  RNA molecules.  Combinations  of  known  splice  junctions  or

splice sites were the prevailing mechanisms underlying transcript diversity among “novel

transcripts” (Fig. 6B). Among the ISM, class 5’ fragments as well as mono-exonsmatches",

were  most  often  found  (Fig. 6C).  Interestingly,  ISMs  were  more  prominent  when  the

TeloPrime  data  were  used  for  reannotation  by  stringtie,  suggesting  that  the  hybrid

approach might reintroduce truncated isoform annotations potentially based on degraded

RNA  molecules.  Noteworthy,  even  though  only  primary  reads  were  used  for  the

reannotation,  the  direct  cDNA  and  the  stringtie  reannotation  of  the  TeloPrime  data,

featured a substantial amount of antisense transcript annotations (Fig. 6A). These were on

average  shorter  (Fig. S5A)  and  consisted  of  less  exons  compared  to  the  full  splice

matching  transcripts  (Fig. S5B),  indicating  they  might  be  artefacts.  These  annotations

might interfere with transcript mapping, especially for non-directional sequencing methods.

Comparison  of  the  overlap  of  reannotated  reference  transcripts  between  the  different

datasets  showed  that  the  largest  sets  of  transcripts  were  either  detected  by  all

combinations of reannotation algorithm and sequencing method, or only in all the stringtie

datasets, highlighting the strong impact of the transcriptome reassembly method (Fig. 6D).
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Intriguingly, large sets of transcripts were only detected in the teloprime/stringtie or in the

Illumina dataset and to a smaller extent in the cDNA/stringtie and RNA/stringtie datasets.

Among the FLAIR reannotations, only direct cDNA-Seq showed transcripts specific for this

method. Curiously, while the TeloPrime/FLAIR dataset included the smallest amount of

reference transcripts, the combination of TeloPrime and stringtie reannotated the highest

number of reference transcripts apart from the Illumina sequencing-based reannotation.

Thus, the ONT sequencing method had a significant impact not only on the number but

also on the nature of the structural category of novel transcripts identified.

Fig. 6. Reannotation analysis of short and long -read sequencing protocols stratified by transcript assembler.

A Overview of different structural categories. B;C Subclassification within the novel transcript and incomplete

splice match categories. D Overlap between transcripts in the reference annotation (GENCODE M22) 

correctly reannotated by the different transcriptome assemblers and sequencing methods (includes 

transcripts falling into the full splice match and incomplete splice match categories as detailed in A).

Differential transcript usage analysis unravels gene expression 
alterations upon cold exposure in iBAT
Differential  gene  expression  analysis  lacks  the  sensitivity  to  detect  changes  at  the

transcript-level  caused  by  e.g,  alternative  transcription  start  sites  (TSS)  or  alternative

splicing (De Paoli-Iseppi et al., 2021). To overcome this limitation, we applied differential

transcript  usage  (DTU)  analysis  to  identify  genes  using  different  transcripts  in  cold-
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activated compared to inactive iBAT. Reliable identification of DTU depends critically on

both the accuracy of the transcript expression quantifications as well as the transcriptome

annotation. Therefore, we investigated combinations of transcript quantitation (Illumina or

direct cDNA counts) and reannotation algorithms (Fig. 7A). As observed for the differential

gene  expression  analysis  (Fig. 5A),  a  higher  number  of  DTUs  were  identified  when

Illumina counts were used to  assess transcript  quantification (Fig. 7A).  We found little

overlap between stringtie and FLAIR reannoations in line with other reports (Ringeling et

al., 2022). Among the genes with significant isoform switches between cold-activated BAT

compared to the controls, we observed phosphodiesterase 4D (Pde4d),  regulating levels

of  the  signalling  intermediate  cAMP,  which  activates  lipolysis,  glucose  uptake,  and

thermogenesis  in  brown  adipocytes  (Reverte-Salisa  et  al.,  2019);  the  thermogenesis

regulating hydrolase androgen dependent TFPI regulating protein (Adtrp; P. Li et al., 2022)

and regulators of fatty acid metabolism (acyl-CoA synthetase long-chain family member 5;

Acsl5),  glycolysis  (Aldolase A;  Aldoa),  protein  sorting  (endoplasmic  reticulum-golgi

intermediate compartment 1; Ergic1), lipid synthesis (MLX interacting protein-like; Mlxipl),

beta-oxidation (sterol carrier protein 2, liver;  Scp2) and protein cysteinylation (cysteinyl-

tRNA synthetase gene; Cars2; Akaike et al., 2017; Fig. 7C-E and S7 ). qPCR analysis on

iBAT  from  control  and  cold-treated  mice  using  primer  sets  specific  for  the  individual

transcripts corroborated our DTU analysis, thus validating the isoform regulation (Fig. 7B).

