
 
 

1 

TITLE 1 

An important role for triglyceride in regulating spermatogenesis 2 

  3 

AUTHORS 4 

Charlotte F. Chao1&, Yanina-Yasmin Pesch1&, Huaxu Yu2, Chenjingyi Wang2, Maria 5 

Aristizabal3, Tao Huan2, Guy Tanentzapf1, Elizabeth J. Rideout1* 6 

 7 

AFFILIATIONS 8 

1 Department of Cellular and Physiological Sciences, Life Sciences Institute, The 9 

University of British Columbia, Vancouver, BC, Canada V6T 1Z3 10 

2 Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada 11 

V6T 1Z1 12 

3 Department of Biology, Queen’s University, Kingston, ON, Canada K7L 3N6 13 

* Corresponding author 14 

 15 

  16 

 
& Equally contributing authors 
* Correspondence: elizabeth.rideout@ubc.ca  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2023. ; https://doi.org/10.1101/2022.12.16.520841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.16.520841
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

2 

ABSTRACT 17 

Drosophila is a powerful model to study how lipids affect spermatogenesis. Yet, the 18 

contribution of neutral lipids, a major lipid group which resides in organelles called lipid 19 

droplets (LD), to normal sperm development is largely unknown. Emerging evidence 20 

suggests that LD are present in the testis and that loss of neutral lipid- and LD-21 

associated genes causes subfertility; however, key regulators of testis neutral lipids and 22 

LD remain unclear. Here, we show that LD are present in early-stage somatic and 23 

germline cells within the Drosophila testis. We identified a role for triglyceride lipase 24 

brummer (bmm) in regulating testis LD, and found that whole-body loss of bmm leads to 25 

defects in sperm development. Importantly, these represent cell-autonomous roles for 26 

bmm in regulating testis LD and spermatogenesis. Because lipidomic analysis of bmm 27 

mutants revealed excess triglyceride accumulation, and spermatogenic defects in bmm 28 

mutants were rescued by genetically blocking triglyceride synthesis, our data suggest 29 

that bmm-mediated regulation of triglyceride influences sperm development. This 30 

identifies triglyceride as an important neutral lipid that contributes to Drosophila sperm 31 

development, and reveals a key role for bmm in regulating testis triglyceride levels 32 

during spermatogenesis.  33 
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INTRODUCTION 39 

Lipids play an essential role in regulating spermatogenesis across animals [1–4]. 40 

Studies in Drosophila have illuminated key roles for multiple lipid species in regulating 41 

sperm development [5–7]. For example, phosphatidylinositol and its phosphorylated 42 

derivatives participate in diverse aspects of Drosophila spermatogenesis including 43 

meiotic cytokinesis [1,8–11], somatic cell differentiation [12], germline and somatic cell 44 

polarity maintenance [13–16], and germline stem cell (GSC) maintenance and 45 

proliferation [17]. Membrane lipids also influence sperm development [18,19], whereas 46 

fatty acids play a role in processes such as meiotic cytokinesis [20] and sperm 47 

individualization [21,22]. While these studies suggest key roles for membrane lipids and 48 

fatty acids during Drosophila spermatogenesis, some of which are conserved in 49 

mammals [23–25], much less is known about how neutral lipids contribute to 50 

spermatogenesis.  51 

Neutral lipids are a major lipid group that includes triglyceride and cholesterol 52 

ester, and reside within specialized organelles called lipid droplets (LD) [26]. LD are 53 

found in diverse cell types (e.g. adipocytes, muscle, liver, glia, neurons) [27,28,26], and 54 

play key roles in maintaining cellular lipid homeostasis. In nongonadal cell types, correct 55 

regulation of LD contributes to cellular energy production [29–31], sequestration and 56 

redistribution of lipid precursors [32–36], and regulation of lipid toxicity [37–39]. The 57 

importance of LD to normal cellular function in nongonadal cell types is shown by the 58 

fact that dysregulation of LD causes defects in cell differentiation, survival, and energy 59 

production [26,37,40,41]. In the testis, much less is known about the regulation and 60 

function of neutral lipids and LD, and how this regulation affects sperm development.  61 
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Multiple lines of evidence suggest a potential role for neutral lipids and LD during 62 

spermatogenesis. First, genes that encode proteins associated with neutral lipid 63 

metabolism and LD are expressed in the testis across multiple species [42–44]. 64 

Second, testis LD have been identified in mammals and flies under both normal 65 

physiological conditions [27,44–48] and after mitochondrial stress [49]. Third, loss of 66 

genes associated with neutral lipid metabolism and LD cause subfertility phenotypes in 67 

both flies and mammals [27,50–52]. While studies suggest that mammalian testis LD 68 

contribute to steroidogenesis [53,54], the spatial, temporal, and cell-type specific 69 

requirements for neutral lipids and LD in the testis have not been explored in detail in 70 

any animal. It remains similarly unclear which genes are responsible for regulating 71 

neutral lipids and LD during spermatogenesis.  72 

To address these knowledge gaps, we used Drosophila to investigate the 73 

regulation and function of neutral lipids and LD during sperm development. Our detailed 74 

analysis of spermatogenesis under normal physiological conditions revealed the 75 

presence of LD in early-stage somatic and germline cells in the testis. We identified 76 

triglyceride lipase brummer (bmm) as a regulator of testis LD, and showed that this 77 

represents a cell-autonomous role for bmm. Importantly, we found that the bmm-78 

mediated regulation of testis LD was significant for spermatogenesis, as both whole-79 

body and cell-autonomous loss of bmm caused defects in sperm development. Given 80 

that our lipidomic analysis revealed an excess accumulation of triglyceride in animals 81 

lacking bmm, and that genetically blocking triglyceride synthesis rescued many 82 

spermatogenic defects associated with bmm loss, our data suggests that bmm-83 

mediated regulation of triglyceride is important for normal Drosophila sperm 84 
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development. This reveals previously unrecognized roles for neutral lipids such as 85 

triglyceride in regulating spermatogenesis, and for bmm in regulating sperm 86 

development under normal physiological conditions. Together, these findings advance 87 

knowledge of the regulation and function of neutral lipids during spermatogenesis.  88 

 89 

RESULTS 90 

Lipid droplets are present in early-stage somatic and germline cells 91 

We previously reported the presence of small circular punctae (<1 µm) corresponding to 92 

LD near the apical tip of the testis [27]. We confirm these results in w1118 males using 93 

neutral lipid stain BODIPY (4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-94 

