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Abstract

1. Acoustic monitoring is an effective and scalable way to assess the

health of important bioindicators like bats in the wild. However, the

large amounts of resulting noisy data requires accurate tools for automat-

ically determining the presence of different species of interest. Machine

learning-based solutions offer the potential to reliably perform this task,

but can require expertise in order to train and deploy.

2. We propose BatDetect2, a novel deep learning-based pipeline for

jointly detecting and classifying bat species from acoustic data. Dis-

tinct from existing deep learning-based acoustic methods, BatDetect2’s

outputs are interpretable as they directly indicate at what time and fre-

quency a predicted echolocation call occurs. BatDetect2 also makes use

of surrounding temporal information in order to improve its predictions,

while still remaining computationally efficient at deployment time.

3. We present experiments on five challenging datasets, from four dis-

tinct geographical regions (UK,Mexico, Australia, and Brazil). BatDetect2

results in amean average precision of 0.88 for a dataset containing 17 bat

species from the UK. This is significantly better than the 0.71 obtained

by a traditional call parameter extraction baseline method.

4. We show that the same pipeline, without any modifications, can be ap-

plied to acoustic data from different regions with different species com-

positions. The data annotation, model training, and evaluation tools pro-

posed will enable practitioners to easily develop and deploy their own

models. BatDetect2 lowers the barrier to entry preventing researchers

from availing of effective deep learning bat acoustic classifiers. Open

source software is provided at:

https://github.com/macaodha/batdetect2

K E YWORD S

Bioacoustics, Bats, Passive Acoustic Monitoring, Deep Learning,

Acoustic Event Detection
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1 | INTRODUCTION

Reliable biodicators are necessary to enable us to bet-

ter measure the impact of climate change and acceler-

ating habitat loss. Bats have previously been identified

as one promising candidate for this role due to their

global distribution, taxonomic diversity, and sensitivity

to environmental and habitat change (Jones et al., 2009).

However, despite making up approximately one fifth of

all mammalian diversity, we know comparatively less

about them in relation to other well studied taxonomic

groups (Frick et al., 2020). In order for them to fulfill

this potential, there is a growing need for robust and re-

liable tools for monitoring their populations (Russo et al.,

2021).

Recent advances in hardware and software have re-

sulted in low-cost solutions for automated bioacoustic

monitoring. This enables us to unobtrusively monitor

wild populations at unprecedented spatial and temporal

scales via audio (Gibb et al., 2019). In the context of

bats, there is a rich history of using acoustic methods

for monitoring purposes (Zamora-Gutierrez et al., 2021)

by leveraging the fact that bats use sound to navigate

and communicate (Jones and Siemers, 2011; Prat et al.,

2016). Machine learning-based approaches have been

extensively used by extracting acoustic features from

audio recordings and then classifying which species are

present in the input audio (Parsons and Jones, 2000;

Walters et al., 2012; Zamora-Gutierrez et al., 2016; Bas

et al., 2017; Obrist and Boesch, 2018; Roemer et al.,

2021). In this line of work, the extracted features are

typically manually crafted to encode discriminative in-

formation related to the temporal and frequency-based

characteristics of bat echolocation calls.

However, bat calls are complex and varied. They can

exhibit regional, habitat, and species-specific variation

which makes them challenging to precisely characterise

using hand-crafted features (Walters et al., 2013; Russo

et al., 2018). This is in addition to other complicating

factors such as background noise and other vocalising

species (e.g. small mammals and insects) that can be

present in ultrasonic audio recordings. Deep learning-

based approaches attempt to address these challenges

by learning discriminative representations directly from

the raw input data. They have been shown to be highly

successful across a wide variety of applications in eco-

logical monitoring (Christin et al., 2019), in addition to

bioacoustics (Stowell, 2022).

The first deep learning-based methods applied to

bat acoustic monitoring focused on determining the

presence of bats versus background noise (Mac Aodha

et al., 2018) or the species present (Chen et al., 2020;

Kobayashi et al., 2021; Khalighifar et al., 2022) from

short audio clips, i.e. typically shorter than 50 millisec-

onds. The disadvantage of these approaches is that

they cannot capture longer temporal information such

as the interval between individual pulses which can

sometimes be an important discriminative signal. To ad-

dress this issue, otherwork has used longer input record-

ings in order to capture multiple individual calls in a se-

quence (Paumen et al., 2021; Zualkernan et al., 2020;

Tabak et al., 2021). Unfortunately the higher dimension-

ality of the data, due to the longer input audio recording,

can necessitate larger models and thus require more su-

pervised data at training time. Compact and efficient

models are necessary in the context of low powered de-

ployments on edge-basedmonitoring devices (Gallacher

et al., 2021; Zualkernan et al., 2021). In addition, there

is also an increased chance in longer recordings that

more than one species could be present in the longer

input recording (Dierckx et al., 2022). This last point

is especially problematic as it violates the ‘one species

per input’ assumption of conventional classification ap-

proaches.

Despite this recent progress in deep learning-based

solutions for bat monitoring, there is still a gap between

the latest research advances and the open-source tools

available to practitioners. In this work, we attempt to

address this gap by proposing a novel pipeline for bat

echolocation call detection and species classification

from acoustic data. Our approach, called BatDetect2,

combines the strengths of the short temporal window-

based methods with the benefits of the longer-range

temporal reasoning of the call sequence based meth-

ods. Our main contributions are: (i) An efficient model

for joint detection and classification of bat echolocation
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calls. (ii) This model provides interpretable predictions

that illustrate where in the input spectrogram, in terms

of frequency and time, the model has detected a call.

(iii) We evaluate the effectiveness of our proposed ap-

proach on five challenging datasets, collected from four

distinct geographical regions, and show that it is supe-

rior to existing call parameter-based methods. (iv) We

provide open-source tools for our full pipeline in order

to enable practitioners to annotate data, train, and de-

ploy models on their own datasets.1

2 | MATERIALS AND METHODS

2.1 | Acoustic event detection

Distinct acoustic vocalisation events (e.g. a bat echolo-

cation call or a bird song) created by a species of inter-

est can be characterised by the start time of the event,

the duration of the event, and the minimum and maxi-

mum frequency bands that the event spans. Our goal

is to develop a model g () that takes an ultrasonic au-

dio recording as input, represented as a spectrogram x,

and outputs a set of predictions related to the events

of interest in the input audio file, O = g (x) . In our

case these events will be bat echolocation calls. Each

prediction from the model, o ∈ O, represents a dis-

tinct event and contains information characterising the

time, frequency, and semantic (i.e. species) components

of the event. Specifically, each predicted event, o =

[tstart, tend, fmin, fmax, pspecies ], represents the start time,

end time, minimum frequency, maximum frequency of

the event, alongwith probability vector indicatingwhich

species themodel thinks is present. Here, pspecies is aC+

1 dimensional vector that sums to one, and represents

the probability of the species the model thinks emitted

the call, for each one of C different species of inter-

est plus one additional background class (i.e. ‘Not bat’).

Note, that this representation is distinct from conven-

tional acoustic classification models that only attempt

to determine the species present in a short duration in-

put spectrogram, i.e. y = g (x) , where y ∈ {1, ...,C + 1}

is an integer denoting the predicted species label.