Incorporation of histone modification chromatin immunoprecipitation (ChIP)-Seq peaks into

the FLAIR algorithm revealed that  Cars2 is transcribed from two different TSS, i.e. the

‘canonical’ TSS and an alternative gene-internal TSS, giving rise to either the full-length

transcript (Cars2-FL) or a 5’ truncated transcript (Cars2-AT; Fig. S6). Visual inspection of

ONT direct cDNA sequencing coverage data indicated that the canonical TSS is dominant

at room temperature, while the the alternative TSS is predominantly used in iBAT of cold

treated animals (Figure S6A). Cars2 is the mitochondrial cysteinyl-tRNA synthetase, which

is important for the translation of mitochondrially encoded genes (Rajendran et al., 2018),

but  additionally  executes  a  ‘non-canonical’  function  in  post-translational  cysteine  and

protein persulfidation ultimately affecting mitochondrial respiration  (Akaike et al.,  2017).

Therefore,  we analysed the  sequences of  Cars2-FL and  Cars2-AT to  identify  whether

these alternative transcripts have coding potential using the Coding-Potential Assessment

(CPA)  Tool.  CPAT  predicted  both  isoforms  to  be  coding  (coding  potential  >  0.99),

annotating  the  open  reading  frame  correlating  with  the  UniProt  reference  amino  acid

sequence to Cars2-FL and predicting a N terminally truncated protein isoform for Cars2-

AT using the same open reading frame but missing the first 244 aa (Fig. 7F). As expected

for a mitochondrial protein, targetP predicted a mitochondrial localisation signal at the N
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terminus of the full  length CARS2 protein,  which was missing in the truncated protein

isoform (Fig. 7F). The truncated CARS2 protein isoform was further predicted to lack parts

of the conserved binding sites for both Zn2+ and pyridoxal phosphate (PLP), indicating a

potential lack of catalytic function (Fig. 7F). Using single guide RNAs (sgRNA) targeting

either  the  canonical  or  the  alternative  promoter  we  aimed  to  specifically  overexpress

Cars2-FL and Cars2-AT in wt1-SAM immortalised brown adipocytes (Fig. 7G). Using a

sgRNA targeting the alternative promoter,  it  was possible  to  induce the expression of

Cars2-AT 10 to 30 times, both with and without  β-adrenergic stimulation (p = 0.005 and

0.003) without confounding effects on Cars2-FL expression (Fig. 7G). Thus, these results

demonstrate that long-read DTU can identify and quantify biologically relevant changes in

isoform usage.
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Fig. 7. A Overlap DTU events detected by different combinations of datasets used for transcript annotation 

and sequencing. B qPCR validation of selected DTU events in murine iBAT from control (22°C) or cold (4°C)

treated mice. C Structure of expressed Cars2 isoforms. Arrows show direction of transcription. Narrow lines 

show intronic regions (not to scale). Exons displayed as boxes. Taller exonic boxes are coding regions, 

shorter boxes are 5′ and 3′ UTR regions. Colours represent identified protein domains. D;E Abundance 

(normalised counts) and isoform usage of expressed Cars2 isoforms. F Schematic representation of the 

general structure of Cars2 showing domains and residues important for catalytic activity (modified from 

(Akaike et al., 2017) and prediction of secondary and tertiary structures of the full length CARS2 and the 

predicted truncated protein isoform by LocalColabFold. The colour code depicts model confidence; green is 

low, red is high. G Expression of Cars2 isoforms in wt1-SAM brown adipocytes after targeting transcript 

specifics promoters using sgRNAs.
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6. Discussion
In this study, we assessed three different ONT long-read sequencing protocols as well as

