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Abstract

Protein representations from deep language models have yielded state-
of-the-art performance across many tasks in computational protein
engineering. In recent years, progress has primarily focused on parame-
ter count, with recent models’ capacities surpassing the size of the very
datasets they were trained on. Here, we propose an alternative direc-
tion. We show that large language models trained on codons, instead
of amino acid sequences, provide high-quality representations that out-
perform comparable state-of-the-art models across a variety of tasks.
In some tasks, like species recognition, prediction of protein and tran-
script abundance, or melting point estimation, we show that a language
model trained on codons outperforms every other published protein lan-
guage model, including some that contain over 50 times more parameters.
These results suggest that, in addition to commonly studied scale and
model complexity, the information content of biological data provides an
orthogonal direction to improve the power of machine learning in biology.
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1 Introduction

Pretrained language models have become indispensable tools across many
areas of computational protein engineering [1]. Most labeled protein datasets
have limited size, therefore vast deep neural networks are first pretrained on
a large, unlabelled corpus of sequence information, such as UniRef [2], with
a self-supervised reconstruction objective. Self-supervised training endows the
latent variables of the model with highly informative features, known as learned
representations, which can then be leveraged in downstream tasks where lim-
ited training data is available. Learned protein representations are currently
central to the state-of-the-art tools for predicting variant fitness [3–6], protein
function [7, 8], subcellular localisation [9], solubility [10], binding sites [11], sig-
nal peptides [12], post-translational modifications [13], intrinsic disorder [14],
and others [15, 16], and they have shown promise in the path towards accu-
rate alignment-free protein structure prediction [17–21]. Improving learned
representations is therefore a potential path to deliver consistent, substantial
improvements across computational protein engineering.

Pathways towards more informative representations have hitherto followed
two main directions. Methods have pursued the paradigm of augmented scale,
where increasing model capacity monotonically increases performance [22].
While initial language models reached tens of millions [23] or hundreds of mil-
lions [24] of parameters, later developments have seen models with over 5 billion
weights [19, 25, 26] with parameter counts exceeding the size of the train-
ing set. Improvements to model architecture have also consistently delivered
performance gains. For example, the use of the T5 architecture in ProtTrans
displayed consistent improvements in performance over the basic BERT model
[8, 26]. The state-of-the-art fitness prediction method, Tranception, modifies
the attention mechanism to explicitly attend to contiguous sequences of amino
acids [6], increasing robustness and performance on deep mutational scanning
benchmarks. Both directions are costly in human and computer time, require
significant optimization, and appear to provide diminishing (logarithmic)
returns.

An alternative pathway to improve learned representations may be to
use biological data containing richer signals. While protein language models
have so far focused on amino acid sequences, there is additional information
contained in the DNA sequence encoding the protein. The language of protein-
coding DNA relies on 64 nucleotide triads, known as codons, each of which
encodes a specific amino acid or the end of a sequence. Although this 64-codon
alphabet is highly degenerate, with most amino acids being encoded by up to
six different codons, current research suggests that codons encoding the same
amino acid (synonymous) are not used interchangeably. Synonymous codon
usage has been correlated with protein structural features [27, 28], and nearly
60 synonymous mutations have been linked to human disease [29]. A recent
experiment suggested that most synonymous mutations in yeast are strongly
deleterious [30], although these results have since been contested [31, 32].
Codon usage has also been linked to protein folding, with ample evidence
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Fig. 1 (a) Current research suggests that model performance may be improved by either
increasing the number of parameters, or improving the architecture of the model. In this
work, we propose a third, orthogonal dimension: the use of data with higher information
content, in this case the codon, rather than the amino acid sequence. (b) The map between
the codon alphabet and the amino acid alphabet is surjective, but not injective, hence there
is more information in the codon space. (c) Processing of the training data. The original
database of 114M cDNA sequences was divided into species and clustered at the protein level.
(d) Scheme of the training and heldout datasets. As heldout, we selected 4,358 sequences
from seven organisms spanning all kingdoms of life, and removed any sequence with 40%
sequence identity or more from the training set.

that changes in the codon sequence affect folding dynamics [33–36], the fold-
ing pathway [37] and even the amount of correctly folded protein [38]. This
evidence suggest that synonymous codon usage contains valuable biological
information, which could be exploited by machine learning models to enhance
the signal-to-noise ratio in predictive tasks.