Indacene) (Figure 1A). Importantly, we reproduced this spatial distribution of LD in two 95 

independent genetic backgrounds and at two additional ages (Figure 1B,1C). In all 96 

cases, LD were in a testis region that contains stem cells and early-stage somatic and 97 

germline cells (Figure 1A-A', arrows), and in the hub, an organizing center and stem cell 98 

niche in the Drosophila testis (Figure 1A''-A''', arrows) [55]. LD were largely absent from 99 

the testis region occupied by spermatocytes (Figure 1A and A', arrowheads). While LD 100 

may contain multiple neutral lipid species[56], cholesterol-binding fluorescent polyene 101 

antibiotic filipin III did not detect cholesterol within testis LD (Figure S1A), suggesting 102 

triglyceride is the main neutral lipid in Drosophila testis LD.  103 

 Drosophila spermatogenesis requires the codevelopment and differentiation of 104 

two cell lineages, the germline and the somatic cells [57]. To identify LD in each lineage, 105 

we used the GAL4/UAS system to overexpress a transgene in which GFP is fused to 106 

the LD-targeting motif of motor protein Klarsicht [58] (UAS-GFP-LD). We targeted UAS-107 
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GFP-LD to somatic cells with Traffic jam (Tj)-GAL4 and to the germline using nanos 108 

(nos)-GAL4; LD were visualized using neutral lipid dye LipidTox. We found LD in the 109 

somatic cells of 0-day-old males (Figure 1D), and showed that the majority of somatic 110 

LD were <30 μm from the hub (Figure 1E). Because the somatic LD distribution 111 

coincided with a marker for somatic stem cells and their immediate daughter cells (Zinc 112 

finger homeodomain 1, Zfh-1) (Figure 1F; two-sample Kolmogorov-Smirnov test) [59], 113 

but not with a marker for late somatic cells (Eyes absent, Eya) [12,60], our data 114 

suggests LD are present in early somatic cells. In the germline, GFP punctae 115 

corresponding to LD were found near the apical tip of the testis in 0-day-old males 116 

(Figure 1G,H). We found that the disappearance of germline LD coincided with peak 117 

expression of a GFP reporter that reflects the expression of Bag-of-marbles (Bam) 118 

protein in the testis (Bam-GFP) [61] (Figure 1I,1J). Because peak Bam expression 119 

signals the last round of transient amplifying mitotic cell cycle prior to the germline’s 120 

transition into the meiotic cell cycle [62–64], our data suggests that germline LD, like 121 

somatic LD, are present at early stages of germline development. 122 

 123 

brummer plays a cell-autonomous role in regulating testis lipid droplets 124 

Adipose triglyceride lipase (ATGL) is a critical regulator of neutral lipid metabolism and 125 

LD [65–74]. Loss of ATGL in many cell types triggers LD accumulation, and ATGL 126 

overexpression decreases LD number [30,67,68,71,73,73,75,76]. Given that the 127 

Drosophila ATGL homolog brummer (bmm) regulates testis LD induced by 128 

mitochondrial stress [49], we explored whether bmm regulates testis LD under normal 129 

physiological conditions. We first examined bmm expression in the testis by isolating 130 
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this organ from flies in which a bmm promoter fragment drives GFP expression (bmm-131 

GFP). Indeed, bmm-GFP accurately reproduces changes to bmm mRNA levels [77]. 132 

GFP expression was present in the germline of bmm-GFP testes, and we found 133 

germline GFP levels were higher in spermatocytes than at earlier stages of sperm 134 

development (Figure 2A,2B; one-way ANOVA with Tukey multiple comparison test). 135 

Supporting this, our analysis of a publicly available single-cell RNA sequencing data set 136 

of the male reproductive organ [78] suggested a similar trend in bmm mRNA levels 137 

between different stages of germline (Figure S2A,S2B) and somatic cell (Figure 138 

S2C,S2D) development. Importantly, germline GFP levels were negatively correlated 139 

with testis LD in bmm-GFP flies (Figure 2A,2C), suggesting regions with higher bmm 140 

expression had fewer LD.  141 

To test whether bmm regulates testis LD, we compared LD in testes from 0-day-142 

old males carrying a loss-of-function mutation in bmm (bmm1) to control male testes 143 

(bmmrev)[67]. bmm1 testes had significantly more LD across all LD sizes compared with 144 

control males (Figure 2D–2G; Welch two-sample t-test with Bonferroni correction), and 145 

showed a significantly expanded LD distribution (Figure 2D–2F,2H; two-sample 146 

Kolmogorov-Smirnov test). This suggests bmm normally restricts LD to the region near 147 

the apical tip of the testis, a role we confirm in both somatic and germline lineages 148 

(Figure S2E–S2H). Importantly, after inducing homozygous bmm1 or bmmrev clones in 149 

the testes using FLP-FRT system[79], we found bmm1 spermatocyte clones had 150 

significantly more LD at 3 days post-clone induction (Figure 2I; Welch two-sample t-151 

test), a stage at which LD were absent from bmmrev clones. This indicates a previously 152 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2023. ; https://doi.org/10.1101/2022.12.16.520841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.16.520841
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

9 

unrecognized cell-autonomous role for bmm in regulating testis LD, a role we were 153 

unable to assess in somatic cells as we recovered no bmm1 somatic cell clones.  154 

 155 

brummer plays a cell-autonomous role in regulating germline development  156 

To determine the physiological significance of bmm-mediated regulation of testis LD, we 157 

investigated testis and sperm development in males without bmm function. In 0-day-old 158 

bmm1 males reared at 25°C, testis size was significantly smaller than in age-matched 159 

bmmrev controls (Figure S3A; Welch two-sample t-test), and the number of spermatid 160 

bundles was significantly lower (Figure S3B; Kruskal-Wallis rank sum test). Defects in 161 

testis size and sperm development were also observed in 14-day-old bmm1 males 162 

(Figure S3C,S3D Welch two-sample t-test). When the animals were reared at 29°C, a 163 

temperature that exacerbates spermatogenesis defects associated with changes in lipid 164 

metabolism [21], bmm1 phenotypes were more pronounced (Figure 3A-3C). This 165 

suggests loss of bmm affects testis development and spermatogenesis. Because similar 166 

phenotypes are observed in male mice without ATGL [52], and supplementing the diet 167 

of bmm1 males with medium-chain triglycerides (MCT) partially rescues the testis and 168 

spermatogenic defects we observed in flies (Figure S3E,S3F; one-way ANOVA with 169 

Tukey multiple comparison test), as it does in mice [52,80], our data suggests flies are a 170 

good model to study how bmm/ATGL influences sperm development.  171 

 To explore spermatogenesis in bmm1 animals, we used germline-specific marker 172 

Vasa to visualize the germline in the testes of bmm1 and bmmrev males (Figure 3D,3E) 173 