1Code available at https://github.com/macaodha/batdetect2

2.2 | Detection and classification model

We implement our joint classification and detection

model g () as a deep neural network. Our model is in-

spired by computationally efficient one-stage object de-

tection methods from computer vision, e.g. Zhou et al.

(2019). Unlike two-stage methods that first propose a

set of possible events of interest and then assign each

event to a class (i.e. a species), one-stage approaches

directly predict the location and size of each event (i.e.

echolocation call) in the input.

Our model makes use of a U-Net-style architecture

(Ronneberger et al., 2015), with an encoder that extracts

features from the input spectrogram, followed by a de-

coder that generates the predicted size and location

of each echolocation call along with the corresponding

species’ probabilities. The model also uses skip con-

nections which facilitate the sharing of higher resolu-

tion feature information (in terms of frequency and time)

from the encoder to the decoder. The output of the de-

coder is a distribution over time and frequency indicat-

ing where the model thinks a set of calls are present and

also the sizes (in terms of frequency range and duration)

of the calls. As a final step, we pass this output to a non-

maximal suppression layer, implemented via max pool-

ing, in order to extract the local peak detections (Zhou

et al., 2019). This step prevents the model from predict-

ing multiple calls very close to each other (i.e. within a

few milliseconds). A high-level depiction of the model is

illustrated in Figure 1.

A common issue with many current deep learning-

based bat call detection and classification models, e.g.

(Mac Aodha et al., 2018; Chen et al., 2020; Kobayashi

et al., 2021), is that they typically only utilise very short

temporal input windows (e.g. less than 50 milliseconds)

to determine if a species is present. This prevents these

models from reasoning about inter-pulse temporal infor-

mation that can exist between individual calls and can

span hundreds or thousands of milliseconds. This is-

sue could be partially addressed by usingmore computa-

tionally expensive backbone encoder models that have

a larger temporal receptive field size, e.g. (Simonyan

and Zisserman, 2015; He et al., 2016). However, the
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F IGURE 1 Overview of BatDetect2, our echolocation call classification and detection model. The model consists
of a convolutional neural network-based encoder and decoder with skip connections that share extracted features
from the encoder to decoder. It utilises a self-attention layer in the middle of the model so that it can reason over a
longer temporal scale. In contrast to most existing deep learning-based bat call classifiers, our model directly predicts
the time in file of each event of interest, along with the duration of the event, the frequency range, and the species.

downside of such models is that they are much larger,

and thus have more parameters that need to be trained.

This larger size necessitates larger supervised training

datasets and results in a reduction in speed at inference

time. To overcome this problem, without having to in-

crease the size and capacity of the encoder, we intro-

duce a self-attention layer into the middle of our net-

work. Transformer-based self-attention architectures

(Vaswani et al., 2017) are among the current most per-

formant models in natural language processing owning

to their ability to capture long-range dependencies that

occur in the input data. The introduction of this layer al-

lows our model to ‘attend’ to information from different

points in time in the input audio file in order to increase

or decrease its estimated likelihood that a given species

is present at the current time step. Note that this self-

attention layer only operates along the temporal dimen-

sion and is thus very computationally efficient.

Our entire model is trained end-to-end using a three

component loss function which includes a detection

loss, a classification loss, and an event size loss. The

first two losses are implemented using a focal loss (Lin

et al., 2017), and the final one uses an L1 penalty. The

model and associated training and evaluation code are

implemented using the PyTorch deep learning frame-

work (Paszke et al., 2019). A detailed description of the

audio pre-processing steps, model architecture, training

losses, and training settings are provided in the support-

ing information.

2.3 | Audio annotation interface

Our model requires supervision in the form of bound-

ing boxes encompassing each individual echolocation

call present in an audio file. In order to obtain this, we

developed an audio annotation interface to enable hu-

man annotators to efficiently draw boxes and to assign

a species class label to every audible echolocation call in

a given input file. The interface is implement using the

Flask web framework (Flask, 2021) and is is depicted

in Figure 2. This framework allows us to deploy the in-

terface on the web to allow annotators to annotate re-

motely or we can also deploy it locally on an annotator’s

own device.

The interface has been optimised to speed up the an-

notation process. For example, we pre-cache the spec-

trogram generation step for the next file to be anno-

tated so that the annotator does not have to wait when

switching between files. In addition, it is possible to

change the spectrogram visualisation settings in order

to trade-off frequency resolution for temporal resolu-

tion, or vice versa. The annotations are stored together

in a separate JSON file for each audio file using a format

similar to the one used for the COCO dataset (Lin et al.,

2014). Annotators can play the audio file using a time

expansion factor of ten to ensure that the ultrasonic sig-

nals of interest are audible.

Unless otherwise specified, the audio files that we

annotated had information at the file-level related to

which species were present in the recording. Annota-
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tors were instructed to draw boxes around each indi-

vidual echolocation call, irrespective of how faint the

call was. They then assigned the recording-level species

class label to an annotation unless it differed from a pro-

totypical echolocation call for that species. Harmonics

were not annotated as part of the main call. In cases

where it was not possible to assign the correct class la-

bel, or when multiple species were present in a file, an-

notators marked unknown calls as being from a generic

‘Bat’ class.

1 Spectrogram Visualisation

2 Audio Event Summary

3 File Summary

F IGURE 2 Our audio annotation interface has
three main components: (i) spectrogram visualisation
and playback, (ii) editing of echolocation call
annotations, and (iii) file-level metadata display.

2.4 | Audio datasets

We train and evaluate our model on five different full

spectrum ultrasonic acoustic datasets. Additional de-

tails for each, including visual examples and per-species

counts, are available in the supporting information.

2.4.1 | UK data

This dataset contains audio data from 17 bat species

that breed in the UK, and has been collated from six

different sources. In total there are 2,809 distinct au-

dio files, with an average duration of 1.04 seconds,

and the dataset contains a total of 34,635 annotated

echolocation calls. To increase our robustness to back-

ground noise, we supplement this data with 4,225 ad-

ditional 0.384 second duration files from the iBats Pro-

gram (Jones et al., 2013). This adds an additional 6,842

annotated bat calls that do not have a confirmed species

label. Finally, we also add 345, one second duration,

empty files (i.e. no bats present) from London, UK, col-

lected using the recording devices described in Gal-

lacher et al. (2021). Our model is capable of using these

non-species bat recordings to learn better audio repre-

sentations.

We split the UK data into two different train and test

sets, UKsame and UKdiff. For UKsame we randomly as-

sign files to the test set, ensuring a maximum of four

files per species, per data source. The remaining files are

kept for the training set. This results in 7,010 train files

and 369 test files, containing 36,955 and 4,522 calls

respectively. UKdiff is a more challenging split. Here

we hold-out the largest single data source for testing.

This leaves 5,911 training and 1,468 test files, contain-

ing 24,315 and 17,162 echolocation calls. This second

split represents a more challenging test-case where the

data is guaranteed to be very different from the training

set. This also results in a reduction in the overall amount

of training data, both in terms of sheer quantity but also

diversity. Both variants of the dataset retain the 4,570

files without species labels as part of their respective

training sets.

2.4.2 | Yucatan data

The second dataset consists of 1,193 one second au-

dio clips extracted from 285 passive acoustic record-

ings from the Yucatan peninsula in Mexico. The data

was collected as part of a study by MacSwiney G et al.