In this work, we demonstrate that pretraining a protein language model
on codon sequences, rather than amino acid sequences, leads to informative
protein representations that capture crucial biochemical characteristics. We
examine the predictive power of these representations in a number of sequence-
level prediction tasks, observing that these representations are comparable
to, or superior to amino acid representations from similarly sized models. In
several tasks, we observe that codon-based representations outperform all pub-
lished state-of-the-art amino acid representations, including those from models
with over 50 times more parameters. We conclude that finding more biologi-
cally informative representations of the data is a meaningful direction towards
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progress in deep protein engineering that does not suffer from the computa-
tional onerousness of larger scale, and is significantly simpler than – but also
complementary to – improved model architectures.

2 Results

We developed a protein language model trained on protein-coding DNA
(cDNA) and examined its ability to produce high-quality representations of
protein sequences. We relied on the fact that the codon space is surjective,
but not injective, to the amino acid space, therefore the former contains an
amount of information higher or, at worst, equal to the latter (Figure 1b). To
test this hypothesis, we trained a large language model with 86M parameters
on a dataset of 9M non-redundant and diverse cDNA sequences identified from
whole-genome sequencing (see Figure 1c). We refer to this model as CaLM
(Codon adaptation Language Model). The training set was constructed from
the European Nucleotide Archive [39], with significant preprocessing to limit
redundancy and save computational cost. We also established a heldout data
set consisting of representative sequences from seven model organisms across
the tree of life. Details of model architecture, training protocol and dataset
preprocessing are given in the Methods section.

2.1 Codon language models capture the biology of the
genetic code

We first considered whether the learned representations from the codon lan-
guage model captures the biochemistry underlying the genetic code. A model
that has extracted meaningful representations should recognise the similarity
of codons in the same wobble pair, a non-trivial task as the model represents
individual codons as integers, with no features indicating nucleotide compo-
sition. The embedding should also capture the similarity of codons encoding
amino acids with similar chemical behaviour, as do amino acids language mod-
els [24]. We tested these hypotheses by examining the embedding layer in
CaLM (see Figure 2b). Dimensionality reduction shows that amino acids with
similar behaviour cluster in similar regions of space. Clustering captures bio-
chemical features that are not directly obvious from class labels: for example,
the codons encoding alanine (“hydrophobic”) appear close to glycine (“spe-
cial”), which reflects the small side chain both amino acids display. We also
observed that pairs of codons that encode the same amino acid, or that are in
the same wobble pair, are closer in space that others (p < 0.05, permutation
test N = 107).

We then considered sequence representations of different organisms. In
Figure 2c we display the embeddings of a third of the heldout dataset, which
contains sequences with at most 40% sequence identity to any sequence in the
training set. The sequences of prokaryotes E.coli and H. volcanii are signifi-
cantly separated from their eukaryotic counterparts (p smaller than numerical
precision, Welch’s t test). The sequences of S. cerevisiae and P. pastoris, which
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Fig. 2 (a) Architecture of the Codon adaptation Language Model (CaLM). The sequence
of codons is mapped to a continuous space via a trainable embedding, and passed through
12 layers of transformer encoders and a dense layer. The embedding is reversed at the end
of the architecture. (b) Structure of the learned embedding space. Codons with similar
biochemical properties (as shown by the colours) tend to occupy adjacent regions of space.
Codons encoding for the same residue (amino acid single letter codes shown over the points)
tend to be closer (p = 0.0169, permutation test N = 107), as do codons in the same wobble
group (p = 0.0203, permutation test N = 107). (c) Structure of the latent space shown on
one third of the sequences in our heldout dataset. The latent representations are distributed
by species. (d) The embedding of the sequences in b using ESM2 [19], showing a lack of
structure; see also Figure A3. (e) Accuracy of a nearest-cluster-center classifier at predicting
the species of a sequence of the remaining two thirds of the heldout. The codon language
model is significantly better than any other model (p < 10−5, Welch’s t test).
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belong to the same order, appear intermixed. The region at the center of the
plot where sequences from multiple organisms converge is enriched in highly
conserved sequences such as ribosomal proteins or enzymes involved in the cell
cycle. We also controlled for artifacts of dimensionality reduction by varying
parameters and testing multiple algorithms (see Figures A1 and A2). We com-
pared this clustered structure with representations from amino acid language
models (see Figures 2d and A3), observing a less clear clustering. These findings
suggest that codon representations capture richer sequence-level information
that is not accessible to amino acid sequences alone.