Illumina short-read sequencing for differential gene expression, transcriptome reannotation

and  differential  transcript  usage  analysis  giving  us  unprecedented  views  on  transcript

diversity in murine brown adipose tissue. While studies of differentially expressed genes

have provided much of our current understanding of molecular mechanisms controlling

BAT function (Seale, 2015; Shapira & Seale, 2019; W. Wang & Seale, 2016), determining

genes  where  functionally  distinct  alternative  transcripts  change  between  BAT  activity

states  is  an  interesting  gene-regulatory  mechanism to  uncover. Feature  quantification

using direct RNA and direct cDNA protocols correlated well with Illumina on gene level,

and to a lesser extent on transcript level, as described  (Sessegolo et al., 2019). Direct

RNA and direct cDNA sequencing showed an even higher correlation on gene level which

was  only  slightly  reduced  when  quantifying  transcripts,  suggesting  that  (i) reverse

transcription to cDNA has a limited impact on transcript quantification and (ii) long reads

give better estimates of transcript abundances, as they more often unambiguously map to

a single transcript. In fact, direct RNA as well as direct cDNA even outperform Illumina in

terms of accuracy of transcript quantification and differential expression, which has been

attributed  at  least  in  part  to  the  lack  of  GC  content  bias  (Chen  et  al.,  2021;

Oikonomopoulos et  al.,  2016,  2020;  Sessegolo et  al.,  2019).  The key challenges with

direct RNA sequencing are the large amount of input RNA required, higher error rate as

compared with cDNA sequencing and the lack of multiplexing options (Chen et al., 2021;

Soneson  et  al.,  2019).  PCR  amplification  protocols  such  as  the  TeloPrime  typically

produce higher sequencing depth than PCR-free methods, increasing coverage which is

required for accurate identification of alternative transcripts  (Chen et al., 2021; Glinos et

al.,  2022).  However,  the  TeloPrime  method  overestimated  the  abundance  of  highly

expressed and underestimated the abundance of lowly expressed features, caused in part

by  the  inherent  PCR amplification  step  compromising transcript  diversity  (Chen et  al.,

2021; Sessegolo et al., 2019).

Comparison of the transcriptome reannotation methods showed that when using the same

input data, stringtie surpasses FLAIR in terms of the number of  correctly reassambled

transcripts from the reference annotation (full and incomplete splice matches; Fig. 6A), in

line with previous reports (Kovaka et al., 2019). In contrast to stringtie, FLAIR incorporates

ChIP/CAGE-Seq data which can be high value because it  discriminates  between true

internal TSS, and artefacts from 5’ degraded RNA, which importantly allowed us to identify

a novel 5’ truncated Cars2 transcript isoform (Cars2-AT) highly induced in iBAT of cold-
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treated mice and predicted to encode a N-terminally truncated protein (Fig.  S6). Cars2 has

recently been reported to be involved in sulphur metabolism, which is of importance for

mitochondrial morphology and BAT function (Akaike et al., 2017; Soriano et al., 2018). The

functional  significance of  the  novel  Cars2-AT reported  here,  the  predicted  changes in

localization, and its role in thermogenesis remain to be experimentally defined. Our brown

adipocyte cell model overexpressing Cars2-AT and Cars2-FL by CRISPR/Cas9 mediated

activation  of  the  respective  endogenous  promoter  (Fig. 7G)  will  be  a  valuable  tool  to

answer these questions;  and will  also allow us to test  whether Cars2-AT may have a

dominant negative regulatory role in Cars2 expression, as observed for other truncated

protein  isoforms  (Gervois  et  al.,  1999;  Tomita  et  al.,  2003).  TeloPrime’s  strategy  for

enrichment  of  full-length  transcripts  allowed  us  to  identify  several  novel  alternative

transcripts  produced  from  the  same  gene  with  presumably  important  functional

consequences on protein structure,  culminating on thermogenic  β3-adrenergic receptor

(AR) mediated cAMP signaling (Fig. 7B and C):  Cellular cAMP levels are also regulated

cAMP-specific phosphodiesterases (PDEs) and Pde4d regulates lipolysis and thermogenic

gene expression   (Vezzosi  &  Bertherat,  2011).  Cold-activated induction of  Pde4d-long

might  lead  to  reduced  thermogenic  cAMP signalling  since  Pde4d-long  controls  cAMP

levels negatively in a spatial manner due to UCR motifs present in the long Pde4d isoform