[81]. We observed a significant increase in the number of germline stem cells (GSC) 174 

(Figure 3F; Kruskal-Wallis rank sum test) and higher variability in GSC number in bmm1 175 
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males (p=5.7×10-12 by F-test). Given that GSC number is affected by hub size and GSC 176 

proliferation [82,83], we monitored both parameters in bmm1 and bmmrev controls. While 177 

hub size in bmm1 testes was significantly larger than in testes from bmmrev controls 178 

(Figure S3G,S3H; Welch two-sample t-test), the number of phosphohistone H3-positive 179 

GSC, which indicates proliferating GSC, was unchanged in bmm1 animals (Figure S3I; 180 

Kruskal-Wallis rank sum test). While this indicates a larger hub may partly explain 181 

bmm’s effect on GSC number, bmm also plays a cell-autonomous role in regulating 182 

GSC, as we recovered a higher proportion of bmm1 clones in the GSC pool compared 183 

with bmmrev clones at 14 days after clone induction (Figure 3G; Welch two-sample t-184 

test).  185 

Beyond GSC, we uncovered additional spermatogenesis defects in bmm1 testes. 186 

Peak Bam-GFP expression in testes from 0-day-old bmm1 and bmmrev males showed 187 

that GFP-positive cysts with were significantly further away from the hub in bmm1 testes 188 

(Figure 3H,S3J; Welch two-sample t-test). Indeed, 15/18 bmm1 testes contained Vasa-189 

positive cysts with large nuclei in the distal half of the testis (Figure 3I, arrowheads), a 190 

phenotype not present in bmmrev testes (0/8) (p=0.0005 by Pearson’s Chi-square test). 191 

Because these phenotypes are also seen in testes with differentiation defects [13,84], 192 

we recorded the stage of sperm development reached by the germline in bmm1 testes. 193 

Most bmm1 testes contained post-meiotic cells in males raised at 25°C (Figure S3K); 194 

however, germline development did not progress past the spermatocyte stage in most 195 

bmm1 testes from animals raised at 29°C (Figure S3K). Testes from bmm1 males reared 196 

at 25°C also had a smaller Boule-positive area (Figure 3J,S3L; Welch two-sample t-197 

test), and fewer individualization complexes and waste bags (Figure S3M,S3N; Kruskal-198 
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Wallis rank sum test). Together, these data indicate loss of bmm delays germline 199 

development. Because we recovered fewer bmm1 spermatocyte and spermatid clones 200 

14 days after clone induction (Figure 3K,3L; Kruskal-Wallis rank sum test), this effect on 201 

germline development represents a cell-autonomous role for bmm. 202 

 203 

brummer-dependent regulation of testis triglyceride levels affects 204 

spermatogenesis   205 

ATGL catalyzes the first and rate-limiting step of triglyceride hydrolysis [73,85,86]. Loss 206 

of this enzyme or its homologs leads to excess triglyceride accumulation 207 

[27,30,67,73,75] and shifts in multiple lipid classes [66,87–89]. To determine how loss of 208 

bmm affects spermatogenesis, we carried out mass spectrometry (MS)-based 209 

untargeted lipidomic profiling of bmm1 and bmmrev males. Hierarchical clustering of lipid 210 

species suggests that bmm1 and bmmrev males show distinct lipidomic profiles (Figure 211 

4A). Overall, we detected 2464 and 1144 lipid features with high quantitative confidence 212 

in positive and negative ion modes, respectively. By matching experimental m/z, 213 

isotopic ratio, and tandem MS spectra to lipid libraries, we confirmed 293 unique lipid 214 

species (Supplemental table 1). We found 107 lipids had a significant change in 215 

abundance between bmm1 and bmmrev males (padj<0.05): 85 species were upregulated 216 

in bmm1 males and 22 lipid species were downregulated. Among differentially regulated 217 

species from different lipid classes, triglyceride had the largest residual above expected 218 

proportion (p=5.00×10-4 by Pearson's Chi-squared test). This suggests triglyceride is the 219 

lipid class most affected by loss of bmm (Figure 4B,4C).  220 
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In bmm1 males, most triglyceride species (55/97) were significantly higher. 221 

Because we observed a positive correlation between the fold increase in triglyceride 222 

abundance with both the number of double bonds (p=7.52×10-8 by Kendall’s rank 223 

correlation test; Figure S4A) and the number of carbons (p=2.77×10-10 by Kendall’s rank 224 

correlation test; Figure S4B), our data align well with bmm/ATGL’s known role in 225 

regulating triglyceride levels[67,68,73] and its substrate preference of long-chain 226 

polyunsaturated fatty acids[85]. While we also detected changes in species such as 227 

fatty acids, acylcarnitine, and membrane lipids (Figure S4C–S4H), in line with recent 228 

Drosophila lipidomic data[90,91], the striking accumulation of triglyceride in bmm1 males 229 

suggested that excess testis triglyceride in bmm1 males may contribute to their 230 

spermatogenic defects. To test this, we examined spermatogenesis in bmm1 males 231 

carrying loss-of-function mutations in midway (mdy). mdy is the Drosophila homolog of 232 

diacylglycerol O-acyltransferase 1 (DGAT1), and whole-body loss of mdy reduces 233 

whole-body triglyceride levels[92–94]. Importantly, testes isolated from males lacking 234 

both bmm and mdy (genotype mdyQX25/k03902;bmm1) had fewer LD than testes dissected 235 

from bmm1 males (Figures 4D,S4I; one-way ANOVA with Tukey multiple comparison 236 

test).  237 

We found that testes isolated from mdyQX25/k03902;bmm1 males were significantly 238 

larger and had more spermatid bundles than testes from bmm1 males (Figure 4E–G; 239 

one-way ANOVA with Tukey multiple comparison test). The elevated number of GSC in 240 

bmm1 male testes was similarly rescued in mdyQX25/k03902;bmm1 males (Figure 4H; one-241 

way ANOVA with Tukey multiple comparison test). These data suggest that defective 242 

spermatogenesis in bmm1 males can be partly attributed to excess triglyceride 243 
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accumulation. Notably, at least some of these defects are cell-autonomous: RNAi-244 

mediated knockdown of mdy in the germline of bmm1 males partially rescued the 245 

defects in testis size (Figure 4I; Kruskal-Wallis rank sum test with Dunn’s multiple 246 

comparison test) and GSC variance (Figure S4J; p=4.5 x 10-5 and 8.2 x 10-3 by F-test 247 

from the GAL4- and UAS-only crosses, respectively). bmm-mediated regulation of testis 248 

triglyceride therefore plays a previously unrecognized role in regulating sperm 249 

development.  250 

 251 

DISCUSSION 252 

In this study, we used Drosophila to gain insight into how the neutral lipids, a major lipid 253 

class, contribute to sperm development. We describe the distribution of LD under 254 

normal physiological conditions in the Drosophila testis, and show that LD are present 255 

at the early stages of development in both somatic and germline cells. While many 256 

factors are known to regulate LD in nongonadal cell types, we reveal a cell-autonomous 257 

role for triglyceride lipase bmm in regulating testis LD during spermatogenesis. Indeed, 258 

our data indicates loss of bmm delays germline differentiation leading to an 259 

accumulation of early-stage germ cells. These defects in germline differentiation can be 260 

partially explained by the excess accumulation of triglyceride in flies lacking bmm, as 261 

genetically blocking triglyceride synthesis rescues multiple spermatogenic defects in 262 

bmm mutants. Together, our data reveals previously unrecognized roles for LD and 263 

triglycerides during spermatogenesis, and for bmm as an important regulator of testis 264 