We then tested the ability of the representations to assign cDNA sequences
to species, using a simplified k-nearest centers classifier. Class centers were
defined using one third of the heldout set, and tested on the remaining two
thirds; the results are shown in Figure 2e. We observe that CaLM’s classi-
fication accuracy is almost twice as high as the best amino acid classifiers,
and significantly superior (p < 10−5, Welch’s t test). Since our model is at
the cDNA level, we controlled for the differential GC content across different
species [40], observing that a logistic regression classifier would only achieve
48% accuracy, comparable to the predictions of amino acid representations.
These observations suggest that the codon representations capture features of
differential codon usage across distinct organisms that are not evident in the
amino acid sequence.

Taken together, our results suggest that the codon language model can
access biological features that are inaccessible to amino acid language models.

2.2 Codon language models match state-of-the-art
performance on automated annotation tasks

We next examined whether the additional information contained in codon
sequences can be used to improve protein engineering. Several benchmarks
of language model representations have been proposed, such as TAPE [23],
FLIP [41] and PROBE [8]. However, these datasets contain only amino acid
sequences, and due to the loss of information, mapping amino acid sequences
back to codon sequences is far from trivial. We therefore consider the perfor-
mance of protein language models in four sequence annotation tasks where
it was possible to recover the original codon sequence (see Methods): melt-
ing point prediction, solubility prediction, subcellular localization prediction
and function prediction. Performance is assessed by 5-fold cross-validation
(see Figure 3) after clustering the datasets with tight sequence identity cut-
offs (dependent on the dataset, but ranging between 20% and 50%) to ensure
removal of homologous sequences.

We observe that CaLM outperforms every amino acid language model of
similar size across all tasks, and in some cases, also amino acid language mod-
els with over 50 times more parameters. In melting point prediction, CaLM
achieves a Pearson’s R2 of 0.75, which is significantly better than any other
method in the dataset. In solubility prediction, CaLM outperforms every model
of the ESM family with which it shares architecture, and is comparable to
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Fig. 3 Assessment of codon language models in automatic annotation tasks. (a) Scheme
of the 5-fold cross-validation protocol. The data is first divided in five groups which do not
have any sequences with more than 40% amino acid identity. In every iteration, a model (a
linear or logistic regression) is trained on four groups (green) and tested on the fifth group
)red. The performance of the model with respect to the task and the number of parameters is
subsequently shown for (b) melting point prediction, (c) solubility prediction, (d) subcellular
localization classification and (e) function (Gene Ontology term) classification.

the smaller models of the ProtTrans family, which are one order of magni-
tude larger and trained on two orders of magnitude more data. In subcellular
localization and function prediction, the model outperforms all similarly sized
architectures and is competitive many models of greater size and complexity.
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We considered the hypothesis that the model may be relying on other informa-
tion rather than the codon sequence. For example, the model may be learning
stability information from species-level signals in the data. Many archaeal pro-
teins are thought to be more stable due to the abundance of ion pairs in their
structures [42], and since CaLM embeddings can accurately identify the source
species of a protein, it might indirectly be using this information in prediction.
We controlled for this hypothesis by comparing against a classifier including
species information. We observed that CaLM’s predictive power increased from
R2 = 0.74 to R2 = 0.78, and that while the absolute difference with the second
best method narrowed from six to four percentage points, it was still signifi-
cantly better (p = 10−3, Welch’s t test). The codon model thus demonstrates
superior performance across various unrelated tasks, and against a variety of
benchmarks.

