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Abstract 
 
Gangliogliomas are brain tumors composed of neuron-like and macroglia-like components 
that occur in children and young adults. Gangliogliomas are often characterized by a rare 
population of immature astrocyte-appearing cells expressing CD34, a marker expressed in 
the neuroectoderm (neural precursor cells) during embryogenesis. New insights are needed 
to refine tumor classification and to identify therapeutic approaches. We evaluated five 
gangliogliomas with single nucleus RNA-seq, cellular indexing of transcriptomes and epitopes 
by sequencing, and/or spatially-resolved RNA-seq. We uncovered a population of CD34+ 
neoplastic cells with mixed neuroectodermal, immature astrocyte, and neuronal markers. 
Gene regulatory network interrogation in these neuroectoderm-like cells revealed control of 
transcriptional programming by TCF7L2/MEIS1-PAX6 and SOX2, similar to that found during 
neuroectodermal/neural development. Developmental trajectory analyses place 
neuroectoderm-like tumor cells as precursor cells that give rise to neuron-like and macroglia-
like neoplastic cells. Spatially-resolved transcriptomics revealed a neuroectoderm-like tumor 
cell niche with relative lack of vascular and immune cells. We used these high resolution 
results to deconvolute clinically-annotated transcriptomic data, confirming that CD34+ cell-
associated gene programs associate with gangliogliomas compared to other glial brain 
tumors. Together, these deep transcriptomic approaches characterized a ganglioglioma 
cellular hierarchy - confirming CD34+ neuroectoderm-like tumor precursor cells, controlling 
transcription programs, cell signaling, and associated immune cell states. These findings may 
guide tumor classification, diagnosis, prognostication, and therapeutic investigations. 
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Introduction 
 
 Glioneuronal tumors (GNTs) are brain tumors that are composed of both neoplastic 
neuron-like and macroglial-like components[40]. GNTs account for approximately 2% of all 
primary brain tumors and most often occur in children and young adults[40]. GNTs include 
ganglioglioma (GG)[40]. The majority of GNTs are slow-growing tumors that do not result in 
death of the patients[40]. Nevertheless, GNTs can be associated with significant morbidity 
due to associated seizure disorders, risks of surgical resection, and tumor recurrence[40]. 
The standard of care therapy is surgical resection[40]. However, new treatment strategies are 
needed for patients with anaplastic, recurrent, or progressive GNTs[40]. Genomic alterations 
in ganglioglioma are minimal[23, 58, 68]. Nonetheless, at least 90% of GGs have driver 
alterations in the BRAF/MAPK pathway, with about half of GGs carrying BRAF V600E[23, 58, 
68]. Additional recurrent alterations include chromosome 7 gains with BRAF, KIAA1549, and 
EGFR copy number gains as well as homozygous CDKN2A/B loss[23, 58, 68]. BRAF/MEK 
targeted therapies are undergoing clinical testing for BRAF-mutant glioneuronal and other 
brain tumors, with early evidence suggesting clinically-significant anti-tumor activity[36, 47]. 
However, further understanding of how to molecularly target GNTs is needed. Additionally, 
immunotherapeutic advances have resulted in significant breakthroughs for many 
malignancies, but immunotherapies have not yet improved outcomes for GNTs[4, 29, 40, 84]. 
Better understanding of tumor microenvironment may help to identify opportunities for 
effective immunotherapy.  
 Opportunities exist to further understand GNT development and maintenance and 
thereby improve upon GNT treatment. There is now decades of work supporting the existence 
of cancer stem cells for myriad cancer types, and putative primitive progenitor cell types have 
been identified in other low grade brain tumors, such as pilocytic astrocytoma[8, 67]. 
Understanding cellular hierarchy is important for understanding tumorigenesis, tumor 
maintenance, and tumor treatment, but little is understood about the potential for or nature of 
GNT stem cells. ScRNA-seq approaches have revealed that many subtypes of brain tumors 
contain tumor cells that transcriptionally resemble normal brain progenitor cell subtypes[11, 
20]. However, this approach has not yet been used to investigate GNTs. Many pediatric low 
grade gliomas such as gangliogliomas contain tumor cells that express CD34, (an endothelial 
and hematopoietic stem cell marker but also) a transient marker of neuroectodermal neural 
precursor cells during neural development[12, 21, 26]. The precise nature of these cells is not 
well understood. However, because of their primitive neuroectodermal neural precursor cell 
marker expression and histologic appearance, it is tempting to hypothesize that GNT CD34+ 
cells are neoplastic stem or precursor cells that transcriptionally resemble normal 
neuroectodermal neural precursor cells.  
 In addition to the therapeutic challenges, classification of GNTs is a major diagnostic 
challenge with resultant impacts on understanding of prognosis and medical decision 
making[40]. Brain tumor classification has evolved enormously over the last several years 
with the gradual incorporation of tumor genetic features leading to significant improvements in 
tumor classification and medical decision making[7, 44]. Tumor heterogeneity and associated 
under-sampling are notorious issues with brain tumors, resulting in significant rates of under-
grading and under-treatment but can sometimes be compensated for to a large extent by 
accounting for genetic factors[89]. Many types of pediatric brain tumors are now being 
understood as separate entities, with implications for prognosis and medical decision 
making[7, 44]. 
 Single nucleus (or cell) RNA-sequencing (snRNA-seq), cellular indexing of 
transcriptomes and epitopes by sequencing (CITE-seq), and spatial transcriptomics (stRNA-
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seq) have been carried out on a number of brain tumor subtypes to provide insights to guide 
the development of new therapeutic strategies and new classification schemes for the 
tumors[11, 20, 48, 50, 62, 66, 67, 78]. However, these high-resolution transcriptomic 
techniques have not yet been published for GNTs. As outlined above, a deep understanding 
of GNT cellular composition is needed to generate hypotheses for therapeutic interventions 
that may benefit select patients with GNT and to provide insights that may refine the GNT 
pathologic classification. We hypothesize that the GNT CD34+ cells transcriptionally resemble 
embryonic neuroectodermal (neural precursor) cells that may serve as progenitors for the 
other neuron-like and macroglia-like tumor cells. We additionally hypothesize that a detailed 
definition of GNT immune cell composition and activation status will further the understanding 
of the utility of immunotherapeutic targeting for GNT. Consequently, we endeavored to 
characterize a major GNT subtype (ganglioglioma) using snRNA-seq, CITE-seq, and stRNA-
seq.  
 
 
Results 
 
Neoplastic neuron-like, macroglia-like, and CD34+ neuroectoderm-like components in GNTs 
 
 To elucidate normal and neoplastic cell states in GNTs, single nucleus RNA-seq was 
carried out on 4 GG tumors (sTable 1). All tumors had a BRAF V600E driver. To our 
knowledge, no clinical testing revealed additional protooncogene or tumor suppressor 
mutation or copy number variation. SnRNA-seq yielded high-quality RNA-seq profiles from 
34,907 nuclei. Nuclei were subjected to non-linear dimensional reduction and clustered based 
on k-nearest neighbor search[15, 32, 70, 74] yielding 30 clusters (Figure 1A). Nuclei largely 
segregated by tumor-of-origin except for select normal-appearing clusters (sFigure 1A-G). 
Cell types were identified using k-nearest neighbors clustering, hypothesis-driven markers, 
analysis of top differentially expressed genes, inference of chromosomal copy number 
variations, and Seurat-based label transfer.  

Normal brain, immune cell, and vascular clusters expressed classic cell type markers 
(Figure 1B and sFigure 1H). Normal clusters included macroglia comprising astrocytes 
(GFAP-, AQP4-, and ALDH1L1-expressing, cluster 23), oligodendrocytes (MBP-, MOG-, 
CNP-, and MOBP-expressing, cluster 20), and oligodendrocyte precursor cells (OPCs, 
GPR17-, CSPG4-, OLIG1-, and OLIG2-expressing, cluster 21)[37, 63, 92]. Cluster 15 was 
composed of neurons defined by RBFOX3 expression including CUX2-, NRGN-, SLC17A7-, 
and/or TBR1-expressing excitatory neuron subclusters and GAD1-, SLC32A1-, SST-, and/or 
VIP-expressing inhibitory neuron subclusters[63, 92, 93]. Immune cell clusters included a 
microglial supercluster (PTPRC-, CD14-, and P2RY12-expressing, clusters 1, 5, 11, and 17) 
and lymphocyte clusters (PTPRC-expressing but not CD14-expressing, clusters 7 and 28 with 
cluster 7 nuclei expressing T cell marker (CD3, CD4, and CD8)-encoding transcripts)[63, 92]. 
We further identified an endothelial cluster (VWF-, PECAM1-, and CD34-expressing, cluster 
12) and vascular leptomeningeal cells (VLMCs, cluster 22, DCN-, COL1A1-, COL1A2-
expressing)[19, 63, 92, 94]. After identifying brain stromal cells with high confidence, we 
turned our attention to the remaining putative neoplastic cell clusters. 

The remaining clusters contained abnormal appearing macroglia- and neuronal-like 
cells (clusters 0, 2-4, 6, 8-10, 13, 14, 16, 18, 19, 24-27, and 29). These clusters contained 
abnormal combinations of markers (despite doublet removal during preprocessing, Figure 1B 
and sFigure 1H). For instance, cluster 6 cells tended to express CD34 (an endothelial, 
hematopoietic stem, and neuroectodermal neural precursor cell marker), RBFOX3 (normally a 
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pan-neuron-specific marker), and AQP4 (normally an astrocyte-specific marker)[12, 19, 63, 
92, 94]. Among these putative neoplastic cells, cluster 6 was the most enriched in CD34. In 
terms of cell type proportions, 22932/34907=66% of cells were neoplastic-appearing. Of 
these neoplastic cells, 694/22932=3.0% were in cluster 6, 259/22932=1.1% were CD34+, and 
168/22932=0.7% were cluster 6, CD34+ cells. Smaller proportions of CD34+ cells were 
present among clusters 24 (5% CD34+), 3 (1.6% CD34+), 19 (1.2% CD34+), 14 (0.9% 
CD34+), 10 (0.5% CD34+), 8 (0.4% CD34+), 13 (0.2% CD34+), and 0 (0.02% CD34+). All 
cluster 6 CD34+ cells (n=168) were from tumor 5. Outside of cluster 6, the neoplastic-
appearing CD34+ cells were from tumor 1 (n=66 CD34+), tumor 5 (n=11 CD34+), and tumor 4 
(n=10 CD34+). Hence, analysis of cell markers identified the majority of ganglioglioma cells 
as neoplastic-appearing with a rare CD34-rich population possibly representing tumor 
neuroectoderm neural precursor cell-like stem cells.  

Preliminary normal and neoplastic cell identification was confirmed by analysis of top 
differentially expressed genes (Supplementary Information and sTable 2), inference of copy 
number variation, and Seurat-based label transfer. Inference of copy number variations using 
inferCNV[55] identified clonal del1p and subclonal del14 exclusively in the putative neoplastic 
cell clusters in tumor 4 (sFigure 1I), providing support that these clusters represented 
neoplastic cells. Note that most gangliogliomas do not carry large CNVs[23, 58], so the 
absence of such alterations for snRNA-seq cells from the other tumors does not rule out their 
assignment as neoplastic. We next mapped snRNA-seq profiles to transcriptional atlases 
from developing brain[14, 25, 34, 52, 91], adult brain[6, 49, 93], primary brain tumors[20, 67, 
82], and tumor-associated immune cells[5, 18, 51, 90]. This mapping reinforced and refined 
stromal cell type assignments (examples in Figure 1C and sFigure 1J-L). Nuclei of the 
suspected neoplastic clusters generally had much more mixed and uncertain mapping, 
consistent with these representing abnormal, neoplastic cells. Interestingly, the CD34-rich 
cluster 6 nuclei were confidently identified as immature astrocytes where represented in 
reference atlases. For instance, cluster 6 mapped confidently to first-/second-trimester (i.e. 
immature) astrocytes in a developmental brain atlas (Figure 1C)[52], and cluster 6 was 
confidently identified as protoplasmic/immature astrocyte by mapping to a glioblastoma atlas 
(sFigure 1L)[82]. Other neoplastic-appearing clusters tended to map to either neurons or 
macroglia at different developmental stages. For instance, clusters 0, 4, 8, 9, 10, 18, and 19 
mapped to first-/second-trimester neurons while cluster 13 mapped to developing OPCs and 
clusters 2, 16, and 29 mapped more closely to ventricular radial glia (vRG; Figure 1C)[52]. 
Thus, snRNA-seq results support the presence of large neuron-like and macroglia-like 
populations in addition to a smaller neuroectoderm neural precursor cell-like compartment 
among neoplastic GG cells. 
 