(2008). It is smaller in size than the UK dataset, but is

representative of the type of data that would be feasible

to collect and annotate as part of a smaller-scale moni-

toring project. The annotations from the original study

were used and then expanded to ensure that all audi-

ble echolocation events were annotated. The final an-

notated dataset contains 10,020 echolocation calls from
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17 different species. We divided the data into 911 train-

ing and 282 test clips, making sure to separate at the

original recording-level, and not the clip-level, to ensure

that clips from the same recording were not in both sets.

2.4.3 | Australia data

This next dataset consists of a set of 14 bat species

which can be found in the major cotton growing region

on the north west plains of New South Wales and ad-

jacent areas in central southern Queensland. Bat calls

were recorded in the field from individuals released after

capture, following positive species identification. This

dataset features species with similar call characteristics

which makes it particularly challenging. The data was

randomly split at the file level, with 80% of the record-

ings for a species staying the train set, and the rest in the

test. This resulted in 4,569 and 1,327 individual calls in

the train and test sets respectively.

2.4.4 | Brazil data

Our final dataset represents an orthogonal challenge

to the first two. It contains 320 recordings of ten

second duration each collected between January and

March 2019 in south-eastern Brazil using AudioMoth

recorders (Hill et al., 2018). Here we have access to

the recordings but do not have any confirmed species

metadata. As a result, instead of annotating the calls

with species labels, we instead created ‘meta-categories’

based on the dominant frequency component exhibited

by each call. This resulted in three distinct call groups in

the final annotated dataset. Like the other datasets, this

annotation was performed manually, where the proto-

col again stipulated that all echolocation call instances in

each recording should be annotated. We split the data

into 256 train files and 64 test files, which resulted in

7,989 and 2,010 calls respectively.

2.5 | Baseline model

In order to evaluate the effectiveness of our model, we

compare it to a traditional bat call parameter/feature

extraction pipeline. To do this, we use the Tadarida-

D model from Bas et al. (2017), which consists of two

main components: (i) a bat echolocation call detector

and (ii) a echolocation call feature extractor. The ex-

tracted call features are a set of numerical values that

encode information about the shape and frequency con-

tent of each individual detected bat call. In the case of

Tadarida-D, this amounts to 268 features for each de-

tected event. For additional details about the specific

set of call features in Tadarida-D, please consult the orig-

inal paper (Bas et al., 2017).

For each of our datasets, we first run Tadarida-D to

detect the calls and extract the call features. Then for

each detected event in the training set, we compute the

overlap between the event (using the reported time in

file, duration, and frequency range from Tadarida-D) and

our ground truth annotations. We select the detection

that overlaps most in time and frequency with a given

ground truth annotation and then assign the species la-

bel from the ground truth to that event. If a detected

event does not match to a ground truth annotation it is

assigned to the ‘Not bat’ class. Each ground truth an-

notation can only be assigned to one predicted detec-

tion. Finally, we train a Random Forest (Breiman, 2001)

classifier on the extracted calls using the implementa-

tion from scikit-learn (Pedregosa et al., 2011) with

default parameters. It is important to emphasise that

while we are using Tadarida-D, our baseline is not di-

rectly equivalent to the full Tadarida method as we do

not make use of their pre-trained models, labeling inter-

face, classification code, or post-processing steps. How-

ever, this baseline allows us to control for the impact of

the training data as we can ensure that we are using the

same audio and ground truth annotations at training and

test time for both ourmethod and this baseline that uses

Tadarida’s features. This baseline also cannot make use

of the additional echolocation events that only have the

generic ‘Bat’ class label. However, this is only relevant

for the UK datasets.
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2.6 | Evaluation metrics

We use four different evaluation metrics to quantify the

performance of our model. The first, detection average

precision (‘AP Det’), evaluates the ability of the model to

correctly identify all valid echolocation calls in the test

data. This metric calculates the precision and recall re-

sulting from varying a threshold on the model output

predictions for the ‘Bat’ versus ‘Not bat’ task. We then

average over these different thresholds to quantify the

area under the precision-recall curve, using the interpo-

lation method used in Everingham et al. (2010). A pre-

diction is counted as a true positive if its estimated start

time overlaps with a ground truth echolocation call by

at most ten milliseconds. This is the same evaluation cri-

teria used in Mac Aodha et al. (2018).

‘AP Det’ does not evaluate the ability of the model to

accurately assign the correct species label to a predic-

tion. To address this, we also report the mean average

precision across the classes (‘mAP Class’). This involves

taking the per-class average precision and then averag-

ing this value over each class. This also has the added

effect ofweighting each class equally, irrespective of the

number of calls for each class in the test set. Here, we

exclude calls for which there are no ground truth species

labels available.

‘mAP Class’ suffers from one major limitation. As the

classes are evaluated independently, it does not high-

light cases where the underlying model may be poorly

calibrated and thus require different output thresholds

for each class. Calibration issues like this can result from

class-level data imbalances in the training data. To over-

come this limitation, we also report a third precision

based metric which we refer to as ‘Top Class’. Here

we simply take the top predicted class label, along with

its corresponding probability, for each detected call and

then evaluate the average precision as above. Unlike

‘mAP Class’, this metric can be biased if there is a large

imbalance in the classes in the test set.

The finalmetric, ‘File Acc’, evaluates the file-level clas-

sification accuracy. For this metric only, we exclude test

files that have been manually annotated as containing

more than one species. In order to convert the multiple

possible individual call predictions for a given file into a

single file-level class label, we threshold each of the indi-

vidual detections and remove any detection below the

threshold. We then sum the per-class probabilities of

the remaining detections and choose the class with the

highest sum as the file-level prediction. Finally, we re-

port the file-level accuracy corresponding to the single

best threshold across all files. The best possible score

for each of these four metrics is 1.0, and the worst is 0.0.

3 | RESULTS

3.1 | Detection and classification

performance

In Table 1 we present the main results comparing the

performance of our model, BatDetect2, to the Random

Forest baseline that uses Tadarida-D call features. The

results represent the average of three different models,

each trained with different random initialisations. We

observe that across all datasets, and the four evaluation

metrics, BatDetect2 performs best. The Random Forest

baseline also performs well on the comparatively easy

Brazil dataset, but struggles on the other four. The dif-

ference in performance is between 0.05 and 0.37 mean

average precision (‘mAP Class’), across the datasets.

We can see that BatDetect2’s detection perfor-

mance, reported via ‘AP Det’, is strong. This indicates

that the model is capable of correctly detecting the vast

majority of calls. However the lower performance for

the two call-level classification metrics (‘mAP Class’ and

‘Top Class’) indicates that it can have difficulty identify-

ing the correct species for a given call in some situations.

Table 1 also highlights the challenge posed by the more

difficult UKdiff dataset in contrast to the performance

on UKsame. In the supporting information, we illustrate

the impact that the amount of training data per-class

has on test performance, and broadly observe that more

data increases performance. The comparatively worse

performance on the Yucatan and Australia datasets can

likely partially be explained by the challenging set of

species contained within each and the smaller set of dis-

tinct training files available.
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TABLE 1 Performance of our BatDetect2 model compared to the Random Forest baseline with uses traditional
bat echolocation call features. We evaluate both models using the same five test datasets. For each of the metrics,
higher numbers are better, and the results are averaged over three runs. BatDetect2 performs best in all cases.