We then considered the question of whether the improvement in prediction
is due to synonymous codon usage. If patterns of codon usage contain valu-
able information, then performance should decrease if codon usage is somehow
corrupted. We designed an experiment where the results in Figure 3b were
repeated under the same conditions, but randomly mutating a fraction of the
codons of both training and test datasets to other codons encoding the same
amino acid (synonymous mutations). The results are shown in Figure A5. We
observe that Pearson’s R2 drops from 0.75 to nearly half its value, 0.39, as
the sequence of codons is fully randomised, a value that corresponds to the
worst performance in the benchmark. These results suggest that the model
is extracting useful information from the pattern of synonymous codon usage
that is not available from the amino acid sequence.

These findings lead us to conclude that the codon sequence contains valu-
able information about protein properties that a codon language model is able
to extract usefully.

2.3 Codon language models successfully capture features
of omics datasets

As the codon language model presents improved performance in some tasks,
arguably due to enhanced biological information, we then considered whether
this approach can be applied to other tasks where codon usage is more impor-
tant. Protein abundance inside the cell is one such task, as codon usage is
well-known to present characteristic signatures in housekeeping genes [43]. To
test this hypothesis, we constructed datasets of transcript (for the seven organ-
isms) and protein abundance (for five organisms, due to data availability) in
our heldout dataset, and evaluated the ability of CaLM to recover this infor-
mation using 5-fold cross-validation. We also compared all amino acid-level
models, as shown in Figure 4.

We observed that predictions from the codon model yield Pearson’s R2 in
the 0.2-0.5 range, whereas most amino acid models fail to reach values of 0.1
for most species. One exception is the performance of transcript abundance in
P. pastoris, where the largest amino acid language models (those with 3 billion



Deep codon protein representations 9

Fig. 4 Assessment of codon language models at predicting the results of omics datasets
using 5-fold cross-validation. (a) Transcript abundance prediction results for the seven organ-
isms represented in our heldout dataset. The codon language model outperforms every other
model for every organism, with the exception of P. pastoris, for which some of the 5 billion
parameter models display similar performance. (b) Protein abundance prediction results on
five of the seven organisms in our dataset, which were represented in the PAXdb repository
[44]. The codon lanugage model outperforms every other model for every organism.

parameters and higher) achieve moderate performance, although still worse
than CaLM. One possible reason is the abundance of endogeneous signal pep-
tides for secretion in P. pastoris [45], which may strengthen the performance
of some amino acid models. In every case, the performance of CaLM is supe-
rior to the second best model (p < 0.005, Welch’s t test). This result further
reinforces the hypothesis that codon language models are able to capture bio-
logical features of the sequences that are inaccessible to amino acid language
models.

3 Discussion

In this work, we have shown that protein representations trained on codons,
rather than amino acid sequences, exhibit significant advantage across a variety
of downstream tasks. We find that our 86M parameter language model outper-
forms every other model of similar capacity, and in many cases, even models
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with over 50 times more parameters. We have provided evidence that this per-
formance is due to the codon language model’s ability to capture patterns of
codon usage across DNA sequences, and that this advantage disappears when
codon usage information is corrupted.

Training models on cDNA comes at a negligible extra training cost, and
appears to increase performance on all sequence-level tasks considered. Since
high-throughput protein sequencing is done almost exclusively by translation
of DNA sequences, the original coding sequences are publically available and
can be used for training, although they have not been subject to the same stan-
dards of processing and annotation as protein sequence databases like UniRef
[2]. We suggest that using cDNA, instead of simply amino acid sequences,
to train protein language models, poses a clear pathway towards improving
computational protein engineering.

Codon language models may also provide valuable evolutionary signals
for alignment-free protein structure prediction, particularly in methods like
ESMfold [19] and OmegaFold [18] that rely on language models to predict rela-
tionships between parts of the protein. Models based on cDNA may recover
wider evolutionary relationships, such as synonymous mutations, which are
evident at the nucleotide level but not at the amino acid level. Synonymous
codon usage is known to relate to structural features [27, 28], and the connec-
tion between codon usage and protein folding [33, 36] may provide valuable
signals to methods which are known to not capture the physics of folding
[46]. We suggest that incorporating codon language models in the pipelines
of alignment-free protein structure prediction may well provide a route with
negligible cost towards accelerating high-accuracy protein structure prediction.