GG CD34-associated neuroectodermal neural precursor-like cells exhibit stem cell states 
 
 Many cancers, including gliomas, are composed of a cellular hierarchy containing 
stem-like cells capable of self-renewal, differentiation, tumorigenecity, tumor progression, or 
resilience in the face of anti-tumor therapy and ultimately tumor regrowth[50, 55, 61, 78]. 
Understanding these cells is of special interest because their identification could be used for 
better tumor classification, prognostication, and therapeutic targeting. Cell typing and 
mapping above identified a neoplastic, CD34-rich cluster 6. Such CD34+ cells have 
previously been hypothesized to represent ganglioglioma tumor precursor/stem cells, but their 
transcriptomic profile and location in the tumor cell hierarchy was not previously well 
understood.  
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 Given the working hypothesis that gangliogliomas arise from neuroectodermal neural 
precursor-like cells, neoplastic cells were next interrogated for individual neuroectodermal 
markers in addition to CD34[80]. Interestingly, cluster 6 identity and CD34 expression were 
each associated with expression of neuroectodermal neural precursor cell markers PAX6, 
SOX2, and MSI1 (Figure 2A)[38, 72, 88]. Hence, analysis of cell markers supported our 
hypothesis that neoplastic CD34+ cells resemble primitive neuroectoderm neural progenitor 
cells. 
 We next sought to identify where the neuroectoderm neural precursor-like cells fall 
within the ganglioglioma neoplastic cell developmental hierarchy. First, we used 
CellRank/CytoTRACE to infer pseudotime[31, 42]. Analysis of our neoplastic-appearing 
ganglioglioma nuclei in this manner assigned cluster 6 nuclei or CD34+ nuclei (and 
particularly cluster 6, CD34+ nuclei) the earliest pseudotimes (Figure 2B-E). We next used 
SCENT to calculate signaling entropy rates (SR), which closely approximate stemness[77]. 
This method largely recapitulated the results with CellRank/CytoTRACE (Figure 2F-I). Finally, 
we used RNA velocity to infer temporal relationships between cell states[9, 16]. Multiple RNA 
velocity methods consistently agreed that cluster 6 and/or CD34+ neoplastic cells appeared 
to be the most primordial of neoplastic cells (Figure 2J-M). Therefore, several orthogonal 
methods showed that neoplastic cells represented in cluster 6 and/or CD34+ appeared 
particularly potent (i.e. stem cell-like), consistent with these representing primitive, neoplastic 
stem/precursor cells.  
 To further pin-down stem cell-like states and possibly the cell type of origin for 
ganglioglioma, we combined analysis of neuroectodermal neural precursor markers and 
cellular hierarchy results. Co-expression of CD34, PAX6, SOX2, and MSI1 (after stringent 
counter selection against vascular cells using PECAM1, VWF, DCN, and COL1A2), was 
particularly strongly associated with ganglioglioma neoplastic cell stemness (sFigure 2A). To 
evaluate the timing of disappearance of such cell states during normal development, we 
tested existing single cell brain atlases for the presence of 
CD34+PAX6+SOX2+MSI1+PECAM1-VWF-DCN-COL1A2- cells. We first noted that prenatal 
brain reference atlases we probed all contained small but appreciable numbers of these cells: 
14/2394 in Zhong et al.[91], 10/4129 in Nowakowski et al.[52], 7/25161 in van Bruggen et 
al.[14], and 9/48215 in Eze et al.[25] Considering data drop out, the actual potent precursor 
cells of the intended type are likely somewhat more prevalent. In contrast, adult brain 
reference atlases had no CD34+PAX6+SOX2+MSI1+PECAM1-VWF-DCN-COL1A2- cells 
detected: E.g. 0/47432 in the Allen Institute multiple cortical areas atlas[93] and 0/78886 cells 
in Nagy et al.[49] Interestingly, a very large, recently published brain single cell atlas spanning 
the third trimester to 40 years of age helped to fill the gaps in developmental data during 
childhood and adolescence[34]; 0 out of 154748 cells in the Herring et al. atlas were 
CD34+PAX6+SOX2+MSI1+PECAM1-VWF-DCN-COL1A2-. A potential confounder is the 
possible spatial variability of this cell type. However, when limiting our analysis to the pre-
frontal cortex (due to there being robust data spanning development for this region), we still 
found an apparent disappearance of CD34+PAX6+SOX2+MSI1+PECAM1-VWF-DCN-
COL1A2- cells during fetal development. Prenatal pre-frontal cortex 
CD34+PAX6+SOX2+MSI1+PECAM1-VWF-DCN-COL1A2- cells were found by Nowakowski 
et al. (2 cells out of 1076)[52] and Zhong et al. (14 cells out of 2394)[91]. No such cells were 
detected in the pre-frontal cortex third trimester to 40 years old (0/154748)[34] or a purely 
adult pre-frontal cortex atlas (0/78886)[49]. Hence, these results overall support the 
disappearance of the neuroectodermal neural precursor cells that ganglioglioma stem-like 
cells most resemble during normal brain development (fetal development for the pre-frontal 
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cortex) and suggest that the ganglioglioma cell of origin may in fact arise during fetal brain 
development. 
  
Ligand-receptor analysis reveals PTN-PTPRZ1, FGF family, and PDGF family communication 
among ganglioglioma neoplastic cells 
 
 Intercellular communication pathways were interrogated in an unbiased manner using 
CellChat[35] (sFigure 3A-B, sTables 3-5). This analysis suggested neoplastic tumor cell 
PTPRZ1 targeting by PTN, the latter largely produced by the neoplastic cells (Figure 3A and 
sFigure 3C-D). 57% of neoplastic cluster-neoplastic cluster pairs exhibited a PTN-PTPRZ1 
interaction (p-value <0.01). Every neoplastic cluster had at least one cluster by which it was 
targeted (p-value<0.01). Cluster 6 was particularly active in signaling, as a source for 17/18 
neoplastic clusters (p<0.01, all except cluster 18) and as a target from 10/18 neoplastic 
clusters (p<0.01). PTPRZ1 is a receptor tyrosine phosphoprotein phosphatase[86]. PTN 
binding antagonizes PTPRZ1, which has been shown to have pleiotropic effects including 
activation of MAPK and AKT (PKB) signaling axes[86]. A mouse model of BRAF-V600E 
neuroectodermal tumors required a second hit with increased AKT/mTOR signaling to 
produce ganglioglioma-like tumors[17]. These results identify a neoplastic-cell-to-neoplastic-
cell interaction that is known to drive the signaling axes needed for gangliogliomagenesis as a 
major feature of ganglioglioma in general, and of ganglioglioma cluster 6 stem/neuroectoderm 
neural precursor-like cells in particular. 

We also localized neoplastic cell compartments that take part in FGF and PDGF family 
ligand-receptor interactions. FGFR alteration is associated with a substantial minority of 
pediatric low grade gliomas[23, 58, 68]. PDGF(R) aberrant hyperactivity is potently 
oncogenic, more typically associated with high grade gliomas[65]. FGF1-FGFR1 interactions 
occurred between most clusters of neoplastic cells or OPCs (p<0.01 for 37% of possible 
neoplastic cluster-neoplastic cluster interactions, cluster 6 as a source p<0.01 for 10/18 
neoplastic clusters including itself, cluster 6 as a target p<0.01 for 12/18 neoplastic clusters; 
Figure 3B and sTables 4-5). Other FGF-FGFR family members exhibited highly significant 
interactions between multiple neoplastic clusters (sFigure 3E-I and sTables 4-5). The PDGF 
family pathway was also a top hit (sTable 3). For instance, we identified interactions between 
PDGFA-PDGFRB in cluster 6 (p<0.01 for cluster 6 targeting by 5/18 neoplastic clusters, 
including itself, with no other significant neoplastic cluster-neoplastic cluster interaction (p=1)) 
as well as endothelial cluster 12 and VLMC cluster 22 (Figure 3C and sTables 4-5). We also 
detected PDGFB-PDGFRB and PDGFD-PDGFRB targeting directed at cluster 6 and vascular 
cells (sFigure 3J-K and sTables 4-5). These results pinpoint ganglioglioma neoplastic cell 
states that take part in FGF and PDGF signaling interactions, and reveal that such processes 
are especially active in neuroectoderm neural progenitor cell-like cluster 6 cells. 
 
BRAF and AKT pathway signaling in neoplastic cells 
 
 We next sought to identify signaling programs that may function downstream of the 
ligand-receptor interactions to drive growth and maintenance of the neoplastic cells. To 
ascertain important cellular signaling pathways in ganglioglioma, neural cells were subject to 
gene set enrichment analysis (GSEA) using clusterProfiler for gene ontology (GO), KEGG, 
and Wiki pathways[75, 85].  
 To uncover neoplastic cluster-associated pathway suppression or activation, 
neoplastic-appearing ganglioglioma clusters were compared to normal-appearing neural 
clusters (clusters 15, 20, 21, and 23). Consistently among the most depleted pathways (in 
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neoplastic cells) were various pathways responsible for oxidative phosphorylation or 
ribosomal function, whether comparing by individual cluster or using neoplastic-appearing 
cells altogether (Figure 4A and sFigure 4A-F). Oxidative metabolism suppression is 
consistent with the Warburg effect typical of neoplastic cells and offers further support for our 
identification of cells as neoplastic or stromal[83].  

In order to ascertain the pathways significant to CD34+ neoplastic cells in particular, 
we compared neoplastic CD34+ cells to neoplastic CD34- cells. The most CD34+ cell-
enriched pathways were those involving oxidative phosphorylation and ribosomal machinery 
(Figure 4B and sFigure 4G-L). Unsurprisingly given neoplastic CD34+ cells' promiscuous 
use of signaling nodes, they had very little in the way of pathway suppression (recall the high 
signaling entropy rate discussed above, Figure 4B, and sFigure 4G-L). Nearly identical 
results were obtained when comparing cluster 6 CD34+ cells to the remaining neoplastic-
appearing cells. Close inspection of KEGG pathways of interest showed especially brisk 
expression of the PKB/AKT pathway machinery from FGF through downstream AKT effectors 
in neoplastic CD34+ versus neoplastic CD34- cells (sFigure 4K). Additionally, there was 
generally higher expression of BRAF pathway machinery-encoding transcripts in neoplastic 
CD34+ cells, including BRAF itself (sFigure 4K). Pluripotency machinery-encoding transcripts 
were generally greatly enriched in the neoplastic CD34+ cells, including the transcription 
factor-encoding SOX2 (sFigure 4L). SOX2 is a SOX B1 member which contributes to 
embryonic, neural stem, and progenitor cell self-renewal and pluripotency (very early)[72]. 
These results were overall congruous with the preceding analysis. Particularly interesting is 
the persistent theme of signaling via AKT in addition to BRAF, particularly in the most stem-
like of the neoplastic cells, the neoplastic CD34+ and/or cluster 6 cells. For the AKT pathway, 
there may very well be contribution by autocrine signaling via FGFs and/or PTN.  
 