LD and germline development under normal physiological conditions. 265 

 266 
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One key outcome of our study was increased knowledge of LD regulation and 267 

function in the testis. Despite rapidly expanding knowledge of LD in cell types such as 268 

adipocytes or skeletal muscle, less is known about how LD influence spermatogenesis 269 

under normal physiological conditions. In mammals, testis LD contain cholesterol and 270 

play a role in promoting steroidogenesis [95,96]. In flies, we show that LD are present in 271 

the testis, and that excess accumulation of these LD affects sperm development. In 272 

nongonadal cell types, triglycerides provide a rich source of fatty acids for cellular ATP 273 

production, lipid building blocks to support membrane homeostasis and growth, and 274 

metabolites that can act as signaling molecules [26]. Because ATP production, lipid 275 

precursors, and lipid signaling all play roles in supporting normal sperm development 276 

[97,98], future studies will need to determine how each of these processes is affected 277 

when excess triglyceride accumulates in testis LD. This will provide critical insight into 278 

how triglyceride stored within testis LD contributes to overall cellular lipid metabolism 279 

during spermatogenesis. Because of the parallel spermatogenic defects we observed in 280 

bmm mutants and ATGL-deficient mice, we expect that these mechanisms will also 281 

operate in other species. 282 

A more comprehensive understanding of neutral lipid metabolism during sperm 283 

development will also emerge from studies on the upstream signaling networks that 284 

regulate testis LD and triglyceride. Given that we show an important and cell-285 

autonomous role for bmm in regulating testis LD and triglyceride, future studies will 286 

need to identify factors that regulate bmm in the testis. Based on public single-cell 287 

RNAseq data and the bmm-GFP reporter strain, our data suggest bmm mRNA levels 288 

are differentially regulated between early and later stages of sperm development. 289 
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Candidates for mediating this regulation include the insulin/insulin-like growth factor 290 

signaling pathway (IIS), Target of rapamycin (TOR) pathway, and nuclear factor 291 

kB/Relish pathway (NFkB), as all of these pathways influence bmm mRNA levels in 292 

nongonadal cell types [99–105]. Beyond mRNA levels, Bmm protein levels and post-293 

translational modifications may also be differentially regulating during spermatogenesis. 294 

For example, studies show that the proteins encoded by bmm homologs in other 295 

animals are regulated by phosphorylation [106], mediated by kinases such as 296 

adenosine monophosphate-activated protein kinase (AMPK) and protein kinase A 297 

(PKA) [107–109]. Importantly, many of these pathways, including IIS, TOR, AMPK, 298 

NFkB and possibly PKA influence Drosophila sperm development [110–115]. Identifying 299 

the signaling networks that influence bmm regulation during sperm development will 300 

therefore lead to a deeper understanding of how testis LD and triglyceride are 301 

coordinated with physiological factors to promote normal spermatogenesis. Because 302 

pathways such as IIS and AMPK, and others, regulate sperm development in other 303 

species [116–118], these insights may reveal conserved mechanisms that govern the 304 

regulation of cellular neutral lipid metabolism during sperm development. 305 

 306 

 307 

  308 
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FIGURE LEGENDS 337 

Figure 1 – Lipid droplets are present in early-stage somatic and germ cells. (A) 338 

Testis lipid droplets (LD) in w1118 animals visualized with neutral lipid dye BODIPY. 339 

(A,A') Scale bar=50 μm; (A'',A''') scale bar=15 μm. Asterisk indicates hub in all images. 340 

Arrows point to LD; arrowheads point to spermatocytes in A,B. (B) Testis LD visualized 341 

with BODIPY in newly-eclosed males from two wild-type genotypes. Scale bars: main 342 

image=50 μm; inset image=10 μm. (C) Testis LD from w1118 animals at different times 343 

post-eclosion. Scale bars=50 μm. (D) Testis LD visualized with LipidTox Red in animals 344 

with somatic cell overexpression of GFP-LD (Tj-GAL4>UAS-GFP-LD). GFP- and 345 

LipidTox Red-positive punctae are somatic LD (D–D'' arrows); LipidTox punctae without 346 

GFP indicate germline LD (D–D'' arrowheads). Scale bars=10 μm. (E) Histogram 347 

showing the spatial distribution of somatic cell LD; error bars represent standard error of 348 

the mean (SEM). (F) Cumulative frequency distributions of somatic LD (blue line, data 349 

reproduced from E), zfh-1-positive somatic cells (zfh-1+ cells, orange line), and Eya-350 

positive somatic cells (Eya+ cells, grey line). (G) Testis LD visualized with LipidTox Red 351 

in males with germline overexpression of GFP-LD (nos-GAL4>UAS-GFP-LD). GFP- and 352 

LipidTox Red-positive punctae indicate germline LD (arrows); LipidTox punctae without 353 
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GFP indicate non-germline LD (arrowheads). Scale bars=10 μm. (H) Histogram 354 

representing the spatial distribution of LD within the germline; error bars represent SEM. 355 

(I) Histogram representing the spatial distribution of LD and GFP fluorescence (green 356 

line) (arbitrary units, a.u.) in a representative testis of a bam-GFP animal (panel J). (J) 357 

Testis LD in a bam-GFP animal; arrows point to LD and arrowheads point to 358 

spermatocytes. Scale bar=50 μm. See also Supplemental Figure 1. 359 

 360 

Figure 2 – bmm regulates testis lipid droplets in a cell-autonomous manner.  (A) 361 