BatDetect2 (Ours) Random Forest Baseline

Dataset AP Det mAP Class Top Class File Acc AP Det mAP Class Top Class File Acc

UKsame 0.971 0.884 0.843 0.866 0.890 0.706 0.638 0.800

UKdiff 0.964 0.810 0.690 0.780 0.903 0.587 0.47 0.687

Yucatan 0.923 0.803 0.818 0.861 0.649 0.430 0.467 0.682

Australia 0.973 0.700 0.640 0.795 0.928 0.603 0.507 0.719

Brazil 0.926 0.962 0.940 1.000 0.883 0.912 0.910 1.000

In Figure 3 we display the per-class precision-recall

curves for BatDetect2. We also show precision-recall

curves at the genus-level. For these genus results, we do

not retrain the models, but instead sum the predictions

for each species belonging to a given genus, convert the

ground truth class label to the genus label, and then eval-

uate in the same way as the species-level curves. We

also display the file-level confusion matrix. As with the

‘File Acc’ metric, we only report results for files that have

one reported species in them. By comparing the genus-

level results in the second column for the challenging

Myotis calls to the corresponding species-level ones in

the first column for both UK datasets, we observe that

the model is capable of resolving the classification task

to the genus-level for these calls, but has difficulty for

some at the species level. This difficulty is most appar-

ent when looking at the confusion matrix for UKdiff in

the second row of Figure 3. Here we see that our model

confuses someMyotis species at the file-level.

We visualise the model’s predictions for a subset of

files in Figure 4. We observe that BatDetect2 is ca-

pable of detecting faint calls, and also handles situa-

tions where multiple species are present in a recording.

The model is also robust to background noise. This is

most apparent in the example from the Brazil dataset

recorded using an AudioMoth (Hill et al., 2018) on the

bottom row of the figure. In this example we can see

a repetitive high frequency signal, most prominent at

∼60kHz that repeats every 50milliseconds. Despite this

structured noise, our model does not produce any false

positives in this example.

It takes BatDetect2 just under four minutes to pro-

cess and save the results for 424, ten second duration,

384kHz AudioMoth recordings using a GPU, i.e. 70.6

minutes of ultrasonic data in total. Tadarida-D, which

does not utilise a GPU, takes 2.5 minutes for detection

and feature extraction for the same data. Note that this

processing time does not include the evaluation of the

Random Forest. This benchmarking was performed on

a workstation which contained an Intel i7-6850K CPU

and an Nvidia TITAN Xp GPU.

3.2 | Impact of self-attention

In Table 2 we present results a variant of the model on

the UKdiff dataset where we remove the self-attention

layer, i.e. ‘No Self-Attn’. Again we report performance

averaged over three different runs. We observe a large

drop in performance when compared to the full model.

Notably, the call detection results measured by ‘AP Det’

are not impacted, but two of the classification metrics,

‘mAP Class’ and ‘Top Class’, show a large decrease when

removing this component. This points to the value of

longer temporal range reasoningwhen resolving species

identity that is provided by the self-attention layer. In

the supporting information, we provide a visualisation

of how the self-attention layer makes use of informa-

tion from different points in time in order to improve its

species-level predictions.
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TABLE 2 Performance of two different variants of
BatDetect2 on the UKdiff test set. The results in the
first row are the same as the BatDetect2 results in the
second row of Table 1. ‘No Self-Attn’ is the same as the
full BatDetect2 model but where the self-attention
layer has been removed at training and test time.

Dataset AP Det mAP Class Top Class File Acc

Full model 0.964 0.810 0.690 0.780

No Self-Attn 0.962 0.725 0.614 0.790

4 | DISCUSSION

4.1 | Model performance

BatDetect2 performs significantly better than the tradi-

tional call feature-based baseline tested. For the vast

majority of species in the UKsame dataset, BatDetect2

results in high precision at high recall rates (see Figure 3).

This is important as it enables practitioners to trade-

off recall for precision to ensure that they obtain reli-

able, high confidence, predictions from the model. The

file-level accuracy is 78% and 86.6% for the UKdiff and

UKsame datasets, where a large percentage of the mis-

takes can be attributed to known challenging species,

i.e. theMyotis species. While we observe a performance

drop for UKdiff, the UKsame results indicate that training

on larger quantities of more representative data results

in a more effective model.

Unlike existing deep learning-based classifiers, our

model produces interpretable predictions in the form of

time and frequency boxes around the detected calls (see

Figure 4). This is valuable as it will enable practitioners

to inspect the model predictions to better understand

any failure cases they may observe for their datasets.

BatDetect2 can efficiently use information from longer

input time scales via the self-attention layer without

significantly increasing the amount of computation per-

formed at test time. This results in a model that can per-

form inference ∼17 times faster than real time using a

GPU, i.e. 17 minutes of recorded ultrasonic audio takes

one minute to fully process.

Perhaps most importantly, we showed that the same

pipeline, without any modifications, can be applied to

audio data from four distinct regions. This is valuable

as it will allow practitioners to focus on collecting and

annotating datasets for their species of interest. Our

annotation interface assists this process and will enable

researchers to make annotations available to others in a

standardised and open format.

4.2 | Limitations

BatDetect2 performs well across the five datasets

tested, however it still suffers from some limitations. We

rely on the availability of diverse, and exhaustively an-

notated, training data. Collecting such data can be chal-

lenging, in addition to being time consuming to annotate.

This limitation is common to any supervised learning-

based method. While methods for semi-supervised and

self-supervised training offer the potential to learn ef-

fective models with limited to no training supervision,

diverse labelled data is still needed to evaluate the per-

formance of the developed models. Bat calls can exhibit

plasticity depending on the population sampled (Mon-

tauban et al., 2021), the presence of other species, and

the composition of the local environment. As a re-

sult, care needs to be taken to ensure that the col-

lected training datasets are representative of the down-

stream deployment situations as much as possible. Fi-

nally, our training datasets currently only contain an-

notated echolocation calls, and thus the model cannot

make predictions for other types of calls, e.g. social calls

or feeding buzzes. With appropriate training data, this

could be addressed.

For a given input recording, BatDetect2 returns a list

of detections along with their corresponding time in file

and species probabilities. It is left up to the user to de-

cide how to best merge the individual detections into a

set of ‘bat passes’, where a pass constitutes a sequence

of individual calls. This summary step can be important,

as practitioners often derive statistics based on the num-

ber of detected individuals (which is difficult to ascer-

tain) or their activity, as opposed to the number of de-

tected calls. One approach is to use a grouping-based

heuristic based on the time between detected calls as in

Mac Aodha et al. (2018). The high recall rates of BatDe-
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tect2 means that this type approach is less likely to sep-

arate individual bat passes into multiple different ones.

In contrast, methods that produce high numbers of false

negatives run the risk of overcounting the number of

passes as they can miss faint calls in a sequence, and

thus incorrectly break them up into a number of shorter

passes.

5 | CONCLUSIONS

We presented BatDetect2, a general-purpose model for

detecting and classifying bat echolocation calls in chal-

lenging high-frequency audio data. We showed that the

same model, without modifications, can be trained and

evaluated on data from different geographical regions.