Neoplastic cell gene regulatory networks and putative drivers 
 
 We next characterized transcription factors that may account for compartmental 
expression of the gene programs identified above. To do so, gene regulatory networks were 
reconstructed in an unbiased manner using SCENIC[69]. Top candidate transcription factors 
for both cluster 6 and neoplastic CD34+ cells included paired box 6 (PAX6) and its 
transcriptional activators myeloid ectopic viral integration site homeobox 1 (MEIS1) and 
transcription factor 7 like 2 (TCF7L2; sFigure 5A-D)[53, 57]. In the healthy adult brain, these 
transcription factors are not normally coexpressed[63, 92]. More interestingly, PAX6 is a 
neuroectodermal neural precursor cell marker, and the MEIS1-PAX6 cascade appears critical 
to early neuroectodermal cell fate determination[25, 53, 88]. In addition, TCF7L2 coordinates 
PAX6 activation in neural cells and modulates MYC as part of the WNT pathway[57]. PAX6, 
MEIS1, and TCF7L2 concentrations as well as SCENIC-calculated regulon scores correlated 
strongly with ganglioglioma neoplastic cell stemness by CellRank/CytoTRACE pseudotime or 
SCENT signaling entropy rate (Figure 5A and sFigure 5E-F). SOX2 also appeared as a 
factor with significantly increased activity (and transcript concentration) among certain 
neoplastic cells, particularly those most stem-like, including cluster 6 and/or CD34+ cells 
(Figure 5B). SOX2 contributes to embryonic, neural stem, and progenitor cell self-renewal 
and pluripotency (very early, including in the neuroectoderm) and is not normally appreciably 
expressed in the adult brain[63, 72, 92]. These observations implicate PAX6, MEIS1, TCF7L2, 
and SOX2 programs in the more primitive, neuroectoderm neural precursor-like (cluster 6 
and/or CD34+) tumor cells, and these programs are possibly controlling tumor cell 
potency/stemness/differentiation.  
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Immune landscape 
 
Myeloid cells 
 In healthy brain, myeloid cells are predominantly resident microglia; however, others 
have established the presence of bone marrow derived macrophages associated with brain 
tumors[48]. To determine the nature of immune cells in gangliogliomas, we first used markers 
of a priori interest to further decipher cell states. Ganglioglioma clusters 1, 5, 11, and 17 were 
PTPRC-, ITGAM-, CD14-, and P2RY12-expressing consistent with these representing 
microglia (Figure 6A and recall Figure 1B and sFigure 1H)[1, 63, 92]. Myeloid cells lacked 
appreciable expression of the classical pro-inflammatory markers IL1A, IL6, TNF, and CD40 
(all myeloid cells IL6-; otherwise Figure 6A)[5]. In terms of anti-inflammatory activity, they did 
not express appreciable levels of IL10, but there was diffuse expression of TGFB1 (Figure 
6A)[5]. Moreover, when looking at the broader cellular context, lymphocytes from clusters 7 
and 28 expressed significant TGFB1 and tumor clusters 3, 8, and 14 expressed substantial 
CSF1, which promote immunosuppressive and pro-inflammatory properties in macrophages, 
respectively (Supplementary Information and sTable 2)[5]. Clusters 1, 5, 11, and 17 all 
appeared to express significant amounts of CD163 (except cluster 11) and MSR1 (encodes 
CD204) and variable MRC1 (encodes CD206), classic markers of immunosuppressive/tissue 
reparative/tumor promoting M2 macrophages (Figure 6A)[5]. In terms of classic pro-
inflammatory M1 markers, myeloid cells expressed TLR2 highly, CD86, variable HLA-DR 
(most in cluster 17), and very little NOS2 (Figure 6A)[5]. This co-expression of M1 and M2 
markers appears consistent with prior observations suggesting that the M1 versus M2 
dichotomy does not seem to hold on the single cell level in tumor microenvironments[5]. 
Instead, M1 and M2 traits tend to be strongly positively co-varying in individual tumor-
associated cells[5, 48]. More recently, with the help of single cell typing of tumor-associated 
immune cells, it has been suggested that C1Q and SPP1 status best differentiate different 
types of tumor-associated macrophages and that these markers are also associated with 
prognosis[43, 87]. C1Q expression appears to be associated with T lymphocyte recruitment 
and activation whereas SPP1 expression appears to be associated with tumor growth and 
metastasis. C1Q expression was variable in ganglioglioma myeloid cells, with high 
concentrations in cluster 17 and consistently elevated concentrations in cluster 11 (Figure 
6A). C1Q+ cells were not distinct from SPP1+ cells, with SPP1 expression high in cluster 11 
and parts of clusters 17 and 5 (Figure 6A). These results overall support the presence of 
tumor-associated, aberrantly activated microglia.  
 We attempted to use differential gene expression analysis, multi-gene signature 
scoring, and Seurat-based label transfer to further type these cells. Top microglial cluster-
overexpressed genes were enriched for complement-encoding transcripts (particularly C1Qs) 
and MHC class II-encoding transcripts, consistent with their expected roles in the complement 
cascade and professional antigen presentation, respectively (sFigure 6A). To confirm 
ganglioglioma myeloid cells represented microglia, Seurat-based label transfer was 
performed[32]. Using annotated tumor reference atlases differentiating microglia from 
macrophages[67, 82] for label transfer, the bulk of myeloid cells were consistently more 
strongly identified with an overall microglial rather than macrophage signature (recall sFigure 
1K-L). When ganglioglioma-associated myeloid cells were subjected to multi-gene signature 
scoring (by UCell) based on established M1 and M2 signatures[5], the two scores appeared 
positively correlated both within each cluster and among cells of the supercluster, consistent 
with the aberrant activation that was found at the individual marker level and further 
supporting the lack of this dichotomy in the context of some tumors (sFigure 6B-D). Overall, 
differential gene expression analysis, multi-gene signature scoring, and Seurat-based label 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


transfer confirmed ganglioglioma-associated microglial cell identity and refined their cell 
states. 
 Ganglioglioma-associated myeloid cellular hierarchy was evaluated with 
CellRank/CytoTRACE, SCENT signaling entropy rate, and scVelo RNA velocity[9, 31, 42, 77]. 
These generally identified cluster 11 and 17 members of greater potency/stemness and 
therefore candidates for tumor-associated myeloid precursor states (e.g., Figure 6B).  
 Myeloid cell interactions were explored. Interestingly, myeloid cell-expressed 
concentrations of transcripts encoding lymphocyte co-stimulatory and co-inhibitory ligands 
appeared positively correlated throughout the supercluster (Figure 6C). Among the top 
ranked pathways in unbiased ligand-receptor analysis by CellChat and CellPhoneDB[24, 35], 
microglia participated in significant antigen presentation, including as senders and receivers 
of the MHC class II pathway, senders for the MHC class I pathway (clusters 5, 11, 17), and 
receivers for the APP-CD74 signaling pathway (MHC class II antigen processing, recall 
sFigure 3A-B and sTable 3-5). On the other hand, microglia also participated heavily in 
TGFB signaling, as senders and receivers, and they were receivers for CSF1-CSF1R (from 
neoplastic clusters 3, 14, and 8), consistent with a classically M2-promoting milieu and 
activities (Figure 6D, recall sFigure 3A-B and sTable 3-5)[5]. Hence, ganglioglioma-
associated microglial cell interactions appeared along a spectrum of aberrant activation, 
consistent with what was ascertained about myeloid cell states earlier.  
 To ascertain important cellular signaling pathways in ganglioglioma-associated myeloid 
cells, microglia were subject to gene set enrichment analysis (GSEA) using clusterProfiler[85]. 
Among Wikipathways, the TYROBP causal network in microglia was among the top 2 
activated pathways for each microglial cluster (Figure 6E). The microglia pathogen 
phagocytosis pathway was also among the top 2 activated pathways for clusters 5 and 17. 
Top activated GO pathways for clusters 11 and 17 were pathways related to the ribosome and 
translation whereas those for clusters 1 and 5 included B cell activation, regulation of immune 
response, leukocyte differentiation, lymphocyte activation, and innate immune response 
among other immune cell activation/differentiation pathways. These findings overall support 
the assignment of these cells as microglia and show a spectrum of pathway utilization among 
the microglia particularly as it pertains to modulation of immune response.  
 
Lymphocytes 
 Understanding tumor-infiltrating lymphocytes has become of great basic, translational, 
and clinical interest of late[54]. To explore ganglioglioma tumor-infiltrating lymphocytes, we 
started by interrogating for lymphocyte markers. Ganglioglioma cluster 7 was largely PTPRC-, 
CD2-, and CD3-expressing (Figure 7A), consistent with T lymphocyte identity[63, 92]. 
Cytotoxic T lymphocyte (CTL) activity is central to anti-tumor immune response[54]. Cells 
represented in the upper and right side of cluster 7 UMAP expressed the classic 
CD2+CD3+CD4-CD8+ cytotoxic T lymphocyte markers including granzyme- and perforin-
encoding RNA (Figure 7A), consistent with these cells representing cytotoxic T 
lymphocytes[63, 92]. On the other hand, the remaining cluster 7 cells expressed CD4 but not 
CD8 or other cytotoxic T lymphocyte-specific markers (Figure 7A), consistent with these 
representing helper T lymphocytes[63, 92]. Cluster 28 was PTPRC-expressing but negative 
for CD2 and CD3 (Figure 7A). On the other hand, this cluster had expression of B cell 
markers CD19, CD20 (MS4A1), CD22, and immunoglobulin components (Figure 7A), 
consistent with B lymphocyte identity[63, 92]. Hence, interrogation for lymphocyte markers 
revealed two ganglioglioma-infiltrating lymphocyte clusters, T lymphocytes in cluster 7 and B 
lymphocytes in cluster 28. This was further supported by top cluster-specific differentially 
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expressed transcripts (sFigure 7A and recall sTable 2) and Seurat-based label transfer 
(sFigure 7B).  
 To fine tune our understanding of tumor-infiltrating lymphocyte cell states, we explored 
cell markers further. The cluster 7 CTL subpopulation expressed a mixture of co-inhibitory 
receptor-encoding transcripts CTLA4, PD1, TIGIT, LAG3, TIM3, and CD160 and co-
stimulatory receptor-encoding RNAs CD28, ICOS, and CD40LG (Figure 7B)[5, 63, 92]. They 
had higher expression of exhaustion-related transcription factor-encoding RNAs EOMES and 
TOX than the precursor or pre-exhaustion factors TBX21 and HNF1A (Figure 7B)[5, 63, 92]. 
These observations altogether suggest some degree of CTL dysfunction and exhaustion.  
 In addition to interrogation of individual markers, cell states were determined by 
signature score (rank-based, by UCell) based on subtype signatures previously evaluated in a 
single cell context[5]. Similar to what was observed for myeloid cell M1 versus M2 state, 
ganglioglioma-associated T lymphocyte M1 polarizing signatures and M2 polarizing 
signatures[5] were actually positively correlated (sFigure 7C-D). Signature scoring also 
identified a G2/M subpopulation of lymphocytes in cluster 7 (sFigure 7E)[5]. UCell scores 
were significantly higher for the Azizi et al. CD8 T cell activation, pro-inflammatory, and 
cytolytic effector pathway signatures[5] for those cells previously identified as enriched for 
CTL markers (sFigure 7E), confirming this assessment. In sum, tumor-infiltrating lymphocyte 
signature-scoring confirmed and refined preliminary cell state assignments based on 
individual markers.  
 We next turned to lymphocyte intercellular interactions because they constitute 
important determinants of T lymphocyte anti-tumor and anti-inflammatory roles. First, we 
analyzed expression of ligands (from the perspective of T cells) of interest a priori. MHC class 
I molecules allow presentation of a cell’s peptides to a CTL. Such presentation allows for 
CTL-mediated killing of tumor cells expressing neoantigens. Across many tumor types, 
neoplastic cell MHC class I expression is frequently downregulated as a means of escape 
from CTL-mediated tumor cell killing[22]. Tumor MHC class I expression has, in turn, been 
associated with prognosis and prediction of response to immunotherapy[30]. Tumor-
associated myeloid cell MHC class I expression also has the potential to modulate the 
balance between immunologically “hot” and “cold” tumor microenvironment[13]. For our 
ganglioglioma cells, MHC class I component expression was particularly robust among 
microglia (Figure 7C). Additionally, neoplastic cell expression of MHC class I machinery-
encoding transcripts was highly variable, with only subpopulations (highly-)expressing (Figure 
7C). These results are consistent with those reported to date on ganglioglioma; others have 
found MHC class I upregulation among ganglioglioma-associated microglia and neoplastic 
neuron-like cells[64]. Altogether, these results suggest that (at least) the foundation for anti-
tumor CTL activity exists in ganglioglioma. 

To evaluate further, we interrogated for expression of ligands for CTL-bound receptors 
that modulate CTL activity in the context of successful MHC class I binding by T cell receptor. 
Some transcripts encoding co-stimulatory or co-inhibitory ligands, CD86, LILRB4, CD58, and 
HAVCR2 were robustly expressed across the microglial supercluster, but other such ligands 
were generally scarce (Figure 7C)[5, 63, 92]. These results suggest opportunity, with some 
degree of priming capacity in the ganglioglioma-associated CTL milieu as well as potentially 
targetable immune checkpoints.  