Testis lipid droplets (LD) indicated by LipidTox Red in bmm-GFP animals. Arrows point 362 

to LD in all images. Arrowheads point to spermatocytes. Scale bars=50 μm. Asterisks 363 

indicate the hub in all images. (B) Quantification of nuclear GFP intensity in testes 364 

isolated from bmm-GFP animals (n=3). Germline stem cell (GSC), spermatogonia (SG), 365 

spermatocyte (SC). (C) Spatial distribution of LD (grey histogram) and GFP expression 366 

(green line) in testes from bmm-GFP animals as a function of distance from the hub 367 

(n=3). (D,E) LD near the apical region of the testis in bmmrev (D) or bmm1 (E) animals. 368 

(F) LD further away from the apical tip in bmm1 animals. (D–F) Scale bars=50 μm. (G) 369 

Histogram representing testis LD size distribution in bmmrev (grey) and bmm1 (orange). 370 

(H) Apical tip of the testes is at the left of the graph; individual dots represent a single 371 

LD and its relative position to the hub marked by an asterisk. Cumulative frequency 372 

distribution of the distance between LDs and the apical tip of the testes are drawn as 373 

solid lines. (I) Number of testis LD in bmmrev (grey) or bmm1 (orange) in FLP-FRT 374 

clones 3 days post-clone induction; dots represent measurements from a single clone. 375 
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The number of cells in each cyst (CC) counted is indicated. See also Supplemental 376 

Figure 2. 377 

 378 

Figure 3 – A cell-autonomous role for bmm in regulating spermatogenesis. Testes 379 

isolated from bmmrev (A) and bmm1 (A') animals raised at 29°C stained with phalloidin. 380 

Scale bars=100 μm. (B) Testis size in bmm1 and bmmrev animals raised at 29°C. (C) 381 

Spermatid bundle number in bmm1 and bmmrev testes from animals reared at 29°C. 382 

(D,E) Representative images of bmmrev (D) or bmm1 (E) testes stained with DAPI and 383 

anti-Vasa antibody. Arrows indicate germline stem cells (GSC). Scale bar=50 μm. The 384 

hub is marked by an asterisk in all images. (F) GSC number in bmm1 and bmmrev 385 

testes. (G) Proportion of GSCs that were either bmm1 or bmmrev clones at 3 and 14 386 

days post-clone induction. (H) Representative images of bmmrev (H) and bmm1 (H') 387 

testes carrying bam-GFP; data quantified in Figure S3J. Arrows indicate regions with 388 

high Bam-GFP. Scale bars=50 μm. (I) Representative images of bmmrev (I) or bmm1 389 

(I',I'') testes stained with anti-Vasa antibody. Arrows indicate Vasa-positive cysts in 390 

bmm1 testis. Panel I'' is magnified from the boxed region in I'. (I,I') Scale bars=100 μm; 391 

(I'') scale bar=50 μm. (J) Maximum projection of bmmrev (J) or bmm1 (J') testes stained 392 

with anti-Boule antibody (green) and DAPI (blue). Scale bars=100 μm. Number of bmm1 393 

and bmmrev spermatocyte clones (K) or post-meiotic clones (L) at 3 and 14 days post-394 

clone induction. See also Supplemental Figure 3. 395 

 396 

Figure 4 – Loss of bmm disrupts triglyceride homeostasis and leads to 397 

spermatogenic defects. (A) Hierarchical clustering of lipid species detected in bmmrev 398 
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and bmm1 animals. (B) Histograms showing the proportion of species in each lipid class 399 

with different levels between bmm1 and bmmrev. Numbers on histograms indicate the 400 

number of species with differences in abundance. (C) Volcano plot showing fold change 401 

in abundance of triglycerides (green; 97 species) and non-triglyceride lipids (grey; 186 402 

species) in our dataset. (D) Arrows indicate testis LD stained with LipidTox Red in 403 

bmmrev (D), bmm1 (D'), or mdyQX25/k03902; bmm1 (D'') animals. (E) Whole testes isolated 404 

from bmmrev (E), bmm1 (E'), or mdyQX25/k03902;bmm1 (E'') animals stained with anti-Vasa 405 

antibody (red) and DAPI (blue). Arrowheads indicate spermatid bundles. Scale 406 

bars=100 μm. (F) Testis size in bmmrev, bmm1, and mdyQX25/k03902;bmm1 animals. 407 

Spermatid bundles (G) and number of germline stem cells (H) in bmmrev, bmm1, and 408 

mdyQX25/k03902;bmm1 animals. (I) Testis size in animals with germline-specific mdy 409 

knockdown (nos-GAL4>mdy RNAi; bmm1) compared with controls (nos-GAL4>+; bmm1 410 

and +>mdy RNAi; bmm1). See also Supplemental Figure 4. 411 

  412 
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MATERIALS AND METHODS 413 

 414 

Materials and Resource availability. Drosophila strains and their source are listed in a 415 

Key Resources table. Further information and requests for resources and reagents 416 

should be directed to, and will be fulfilled by, lead contact Dr. Elizabeth J. Rideout 417 

(elizabeth.rideout@ubc.ca). 418 

 419 

Data and Code availability. All raw data and results of statistical tests reported in this 420 

paper are located in Supplementary files 1-4. This paper does not report original code. 421 

Any additional information required to reanalyze the data reported in this paper is 422 

available from the lead contact upon request. 423 

 424 

Fly husbandry. Fly stocks were maintained at room temperature in 12:12 hour 425 

light:dark cycle. Unless otherwise indicated, all flies were raised at 25°C with a density 426 

of 50 larvae per 10 mL fly media. Because this project examines sperm development, 427 

we used male flies in all experiments. Fly media contained 20.5 g sucrose (SU10, Snow 428 

Cap), 70.9 g Dextrose (SUG8, Snow Cap), 48.5 g cornmeal (AO18006, Snow Cap), 429 

30.3 g baker’s yeast (NB10, Snow Cap), 4.55 g agar (DR-820-25F, SciMart), 0.5 g 430 

calcium chloride dihydrate (CCL302.1, BioShop Canada), 0.5 g magnesium sulfate 431 

heptahydrate (MAG511.1, BioShop Canada), 4.9 mL propionic acids (P1386, Sigma-432 

Aldrich), and 488 μL phosphoric acid (P5811, Sigma-Aldrich) per 1L of media. For diets 433 

with medium- or long-chain triglyceride, 4 g of coconut oil (medium chain triglyceride) or 434 

olive oil (long chain triglyceride) was added per 100 mL of media described above prior 435 
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to cooling. Males were collected and dissected within 24 hours of eclosion unless 436 

otherwise indicated. Fixations were performed at room temperature with 4% 437 

paraformaldehyde (CA11021-168, VWR) in PBS for 20 minutes on a rotating platform 438 

followed by washing in PBS twice before staining. Fly strains used in our study are 439 

listed in a Key Resources table. 440 

  441 

Testis cell stage classification and measurements. Cells at an early stage of 442 

development (stem cells and early-stage somatic and germline cells) were located in 443 

the apical region of the testis, and were identified by their small and dense nuclei[120]. 444 