(Lynch et al., 2007). Another factor regulating the thermogenic β3-AR signalling cascade is

Adtrp; Adtrp-deficient mice are cold-intolerant and have defective thermogenesis (P. Li et

al., 2022). Thus, cold-activated induction specifically of the longer (enzymatically active)

Adtrp isoform shown here might enhance BAT function. Peroxisome derived lipids are

required  for  brown  fat-mediated  thermogenesis  through  regulation  of  cold-induced

mitochondrial  fission  (Kleiboeker  &  Lodhi,  2022).  The  cold-induced  switch  in  the

peroxisome lipid transfer protein  Scp2 in favour of the longer (and enzymatically active)

isoform  (Fig. 7B)  may  thus  support  a  peroxisome-to-mitochondria  lipid  signalling  hub,

supporting mitochondrial uncoupling and thermogenesis (N. C. Li et al., 2016). Proper BAT

thermogenic  function requires cellular  protein  quality  control  and removal  of  misfolded

proteins (Bartelt et al., 2018). We here identified DTU in the protein sorting gene Ergic1 (

Joshi et al., 2017) with the shorter isoform being specifically increased upon cold activation

(Fig. 7B;C) which may thus participate in the homeostatic adaptation of BAT to cold stress

involving the ER stress response. 

The key transcription factor regulating de novo lipogenesis Mlxipl (a.k.a. ChREBP) inhibits

BAT thermogenesis  and downregulates  expression  of  genes involved in  mitochondrial

biogenesis and respiration  (Wei et al., 2020). Based on our DTU analysis of  Mlixpl, we

21/51

435

440

445

450

455

460

465

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 14, 2022. ; https://doi.org/10.1101/2022.12.14.520420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520420


speculate that the observed downregulation of the long, intact Mlixpl isoform specifically in

cold-activated iBAT alleviates Mlixpl inhibitory effects of on BAT thermogenesis. Fatty acid

oxidatiocyl-CoA synthetases such as Acsl5 regulate fatty acid trafficking and metabolism

(Bowman et al., 2016). Acsl5 activity increases adiposity, decreases Ucp1 expression and

energy expenditure in mice (Bowman et al., 2016). Here, we show DTU in Acsl5 giving rise

to two transcripts differing in their 5’UTR but otherwise identical protein domain structure

(Fig. 7B;C) with the longer isoform being the almost exclusively expressed variant in cold,

suggesting differential control of translation efficiency of this fatty acid channelling enzyme

in  response  to  cold  challenge  in  BAT.  A  similar  scenario  may  be  true  for  the

glyceroneogenic enzyme Aldoa, which controls the cellular levels of glycerol-3-phosphate

(G3P) shown to be increased upon cold exposure in BAT of  mice  (Moura et al., 2005).

Thus, a systematic characterization of isoform-level variation and complexity in activated

BAT  as  described  here  will  help  understand  how  isoforms  might  contribute  to  the

regulation of BAT function.

7. Material and methods

Animal experiments

Unless otherwise stated, mice were kept at 22°C to 24°C on a regular 12 h light cycle with

ad libitum access to food (Altromin 1324, Altromin Spezialfutter GmbH & Co. KG, Lage,

Germany) and water. 20 weeks old male wild type C57BL/6N mice were singly housed at

4 °C for a period of 24 h prior to harvesting adipose tissues.

RNA isolation

Whole  frozen  iBAT  samples  were  homogenised  in  1 ml  TRIsure  (Bioline,  Memphis,

Tennessee,  USA)  per  animal  using  a  tabletop  homogeniser  (FastPrep-24  5G,  MP

Biomedicals, Irvine, California, USA). RNA was isolated by phenol chloroform extraction

and alcohol precipitation as described by (Workman et al., 2019).