Beyond these core CTL-modulating ligand-receptor interactions, ganglioglioma-
associated lymphocytes appeared to have relatively little in the way of ligand-receptor 
interaction. In unbiased ligand-receptor interaction nomination by CellChat[35], the 
lymphocyte clusters were among the least interactive clusters in terms of both incoming and 
outgoing signals (sFigure 7F and recall sFigure 3A-B). These findings may reflect a 
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relatively immunologically “cold” tumor microenvironment and/or the relatively intensive nature 
of ganglioglioma neoplastic cell intercellular signaling.  
 In terms of cellular signaling, cluster-based GSEA[85] revealed cluster 7 top enriched 
pathways to include T cell activation (from GO); T cell receptor signaling (from KEGG); and 
TCR signaling, modulators of TCR signaling and T cell activation (WP; Figure 7D and 
sFigure 7G-H). Cluster 28 top enriched pathways included B cell receptor signaling, B cell 
differentiation, B cell activation, antigen-mediated signaling, immune response-regulating, 
lymphocyte activation, regulation of immune response, and regulation of lymphocyte 
activation (GO); BCR signaling and NF-κB signaling (KEGG); and BCR signaling (WP; Figure 
7D and sFigure 7G, I). Unbiased transcription factor nomination by SCENIC[69] concurred 
with the spectrum of T cell activation among cluster 7 cells and B cell activation among cluster 
28 cells (sFigure 7J-K). Altogether, these findings further confirmed preliminary lymphocyte 
typing and state. 
 
Protein-level validation with CITE-seq 
 

Integrated proteogenomic analyses have suggested that transcript concentrations 
generally correlate with protein (i.e. functional end product in which we are typically most 
interested) concentrations. However, complex cellular feedback loops may at least 
theoretically allow for incongruous or even anticorrelated transcript and protein levels.   

To address this issue, we used CITE-seq. CITE-seq allows simultaneous probing for 
epitopes of interest with transcriptomic profiling. We used CITE-seq to interrogate for 
correlation of cellular protein epitope and epitope-encoding transcript levels for 
transcripts/epitopes of particular interest in the context of ganglioglioma, including CD34, 
endothelial marker CD31, and the immune cell markers CD45RA, CD14, CD3, CD8A, CD4, 
and CD19. This also allowed correlation of transcriptomic profiles with the presence of these 
particular epitopes of interest. 

We analyzed n=3725 cells from three tumors with CITE-seq (sTable 1). These findings 
reiterated much of the results from snRNA-seq, but due to the smaller number of cells used 
for CITE-seq, the latter assays appeared insensitive to some of the more rare phenomena 
observed in the snRNA-seq data (please see Supplementary Information, sFigure 8, and 
sTable 6 for more information). CITE-seq analysis confirmed a strong correlation between 
CD34 expression and expression of the CD34 epitope commonly used for diagnostic 
purposes (R=0.37, p<2.2e-16 by Pearson correlation test, sFigure 8S). These results confirm 
the snRNA-seq results using an orthogonal method which includes protein-level data (CITE-
seq). 
 
Spatial transcriptomics identified neuroectoderm neural precursor-like cells deep in neoplastic 
niches 
 
 To determine spatial context of tumor cells, four gangliogliomas analyzed by snRNA-
seq above were subjected to spatially-resolved transcriptomic profiling (stRNA-seq). H&E 
slides were manually neuropathologist (GYL)-annotated with exclusion of spots with 
significant artifact, folded tissue, tissue degradation, and/or blood products. StRNA-seq 
yielded a mean of n=1791 high-quality RNA-seq profiles per tumor in 55 µm spots (sFigure 
9A-D; note that with this spot size, there are multiple cells per spot). Two of the four slides 
show appreciable histological variation. Tumor 1 had distinct (prominently or minimally/mildly) 
myxoid, hypercellular, hypocellular, and vascular areas making up 10 distinct annotations 
(sFigure 9C). Tumor 4 had (prominently) myxoid, non-myxoid, generic tumor, and vascular 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


areas making up 4 distinct annotations (sFigure 9D). K-nearest neighbor clustering correlated 
with these distinctions (sFigure 9E-F). Final clusters were determined based on the 
combination of histopathological annotation and k-nearest neighbor clustering (Figure 8A-B).  
 To characterize these distinct tumor regions, top cluster-specific differentially 
expressed genes were determined, and cluster-variable pathway activation was probed by 
clusterProfiler[85]. Several cancer-relevant patterns emerged (Figure 8C, sFigure 9G, and 
sTable 7). There was a clearly inverse correlation between enrichment of immune cell 
response/effector function pathways and enrichment of neuronal- (or macroglial-) function 
related pathways. For instance, in tumor 1, clusters (prominently) myxoid 1, (prominently) 
myxoid 2, and hypocellular 3 were each characterized by depletion of various immune 
response pathways but with enrichment of neuronal morphogenesis pathways ((prominently) 
myxoid 1), GO astrocyte projection ((prominently) myxoid 2), or neuron-related pathways 
(hypocellular 3, Figure 8C). In contrast, in tumor 1, clusters mildly myxoid, hypocellular 1U2, 
and hypercellular 1U2 each showed enrichment of numerous immune response pathways 
with associated depletion of cell morphogenesis (mildly myxoid), synaptic pathways 
(hypocellular 1U2), other neuron-related pathways (hypercellular 1U2), or neural crest 
differentiation (hypercellular 1U2, Figure 8C). Hence, tumor cellular composition appeared 
quite heterogenous on the molecular level with pro-inflammatory - and presumably anti-tumor 
- environments and neoplastic glioneuronal cell areas that appear to be relatively privileged 
from immune regulation. There also appeared to be an inverse correlation between 
enrichment of neuron-related pathways and vascular genesis-related pathways including the 
Wikipathways VEGFA-VEGFR2 pathway. For each of tumor 1 and tumor 4, there were 
dispersed spots that co-clustered (into tumor 1 hypercellular 3 and tumor 4 dispersed) 
wherein there was significant enrichment in vascular genesis-related pathways and 
Wikipathways VEGFA-VEGFR2 pathway with associated enrichment of inflammatory 
pathways, PI3K-AKT(-mTOR) pathways, and depletion of neuron-related pathways (Figure 
8C and not shown). In contrast, tumor 1 hypocellular 3 showed depletion of Wikipathways 
VEGFA-VEGFR2 pathway in the context of significant enrichment of multiple neuron-related 
pathways (Figure 8C and not shown). Other cluster-specific differences also emerged. For 
example, tumor 1 (prominently) myxoid 1 enrichment of Wikipathways glioblastoma signaling 
and Wikipathways WNT signaling pathway and pluripotency; tumor 1 (prominently) myxoid 2 
enrichment of GO zinc homeostasis and depletion of Wikipathways oxidative phosphorylation; 
tumor 1 hypocellular 1U2 depletion of various (m)RNA metabolic pathways (Figure 8C and 
not shown).  
 Given the multiple cells per spot, stRNA-seq spot cell composition was determined by 
decomposition/deconvolution by cell2location[39] and UCell signature scoring[3] using 
ganglioglioma snRNA-seq and CITE-seq data as parallel references. Cell composition 
appeared to vary considerably, yet appropriately, within slides and also between samples with 
spots estimated to be composed of typically 20-80% neoplastic cells (Figure 8D-E). 
Substantial proportions of each of microglia and macroglia were found as were smaller 
proportions of neurons, lymphocytes, and vascular cells, as expected. Cell2location tissue 
regions derived from cell abundance kNN generally correlated with histopathological 
annotations and up front kNN clustering (sFigure 9H-I), further supporting the model-
calculated cell abundances. For slides from two of the tumors, methods concurred on the 
presence of clusters of significant areas of neuroectoderm neural precursor-like cell signature 
(Figure 8F-G and sFigure 9J-K).  
 In order to better understand important intercellular interactions, particularly with the 
neuroectodermal neural precursor-like cells, we tested for co-localization of different cell types 
to any given spot. When comparing all four tumor samples, themes emerged. Interestingly, 
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neuroectoderm neural precursor cell-like cell abundance was highly inversely correlated with 
the presence of vascular cells, microglia, or lymphocytes (Figure 8H-J). This suggests these 
cells occupy a hypovascular, perhaps relatively hypoxic environment. Also, they appear to be 
relatively spared of immune targeting. Other than relative exclusion from these precursor-like 
cell areas, microglia resembling those from each of snRNA-seq cluster 1, 5, and 11 appeared 
randomly dispersed throughout each of the four tumor samples. Microglia resembling those 
from snRNA-seq cluster 17 appeared somewhat more concentrated in certain regions of 
some tumors. For instance, these cells were especially abundant in the Tumor 1 hypercellular 
1U2 and hypocellular 1U2 clusters and in the Tumor 4 solid cluster. In contrast, 
neuroectoderm neural precursor cell-like cell abundance appeared strongly correlated with 
cell abundance of other neoplastic clusters (not shown).  

To further investigate co-localization, stRNA-seq transcriptomic profiles were subjected 
to non-negative matrix factorization (NMF)[39]. Interestingly, tumor 4 neuroectoderm neural 
precursor -like cells tended to occupy discrete locations, with these cells separating out at a 
low number of factors compared to the number of reference clusters (by k=13 for snRNA-seq 
n=30 clusters; not shown). Of note, tumor 4 neuroectoderm neural precursor-like cells 
separated from endothelial cells very readily (the vast majority by k=5 with n=30 reference 
snRNA-seq clusters; not shown). Similar to what was seen for tumor 4 neuroectoderm neural 
precursor-like cells, tumor 1 neuroectoderm-like cells separated by k=5 from endothelial cells 
(sFigure 9L-N). These findings in tumor 1 and tumor 4 suggest endothelial cells are readily 
distinguished from and spatially distinct from neuroectoderm neural precursor-like cells. In 
contrast, at least a subset of tumor 1 neuroectoderm neural precursor-like cells appeared to 
co-localize with particular other neoplastic cell types (sFigure 9L-N). These observations 
appear consistent with these neuroectoderm neural precursor cell-like tumor cells residing 
deeply within neoplastic niches. 
 We next sought to determine the signaling and transcriptional program context of 
neuroectodermal neural precursor cell-like tumor cell niches. Interestingly, there was visually 
apparent co-localization of tumor neuroectoderm-like cells with high PTPRZ1, PTN, and 
FGFR3 (Figure 8K), identified as important for neuroectoderm-like neoplastic cell signaling 
as above. Cell type-specific expression was also estimated by cell2location. This identified 
tumor neuroectoderm-like cell-specific expression of important neuroectoderm neural 
precursor like-cell markers including CD34, PAX6, SOX2, MSI1, MEIS1, and TCF7L2, further 
validating the nature of the snRNA-seq neuroectoderm-like cells and the identification of 
these cells in situ despite their being a small minority of tissue cells analyzed spatially (Figure 
8K). Interestingly, there was significant neuroectoderm-like cell-specific PTN-PTPRZ1, 
FGF1/2-FGFR3, and PDGFA/D-PDGFRB expression (Figure 8K). This suggests a 
substantial autocrine mechanism for maintenance of the ganglioglioma stem/progenitor cell 
compartment.  
 To further explore the spatial context of ganglioglioma cells, top spatially variable 
genes, agnostic to cell type assignment, were uncovered using the mark-variogram method 
within Seurat[32]. Interesting patterns emerged. For example, for tumor 1, metallothioneins 
dominated top spatially-variable features, including M1E (#4), MT1G (#6), MT3 (#7), MT1X 
(#10), MT1M (#13), and MT2A (#24) among the top 25 (Figure 8L and not shown). 
Interestingly, metallothionein expression appeared correlated with neuroectoderm neural 
precursor-like cell abundance, with high MT1E, MT1G, MT1X, and MT1M each exclusive to 
areas of neuroectoderm-like cells (Figure 8L and not shown). In contrast, CD74 (antigen-
presenting cell marker) and SPP1 (oligodendrocyte and microglia marker[63, 92]) were top-25 
spatially-variable transcripts that were largely excluded from neuroectoderm neural precursor-
like cell areas (Figure 8L), once again consistent with the findings above suggesting 
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neuroectoderm neural precursor-like cells to occupy niches with relatively little immune cell 
occupancy. FTL and TPT1 had somewhat different distributions but were similarly inversely 
associated with neuroectoderm neural precursor-like cell abundance (Figure 8L).  
 