We propose two main directions towards further improvements in protein
representation quality. One is increased scale. The results in this paper have
employed a simple model with only 86 million parameters, a size that pales in
comparison to the standard model size in the latest publications. The dataset
employed is also relatively small: merely 9 million sequences, in comparison
to the 125 million used in the ESM family of models [19, 24] or the nearly
half a billion in some ProtTrans models [26]. There exists a clear pathway
towards improving representation quality by training billion-parameter models
on datasets comprising hundreds of millions of DNA sequences.

The other potential direction for improvement is the development of mul-
timodal models combining amino acid and coding sequences. Our ablation
experiment showed that, in the absence of codon usage information, model
performance decays significantly, to the point that it is inferior to every amino
acid model in our dataset. However, since the model indirectly has access to
the amino acid sequence, it should in principle have access to the same infor-
mation as amino acid-only models. This divergence may be due to the lack
of amino acid-level signals during training, so training models that combine
amino acid and codon sequences could improve overall model performance.
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Our results suggest that, concomitantly with advances in computational
power and model architecture, leveraging richer biological data provides a clear
direction towards improving the power of machine learning in biology.

4 Methods

4.1 Datasets

4.1.1 Training and test data

We downloaded the coding sequences (CDS) of all organisms available in the
European Nucleotide Archive with a timestamp of April 2022 (114,214,475
sequences). We considered only high-quality sequences pertaining to assembled
genomes (data code ‘CON’). We filtered this dataset to remove all sequences
with unknown nucleotides (symbols ‘N’, ‘Y’, ‘R’, and others), with a start
codon different to ATG, containing interstitial stop codons, or where the num-
ber of nucleotides was not a multiple of three. To reduce redundancy while
maintaining a representative dataset of codon variation across the tree of life,
we grouped the entries by organism, translated the cDNA to protein sequences,
and clustered the sequences of every organism at 40% amino acid identity
using CD-HIT [47]. After backmapping clustered sequences to cDNA, the full
dataset consisted of 9,858,385 cDNA sequences.

To enable rigorous testing of the model capabilities, we built independent
heldout set containing sequences of seven model organisms spanning the tree of
life: three eukaryotic multicellular organisms (Arabidopsis thaliana, Drosophila
melanogaster and Homo sapiens), two eukaryotic unicellular organisms (Sac-
charomyces cerevisiae and Pichia pastoris), a bacteria (Escherichia coli) and
an archaea (Haloferax volcanii). We queried GenBank for all cDNA sequences
of every model organism according to the highest-quality assembly available,
clustered them at 40% amino acid identity, and sampled 7.5% of the clustered
sequences using random sampling stratified by protein abundance. Since no
proteomic data was available for all organisms, we used transcript abundance
measured by RNA-seq as a proxy for protein abundance (see Table A1 for
data sources). To minimise the overlap between training and heldout set, we
used BLAST to identify and remove homologous training set sequences with
40% cDNA sequence identity or higher to any sequence in the heldout set.
After removing homologous sequences, the training set consisted of 8,771,938
sequences, and the heldout of 4,358 sequences.

4.1.2 Evaluation datasets

To test the quality of the representations, we constructed several datasets to
test the predictive performance of the learned representations. These datasets
overlap with many published benchmarks of learned protein representations.
With the exception of the transcriptomics dataset, where the sequence of
codons can be inferred from the transcript, all available datasets reported only
amino acid sequences. To obtain codon information, we mapped UniProt IDs
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to ENA entries using UniProtKB [48] and ignored all entries without a match.
We also removed all sequences with unknown nucleotides, containing intersti-
tial stop codons, or where the number of nucleotides was not a multiple of
three.

4.1.2.1 Melting temperature

We built a melting temperature dataset using proteome-wide denaturalization
experiments reported in the Meltome Atlas [49]. We used the same splits and
homology removal protocol as Dallago et al. [41], where data was clustered at
20% sequence identity.

4.1.2.2 Subcellular localization

We used the SwissProt localization dataset as processed by the authors of
DeepLoc 2.0 [9]; this dataset is also part of the FLIP benchmark set [41]. We
used the same clustering as the original authors. Although cluster sizes were
slightly different due to UniProt IDs that could not be mapped, we noted that
fold size variance was small enough to conserve the original splits.