GSC were defined as Vasa-positive cells in direct contact with the hub; proliferating 445 

GSC were identified as Vasa-positive cells in direct contact with the hub that were also 446 

phospho-H3 positive. Cells in the testis region occupied by primary spermatocytes were 447 

identified by their large cell size and decondensed chromosome staining occupying 448 

three nuclear domains[120]. Spermatid bundles were identified by their condensed and 449 

needle-shaped nuclei, which roughly corresponds to nuclei with protamine-based 450 

chromatin[121]. Testis size was measured by quantifying the length of a line drawn 451 

down the middle of a testis image; starting from the apical tip of the testis and ending 452 

where the testis meets the seminal vesicle. 453 

 454 

FLP-FRT clone induction. Adult males were collected at 3-5 days post-eclosion and 455 

heat-shocked three times at 37°C with a 10 min rest period at room temperature 456 

between heat shocks. After heat-shock, the flies were incubated at room temperature 457 

until dissection.  458 
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 459 

Immunohistochemistry. Fixed samples were rinsed three times with blocking solution 460 

containing 0.2% bovine serum albumin (A4503, Sigma-Aldrich), 0.3% Triton-X in PBS, 461 

then blocked for 1 hr on a rotating platform at room temperature. During the incubation, 462 

the blocking solution was changed every 15 minutes. After blocking, the sample were 463 

resuspended in blocking solution with the appropriate concentration of primary antibody 464 

(see Key Resources table), and incubated overnight at 4°C. Samples were rinsed three 465 

times with blocking solution after removing primary antibody, and blocked for one hour 466 

on a rotating platform in blocking solution. Secondary antibody was applied in blocking 467 

solution and left on the rotating platform at room temperature for 40 min. The sample 468 

was rinsed with blocking solution three more times, and washed four times for 15 min 469 

per wash in blocking solution. Testis samples were resuspended in Vectashield 470 

mounting media with DAPI (H-1200-10, Vector Laboratory) or SlowFade Diamond 471 

mounting media (S36972, Thermo Fisher Scientific) prior to mounting.  472 

 473 

Lipid droplet staining. Fixed testes were briefly permeabilized with 0.1% Triton-X in 474 

PBS for 5 min prior to applying phalloidin. For BODIPY staining, samples were 475 

suspended in PBS containing 10 μg/mL DAPI (2879083-5mg, PeproTech), 1:500 476 

BODIPY 495/503 (Thermo Fisher Scientific D3922), and 1:1000 phalloidin iFluor647 477 

(ab176759, Abcam) or 1:40 phalloidin TexasRed (T7471, Thermo Fisher Scientific). For 478 

staining with LipidTox Red, samples were suspended in PBS containing 10 μg/mL DAPI 479 

(2879083-5mg, PeproTech), 1:200 LipidTox Red (H34476, Thermo Fisher Scientific), 480 

and 1:1000 phalloidin iFluor647 (ab176759, Abcam). For staining free sterols, samples 481 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2023. ; https://doi.org/10.1101/2022.12.16.520841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.16.520841
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

24 

were prepared as for BODIPY staining with 50 μg/mL filipin in place of BODIPY for 30 482 

min. Samples were incubated on a rotating platform for 40 minutes at room 483 

temperature. After incubation, samples were washed twice with PBS, then resuspended 484 

in SlowFade Diamond mounting media (Thermo Fisher Scientific S36972) prior to 485 

mounting. 486 

 487 

Image acquisition and processing. All images were acquired on a Leica SP5 confocal 488 

microscope system with 20X or 40X objectives and quantified with Fiji image analysis 489 

software[122].  490 

 491 

Drosophila lipidomics. Drosophila extracts were prepared following the previously 492 

reported protocol[123]. Briefly, 10 Drosophila males (~10 mg) were weighed, 300 µL of 493 

ice-cold methanol/water mixture (9:1, v:v) was added to these males, and the samples 494 

were homogenized with glass beads using a bead beater (mini-beadbeater-16, 495 

BioSpec, Bartlesville, Ok, USA). Sample weight was used for sample normalization. Fly 496 

lysate was kept at -20°C for 4 hours for protein precipitation. Then, 900 µL of methyl 497 

tert-butyl ether was added and the solution was shaken for 5 min to extract lipids. To 498 

induce phase separation 285 µL of water was added, followed by centrifugation. The 499 

upper layer was separated, dried, and reconstituted in isopropanol/acetonitrile (1:1, v:v) 500 

for liquid chromatography-mass spectrometry (LC-MS) analysis. The volume of 501 

reconstitution solution was proportional to sample weight for normalization. Quality 502 

control (QC) samples were prepared by pooling 20 μL aliquot from each sample. The 503 
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method blank sample was prepared using an identical workflow but without adding 504 

Drosophila.  505 

 Drosophila extracts were analyzed on an UHR-QqTOF (Ultra-High Resolution 506 

Qq-Time-Of-Flight) mass spectrometry Impact II (Bruker Daltonics, Bremen, Germany) 507 

interfaced with an Agilent 1290 Infinity II LC Systems (Agilent Technologies, Santa 508 

Clara, CA, USA). LC separation was performed using a Waters reversed-phase (RP) 509 

UPLC Acquity BEH C18 Column (1.7 µm, 1.0 mm ×100 mm, 130 Å) (Milford, MA, USA) 510 

maintained at 30°C. For positive ion mode, the mobile phase A was 60% acetonitrile in 511 

water and the mobile phase B was 90% isopropanol in acetonitrile, both containing 5 512 

mM ammonium formate (pH = 4.8, adjusted by formic acid). For negative ion mode, the 513 

mobile phase A was 60% acetonitrile in water and the mobile phase B was 90% 514 

isopropanol in acetonitrile, both containing 5 mM NH4FA (pH = 9.8, adjusted by 515 

ammonium hydroxide). The LC gradient for positive and negative ion modes was set as 516 

follows: 0 min, 5% B; 8 min, 40% B; 14 min, 70% B; 20 min, 95% B; 23 min, 95% B; 24 517 

min, 5% B; 33 min, 5% B. The flow rate was 0.1 mL/min. The injection volume was 518 

optimized to 2 µL in positive mode and 5 µL in negative mode using QC sample. The 519 

ESI source conditions were set as follows: dry gas temperature, 220 °C; dry gas flow, 7 520 

L/min; nebulizer gas pressure, 1.6 bar; capillary voltage, 4500 V for positive mode and 521 