Neuroectoderm neural precursor-like programs associate with ganglioglioma bulk 
transcriptomic profiles 
 
 We hypothesized that particular ganglioglioma cell states could be detected in bulk 
transcriptomic data to varying degrees among different low grade glioneuronal tumors and 
gliomas. This, in turn, could assist with disease classification. To test this hypothesis, we 
obtained clinically-annotated bulk pediatric low grade glioma/glioneuronal tumor 
transcriptomic data sets (n=151 patients for Bergthold et al. of whom n=122 had clinical 
outcomes annotations and n=81 patients for the US National Cancer Institute’s Clinical 
Proteomic Tumor Analysis Consortium (CPTAC) with the diagnosis of ganglioglioma or 
pediatric low grade glioma)[10, 59]. 
 To determine the degree of representation of the single nucleus/CITE-seq 
ganglioglioma cluster cells in the bulk data, deconvolution of the bulk data was performed 
using deconvolution/decomposition algorithms[60] and UCell signature scoring[3]. Despite 
differences in the nature of the bulk datasets (e.g. 6k gene array vs. bulk RNA-seq), the 
methods tested, and the cells present in reference snRNA-seq and CITE-seq datasets, 
common themes emerged. Bulk-sequenced tumors were identified as composed of ~40-70% 
tumor cells with microglial, macroglial, and vascular minority populations identified (Figure 
9A-B). In comparing cell composition by diagnosis, other low grade gliomas - pilocytic 
astrocytoma in particular - actually appeared to have greater components of the OPC-like cell 
states (Figure 9C-D). Conversely, gangliogliomas appeared to have a greater neuron 
component than other low grade gliomas and pilocytic astrocytoma in particular (Figure 9C-
D). SnRNA-seq neuroectoderm neural precursor-like cell abundance appeared lowest among 
pilocytic astrocytomas and at least trended somewhat higher for other histologies, including 
ganglioglioma (where it was still rare, with median 2% of ganglioglioma cells from the 
Bergthold et al. dataset and 1% of ganglioglioma cells from the CPTAC dataset[10, 59], 
similar to expected, Figure 9C-D).  
 Hence, bulk transcriptomic deconvolution confirmed that ganglioglioma 
neuroectodermal neural precursor-like cell, neuron(-like) cell, and OPC(-like) cell abundance 
are potentially useful for disease classification.  
 
Prognostic genetic signatures 
 
 We hypothesized that neoplastic precursor cell markers and/or inflammatory markers 
derived from our deep transcriptomic approaches could inform development of prognostic 
signatures for ganglioglioma and similar tumors. We used the insights from the above deep 
transcriptomic analyses to nominate prognostic features for low grade glioma/glioneuronal 
tumor patients. For Bergthold et al. patients, clinical annotations included diagnosis, extent of 
resection, self-organizing matrix cluster, age, receipt of chemotherapy, BRAF status, event 
free survival (EFS), and death[10]. Resection status was found to be important with gross 
total resection associated with significantly better EFS whereas EFS was numerically similar 
to one another after biopsy, subtotal resection, and near total resection (Figure 10A-B and 
sFigure 10A-B). For CPTAC, clinical annotations included diagnosis (we excluded diagnoses 
other than ganglioglioma and other low grade glioma), extent of resection, BRAF status, 
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tumor grade, EFS, and death[59]. Resection status was once again strongly associated with 
EFS (sFigure 10C-H).  
 We next turned our attention to prognostic genetic markers. CDKN2A (and adjacent 
CDKN2B) loss has been previously identified in a small minority of gangliogliomas as well as 
in other pediatric CNS tumors, such as pleomorphic xanthroastrocytoma (where CDKN2A/B 
loss is typical)[23, 58, 68]. The prognostic significance of CDKN2A/B loss in ganglioglioma is 
unclear though there may be some association with more adverse histopathological features 
and poorer prognosis[23, 58, 68]. In contrast, we found CDKN2A expression was among the 
top event-associated transcripts in both data sets (Bergthold et al. #16/6100 and CPTAC 
#23/14827 by average log2-fold-change). When limiting the diagnosis to ganglioglioma, 
CDKN2A was not prognostic (Bergthold et al. rank #3201 and CPTAC rank #2840). Instead 
the association of CDKN2A expression with EFS events appeared to be associated with other 
diagnoses, mostly pilocytic astrocytomas.  

The remaining top low grade glioma event-associated transcripts in common between 
Bergthold et al. and CPTAC were overwhelmingly associated with inflammation and/or the 
extracellular matrix. Particularly interesting was a possible clinical event-associated 
enrichment for components of the cytosolic DNA sensing pathways (represented in KEGG 
and Wikipathways, sFigure 10I-J), including the cGAS/STING pathway, which has apparent 
and/or potential roles in tumorigenesis, prognosis, and therapeutic approach[33].  
 To interrogate for prognostic multi-gene-signatures, we started with gene signatures of 
curated stemness-associated factors from the snRNA-seq data and unsupervised machine 
learning. From this approach, multiple 3-5 gene, curated signatures were of borderline 
significance, though none were robustly significant by both Kaplan-Meier and Cox 
proportional hazards modeling using both gene signature z- and Mann Whitney U-test-scoring 
(arbitrarily using score quarterization for the Kaplan-Meier method). For example, the four-
gene signature CD34, SOX2, CD99, and CTSC scores appeared at least trending towards 
association with worse EFS in this regard (Figure 10C-D and sFigure 10K-L).  

To develop more sophisticated prognostic genetic signatures and models, we 
employed supervised machine learning. A model was trained on Bergthold et al. (in 
mlr3/mlr3proba: top 2.5% clinical or genetic features selected by surv.rfsrc (fast unified 
random forests for survival, regression, and classification) embedded method, surv.aorsf 
(accelerated oblique random survival forests) learner selected (sFigure 10M) with 
subsequent sequential feature reduction (sFigure 10N) and learner hyperparameterization 
yielding tuned model with Harrell’s concordance-index of 0.87) and validated on CPTAC, 
yielding a 14-feature signature (resection status combined with expression of 13 transcripts: 
UBE2M, ELAVL1, FRY, IGFBP4, STX4, PSMC6, MTX2, NFE2L3, C1QB, ELANE, 
SMARCD2, ZNF117, and ABL1). This model predicted CPTAC outcomes with Gonen and 
Heller’s concordance-index 0.89. Hence, we were able to nominate two promising multi-gene 
prognostic signatures: a curated 4-gene signature and a 13-gene signature (in combination 
with resection status) from supervised machine learning.  
 
 
Discussion 
 
 Deep transcriptomics has recently led to advances in our understanding of many 
cancers, including brain tumors[27, 55, 67]. However, such techniques have not yet been 
published for glioneuronal tumors, and application of spatial transcriptomics approaches to 
brain tumors is in its infancy. Here, we applied deep transcriptomic approaches including 
spatial transcriptomics to gain insight into important questions regarding glioneuronal tumor 
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biology. Our data supports our hypothesis that glioneuronal tumor CD34+ cells represent 
neuroectoderm neural precursor-like tumor precursor cells. Moreover, we found evidence of 
perturbations to mTOR/AKT signaling via PDGF/PDGFR and/or FGF/FGFR agonism in 
combination with PTN antagonism of the otherwise antagonistic and highly expressed 
PTPRZ1. The combination of this AKT perturbation with MAPK activation (which was present 
via BRAF V600E in all tumors studied presently) has been found to be sufficient for 
glioneuronal tumorigenesis in animal models[17]. Our data suggests such a mechanism for 
ganglioglioma tumorigenesis with CD34+ glioneuronal tumor cells as the tumor stem cells. 
Additionally, we identified important transcriptional regulators for primitive tumor cells 
including TCF7L2/MEIS1-PAX6 and SOX transcriptional cascades. Interestingly, though the 
neuroectoderm neural precursor-like cells appeared to occupy a hypovascular niche, they (at 
least among ganglioglioma neoplastic cells) appeared to be especially high users of oxidative 
phosphorylation pathways. It is possible this is related to an adaptation, e.g. via upregulation 
of mitochondrial activity given that the master regulator of mitochondrial biogenesis 
PPARGC1A was nominated as a neuroectoderm neural precursor-like cell associated 
transcription factor in an unbiased fashion by SCENIC.  
 This study reiterated neoplastic and stromal cell states common to myriad brain 
tumors. These include neoplastic OPC-like cells identified in primary brain tumors as diverse 
as (adult) glioblastoma[20], diffuse midline glioma[27], pilocytic astrocytoma[67], and now in 
glioneuronal tumors. Interestingly, these cells have in the past been hypothesized to be tumor 
precursor cells for other primary brain tumor types. However, subsequent study has not 
always been consistent with this hypothesis[79]. Within our study, we saw this effect. By the 
CITE-seq data alone with 1.8k neoplastic cells, the most primitive neoplastic cluster was an 
OPC-like cluster. However, with increase in cell sampling by an order of magnitude (i.e. to 
what was obtained for snRNA-seq), we were able to identify a rarer, much more primitive 
neuroectoderm neural precursor-like population that also fits with the hypothesized tumor 
stem cell population. This data points to the limitations of undersampling in this context or - 
conversely - the significant insights possible with sufficient sampling. Given the alignment of 
our results with a priori data and hypotheses, our sampling may very well be adequate to 
confidently identify the most important characteristics of ganglioglioma stem cells.  
 Our major results appear generalizable. For instance, (the rare) neoplastic CD34+ cells 
were found in tumor 1, tumor 3, tumor 4, and tumor 5 by snRNA-seq and/or CITE-seq. 
Moreover, we were able to uncover nests of the neuroectoderm neural precursor-like cells in 
tumors 1 and 4 by stRNA-seq and transcriptionally-similar cell states more broadly among 
gangliogliomas by deconvolution of bulk transcriptomic data.  
 In addition to neuroectoderm neural precursor-like and OPC-like neoplastic cells, we 
were able to identify myriad stromal cell types in the context of ganglioglioma, including 
oligodendrocytes, OPCs, astrocytes, various inhibitory and excitatory neurons, endothelial 
cells, VLMCs, microglia, and lymphocytes and their associated cell states including significant 
interactions with the neoplastic cells. We characterized the immune cells extensively. We 
weighed in on the controversy regarding tumor-associated myeloid cell M1-M2 polarization[5, 
43]. Our data supports the model of aberrant co-activation of these programs rather than 
polarization between them. Furthermore, we found evidence that this aberrancy may be 
directly related to T lymphocyte dysfunction and T lymphocyte stimulation of M1 and M2 
characteristics simultaneously. Our data also appears to further support recent observations 
that tumor-associated immune cells appear to fall along a spectrum rather than as discrete 
states[5]. Additionally, we found that even low grade tumors with tumor-infiltrating 
lymphocytes may include potentially suppressible regulatory components (e.g. T regs) and 
potentially anti-tumor cytotoxic T lymphocytes. Altogether, this data suggests a possible role 
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for immune therapies such as immune check point inhibitors. However, we did uncover CTL 
exhaustion and dysfunction as potential limiting factors to be overcome.  
  Another theme of general interest that we uncovered was neoplastic PTPRZ1 
antagonism. We found this among diverse primary brain tumors tested including glioblastoma, 
pilocytic astrocytoma, and ganglioglioma. Interestingly, PTPRZ1 appeared in our SCENIC 
SOX regulons, and SOX transcription factors are often hyperactive in primary brain 
tumors[73]. PTPRZ1 overexpression on its own would be expected to abrogate AKT/mTOR 
signaling and cancer progression[86]. These tumors appear to evolve to overcome this 
antagonism by overexpression of PTN. This suggests antagonism of PTPRZ1 antagonism by 
PTN as a possible therapeutic approach for many primary brain tumor types. FGF/FGFR 
and/or PDGF/PDGFR antagonism may also be important in the context of ganglioglioma, 
either in combination with PTN-PTPRZ1 antagonism or on their own.  
 Finally, we translated these findings into existing clinically-annotated bulk 
transcriptomic data sets to identify different cell state compositions therein as well as expound 
upon potentially clinically useful genetic markers and multi-gene signatures.  
 