4.1.2.3 Solubility

We used the human solubility proteome profiling experiments by Sridharan
et al. [50]. As a proxy for solubility, we used the average protein abundance
determined in the SDS-treated fraction of the experiment. We clustered the
sequences of at 40% amino acid identity using CD-HIT [47].

4.1.2.4 Gene Ontology

We used the Gene Ontology dataset published by Unsal et al. [8], which used
experimental annotations from UniProtKB/Swiss-Prot and UniProtGOA.

4.1.2.5 Transcriptomics

We collected RNA-seq datasets for all seven model organisms from the Gene
Expression Omnibus (GEO), the EMBL-EBI Expression Atlas, the primary
literature and the Sequence Read Archive (SRA); data sources are reported
in Table A1. The corresponding assemblies of all organisms are reported in
Figure A2). We estimated transcript abundances of all proteins in the assembly
in transcripts per million, and mapped these values to the sequences in the
heldout dataset.

4.1.2.6 Proteomics

The Protein Abundance Database (PAXdb) [44] was queried for protein abun-
dance data on the seven model organisms used in this work. Samples for A.
thaliana, D. melanogaster, E. coli, H. sapiens and S. cerevisiae. Dataset cover-
ages were greater than 95% for all five organisms except for A. thaliana, with
76% coverage. This data was used to assign protein abundances to all proteins
in the heldout dataset.
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4.2 Model details

4.2.1 Model architecture

CaLM is a language model inspired by the ESM family of architectures [19,
24] (see Figure 2a for an architectural diagram). The model consists of three
blocks: a learnable embedding, a stack of transformer encoder layers, and a
prediction head. The input sequence is a vector of T tokens, integers which
each represent a codon or a special character. For example, the number 11
corresponds to the start codon “AUG”, whereas the number 68 represents a
special character “〈mask〉” used for masking. The alphabet is composed of the
64 codons, plus five special characters: “〈mask〉” for masking, “〈cls〉” indicating
the start of a sequence, “〈eos〉” to indicate the end of a sentence, “〈pad〉” for
padding and “〈unk〉” for potentially unknown codons. No prior knowledge is
given to the model: codons are represented in an abstract manner, and there is
for example no way in which the model can learn that codons “AUG” (token
number 11) and “AUA” (token number 8) differ only at a nucleotide level.

The vector of tokens, with dimensions [T] is mapped into a learnable latent
space of dimension 768 by the embedding layer, leading to a vector of size
[T, 768]. This vector is then passed through multiple layers of transformer
encoders, following the architecture of Devlin et al. [51]. The transformer layers
contain 12 attention heads, with dimension 768, and the feed-forward neural
network part of the transformer has dimension 3,072. Following Rives et al.,
we use pre-normalisation to increase stability [24]. Since the multi-head atten-
tion layer is equivariant to permutations of the input tokens, we use Rotary
Positional Embeddings (RoPE) [52] to enable learning of sequential features.

The vector at the end of the transformer stack is referred to as a “represen-
tation”, and is also of size [T, 768]. The representation vector is the main focus
of the paper, although the model is trained alongside a language head that
predicts the probability of every token at a given position. The language head
consists of a feed-forward neural network, followed by layer normalisation, and
a product by the inverse learned embedding matrix. The output logits, when
transformed via a softmax, provide an uncalibrated probability distribution
over codons.

4.2.2 Model training

We trained the model in a self-supervised manner using dynamic masking. In
every training batch we masked 25% of the input tokens at random. Of the
masked tokens, 80% were substituted by a special token “〈mask〉” indicating
masking, 10% were substituted by another codon at random, and the remaining
10% were left untouched. We used the cross-entropy loss to train the model to
predict the right token, considering only the 25% of the tokens that had been
masked. Following Rives et al. [24], we used no dropout.

Sequences were trimmed to a maximum size of 1,024 tokens, a number that
we found empirically to be sufficiently large to enable efficient learning while
preserving computational efficiency. This is consistent with other published
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models, as 96% of all UniParc entries have fewer than 1,024 amino acids [24].
Sequences larger than 1,024 codons were subsampled at random at every batch.
The size of all sequences in every batch was padded to the maximum sequence
in the batch.