In addition to pre-trainedmodels, we alsomake data and

code for our models and annotation interface available

to stimulate future research.
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F IGURE 3 Precision-recall (PR) and confusion matrices for our BatDetect2 model for the five different test sets.
The first column depicts the per-species precision-recall curves and the second column is the per-genus equivalent.
The third column illustrates the file-level confusion matrix, where white rows indicate that there were no species of
that type in the filtered test set. Each row depicts a different dataset.
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F IGURE 4 Predictions from our BatDetect2 model. Each row represents a different audio file selected from the
test sets of the UKsame, UKdiff, Yucatan, Australia, and Brazil datasets, ordered from top to bottom. The intensity of
an individual predicted bounding box indicates the model’s confidence, with a brighter white value indicating more
confident. The text above each box corresponds to the highest probability class label.
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Supporting Information

A | IMPLEMENTATION DETAILS

A.1 | Model architecture

The full architecture of our BatDetect2 model is outlined in Table S1. The input to the model is a two dimensional

spectrogram, and the output is a prediction for each frequency and time bin in the spectrogram indicating which

species of bat the model predicts is echolocating there, if any, and the predicted frequency range and time duration

of the detected echolocation event. The model is fully convolutional, so can operate on arbitrary length sequences,

but in practice we chunk longer input audio files into clips that are less than two second long, and then process each

clip independently.

The model uses a U-Net (Ronneberger et al., 2015) style architecture, with an encoder and decoder with skip

connections between then. In the middle bottleneck of the model there is a self-attention layer (Vaswani et al., 2017),

self_attn, that enables the model to share information across longer time scales. This is particularly valuable for bat

species classification as other calls in the sequence can be a useful signal in aiding the classification of a given species.

Most current deep learning based models for bat call detection only use very narrow input time windows (e.g. only

23 milliseconds in the case of Mac Aodha et al. (2018)) and are thus unable to capture these longer range temporal

dependencies. The self-attention layer uses a feature dimension of 256 and does not include any additional positional

encoding information.

Our model makes use of two building block layers, CoordConvDown and CoordConvUp. At a high level, the

CoordConvDown layer takes a tensor as input and returns a spatially downsized version of it as an output. Conventional

convolutions are translation invariant which is not necessarily a desirable property when attempting to determine the

species of bat that is present in an audio recording. This is because the absolute frequency of the event is a valuable

discriminative signal. To overcome this issue, the CoordConvDown layer appends non-learnable coordinates to the ver-

tical (i.e. frequency) dimension. Note that unlike the original CoordConv paper (Liu et al., 2018), here we do not add

coordinates to the temporal dimension as we want the model to be invariant to the time that the events of interest

occur in the recording.

The specific operations performed in a CoordConvDown layer are as follows: append frequency coordinate informa-

tion, 2D convolution, 2 × 2 max pool downsampling, batch normalisation (BN) (Ioffe and Szegedy, 2015), followed by

ReLU (Nair and Hinton, 2010) non-linearity.

The CoordConvUp layer performs similar operations but in reverse, i.e. it upsamples the input tensor. The spe-

cific operations are: 2D bilinear upsampling, appending frequency coordinates, 2D convolution, batch normalisation,

followed by ReLU.

The model returns two outputs, the predicted class Ŷ and the estimated temporal duration and frequency range of

the event Ŝ . The predicted class vector includes an additional background class (i.e. ‘Not bat’) and the vector sums to

one for each time and frequency bin. We run a simple non-maximal suppression operation on the output so that we

only report the local maximum for each detected event, i.e. we wish to suppress multiple predictions that are nearby

in time and frequency and only select one. This is achieved by running a two dimensional max pooling operation with

a kernel size of 9 × 9. The model then reports the top 200 events, ordered by detection probability, for each one

second of input audio.
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TABLE S1 Description of the full architecture for our BatDetect2 model. The values for input and output size
refer to the feature dimension, height, and width of the respective tensors (e.g. (1, 128, 512) is one feature channel,
with height 128 and width 512). The kernel size is represented as height and width. In the case where two tensors
are added together for the input to a layer, this is simply performed using an element wise addition. The model
outputs a C + 1 dimensional vector for each location in time and frequency, where C + 1 represents the number of
classes plus one additional class for background, i.e. ‘Not bat’. The model also outputs an additional two dimensional
vector for each location which encodes the predicted width (i.e. duration) and height (i.e. frequency range) of any
echolocation event at that location in time and frequency.

layer name input layer type input size output size kernel size

Encoder

conv_down_0 spectrogram CoordConvDown (1, 128, 512) (32, 64, 256) (3,3)

conv_down_1 conv_down_0 CoordConvDown (32, 64, 256) (64, 32, 128) (3,3)

conv_down_2 conv_down_1 CoordConvDown (64, 32, 128) (128, 16, 64) (3,3)

Bottleneck

conv_3 conv_down_2 Conv2d, BN, ReLU (128, 16, 64) (256, 16, 64) (3,3)

conv_1d conv_3 Conv2d, BN, ReLU (256, 16, 64) (256, 1, 64) (16,1)

self_attn conv_1d Self-Attention (256, 1, 64) (256, 1, 64) n/a

repeat_vert self_attn Repeat Vertical (256, 1, 64) (256, 16, 64) n/a

Decoder

conv_up_0 repeat_vert + conv_3 CoordConvUp (256, 16, 64) (64, 32, 128) (2,2)

conv_up_1 conv_up_0 + conv_down_1 CoordConvUp (64, 32, 128) (32, 64, 256) (2,2)

conv_up_2 conv_up_1 + conv_down_0 CoordConvUp (32, 64, 256) (32, 128, 512) (2,2)

Output

conv_op_0 conv_up_2 Conv2d, BN, ReLU (32, 128, 512) (32, 128, 512) (3,3)

pred_class - Ŷ conv_op_0 Conv2d, Softmax (32, 128, 512) (C + 1, 128, 512) (1,1)

pred_size - Ŝ conv_op_0 Conv2d, ReLU (32, 128, 512) (2, 128, 512) (1,1)

A.2 | Audio pre-processing

Here we outline the steps we perform in order to convert the raw input audio samples into the spectrogram before

it is input into the model. After loading from disk, the input audio is resampled to 256kHz using the ‘polyphase’

method from librosa (McFee et al., 2015). We then compute the magnitude spectrogram using a short-time Fourier

transform with a window size of 512 samples (assuming the audio has been resampled to 256kHz) and use a window

overlap of 75%. The bat echolocation calls of interest only occur within a specific range of frequency bands. As a

result, we only retain the bands between 10kHz and 120kHz. To provide robustness with respect to volume changes

we normalise the spectrogram using Per-Channel Energy Normalisation (PCEN) (Wang et al., 2017). Lostanlen et al.

(2018) showed this to be more effective than traditional logarithmic-based normalisation. Similar to Aide et al. (2013)

and Mac Aodha et al. (2018), we also subtract the mean value from each frequency band to remove the impact of

any constant background noise. As a final step, we use bilinear interpolation to resize the temporal dimension down
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by a factor of two and resample the frequency bands into 128 bins. In the end, an input audio file of one second in

duration results in a spectrogram of size 128×1024.

A.3 | Training loss

In this section we describe the training loss used by our model. The loss function is composed of three main terms and

is inspired by those used in the CenterNet method for object detection in images (Zhou et al., 2019). The combined

losses encourages the model to correctly predict the location, in frequency and time, of each echolocation call, the

duration and frequency range of the call, and the species that is responsible for making the call.