 
Conclusions 
 
We applied deep transcriptomic approaches including spatial transcriptomics towards study of 
open questions regarding glioneuronal tumor biology. Our data supports our hypothesis that 
GNT CD34+ cells represent neuroectoderm neural precursor-like tumor precursor cells. We 
found evidence of neoplastic cell dual perturbations to BRAF/MEK and PI3K/AKT/mTOR 
pathways and identified ganglioglioma gene regulatory networks (resembling those present 
during neuroectoderm neural development) and associated immune cell states. We translated 
these findings into low grade glioneuronal and glial tumor bulk transcriptomic deconvolution 
which suggested insights into tumor classification. Translation to prognostic signature 
nomination yielded insights into prognostication.  
 
 
Declarations 
 
Ethics approval and consent to participate 

Ganglioglioma tumor samples for deep transcriptomics were obtained per Duke 
University Health System Institutional Review Board (IRB) protocol Pro00072150. The 
methods were carried out in accordance with the approved guidelines, with written informed 
consent obtained from all subjects or their guardians where appropriate. 
 
Consent for publication 
 Not applicable 
 
Availability of data and material 

Seurat objects of CITE-seq, snRNA-seq, and stRNA-seq count matrices and 
associated annotations are uploaded on Zenodo (https://zenodo.org/record/7677962; DOI: 
10.5281/zenodo. 7677962). Additional original data is available upon request.  
 
Competing interests 

ZJR receives royalties for patents managed by Duke Office of Licensing and Ventures 
that have been licensed to Genetron Health, and honoraria for lectures to Eisai 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pharmaceuticals and Oakstone Publishing Group. EMT is a scientific advisor for Oncohereos 
Biosciences.  
 
Funding 

The work was supported by funds from the Botha family and by developmental funds 
of the Duke Cancer Institute to ZJR as part of the NIH P30CA014236 Cancer Center Support 
Grant and by Fund to Retain Clinician Scientists funds to ZJR from the Doris Duke 
Foundation. ZJR is supported by career development funds from a K08CA2560450, the 
Pediatric Brain Tumor Foundation, St. Baldrick’s Foundation, Emily Beazley’s Kures for Kids 
Fund, and ChadTough Defeat DIPG. GYL is supported by the National Cancer Center for 
Advancing Translational Sciences of the National Institutes of Health under Award Number 
1KL2TR002554. 
 
Authors’ contributions 

JAR performed snRNA-seq, CITE-seq, stRNA-seq, bulk transcriptomic, and prognostic 
genetic signature in silico work, analysis, and interpretation and drafted and revised the 
manuscript. MEG performed pre-CITE-seq optimization and participated in manuscript 
drafting. VJ ran CellRanger or SpaceRanger for the snRNA-seq, CITE-seq, or stRNA-seq 
data and participated in data analysis and manuscript drafting. VC participated in data 
interpretation and manuscript drafting. DMA participation in project conception, experimental 
design, data interpretation, and manuscript drafting. SGG participated in experimental design, 
data interpretation, and manuscript drafting. EMT participated in project conception, tissue 
procurement, experimental design, and manuscript drafting. GYL participated in project 
conception, experimental design, neurohistopathological expert analysis of H&E slides, 
manuscript drafting, and manuscript revision. ZJR oversaw project conception, experimental 
design, data analysis and interpretation, manuscript drafting, and manuscript revision. 
 
Acknowledgments 

The authors would like to thank members of the Duke Brain Tumor Center 
Biorepository and Database (Diane Satterfield, Merrie Burnett, and Elizabeth Thomas) and 
the Duke Molecular Physiology Institute (Karen Abramson and Emily Hocke) for assistance 
with this project.  
 
 
Cited Literature  
1.  Albert G, Besson C (2021) Microglia and Neuroinflammation�: What Place for 

P2RY12�? 
2.  Alboukadel Kassambara, Marcin Kosinski PB survminer: Survival Analysis and 

Visualization 
3.  Andreatta M, Carmona SJ (2021) UCell: Robust and scalable single-cell gene signature 

scoring. Comput Struct Biotechnol J 19:3796–3798. doi: 10.1016/j.csbj.2021.06.043 
4.  Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, 

Lee KH, de Wit M, Cho BC, Bourhaba M, Quantin X, Tokito T, Mekhail T, Planchard D, 
Kim Y-C, Karapetis CS, Hiret S, Ostoros G, Kubota K, Gray JE, Paz-Ares L, de Castro 
Carpeño J, Wadsworth C, Melillo G, Jiang H, Huang Y, Dennis PA, Özgüroğlu M (2017) 
Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N Engl 
J Med 377:1919–1929. doi: 10.1056/nejmoa1709937 

5.  Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, Nainys J, Wu K, 
Kiseliovas V, Setty M, Choi K, Fromme RM, Dao P, McKenney PT, Wasti RC, Kadaveru 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


K, Mazutis L, Rudensky AY, Pe’er D (2018) Single-Cell Map of Diverse Immune 
Phenotypes in the Breast Tumor Microenvironment. Cell 174:1293-1308.e36. doi: 
10.1016/j.cell.2018.05.060 

6.  Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE, Crow M, Hodge RD, 
Krienen FM, Sorensen SA, Eggermont J, Yao Z, Aevermann BD, Aldridge AI, Bartlett A, 
Bertagnolli D, Casper T, Castanon RG, Crichton K, Daigle TL, Dalley R, Dee N, 
Dembrow N, Diep D, Ding SL, Dong W, Fang R, Fischer S, Goldman M, Goldy J, 
Graybuck LT, Herb BR, Hou X, Kancherla J, Kroll M, Lathia K, van Lew B, Li YE, Liu 
CS, Liu H, Lucero JD, Mahurkar A, McMillen D, Miller JA, Moussa M, Nery JR, Nicovich 
PR, Niu SY, Orvis J, Osteen JK, Owen S, Palmer CR, Pham T, Plongthongkum N, 
Poirion O, Reed NM, Rimorin C, Rivkin A, Romanow WJ, Sedeño-Cortés AE, Siletti K, 
Somasundaram S, Sulc J, Tieu M, Torkelson A, Tung H, Wang X, Xie F, Yanny AM, 
Zhang R, Ament SA, Behrens MM, Bravo HC, Chun J, Dobin A, Gillis J, Hertzano R, 
Hof PR, Höllt T, Horwitz GD, Keene CD, Kharchenko P V., Ko AL, Lelieveldt BP, Luo C, 
Mukamel EA, Pinto-Duarte A, Preissl S, Regev A, Ren B, Scheuermann RH, Smith K, 
Spain WJ, White OR, Koch C, Hawrylycz M, Tasic B, Macosko EZ, McCarroll SA, Ting 
JT, Zeng H, Zhang K, Feng G, Ecker JR, Linnarsson S, Lein ES (2021) Comparative 
cellular analysis of motor cortex in human, marmoset and mouse. Nature 598:111–119. 
doi: 10.1038/s41586-021-03465-8 

7.  Bale TA, Rosenblum MK (2022) The 2021 WHO Classification of Tumors of the Central 
Nervous System: An update on pediatric low-grade gliomas and glioneuronal tumors. 
Brain Pathol 1–10. doi: 10.1111/bpa.13060 

8.  Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23:1124–1134. doi: 
10.1038/nm.4409 

9.  Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ (2020) Generalizing RNA velocity to 
transient cell states through dynamical modeling. Nat Biotechnol 38:1408–1414. doi: 
10.1038/s41587-020-0591-3 

10.  Bergthold G, Bandopadhayay P, Hoshida Y, Ramkissoon S, Ramkissoon L, Rich B, 
Maire CL, Paolella BR, Schumacher SE, Tabak B, Ferrer-Luna R, Ozek M, Sav A, 
Santagata S, Wen PY, Goumnerova LC, Ligon AH, Stiles C, Segal R, Golub T, Grill J, 
Ligon KL, Chan JA, Kieran MW, Beroukhim R (2015) Expression profiles of 151 
pediatric low-grade gliomas reveal molecular differences associated with location and 
histological subtype. Neuro Oncol 17:1486–1496. doi: 10.1093/neuonc/nov045 

11.  Bhaduri A, Di Lullo E, Jung D, Müller S, Crouch EE, Espinosa CS, Ozawa T, Alvarado 
B, Spatazza J, Cadwell CR, Wilkins G, Velmeshev D, Liu SJ, Malatesta M, Andrews 
MG, Mostajo-Radji MA, Huang EJ, Nowakowski TJ, Lim DA, Diaz A, Raleigh DR, 
Kriegstein AR (2020) Outer Radial Glia-like Cancer Stem Cells Contribute to 
Heterogeneity of Glioblastoma. Cell Stem Cell 26:48-63.e6. doi: 
10.1016/j.stem.2019.11.015 

12.  Blümcke I, Giencke K, Wardelmann E, Beyenburg S, Kral T, Sarioglu N, Pietsch T, Wolf 
HK, Schramm J, Elger CE, Wiestler OD (1999) The CD34 epitope is expressed in 
neoplastic and malformative lesions associated with chronic, focal epilepsies. Acta 
Neuropathol 97:481–490. doi: 10.1007/s004010051017 

13.  Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, 
Amigorena S, Caux C, Depil S (2019) Cold tumors: A therapeutic challenge for 
immunotherapy. Front Immunol 10:1–10. doi: 10.3389/fimmu.2019.00168 

14.  van Bruggen D, Pohl F, Langseth CM, Kukanja P, Lee H, Albiach AM, Kabbe M, Meijer 
M, Linnarsson S, Hilscher MM, Nilsson M, Sundström E, Castelo-Branco G (2022) 
Developmental landscape of human forebrain at a single-cell level identifies early 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


waves of oligodendrogenesis. Dev Cell 57:1421-1436.e5. doi: 
10.1016/j.devcel.2022.04.016 

15.  Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell 
transcriptomic data across different conditions, technologies, and species. Nat 
Biotechnol 36:411–420. doi: 10.1038/nbt.4096 

16.  Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, 
Christiansen L, Steemers FJ, Trapnell C, Shendure J (2019) The single-cell 
transcriptional landscape of mammalian organogenesis. Nature 566:496–502. doi: 
10.1038/s41586-019-0969-x 

17.  Cases-Cunillera S, van Loo KMJ, Pitsch J, Quatraccioni A, Sivalingam S, Salomoni P, 
Borger V, Dietrich D, Schoch S, Becker AJ (2021)  Heterogeneity and excitability of 
BRAF V600E -induced tumors is determined by Akt/mTOR-signaling state and Trp53 -
loss . Neuro Oncol 1–14. doi: 10.1093/neuonc/noab268 

18.  Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y, Qin S, Zhang L, Ouyang H, Du P, Jiang 
L, Zhang B, Yang Y, Wang X, Ren X, Bei JX, Hu X, Bu Z, Ji J, Zhang Z (2021) A pan-
cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184:792-
809.e23. doi: 10.1016/j.cell.2021.01.010 

19.  Consortium H, Human NIH, Atlas B (2019) The human body at cellular resolution: the 
NIH Human Biomolecular Atlas Program. Nature 574:187–192. doi: 10.1038/s41586-
019-1629-x 

20.  Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S, Samghababi P, Zhang Y, 
Neff N, Kowarsky M, Caneda C, Li G, Chang SD, Connolly ID, Li Y, Barres BA, Gephart 
MH, Quake SR (2017) Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at 
the Migrating Front of Human Glioblastoma. Cell Rep 21:1399–1410. doi: 
10.1016/j.celrep.2017.10.030 

21.  Deb P, Sharma MC, Tripathi M, Sarat Chandra P, Gupta A, Sarkar C (2006) Expression 
of CD34 as a novel marker for glioneuronal lesions associated with chronic intractable 
epilepsy. Neuropathol Appl Neurobiol 32:461–468. doi: 10.1111/j.1365-
2990.2006.00734.x 

22.  Dhatchinamoorthy K, Colbert JD, Rock KL (2021) Cancer Immune Evasion Through 
Loss of MHC Class I Antigen Presentation. Front Immunol 12. doi: 
10.3389/fimmu.2021.636568 

23.  Dyke J, Calapre L, Beasley A, Gray E, Allcock R, Bentel J (2022) Application of 
multiplex ligation-dependent probe amplification (MLPA) and low pass whole genome 
sequencing (LP-WGS) to the classification / characterisation of low grade glioneuronal 
tumours. Pathol Res Pract 229:153724. doi: 10.1016/j.prp.2021.153724 