Illumina RNA sequencing

The NEBNext Ultra II Directional RNA Library Prep Kit (New England BioLabs, Ipswich,

Massachusetts,  USA)  was  used  to  prepare  50 nt  paired-end,  strand  specific  libraries

following the manufacturer’s protocol and sequenced on a NovaSeq 6000 (Illumina Inc.,

San Diego, California, USA) for approximately 25 million reads per library.
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ONT library preparation

For  all  experiments,  sequencing  on  the  GridION  platform  (ONT,  Oxford  UK)  was

performed using FLO-MIN106 R9 flowcells (ONT).  Libraries prepared according to the

TeloPrime and the direct cDNA protocol were sequenced on two different FLO-MIN106 R9

flow cells to examine sequencing variability.

poly(A) enrichment

RNA used for ONT sequencing was poly(A+) selected in two consecutive rounds using

oligo(dT) beads (GenElute mRNA Miniprep Kit, Sigma MRN10, MilliporeSigma, Burlington,

Massachusetts, USA) following the manufacturer’s recommendations. Subsequently, RNA

was alcohol precipitated using sodium acetate and glycogen following the protocol from

the Ribo-Zero rRNA Removal Kit (Illumina).

TeloPrime libraries

The TeloPrime Full-Length cDNA Amplification Kit (Lexogen, Vienna, Austria) was used to

select for full length mRNAs with intact 5’ CAPs from 7 ng poly(A+) RNA. The resulting

cDNA was PCR amplified with SYBR Green I (MilliporeSigma), TeloPCR enzyme mix and

3’  and  5’  primers  (RP:  5’-TCTCAGGCGTTTTTTTTTTTTTTTTTT-3’ and  FP:  5’-

TGGATTGATATGTAATACGACTCACTATAG-3’) to determine the optimum cycle numbers for

the  large-scale  PCR  to  generate  enough  material  for  long-read  sequencing.  The

determined cycle number of 27 was applied for large scale PCR in the absence of SYBR

Green I  followed by processing of  400 ng of  the cDNA with the SQK-LSK109 ligation

sequencing kit (ONT) and the EXP-NBD104 barcoding kit (ONT) following manufacturer’s

instructions.

Direct cDNA libraries

Libraries were prepared from 100 ng poly(A+) RNA using the SQK-DCS109 direct cDNA

sequencing  kit  (ONT)  and  the  EXP-NBD104  barcoding  kit  (ONT)  according  to

manufacturer’s protocol.

Direct RNA libraries

Libraries were prepared from 500 ng poly(A+) RNA using the SQK-RNA002 direct RNA

sequencing kit according to manufacturer’s protocol (ONT).
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Reverse transcription and qPCR

RNA  was  reverse  transcribed  into  cDNA  using  the  High  Capacity  cDNA  Reverse

Transcription  Kit  (Applied  Biosystems  4368814,  Applied  Biosystems,  Waltham,

Massachusetts, USA) following the manufacturer’s instructions. qPCR was performed in

384 well format in a LightCycler 480 II (Roche, Basel, Switzerland). 4 µl of 1:20 diluted

cDNA, 0.5 µl gene specific primer mix (5 µl each) and 4.5 µl FastStart Essential  cDNA

Green Master (Roche) were amplified using 45 cycles of 25 s at 95 °C, 20 s at 58 °C and

20 s at  72 °C after 300 s at  95 °C initial  denaturation. All  combinations of primers and

samples  were  run  in  duplicates  and  Cq values  calculated  as  the  second  derivative

maximum. Genes of interest were normalised against housekeeper genes using the ΔCq

method. The primers used in this study are listed in Tab. S1.

Long-read alignment and quantification

For  the  reference-based comparison  of  ONT library  preparation  methods,  reads  were

mapped against the transcriptome (GENCODE M22;  -ax map-ont --secondary=no

-uf) and genome (GRCm38.p6; -ax splice --secondary=no -uf) using minimap2

(H. Li, 2018). Reads were subsequently filtered for an average PHRED score > 7 using

NanoFilt (De Coster et al., 2018). GenomicAlignments (Lawrence et al., 2013) was used to

directly extract read level information from BAM files, including transcript level reference

sequence, flag based mapping types, mapping position and cigar based aligned length

information as described by (Soneson et al., 2019).