Let us denote x ∈ RH×W as our input spectrogram, with height H and widthW . Here, height refers to the number

of frequency bins and width is the number of temporal bins in the spectrogram. Prior to the final post-processing

step (i.e. non-maximal suppression), our model outputs two tensors, Ŷ ∈ [0, 1]H×W×C+1 and Ŝ ∈ Ò
H×W×2
≥0

. Here, C

is the total number of species of interest, and we add an additional class to represent the background class (i.e. no

bat present). Ŷ is the predicted species class probabilities and Ŝ contains the predicted size of any echolocation call

estimated to be present. At training time we have access to the ground truth values for Y and S which we use to

train the model. Both Ŷ and Ŝ contain an estimated value for each location in time and frequency space in the input

spectrogram. For example, for a given frequency band f and time step t , Ŝf t1 encodes the predicted duration of the

call (i.e. tend − tstart), and Ŝf t2 encodes the predicted frequency range of the call (i.e. fmax − fmin). For a description of

howY and S are generated, please see Section A.4.

We also define Êf t =
∑C

c=1
Ŷf t c , and similarly Ef t =

∑C
c=1

Yf t c . Ê and E represent predicted and ground truth class-

agnostic echolocation call scores, i.e. ‘Bat’ versus ‘Not bat’. Note that for Ê and E , we only sum over the classes one to

C , and do not include the background class. We include these additional terms as there are many instances in which

our annotators have difficulty determining the correct species id for a given call, and thus they can only label the event

with the generic ‘Bat’ class label. We can still make use of this supervision by allowing the model to determine which

species may be present. Our goal during training is to minimise the difference between our estimated Ê , Ŷ , and Ŝ and

the respective ground truth values E ,Y , and S . If successful, the model will be able to correctly predict the location

in time and frequency of any echolocation call along with the species id of the bat that generated the call.

A.3.1 | Losses

Our first loss encourages the model to correctly discriminate between bat echolocation calls and non-bat calls, i.e.

background noise or other vocalising species. To achieve this, we use the focal loss (Lin et al., 2017). Specifically, we

use the keypoint variant of the focal loss from Law and Deng (2018), which is defined as

Ldet = −
1

N

H∑

f =1

W∑

t=1





(1 − Êf t )
α log(Êf t ) if Ef t = 1

(1 − Ef t )
β (Êf t )

α l og (1 − Êf t ) otherwise,

(1)

where N is the number of echolocation events in the spectrogram.

Our next loss penalises the model for assigning the wrong species label to a detected echolocation call. This loss is

similar Ldet , but instead of only discriminating between ‘Bat’ and ‘Not bat’, this loss encourages the model to predict

the correct species label for each echolocation call. We use a masked version of the loss which is only applied to
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locations in the spectrogram where there is a echolocation call present, i.e. where Ef t > 0.

Lcl ass = −
1

N

H∑

f =1

W∑

t=1

C+1∑

c=1




0 if Ef t = 0

(1 − Ŷf t c )
α log(Ŷf t c ) if Ef t > 0 andYf t c = 1

(1 −Yf t c )
β (Ŷf t c )

α l og (1 − Ŷf t c ) otherwise.

(2)

The final component of our loss penalises the model for incorrectly predicting the ‘size’ of the predicted bounding

box which overlaps with a ground truth echolocation call. Like Lcl ass , this loss is only applied to locations in time and

frequency where we have observed an echolocation call in the training set.

Lsi ze =
1

N

H∑

f =1

W∑

t=1





��Ŝf t1 − Sf t1
�� +

��Ŝf t2 − Sf t2
�� if

∑
k Sf t k > 0

0 otherwise.
(3)

Here,
∑

k Sf t k > 0 simply indicates that this size loss is only applied where there is a echolocation call present.

The final combined loss we aim to minimise during training is

L = λ1Ldet + λ2Lcl ass + λ3Lsi ze . (4)

We sum this loss over each spectrogram in a given input training batch. During training, we set λ1, λ2, λ3 to 1.0, 2.0,

and 0.1 respectively, and for both focal losses we set α = 2 and β = 4.

A.4 | Training details

The model and training code are implemented in PyTorch (Paszke et al., 2019). We train our model end-to-end using

the Adam optimizer (Kingma and Ba, 2015), starting with an initial learning rate of 0.001 and use a cosine annealing

learning rate schedule, a batch size of 8, and train for 200 epochs (unless specified otherwise). We perform a series

of augmentations at training time to increase the variation in the input audio. These augmentations include: random

linear combination of two input audio files (Zhang et al., 2018), simulated echo, random volume scaling, temporal

stretching, and time and frequency masking (Park et al., 2019). The probability that any one augmentation is applied is

0.2, and multiple augmentations can be applied together. Like Zhou et al. (2019), we generate ground truth ‘heatmaps’

for Y , and thus E , with Gaussian kernels using a standard deviation of 2.0 for each annotated echolocation event.

These heatmaps represent the regression targets Y that our model uses during training. Unlike Zhou et al. (2019),

which parameterises bounding boxes using their center point, we instead use the bottom left of each echolocation

call as it tends to be more stable for many species, i.e. it is typically much easier for human annotators to identify the

bottom left of a call as opposed to its center. However, there are notable exceptions to this assumption, e.g. the two

Rhinolophus species found in the UK. Finally, S contains the height and width (converted to pixel units with respect

to the spectrogram size) of each call computed from their bottom left coordinates. If no call is present for a given

time-frequency bin, we simply store a zero for both height and width for that location.
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B | AUDIO DATASETS

Here we provide additional details of the different datasets used in our evaluation.

B.1 | UK data

B.1.1 | Audio recording

In total there are 17 species in the UK dataset. This is the total number of species which are known to be breeding in

the UK. The data comes from 2,809 audio files, and contains a total of 34,635 annotated echolocation calls. The data

has been collected using a variety of devices and was provided by a number of different sources. There are six main

sources of data, where each source constitutes a single organisation or individual that providedmultiple different audio

files. This diversity is important as it maximises the variation in the training set, with the ultimate aim of having better

generalisation performance at test time. The vast majority of the recordings were made in the UK, but there were

also some additional files included from the species of interest that were recorded elsewhere (e.g. Europe). During

the annotation phase, we prioritised annotating only one clip from each of the original input recordings, at most two

seconds in duration, as opposed to densely annotating long multi-second audio files. This was also performed in order

to increase the data diversity, as there can often be a large amount of self-similarity within the same longer recording.

As a result, the clipped files vary in duration from between 0.4 to two seconds, and the average duration is just over

one second.

In order to increase our robustness to background noise, we also supplement the UK species audio by including

additional recordings that are either empty (i.e. did not contain bats) or where we only knew if a bat was present, but

not which species. The empty recordings were collected in London, UK, using the custom built IoT smart sensor from

Gallacher et al. (2021). In total there are 345 three second files in this set. The second set of extra data came from

the iBats Program (Jones et al., 2013) as was adapted from Mac Aodha et al. (2018). This set includes 4,225 files of

0.384 seconds in duration and contains 6,842 annotated bat calls. This data was recorded using Tranquility Transect

detector using a time expansion factor of ten.

B.1.2 | Annotation

The audio files were annotated using our browser-based annotation tool described in the main paper. With the ex-

ception of the background and bat-only recordings, the rest of the files contained confirmed species at the file level.