24.  Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R (2020) CellPhoneDB: 
inferring cell-cell communication from combined expression of  multi-subunit ligand-
receptor complexes. Nat Protoc 15:1484–1506. doi: 10.1038/s41596-020-0292-x 

25.  Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR (2021) Single-cell 
atlas of early human brain development highlights heterogeneity of human 
neuroepithelial cells and early radial glia. Nat Neurosci 24:584–594. doi: 
10.1038/s41593-020-00794-1 

26.  Fauser S, Becker A, Schulze-Bonhage A, Hildebrandt M, Tuxhorn I, Pannek HW, Lahl 
R, Schramm J, Blümcke I (2004) CD34-immunoreactive balloon cells in cortical 
malformations. Acta Neuropathol 108:272–278. doi: 10.1007/s00401-004-0889-0 

27.  Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, Neftel C, 
Frank N, Pelton K, Hebert CM, Haberler C, Yizhak K, Gojo J, Egervari K, Mount C, van 
Galen P, Bonal DM, Nguyen Q-D, Beck A, Sinai C, Czech T, Dorfer C, Goumnerova L, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lavarino C, Carcaboso AM, Mora J, Mylvaganam R, Luo CC, Peyrl A, Popović M, Azizi 
A, Batchelor TT, Frosch MP, Martinez-Lage M, Kieran MW, Bandopadhayay P, 
Beroukhim R, Fritsch G, Getz G, Rozenblatt-Rosen O, Wucherpfennig KW, Louis DN, 
Monje M, Slavc I, Ligon KL, Golub TR, Regev A, Bernstein BE, Suvà ML (2018) 
Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell  
RNA-seq. Science 360:331–335. doi: 10.1126/science.aao4750 

28.  Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, Kumar T, Hu M, Sei E, Davis A, 
Wang F, Shaitelman SF, Wang JR, Chen K, Moulder S, Lai SY, Navin NE (2021) 
Delineating copy number and clonal substructure in human tumors from single-cell 
transcriptomes. Nat Biotechnol 39:599–608. doi: 10.1038/s41587-020-00795-2 

29.  Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal 
C, Gubens M, Horn L, Carcereny E, Ahn M-J, Felip E, Lee J-S, Hellmann MD, Hamid O, 
Goldman JW, Soria J-C, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, 
Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L (2015) Pembrolizumab 
for the Treatment of Non–Small-Cell Lung Cancer. N Engl J Med 372:2018–2028. doi: 
10.1056/nejmoa1501824 

30.  Garrido F, Aptsiauri N (2019) Cancer immune escape: MHC expression in primary 
tumours versus metastases. Immunology 158:255–266. doi: 10.1111/imm.13114 

31.  Gulati GS, Sikandar SS, Wesche DJ, Manjunath A, Bharadwaj A, Berger MJ, Ilagan F, 
Kuo AH, Hsieh RW, Cai S, Zabala M, Scheeren FA, Lobo NA, Qian D, Yu FB, Dirbas 
FM, Clarke MF, Newman AM (2020) Single-cell transcriptional diversity is a hallmark of 
developmental potential. Science (80- ) 367:405–411. doi: 10.1126/science.aax0249 

32.  Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, 
Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava 
A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, 
Smibert P, Satija R (2021) Integrated analysis of multimodal single-cell data. Cell 
184:3573-3587.e29. doi: 10.1016/j.cell.2021.04.048 

33.  Härtlova A, Erttmann SF, Raffi FAM, Schmalz AM, Resch U, Anugula S, Lienenklaus S, 
Nilsson LM, Kröger A, Nilsson JA, Ek T, Weiss S, Gekara NO (2015) DNA Damage 
Primes the Type I Interferon System via the Cytosolic DNA Sensor STING to Promote 
Anti-Microbial Innate Immunity. Immunity 42:332–343. doi: 
10.1016/j.immuni.2015.01.012 

34.  Herring CA, Simmons RK, Freytag S, Poppe D, Moffet JJD, Pflueger J, Buckberry S, 
Vargas-Landin DB, Clément O, Echeverría EG, Sutton GJ, Alvarez-Franco A, Hou R, 
Pflueger C, McDonald K, Polo JM, Forrest ARR, Nowak AK, Voineagu I, Martelotto L, 
Lister R (2022) Human prefrontal cortex gene regulatory dynamics from gestation to 
adulthood at single-cell resolution. Cell 185:4428-4447.e28. doi: 
10.1016/j.cell.2022.09.039 

35.  Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus M 
V., Nie Q (2021) Inference and analysis of cell-cell communication using CellChat. Nat 
Commun 12:1–20. doi: 10.1038/s41467-021-21246-9 

36.  Kaley T, Touat M, Subbiah V, Hollebecque A, Rodon J, Lockhart AC, Keedy V, Bielle F, 
Hofheinz RD, Joly F, Blay JY, Chau I, Puzanov I, Raje NS, Wolf J, DeAngelis LM, 
Makrutzki M, Riehl T, Pitcher B, Baselga J, Hyman DM (2018) BRAF inhibition in 
BRAFV600-mutant gliomas: Results from the VE-BASKET study. J Clin Oncol 36:3477–
3484. doi: 10.1200/JCO.2018.78.9990 

37.  Karlsson M, Zhang C, Méar L, Zhong W, Digre A, Katona B, Sjöstedt E, Butler L, 
Odeberg J, Dusart P, Edfors F, Oksvold P, von Feilitzen K, Zwahlen M, Arif M, Altay O, 
Li X, Ozcan M, Mardinoglu A, Fagerberg L, Mulder J, Luo Y, Ponten F, Uhlén M, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lindskog C (2021) A single-cell type transcriptomics map of human tissues 
38.  Kawase S, Kuwako K, Imai T, Renault-Mihara F, Yaguchi K, Itohara S, Okano H (2014) 

Regulatory factor X transcription factors control musashi1 transcription in mouse neural 
stem/progenitor cells. Stem Cells Dev 23:2250–2261. doi: 10.1089/scd.2014.0219 

39.  Kleshchevnikov V, Shmatko A, Dann E, Aivazidis A, King HW, Li T, Elmentaite R, 
Lomakin A, Kedlian V, Gayoso A, Jain MS, Park JS, Ramona L, Tuck E, Arutyunyan A, 
Vento-Tormo R, Gerstung M, James L, Stegle O, Bayraktar OA (2022) Cell2location 
maps fine-grained cell types in spatial transcriptomics. Nat Biotechnol 40:661–671. doi: 
10.1038/s41587-021-01139-4 

40.  Krauze AV (2021) Glioneuronal Tumors: Insights into a Rare Tumor Entity. In: Debinski 
W (ed). Brisbane (AU) 

41.  Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, Au Q, Casalicchio G, 
Kotthoff L, Bischl B (2019) {mlr3}: A modern object-oriented machine learning 
framework in {R}. J Open Source Softw. doi: 10.21105/joss.01903 

42.  Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M, Lickert H, Ansari M, 
Schniering J, Schiller HB, Pe’er D, Theis FJ (2022) CellRank for directed single-cell fate 
mapping 

43.  Li X, Zhang Q, Chen G, Luo D (2021) Multi-Omics Analysis Showed the Clinical Value 
of Gene Signatures of C1QC+ and SPP1+ TAMs in Cervical Cancer. Front Immunol 
12:1–12. doi: 10.3389/fimmu.2021.694801 

44.  Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng 
HK, Pfister SM, Reifenberger G, Soffietti R, Von Deimling A, Ellison DW (2021) The 
2021 WHO classification of tumors of the central nervous system: A summary. Neuro 
Oncol 23:1231–1251. doi: 10.1093/neuonc/noab106 

45.  Luo W, Brouwer C (2013) Pathview: An R/Bioconductor package for pathway-based 
data integration and visualization. Bioinformatics 29:1830–1831. doi: 
10.1093/bioinformatics/btt285 

46.  La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, 
Kastriti ME, Lönnerberg P, Furlan A, Fan J, Borm LE, Liu Z, van Bruggen D, Guo J, He 
X, Barker R, Sundström E, Castelo-Branco G, Cramer P, Adameyko I, Linnarsson S, 
Kharchenko P V. (2018) RNA velocity of single cells. Nature 560:494–498. doi: 
10.1038/s41586-018-0414-6 

47.  Marks AM, Bindra RS, DiLuna ML, Huttner A, Jairam V, Kahle KT, Kieran MW (2018) 
Response to the BRAF/MEK inhibitors dabrafenib/trametinib in an adolescent with a 
BRAF V600E mutated anaplastic ganglioglioma intolerant to vemurafenib. Pediatr 
Blood Cancer 65:4–7. doi: 10.1002/pbc.26969 

48.  Müller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A, Watchmaker PB, 
Yagnik G, Di Lullo E, Malatesta M, Amankulor NM, Kriegstein AR, Lim DA, Aghi M, 
Okada H, Diaz A (2017) Single-cell profiling of human gliomas reveals macrophage 
ontogeny as a basis for regional differences in macrophage activation in the tumor 
microenvironment. Genome Biol 18:1–14. doi: 10.1186/s13059-017-1362-4 

49.  Nagy C, Maitra M, Tanti A, Suderman M, Théroux JF, Davoli MA, Perlman K, Yerko V, 
Wang YC, Tripathy SJ, Pavlidis P, Mechawar N, Ragoussis J, Turecki G (2020) Single-
nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates 
oligodendrocyte precursor cells and excitatory neurons. Nat Neurosci 23:771–781. doi: 
10.1038/s41593-020-0621-y 

50.  Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, 
Shaw ML, Hebert CM, Dewitt J, Gritsch S, Perez EM, Gonzalez Castro LN, Lan X, 
Druck N, Rodman C, Dionne D, Kaplan A, Bertalan MS, Small J, Pelton K, Becker S, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bonal D, Nguyen Q De, Servis RL, Fung JM, Mylvaganam R, Mayr L, Gojo J, Haberler 
C, Geyeregger R, Czech T, Slavc I, Nahed B V., Curry WT, Carter BS, Wakimoto H, 
Brastianos PK, Batchelor TT, Stemmer-Rachamimov A, Martinez-Lage M, Frosch MP, 
Stamenkovic I, Riggi N, Rheinbay E, Monje M, Rozenblatt-Rosen O, Cahill DP, Patel 
AP, Hunter T, Verma IM, Ligon KL, Louis DN, Regev A, Bernstein BE, Tirosh I, Suvà ML 
(2019) An Integrative Model of Cellular States, Plasticity, and Genetics for 
Glioblastoma. Cell 178:835-849.e21. doi: 10.1016/j.cell.2019.06.024 

51.  Nieto P, Elosua-Bayes M, Trincado JL, Marchese D, Massoni-Badosa R, Salvany M, 
Henriques A, Nieto J, Aguilar-Fernández S, Mereu E, Moutinho C, Ruiz S, Lorden P, 
Chin VT, Kaczorowski D, Chan CL, Gallagher R, Chou A, Planas-Rigol E, Rubio-Perez 
C, Gut I, Piulats JM, Seoane J, Powell JE, Batlle E, Heyn H (2021) A single-cell tumor 
immune atlas for precision oncology. Genome Res 31:1913–1926. doi: 
10.1101/gr.273300.120 

52.  Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, 
Haeussler M, Sandoval-Espinosa C, Liu SJ, Velmeshev D, Ounadjela JR, Shuga J, 
Wang X, Lim DA, West JA, Leyrat AA, Kent WJ, Kriegstein AR (2017) Spatiotemporal 
gene expression trajectories reveal developmental hierarchies of the human cortex. 
Science (80- ) 358:1318–1323. doi: 10.1126/science.aap8809 

53.  Owa T, Taya S, Miyashita S, Yamashita M, Adachi T, Yamada K, Yokoyama M, Aida S, 
Nishioka T, Inoue YU, Goitsuka R, Nakamura T, Inoue T, Kaibuchi K, Hoshino M (2018) 
Meis1 coordinates cerebellar granule cell development by regulating pax6 transcription, 
BMP signaling and atoh1 degradation. J Neurosci 38:1277–1294. doi: 
10.1523/JNEUROSCI.1545-17.2017 