We trained the model using the AdamW optimizer with a learning rate of
1e-4 and default parameters otherwise. The learning rate was warmed up from
0 to 10−4 during the first 1,000 gradient steps, and subsequently decayed with
a cosine function that reaches zero after 120,000 steps. Gradients were accu-
mulated to an effective batch size of 1,000 examples, or approximately 256,000
tokens. To monitor training, 1% of the training set was reserved at random as
validation. The model reported in this work was trained on 4 NVIDIA Quadro
RTX4000 GPUs for 40 days (66,000 gradient steps, 14 full epochs). Training
was manually stopped after observing no validation loss improvement after
8,000 steps.

4.3 Model evaluation

4.3.1 Embedding visualization

We used the t-distributed Stochastic Neighbours Embedding (tSNE) method
to reduce the dimensionality of token and sequence embeddings and enable
visualization. We used the implementation of tSNE in sci-kit learn 0.23.2
[53] with default parameters. To ensure reproducibility, we performed sen-
sitivity analysis on the perplexity hyperparameter, as well as comparisons
to an alternative dimensionality reduction, Uniform Manifold Approximation
and Projection (UMAP), which are reported in the Supplementary Informa-
tion. Plots reported in the main text use the default values of the sci-kit
learn implementation, as well as a maximum of 10,000 iterations to ensure
convergence.

4.3.2 Source prediction

Protein source prediction was benchmarked with a simple nearest-centroid
algorithm. We divided the heldout dataset into two splits: parameter estima-
tion (33%) and test (66%). Using the parameter estimation set, we computed
the centroid of all sequences corresponding to a given species. At the test stage,
we assigned a sequence to a species according to the centroid with the smallest
L2 distance.

4.3.2.1 Property prediction

We tested the models using 5-fold cross-validation. Splits were done using sci-
kit learn 0.23.2 with default parameters and shuffling, except in the subcellular
localization task where we used the splits published by DeepLoc.
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Deep codon protein representations 15

Declarations

Carlos Outeiral thanks the United Kingdom’s Engineering and Physical Sci-
ences Research Council for financial support through an EPSRC Doctoral Prize
(EP/T517811/1) and a postdoctoral fellowship (EP/W522582/1).

Appendix A Supplementary Information



16 Deep codon protein representations

Species Data source Identifier Notes

A. thaliana EMBL E-GEOD-55866 Whole-organism experiment.
Samples taken 16-20 days post-
anthesis.

D. melanogaster EMBL E-GEOD-18068 Whole-organism experiment. Sam-
ples taken from female adults.

E. coli GEO GSE205717 Steady state.
H. sapiens [54] - Tissue-level experiment. Samples

across 32 tissues were averaged,
and entries with dispersion greater
than 1 logTPM were removed.

H. volcanii GEO GSE204840 Average over untreated batches.
P. pastoris SRA SRR10740038 Processed using kallisto [55] with

default parameters against the
GCA 001708105.1 assembly.

S. cerevisiae EMBL E-MTAB-8621

Table A1 Transcriptomic dataset sources

Species Data source Identifier Notes

A. thaliana GenBank GCA 000001735.1
D. melanogaster Ensembl BDGP6.32
E. coli GenBank GCA 000259695.1
H. sapiens Ensembl GRCh38.107
H. volcanii GenBank GCA 000025685.1
P. pastoris GenBank GCA 001708105.1
S. cerevisiae GenBank GCA 000146045.2

Table A2 Assemblies
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Fig. A1 Comparison of the tSNE embedding presented in Figure 2c with different perplex-
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Fig. A3 Replicates of the tSNE embedding presented in Figure 2c using different amino
acid language models.
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Fig. A4 Replicates of the tSNE embedding presented in Figure 2c using UMAP and dif-
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Fig. A5 CaLM’s performance at predicting melting point with increasing rates of synony-
mous codon mutations. The correlation between predictions and ground truth values drops
by nearly half as the rate of mutations approaches 100%, suggesting that codon usage infor-
mation is fundamental for CaLM’s performance.
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