Experienced annotators, familiar with the characteristics of UK bat echolocation calls, drew boxes around each in-

dividual echolocation call. When unsure of the species label, they annotated the call using the generic ‘Bat’ class

label.

The BatDetect2 model predicts the location of the lower left corner for each echolocation call in an input recording.

For the two constant call frequency-based species in the UK, Rhinolophus ferrumequinum and Rhinolophus hipposideros,

there was a high degree of variability in the position of the lower left corner of the call. This happens as a direct result

of the recording quality, characteristics of the local environment, and the distance of the bat from the microphone As

a result, it was often very difficult to determine the exact lower frequency for these two species. To overcome this

issue, we standardised the lower and upper frequency for each of the these species by setting them to per-species

mean values, where the means were computed on the training sets.
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B.1.3 | Data split

We constructed two splits for the UK dataset. Both splits contain the same number of calls overall, and only differ in

how the data is distributed between their respective training and test sets. As noted earlier, there are six main sources

of data for our UK bat recordings. The first split, referred to as UKsame, simply shuffles the files randomly into training

and test sets and ensures that there is a maximum of four recordings (i.e. files not calls) per species, per data source,

in the test set. This results in a split with 7,010 training files and 369 test files.

The second split, UKdiff, is more challenging. Here we simulate a difficult real world setting where an entire data

source is held out for validation. We remove one of our largest sources, which leaves 5,911 training files and 1,468 test

files. This increases the difficulty due to the reduction in the training set size as well as increasing any potential domain

gap that may exists between the train and test sets. This test set does not contain one of the species, Pipistrellus

nathusii, as it was not possible to capture any recordings of it. Note that in both cases the data is still split at the file

level (as opposed to individual call level). This minimises any potential overlap between the training and test sets.

A summary of the number of calls per species can be found in Tables S2 and S3. Figures S4 depicts a per-class

average spectrogram for each species in the training set for the UKdiff split. Note that this averaging hides many of the

recording specific difficulties and noise. It is thus is only provided for illustrative purposes as it shows the dominant

‘shape’ of the call for each species.

B.2 | Yucatan data

B.2.1 | Audio recording

This dataset consists of 285 passive recordings gathered in the Yucatan peninsula in Mexico as part of a field study

conducted between 2004 and 2006 (MacSwiney G et al., 2008). A Pettersson D980 bat detector device was used to

detect and record bat calls. The device was active throughout three ten-minute periods at night, in a total of eight

sites and covering twelve sampling nights per site. When active, and if a bat call was detected, the device would

record for three seconds and a time expanded version would be stored on a magnetic tape. The recordings were then

cut into one second clips, resulting in a total of 1,193 audio files.

B.2.2 | Annotation

The species identification of the bat calls was made in two phases. For the original study, all recordings were reviewed

manually. From each recording, at most five representative echolocation calls per detected species was selected and

analyzed using Bat Sound Pro 3.10. The species of each call was then identified through comparison to a bat call

library of captured bats from the same study. Please consult MacSwiney G et al. (2008) to see the full details of their

identification protocol.

In the second phase we annotated all missing bat calls using our annotation interface. Bounding boxes were drawn

around each detected bat call in the spectrogram. Species identification was performed by comparing to the previ-

ously annotated calls. In order to gain confidence on the species labels for the additional boxes, we evaluated the

identification accuracy of the human annotators. A species label was added only if the human annotator could accu-

rately identify said species (precision above 95%). In cases where it was not possible to determine the species, the

call was labelled using the generic ‘Bat’ class. A recording was fully annotated when all bat echolocation calls were

marked with a bounding box and all recognisable calls were tagged with its species, or the generic, label. This resulted

in a total of 1,193 audio clips that were fully annotated and kept as part of the dataset. Three species (Pteronotus
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TABLE S2 Number of annotated echolocation calls in the UK dataset using the UKsame split. There are a total of
7,010 and 369 training and test files, each containing 36,955 and 4,522 annotated echolocation calls respectively.

id species name num train calls num test calls

0 Bat 8112 203

1 Barbastellus barbastellus 864 179

2 Eptesicus serotinus 2374 211

3 Myotis alcathoe 695 183

4 Myotis bechsteinii 648 222

5 Myotis brandtii 1775 166

6 Myotis daubentonii 5729 640

7 Myotis mystacinus 2430 384

8 Myotis nattereri 2384 328

9 Nyctalus leisleri 1056 85

10 Nyctalus noctula 310 99

11 Pipistrellus nathusii 1224 236

12 Pipistrellus pipistrellus 1653 245

13 Pipistrellus pygmaeus 2171 396

14 Plecotus auritus 917 193

15 Plecotus austriacus 690 177

16 Rhinolophus ferrumequinum 1915 290

17 Rhinolophus hipposideros 2008 285

personatus, Molossops greenhalli, and Molossus sinaloae) were excluded as they only appeared in fewer than seven

distinct recordings. The annotations for these species was set to the generic ‘Bat’ class. The final annotated dataset

consists of 10,020 individual bat echolocation calls with bounding box annotations from 17 different species.

B.2.3 | Data split

To train and evaluate the detection and classification models we split the dataset into distinct training and testing

subsets. To minimize any leakage from the test to the train set, we opted to split the data at the recording level, i.e. we

avoided including one-second clips from the same recording in the training and testing subsets. The test set contains

∼20% (282 audio clips) of all recordings while the remaining ∼80% (911 audio clips) was used for training. In order to

maintain the distribution of calls per species between the full dataset and the testing and training datasets, we labeled

each recording with all its occurring species and used a stratified sampling method for multilabel datasets (Sechidis

et al., 2011). A summary of the number of calls per species can be found in Table S4, and Figure S5 provides a visual

summary for each species.
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TABLE S3 Number of annotated echolocation calls in the UK dataset using the UKdiff split. There are a total of
5,911 and 1,468 training and test files, each containing 24,315 and 17,162 annotated echolocation calls respectively.

id species name num train calls num test calls

0 Bat 7501 814

1 Barbastellus barbastellus 468 575

2 Eptesicus serotinus 403 2182

3 Myotis alcathoe 374 504

4 Myotis bechsteinii 241 629

5 Myotis brandtii 351 1590

6 Myotis daubentonii 3998 2371

7 Myotis mystacinus 1378 1436

8 Myotis nattereri 2610 102

9 Nyctalus leisleri 695 446

10 Nyctalus noctula 209 200

11 Pipistrellus nathusii 1460 0

12 Pipistrellus pipistrellus 868 1030

13 Pipistrellus pygmaeus 1461 1106

14 Plecotus auritus 528 582

15 Plecotus austriacus 331 536

16 Rhinolophus ferrumequinum 717 1488

17 Rhinolophus hipposideros 722 1571

B.3 | Australia data

B.3.1 | Audio recording

The Australian dataset used to train and test the model was taken from a bat call reference library collected by one

of the co-authors. The subset used consists of a set of 14 bat species which have a sympatric distribution in the

major cotton growing region on the north west plains of New South Wales and adjacent areas in central southern

Queensland. Bat calls were recorded in the field from individuals released after capture, following positive species

identification. A custom made digital ultrasound recorder from Nanobat Systems was used to record echolocation

calls in 5 second sequences with a sampling rate 500 kHz and stored as 16 bit WAVs. Bats were recorded for as long

as they flew around the release site until out of recording range. The resulting files were analysed and edited using