3000 V for negative mode. The MS1 analysis was conducted using following 522 

parameters: mass range, 70-1000 m/z; spectrum type: centroid, calculated using 523 

maximum intensity; absolute intensity threshold: 250. Data-dependent MS/MS analysis 524 

parameters: collision energy: 16-30 eV; cycle time, 3 s; spectra rate: 4 Hz when 525 

intensity < 104 and 12 Hz when intensity > 105, linearly increased from 104 to 105. 526 
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External calibration was applied using sodium formate to ensure the m/z accuracy 527 

before sample analysis. 528 

 The raw LC-MS data were processed using MS-DIAL (ver. 4.38)[124]. The 529 

detailed MS-DIAL parameters are: MS1 tolerance, 0.01 Da; MS/MS tolerance, 0.05; 530 

mass slice width, 0.05 Da; smoothing method, linear weighted moving average; 531 

smoothing level, 3 scans; minimum peak width, 5 scans. Lipid features with high 532 

quantitative confidence were selected by the following criteria: retention time was within 533 

the gradient elution time (< 23 min); average intensity in QC samples is larger than 5-534 

fold of the intensity in method blank sample. Lipid identification was performed by 535 

matching experimental precursor m/z, isotopic ratio and MS/MS spectrum against the 536 

LipidBlast libraries embedded in MS-DIAL. To improve the quantification accuracy, the 537 

measured MS signal intensities were corrected using serial diluted QC samples 538 

following the reported workflow[125]. 539 

 540 

Quantification and statistical analysis. All microscopy images were quantified using 541 

Fiji software[122]. For lipid droplet counts, a single optical slice through the middle of 542 

the testis containing the hub was used with the exception of FLP-FRT experiment where 543 

all lipid droplets within a GFP-negative cyst were counted (Figure 2I). All statistical 544 

analyses were done using R (obtained from https://cran.r-project.org). With exception of 545 

data concerning spatial distribution, and lipidomic data, Shapiro-Wilk test (via 546 

shapiro.test in base R) was used to assess normality of distribution prior to testing for 547 

significance. Kruskal-Wallis rank sum test (from the R package coin) and Dunn’s test 548 

(from the R package dunn.test) were used in place of Welch two-sample t-test and 549 
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Tukey’s multiple comparison test when the assumption of normality was not met. For 550 

testing differences in variance between two populations, F-test (via var.test in base R) 551 

was used. For testing differences in spatial distribution, two-sample Kolmogorov-552 

Smirnov test (via ks.test in base R) was used. All p-values are indicated in figures; 553 

extremely small p-values are listed as p<2.2 x 10-16. 554 

  555 
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RESOURCE TABLE 556 

REAGENT or RESOURCE SOURCE RESOURCE # 
Antibodies 

Anti-Vasa (1:200) Gift from Dr. R. Lehman, 

MIT 

 

Anti-Eya (1:50) Developmental Studies 
Hybridoma Bank 

(DSHB) 

eya10H6 

Anti-zfh1 (1:1000) Gift from Dr. J. Skeath, 

WUSTL 

 

Anti-boule (1:1000) Gift from Dr. S. 

Wasserman, UCSD 

 

Anti-phospho-histone H3 (1:1000) Millipore Sigma 05-1354 

Experimental models: Drosophila melanogaster 

w1118 Bloomington Drosophila 

stock center 

3605 

CantonS Bloomington Drosophila 

stock center 

64349 

OregonR Bloomington Drosophila 

stock center 

25211 

bmm1 Gift from Dr. R. Kühnlein  

bmmrev Gift from Dr. R. Kühnlein  

mdy[Qx25], cn[1], bw[1]/CyO, I(2)DTS513[1] Bloomington Drosophila 

stock center 

5095 

y[1],w[67c23];P{lacW}Cse1[k03802],mdy[k03902]/CyO Bloomington Drosophila 

stock center 

10536 

w[1118];P{GD1749}v6367 (UAS-mdy-RNAi) Vienna Drosophila 

resource center 

6367 
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REAGENT or RESOURCE SOURCE RESOURCE # 
nos-GAL4::VP16 Bloomington Drosophila 

stock center 

7303 
 

Tj-GAL4 Gift from Dr. D. Godt, 

University of Toronto 

 

c587-GAL4 Bloomington Drosophila 

stock center 

67747 
 

Bam-GFP 40  

bmm-GFP Gift from Dr. K. Kamei57  

GFP-LD Gift from Dr. M. Welte36  

P{neoFRT}82B, bmm[1] This study  

P{neoFRT}82B, bmm[rev] This study  

bam-GFP, bmm[1] This study  

bam-GFP, bmm[rev] This study  

Software and algorithms 

Fiji https://imagej.net/softwa

re/fiji/ 

 

R https://cran.r-project.org  

 557 

SUPPLEMENTAL TABLE AND FILES 558 

Supplemental table 1 – Table showing identified lipid species from untargeted 559 

lipidomic analysis. 560 

Supplementary file 1 – Raw data and statistical outputs from Figure 1.  561 

Supplementary file 2 – Raw data and statistical outputs from Figure 2 and 562 

Supplemental figure 2. 563 
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Supplementary file 3 – Raw data and statistical outputs from Figure 3 and 564 

Supplemental figure 3. 565 

Supplementary file 4 – Raw data and statistical outputs from Figure 4 and 566 

Supplemental figure 4. 567 

 568 

SUPPLEMENTAL FIGURE LEGENDS  569 

Supplemental Figure 1 related to Figure 1 – Cholesterol is absent from testis lipid 570 

droplets. (A) Testes stained with BODIPY (A) to detect neutral lipids and Filipin III (A') 571 

to detect free cholesterol. Scale bars=50 μm. 572 

 573 

Supplemental Figure 2 related to Figure 2 – bmm mRNA levels during 574 

spermatogenesis in germline and somatic lineages. (A) Pseudotime trajectory of 575 

germline (black line) based on single-cell RNA sequencing data62. Individual cells are 576 

labeled according to the annotation within the data set. (B) Rolling average of 577 

normalized bmm transcript counts in the germline along the trajectory shown in panel A 578 

are plotted as a black line on the upper panel. Composition of cell types mapped on to 579 

the trajectory at each time point is shown at the lower half of panel B. (C) Pseudotime 580 

trajectory of the somatic cells (black line) based on publicly available single-cell RNA 581 

sequencing data62. Individual cells are labeled according to the annotation within the 582 

data set. (D) Rolling average of normalized bmm transcript counts in somatic cells 583 

plotted as a black line along the trajectory shown in C (upper panel). Composition of cell 584 

types mapped on to the trajectory at each time point (lower panel). (E-H) 585 

Representative images of bmmrev (E and F) and bmm1 (G and H) testes with somatic 586 
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over-expression of GFP-LD (Tj-GAL4>UAS-GFP-LD). Panel F and H contain magnified 587 

images of the area indicated by the boxes in panel E and G, respectively. In bmmrev 588 

testes, LD were restricted to a region near the apical tip (E) of the testis in both somatic 589 