Short-read alignment and quantification

Illumina short-reads were quality filtered using cutadapt (Martin, 2011; -q 28 -m 30) and

mapped to the genome (GRCm38.p6) using STAR (Dobin et al., 2013). Transcript level

quantification was done using salmon in selective alignment mode (GENCODE M22; Patro

et al., 2017). Gene level abundance estimation was done using tximport (Soneson et al.,

2016).

Differential gene and transcript expression analysis

Differential  gene  and  transcript  expression  analysis  was  done  using  DESeq2  with

H0: log2FC > 0.5 (Love et al., 2014). Adjustment for multiple testing was done using the s-

value method proposed by Stephens (2017) implemented in apegeglm (Zhu et al., 2018)

and s-values < 0.05 were considered significant.
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Transcriptome reannotation

Transcriptome reannotation using stringtie (Shumate et al., 2021) was done with a splice

junction cutoff (-j) of 10 and in presence of the reference annotation (-G,  GENCODE

M22). For ONT long-read runs, the --mix mode was used, additionally providing stringtie

with the Illumina-Seq data of the same sample. Afterwards, all reannotations were pooled

within  the  respective  library  preparation  methods  using  stringtie  --merge with  a

coverage cutoff (-c) of 3 and only isoforms with a minimum isoform fraction of 5 % per

gene were kept (-f). No reference annotation was used in the merge step.

Aligned ONT long-reads were corrected by FLAIR correct  (Tang et al., 2020) using the

splice junction data from STAR from the Illumina-Seq runs of the same samples, filtered

for a minimum splice junction coverage of 10. Subsequently, the corrected reads were

collapsed into a transcriptome reannotation by FLAIR collapse using a minimum coverage

of 3 and setting the --stringent flag. In order to mark true transcriptional start sites, a

combined bed file from FANTOM5 CAGE peaks and iBAT H3K4me3 peaks was provided

(Abugessaisa  et  al.,  2017;  Engelhard  et  al.,  2022).  For  the  TeloPrime  data,  the  --

trust_ends flag was additionally set.

The reannotated transcripts were compared to the reference annotation using SQANTI2

(Tardaguila et al., 2018)and the overlap between the different sequencing methods was

calculated  based  on  the  associated  transcripts  for  transcripts  either  fully  or  partially

matching a reference transcript as described elsewhere in detail (Soneson et al., 2019).

Analysis of differential transcript usage

Only genes with at least 10 counts in all samples were included in the analysis. Transcripts

were filtered for a minimum of 5 counts and 10 % of the counts of the parent gene in half

of the samples. Differential transcript usage analysis was done using DRIMSeq and FDR

calculated using stageR (Love et al., 2018; Nowicka & Robinson, 2016; Van den Berge et

al., 2017). FDR < 0.1 and transcript usage changes > 5 % were considered significant. In

order to detect differential transcript usage from qPCR data, a linear model was fitted with

isoform and temperature as variables and the interaction term was tested. p-values were

adjusted for multiple testing using Holm’s method.
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Annotation of transcripts

Annotation  of  transcript  isoforms  including  open  reading  frames,  nonsense  mediated

decay (spliceR, Vitting-Seerup et al., 2014) and functional protein domains (pfam, Finn et

al., 2016) was done using IsoformSwitchAnalyzeR (Vitting-Seerup & Sandelin, 2019).

Cars2  protein  fold  predictions  were  generated  in  LocalColabFold  using  standard

parameters  (Mirdita  et  al.,  2022).  Computation  of  the  models  was  performed  on  the

UCloud  interactive  HPC  system,  which  is  managed  by  the  eScience  Center  at  the

University of Southern Denmark.

Cars2 overexpression in cell culture

wt1-SAM brown preadipocytes  were grown in  high  glucose DMEM supplemented with

10 % fetal bovin serum (FBS) and 1 % penicillin-streptomycin. After reaching confluency,

differentiation  was  induced  by  0.5 μM  rosiglitazone,  1 nM  T3,  1 μM  Dexamethasone,

850 nM insulin, 125 μM indomethacine and 500 μM IBMX. Two days later, medium was

exchanged  for  medium  supplemented  with  0.5 μM  rosiglitazone  and  850 nM  insulin.

Afterwards,  medium  was  changed  for  medium  containing  0.5 μM  rosiglitazone  every

second day until reaching full differentiation 7 days after induction.