Audacity 3.2.0 to find echolocation pulse sequences with good signal to noise ratio, undistorted waveforms and as

close to search phase as possible. Edited wav files were then accumulated from the release recordings of multiple

individuals of the same species and across the species group.
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TABLE S4 Number of annotated echolocation calls in the Yucatan dataset. In total there are 911 and 282
training and test files, which contain 7,677 and 2,343 individual calls respectively.

id species name num train calls num test calls

0 Bat 3556 1236

1 Eptesicus furinalis 94 4

2 Eumops auripendulus 156 36

3 Eumops ferox 60 24

4 Eumops nanus 66 33

5 Eumops underwoodi 36 18

6 Lasiurus ega 250 69

7 Lasiurus intermedius 106 31

8 Molossus nigricans 65 25

9 Mormoops megalophylla 172 30

10 Myotis pilosatibialis 519 90

11 Natalus mexicanus 62 26

12 Nyctinomops laticaudatus 98 23

13 Peropteryx macrotis 1036 322

14 Pteronotus fulvus 509 167

15 Pteronotus mesoamericanus 345 81

16 Rhogeessa aeneus 166 36

17 Saccopteryx bilineata 381 92

B.3.2 | Annotation

All of the edited length audio sequence files for the entire dataset were annotated using the browser-based annotation

tool described in themain paper. These audio files had an average length of 3.29 seconds, with the shortest being 0.23

seconds and the longest being 10 seconds in duration. All annotated pulses were labelled by species since the original

sequences were obtained from individually released bats, identified to species level. The only exception comes from

theOzimops specieswhere the low release number of individuals (rarely caught) was augmented by identifying species

from additional field recordings of bat activity at night. This was donemanually by conventional sound analysis of field

recordings taken from various study areas and using an experienced bat bioacoustics expert familiar with this genus.

There were some instances where multiple species may have been present in a given file, and thus were potentially

incorrectly attributed to the wrong species label.
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B.3.3 | Data split

The data was randomly split at the file level, with 80% of the recordings for a species staying the train set, and the

rest in the test. This resulted in 220 training and 60 testing files. A summary of the number of calls per species can

be found in Table S5, and Figure S6 illustrates a visual summary for each species.

TABLE S5 Number of annotated echolocation calls in the Australia dataset. In total there are 220 and 60
training and test files, which contain 4,569 and 1,327 individual calls respectively.

id species name num train calls num test calls

0 Bat 180 18

1 Austronomus australis 125 35

2 Chalinolobus gouldii 568 146

3 Chalinolobus morio 429 155

4 Chalinolobus picatus 327 157

5 Nyctophilus corbeni 537 101

6 Nyctophilus geoffroyi 179 41

7 Nyctophilus gouldi 363 97

8 Ozimops petersi 149 42

9 Ozimops planiceps 142 52

10 Ozimops ridei 122 64

11 Saccolaimus flaviventris 131 40

12 Scotorepens balstoni 232 120

13 Scotorepens greyii 273 90

14 Vespadelus vulturnus 812 169

B.4 | Brazil data

B.4.1 | Audio recording

Data for this study was collected between January andMarch 2019 in south-eastern Brazil. The data used for training

is a subset of acoustic data collected using AudioMoth (Hill et al., 2018) recorders which were set to record at a

sampling rate of 395 kHz for one minute every five minutes between 22:00 and 04:00. The recorders were deployed

on coffee plantations and in adjacent forest fragments. The final dataset consists of 320 ten second audio recordings.

B.4.2 | Annotation

The echolocation calls for this dataset were again annotated used our annotation interface. As no species labels

were available for this dataset, we opted to group the calls based on their dominant frequency. Specifically, calls
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TABLE S6 Number of annotated echolocation calls in the Brazil dataset. In total there are 256 files in the
training set and 64 in the test set. In both cases the files are ten seconds in duration.

id species name num train calls num test calls

0 Bat 1646 619

1 Group One 2168 490

2 Group Two 2993 742

3 Group Three 1182 159

were initially labelled to genus level where quality allowed, but were later merged to a coarser call type groups. This

resulted in three distinct groups, along with the generic bat class which served as an additional class for cases where

it was not possible to identify calls to one of the previously mentioned three groups.

B.4.3 | Data split

We randomly assigned ∼80% of the audio files (256 files) to the training set and the remaining ∼20% (64 files) to the

test set. This resulted in a total of 7,989 and 2,010 calls in the respective sets. A summary of the number of calls per

group can be found in Table S6, and Figure S7 illustrates a visual summary per call group.

C | ADDITIONAL RESULTS

C.1 | Visualising self-attention

In Figure S1we illustrate the self-attention mechanism is action for one file. The attention module only operates along

the temporal dimension. For each point in time it computes the self-attention scores with all other time steps. In this

example we can see that the attention reveals a strong affinity with similar calls at other time points in the input. The

model can thus make use of this global information when estimating which species is present locally.

C.2 | Impact of amount of training data

In Figures S2 and S3 we plot the test-time per-species average precision against the number of calls for each species

seen at training time. Figure S2 depicts the UKsame data split, and we broadly observe an increase in performance as

we increase the number of training calls. In the case of UKdiff, we also see stronger performance with more training

calls. However, here it is also worth noting that there are some poor performing Myotis species that are challenging

to classify.
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F IGURE S1 Visualisation of the self-attention scores for one audio file from the UK dataset. Here we show the
attention weights for only two locations in the input - at 0.289 and 0.312 seconds in the input spectrogram. We
denote these two time points with a blue and orange arrow respectively, along with showing bounding boxes on the
calls. The attention scores corresponding to the two time points are illustrated with blue and orange lines on the
bottom plot. The orange line shows high attention for the otherMyotis calls and the blue line indicates that the
model places more attention on the other, less prominent, Pipistrelle calls. Note, there appears to be a very faint
Pipistrelle call before the 0.4 second time step that the model has a low attention score for.
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F IGURE S2 Test-time per-species average precision versus the number of training calls for the UKsame data split.
Note that the horizontal axis is log scaled.
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F IGURE S3 Test-time per-species average precision versus the number of training calls for the UKdiff data split.
Note that the horizontal axis is log scaled.
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F IGURE S4 Visualisation of the UKdiff species split. Here, each sub-image represents the average spectrogram
for each echolocation call from that species in the training set. The vertical axis represents kHz, and spans 10kHz to
120kHz, and the time duration for each spectrogram is 33.5 milliseconds.
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F IGURE S5 Visualisation of Yucatan species. Here, each sub-image represents the average spectrogram for
each echolocation call from that species in the training set. The vertical axis represents kHz, and spans 10kHz to
120kHz, and the time duration for each spectrogram is 33.5 milliseconds. Note that for some species we have
limited numbers of example calls which results in noisy average spectrograms.
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F IGURE S6 Visualisation of Australian species. Here, each sub-image represents the average spectrogram for
each echolocation call from that species in the training set. The vertical axis represents kHz, and spans 10kHz to
120kHz, and the time duration for each spectrogram is 33.5 milliseconds.
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F IGURE S7 Visualisation of the Brazil data. Here, the spectrograms do not represent species, but instead three
distinct groups of calls. Each sub-image represents the average spectrogram for each echolocation call from that
group in the training set. The vertical axis represents kHz, and spans 10kHz to 120kHz, and the time duration for
each spectrogram is 33.5 milliseconds.
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