(F–F''' arrows) and germline cells (F–F''' arrowheads). In bmm1 testes, LD were present 590 

in both somatic (G–H arrows) and germline cells (G–H arrowheads), near the apical tip 591 

of the testis in a region corresponding to early-stage germ cells and in the region 592 

corresponding to spermatocytes. (E,G) Scale bars=50 μm; (F,H) scale bars=20 μm.  593 

 594 

Supplemental Figure 3 related to Figure 3 – Additional characterization of testis 595 

development and spermatogenesis in animals lacking bmm. (A) Testis size was 596 

smaller in bmm1 mutant animals compared with bmmrev controls at <24 hr post-eclosion 597 

when raised at 25°C (A; Welch two-sample t-test). (B) The number of spermatid bundles 598 

was significantly lower in bmm1 mutant animals compared with bmmrev controls at <24 599 

hr post-eclosion when raised at 25°C (Kruskal-Wallis rank sum test). (C) Testis size was 600 

significantly smaller in bmm1 mutant males compared with bmmrev control males at 14-601 

days post-eclosion (Welch two-sample t-test). (D) While the median number of 602 

spermatid bundles was not significantly different between bmm1 mutant males and 603 

bmmrev control males at 14 days post-eclosion (Welch two-sample t-test), 8/27 bmm1 604 

testis had no spermatid bundles, a phenotype absent in age-matched bmmrev males 605 

(0/22) (p=0.0163, Pearson's Chi-squared test), suggesting a subtle defect is present. 606 

(E) Food supplemented with 4% medium chain triglyceride (MCT), but not long chain 607 

triglyceride (LCT), significantly increased testis length in bmm1 animals but had no effect 608 

on this phenotype in bmmrev control animals (one-way ANOVA with Tukey multiple 609 
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comparison test). (F) Food supplemented with 4% medium chain triglyceride 610 

significantly increased the number of spermatid bundles in bmm1 testes but had no 611 

effect on this phenotype in bmmrev control animals (one-way ANOVA with Tukey 612 

multiple comparison test). (G) Representative images of bmmrev (G–G') or bmm1 (G''–613 

G''') testes stained for Fas3 (G and G'') and Vas (G' and G'''). Scale bars=25 μm. (H) 614 

Quantification of hub area in bmmrev or bmm1 testes showed a significantly larger hub 615 

size in bmm1 testes (Welch two-sample t-test). (I) The number of germline stem cells 616 

(GSC) undergoing mitosis (phospho-histone H3+ GSC/total GSC) was not significantly 617 

different between bmm1 and bmmrev testes (Kruskal-Wallis rank sum test). (J) The 618 

distance between the hub and the first Bam-GFP positive cyst (Figure 3H) was 619 

significantly higher in bmm1 testes than in bmmrev testes (Welch two-sample t-test). (K) 620 

All bmmrev testes and most bmm1 testes contained spermatids when raised at 25°C; 621 

however, the most advanced stage of spermatogenesis observed in the majority of 622 

bmm1 testes isolated from animals reared at 29°C	was the spermatocyte stage. (L) 623 

Testes isolated from bmm1 animals showed a significantly smaller Boule-positive area 624 

than control testes (Welch two-sample t-test). (M) Testes isolated from bmm1 animals 625 

contain fewer individualization complexes than bmmrev control testes (Kruskal-Wallis 626 

rank sum test). (N) Fewer waste bags were present in testes isolated from bmm1 627 

animals compared with bmmrev control testes (Kruskal-Wallis rank sum test). 628 

 629 

Supplemental Figure 4 related to Figure 4 – Lipidomic analysis of animals lacking 630 

bmm. (A) Higher fold-changes of triglycerides in bmm1 animals were associated with 631 

less saturation in the acyl-groups (Kendall's rank correlation test). (B) Higher fold-632 
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changes of triglycerides in bmm1 animals were associated with higher number of 633 

carbons in the acyl-groups (Kendall's rank correlation test). Each dot represents a single 634 

triglyceride species for panel B and C. (C) Volcano plot of identified lipids; 635 

monoglycerides shown in blue and diglycerides shown in orange. Many monoglycerides 636 

and diglycerides show increase in fold-change in bmm1 males. (D) The number of 637 

carbon and the degree of saturation of monoglycerides (MAG) and diglycerides (DAG) 638 

with significant changes in abundance between bmm1 and bmmrev males. (E) Volcano 639 

plot of identified lipids; fatty acids shown in magenta and acyl-carnitine shown in green. 640 

Many fatty acids show an increase in fold-change while many acyl-carnitines show a 641 

decrease in fold-change in bmm1 males. (F) The number of carbon and the degree of 642 

saturation of fatty acids (FA) and acyl-carnitines (ACar) with significant changes in 643 

abundance between bmm1 and bmmrev males. (G) Volcano plot of identified lipids; 644 

membrane lipids shown in yellow. (H) The number of carbon and the degree of 645 

saturation of membrane lipids with significant changes in abundance between bmm1 646 

and bmmrev males. For panel G and H, PC: phosphatidylcholine; PE: 647 

phosphatidylethanolamine; PI: phosphatidylinositol; LPC: lysophosphatidylcholine; LPE: 648 

lysophosphatidylethanolamine; SM: sphingomyelin; PG: phosphatidylglycerol. (I) Loss 649 

of mdy function rescued the elevated number of LD in bmm1 testes to control levels 650 

(one-way ANOVA with Tukey multiple comparison test). (J) Germline-specific loss of 651 

mdy in bmm1 animals did not reduce GSC numbers, but the variance in GSC number 652 

was significantly rescued (nos-GAL4>+; bmm1 vs nos-GAL4>mdy RNAi; bmm1: p=4.5 × 653 

10-5; +>mdy RNAi; bmm1 vs nos-GAL4>mdy RNAi; bmm1: p=0.0082 by F-test).  654 

 655 
  656 
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Figure 1 – Lipid droplets are present in early-stage somatic and germline cells. 
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Figure 2 – brummer regulates testis lipid droplets in a cell-autonomous manner. 
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Supplemental Figure 1 – Cholesterol is absent from testis lipid droplets. 
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Supplemental Figure 2 – brummer regulates testis lipid droplets in a cell-autonomous manner. 
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