For  in  vitro gain  of  function  studies  using  the  wt1-SAM  cell  line,  single  guide  RNAs

(sgRNAs)  were  designed  using  CRISPick  (Doench  et  al.,  2014) and  cloned  into  the

sgRNA(MS2)  cloning  backbone  (addgene  61424)  as  described  by  (Konermann et  al.,

2015). To transfect mature adipocytes, 3 μl TransIT and 250 ng plasmid DNA or 1.4 μl

(10 μM) in 100 μl Opti-MEM I were pipetted into a well of a 24 well plate. After 15 min,

500,000 cells resuspended in 500 μl Opti-MEM I were added. 24 h later,  medium was

changed  for  regular  differentiation  medium.  Guide  sequences  used  were

ATTTAGGCATTTGGGCACGG for Cars2-FL and GTGGCTGAACAGATCTGGCC for Cars2-AT.

8. Data and software availability

The RNA-Seq data presented in this study has been deposited to GEO and will be made

public once this study has been accepted for publication. Reviewers can get access via a

reviewer token upon request. Source code for the reproduction of all analyses and plots in

this study are available at https://gitlab.com/kiefer.ch/nanoporeibat_new.
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11. Supplementary Figures

28/51

630

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 14, 2022. ; https://doi.org/10.1101/2022.12.14.520420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520420


Fig S1: Characterisation of read alignments. A Fraction of reads classified by whether the primary alignment 

against the transcriptome has at least one supplementary alignment attached to it. B;C Distribution of 

supplementary alignments per primary read for genome (B) and transcriptome (C) mapping. D Read length 

distribution for reads aligned to the transcriptome. E Aligned length vs read length for primary alignments to 

the transcriptome. F Fraction of supplementary alignments against the transcriptome stratified by their 

relation to the corresponding primary alignment. G Read length distribution of primary alignments to the 

transcriptome compared to the hypothetical transcript length distribution as estimated from the short-read 

transcript abundances. H Smoothed fraction of full length alignments (> 90 %) mapped to the transcriptome 

for transcripts > 350 nt.
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Fig S2: Feature detection. A;B Biotypes of genes (A) and transcripts (B) detected by the indicated method. A

feature is counted as detected if there is at least one primary alignment to it. C Illumina-Seq based 
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abundance of transcripts stratified by whether they are detected by the different ONT library preparation 

methods or not. D;E Expression levels of genes (D) and transcripts (E) stratified by whether they are 

detected by Illumina, the respective ONT library preparation method, or both.
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Fig S3: Transcript quantification. A Scatter plots showing the correlation in transcript quantification between 

the different sequencing methods. B;C Sample wise correlation analysis of transcript quantification between 

two different flow cells for the TeloPrime (B) and direct cDNA (C) methods.
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Fig S4: Differential transcript expression analysis. Comparison of expression levels and fold changes of 

transcripts showing significant differential expression between direct cDNA/TeloPrime and Illumina 

sequencing.
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Fig S5: Reannotation Analysis. Transcript length distributions (A) and distributions of number of exons per 

reannotated transcript (B) compared for different structural categories and different reannotation methods. 

Center lines represent the median; hinges represent first and third quartiles; whiskers the most extreme 

values within 1.5 interquartile range from the box.
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Fig S6: Detailed analysis of the Cars2 locus. Browser tracks of transcripts annotated for the Cars2 locus in 

murine iBAT. Shown are the coverage (log10(x+1)) and splice junction usage from two representative 

Illumina sequencing runs, long-read alignments from two representative direct cDNA sequencing runs, as 

well as a the reannotated transcripts from FLAIR compared to the reference annotation (GENCODE M22) 

and histone ChIP-Seq peaks marking the TSSs. Note the diversity in Cars2 transcripts and their usage 

between treatments.
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Fig S7: Differential transcript usage in cold-activated murine iBAT. Structure of expressed isoforms of genes 

showing differential isoform usage detected in the indicate dataset.
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Fig S7 (continued)

37/51

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 14, 2022. ; https://doi.org/10.1101/2022.12.14.520420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520420


12. Supplementary tables

Tab. S1. qPCR primers.
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