54.  Paijens ST, Vledder A, de Bruyn M, Nijman HW (2021) Tumor-infiltrating lymphocytes in 
the immunotherapy era. Cell Mol Immunol 18:842–859. doi: 10.1038/s41423-020-
00565-9 

55.  Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, 
Nahed B V, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suvà ML, Regev A, 
Bernstein BE (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in 
primary glioblastoma. Science 344file://:1396–1401. doi: 10.1126/science.1254257 

56.  Patil I (2021) Visualizations with statistical details: The “ggstatsplot” approach. J Open 
Source Softw 6:3167. doi: 10.21105/joss.03167 

57.  Pavlaki I, Shapiro M, Pisignano G, Jones SME, Telenius J, Muñoz-Descalzo S, Williams 
RJ, Hughes JR, Vance KW (2022) Chromatin interaction maps identify Wnt responsive 
cis-regulatory elements coordinating Paupar-Pax6 expression in neuronal cells. PLOS 
Genet 18:e1010230. doi: 10.1371/journal.pgen.1010230 

58.  Pekmezci M, Villanueva-Meyer JE, Goode B, Van Ziffle J, Onodera C, Grenert JP, 
Bastian BC, Chamyan G, Maher OM, Khatib Z, Kleinschmidt-DeMasters BK, Samuel D, 
Mueller S, Banerjee A, Clarke JL, Cooney T, Torkildson J, Gupta N, Theodosopoulos P, 
Chang EF, Berger M, Bollen AW, Perry A, Tihan T, Solomon DA (2018) The genetic 
landscape of ganglioglioma. Acta Neuropathol Commun 6:47. doi: 10.1186/s40478-018-
0551-z 

59.  Petralia F, Tignor N, Reva B, Koptyra M, Chowdhury S, Rykunov D, Krek A, Ma W, Zhu 
Y, Ji J, Calinawan A, Whiteaker JR, Colaprico A, Stathias V, Omelchenko T, Song X, 
Raman P, Guo Y, Brown MA, Ivey RG, Szpyt J, Guha Thakurta S, Gritsenko MA, Weitz 
KK, Lopez G, Kalayci S, Gümüş ZH, Yoo S, da Veiga Leprevost F, Chang HY, Krug K, 
Katsnelson L, Wang Y, Kennedy JJ, Voytovich UJ, Zhao L, Gaonkar KS, Ennis BM, 
Zhang B, Baubet V, Tauhid L, Lilly J V., Mason JL, Farrow B, Young N, Leary S, Moon J, 
Petyuk VA, Nazarian J, Adappa ND, Palmer JN, Lober RM, Rivero-Hinojosa S, Wang 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


LB, Wang JM, Broberg M, Chu RK, Moore RJ, Monroe ME, Zhao R, Smith RD, Zhu J, 
Robles AI, Mesri M, Boja E, Hiltke T, Rodriguez H, Zhang B, Schadt EE, Mani DR, Ding 
L, Iavarone A, Wiznerowicz M, Schürer S, Chen XS, Heath AP, Rokita JL, Nesvizhskii 
AI, Fenyö D, Rodland KD, Liu T, Gygi SP, Paulovich AG, Resnick AC, Storm PB, Rood 
BR, Wang P, Francis A, Morgan AM, Waanders AJ, Viaene AN, Buccoliero AM, 
Chinnaiyan AM, Leonard CA, Kline CN, Caporalini C, Kinsinger CR, Li C, Kram DE, 
Hanson D, Appert E, Kawaler EA, Raabe EH, Jackson EM, Greenfield JP, Stone GS, 
Getz G, Grant G, Teo GC, Pollack IF, Cain JE, Foster JB, Phillips JJ, Palma JE, 
Ketchum KA, Ruggles K V., Blumenberg L, Cornwell M, Sarmady M, Domagalski MJ, 
Cieślik MP, Santi M, Li MM, Ellis MJ, Wyczalkowski MA, Connors M, Scagnet M, Gupta 
N, Edwards NJ, Vitanza NA, Vaske OM, Becher O, McGarvey PB, Firestein R, Mueller 
S, Winebrake SG, Dhanasekaran SM, Cai S, Partap S, Patton T, Le T, Lorentzen TD, 
Liu W, Bocik WE (2020) Integrated Proteogenomic Characterization across Major 
Histological Types of Pediatric Brain Cancer. Cell 183:1962-1985.e31. doi: 
10.1016/j.cell.2020.10.044 

60.  Pfister S, Kuettel V, Ferrero E (2022). granulator: Rapid benchmarking of methods for 
*in silico* deconvolution of bulk RNA-seq data. R package version 1.6.0 H 
com/xanibas/granulator. No Title 

61.  Piper K, DePledge L, Karsy M, Cobbs C (2021) Glioma Stem Cells as 
Immunotherapeutic Targets: Advancements and Challenges. Front Oncol 11:1–13. doi: 
10.3389/fonc.2021.615704 

62.  Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J, 
Kancheva D, Martens L, De Vlaminck K, Van Hove H, Kjølner Hansen SS, Bosisio FM, 
Van der Borght K, De Vleeschouwer S, Sciot R, Bouwens L, Verfaillie M, Vandamme N, 
Vandenbroucke RE, De Wever O, Saeys Y, Guilliams M, Gysemans C, Neyns B, De 
Smet F, Lambrechts D, Van Ginderachter JA, Movahedi K (2021) Single-cell profiling of 
myeloid cells in glioblastoma across species and disease stage reveals macrophage 
competition and specialization. Nat Neurosci 24:595–610. doi: 10.1038/s41593-020-
00789-y 

63.  Ponten F, Jirstrom K, Uhlen M (2008) The Human Protein Atlas--a tool for pathology. J 
Pathol 216:387–393. doi: 10.1002/path.2440 

64.  Prabowo AS, Iyer AM, Anink JJ, Spliet WGM, van Rijen PC, Aronica E (2013) 
Differential expression of major histocompatibility complex class I in developmental 
glioneuronal lesions. J Neuroinflammation 10:1–10. doi: 10.1186/1742-2094-10-12 

65.  Puget S, Philippe C, Bax DA, Job B, Varlet P, Andreiuolo F, Carvalho D, Reis R, 
Guerrini-rousseau L, Roujeau T, Dessen P, Richon C, Lazar V, Teuff G Le, Sainte-rose 
C (2012) Mesenchymal Transition and PDGFRA Amplification / Mutation Are Key 
Distinct Oncogenic Events in Pediatric Diffuse Intrinsic Pontine Gliomas. 7. doi: 
10.1371/journal.pone.0030313 

66.  Ravi VM, Neidert N, Will P, Joseph K, Maier JP, Kückelhaus J, Vollmer L, Goeldner JM, 
Behringer SP, Scherer F, Boerries M, Follo M, Weiss T, Delev D, Kernbach J, Franco P, 
Schallner N, Dierks C, Carro MS, Hofmann UG, Fung C, Sankowski R, Prinz M, Beck J, 
Salié H, Bengsch B, Schnell O, Heiland DH (2022) T-cell dysfunction in the 
glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. 
Nat Commun 13. doi: 10.1038/s41467-022-28523-1 

67.  Reitman ZJ, Paolella BR, Bergthold G, Pelton K, Becker S, Jones R, Sinai CE, Malkin 
H, Huang Y, Grimmet L, Herbert ZT, Sun Y, Weatherbee JL, Alberta JA, Daley JF, 
Rozenblatt-Rosen O, Condurat AL, Qian K, Khadka P, Segal RA, Haas-Kogan D, Filbin 
MG, Suva ML, Regev A, Stiles CD, Kieran MW, Goumnerova L, Ligon KL, Shalek AK, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bandopadhayay P, Beroukhim R (2019) Mitogenic and progenitor gene programmes in 
single pilocytic astrocytoma cells. Nat Commun 10. doi: 10.1038/s41467-019-11493-2 

68.  Ryall S, Zapotocky M, Fukuoka K, Ellison DW, Tabori U, Hawkins Correspondence C 
(2020) Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade 
Gliomas. doi: 10.1016/j.ccell.2020.03.011 

69.  Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S, Seurinck 
R, Saelens W, Cannoodt R, Rouchon Q, Verbeiren T, De Maeyer D, Reumers J, Saeys 
Y, Aerts S (2020) A scalable SCENIC workflow for single-cell gene regulatory network 
analysis. Nat Protoc 15:2247–2276. doi: 10.1038/s41596-020-0336-2 

70.  Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of 
single-cell gene expression data. Nat Biotechnol 33:495–502. doi: 10.1038/nbt.3192 

71.  Sonabend R, Király FJ, Bender A, Bischl B, Lang M (2021) mlr3proba: An R Package 
for Machine Learning in Survival Analysis. Bioinformatics. doi: 
10.1093/bioinformatics/btab039 

72.  Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M (2021) SOX 
Transcription Factors as Important Regulators of Neuronal and Glial Differentiation 
During Nervous System Development and Adult Neurogenesis. Front Mol Neurosci 
14:1–24. doi: 10.3389/fnmol.2021.654031 

73.  Stevanovic M, Kovacevic-Grujicic N, Mojsin M, Milivojevic M, Drakulic D, Stevanovic M, 
Stevanovic M (2021) SOX transcription factors and glioma stem cells: Choosing 
between stemness and differentiation. World J Stem Cells 13:1417–1445. doi: 
10.4252/wjsc.v13.i10.1417 

74.  Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius 
M, Smibert P, Satija R (2019) Comprehensive Integration of Single-Cell Data. Cell 
177:1888-1902.e21. doi: 10.1016/j.cell.2019.05.031 

75.  Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich 
A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment 
analysis: A knowledge-based approach for interpreting genome-wide expression 
profiles. Proc Natl Acad Sci U S A 102:15545–15550. doi: 10.1073/pnas.0506580102 

76.  Terry M. Therneau, Patricia M. Grambsch (2000) Modeling Survival Data: Extending the 
{C}ox Model. Springer, New York 

77.  Teschendorff AE, Enver T (2017) Single-cell entropy for accurate estimation of 
differentiation potency from a cell’s transcriptome. Nat Commun 8:1–15. doi: 
10.1038/ncomms15599 

78.  Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, Fisher JM, 
Rodman C, Mount C, Filbin MG, Neftel C, Desai N, Nyman J, Izar B, Luo CC, Francis 
JM, Patel AA, Onozato ML, Riggi N, Livak KJ, Gennert D, Satija R, Nahed B V., Curry 
WT, Martuza RL, Mylvaganam R, Iafrate AJ, Frosch MP, Golub TR, Rivera MN, Getz G, 
Rozenblatt-Rosen O, Cahill DP, Monje M, Bernstein BE, Louis DN, Regev A, Suvà ML 
(2016) Single-cell RNA-seq supports a developmental hierarchy in human 
oligodendroglioma. Nature 539:309–313. doi: 10.1038/nature20123 

79.  Tomita Y, Shimazu Y, Somasundaram A, Tanaka Y, Takata N, Ishi Y, Gadd S, 
Hashizume R, Angione A, Pinero G, Hambardzumyan D, Brat DJ, Hoeman CM, Becher 
OJ (2022) A novel mouse model of diffuse midline glioma initiated in neonatal 
oligodendrocyte progenitor cells highlights cell-of-origin dependent effects of H3K27M. 
Glia 70:1681–1698. doi: 10.1002/glia.24189 

80.  Vallier L, Reynolds D, Pedersen RA (2004) Nodal inhibits differentiation of human 
embryonic stem cells along the neuroectodermal default pathway. Dev Biol 275:403–
421. doi: 10.1016/j.ydbio.2004.08.031 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


81.  Waldron L, Oh S, Abdelnabi J, Al-Dulaimi R, Aggarwal A, Ramos M, Davis S, Riester M 
(2020) HGNChelper: Identification and correction of invalid gene symbols for human 
and mouse. F1000Research 9:1–16. doi: 10.12688/f1000research.28033.1 

82.  Wang L, Babikir H, Müller S, Yagnik G, Shamardani K, Catalan F, Kohanbash G, 
Alvarado B, Di Lullo E, Kriegstein A, Shah S, Wadhwa H, Chang SM, Phillips JJ, Aghi 
MK, Diaz AA (2019) The phenotypes of proliferating glioblastoma cells reside on a 
single axis of variation. Cancer Discov 9:1708–1719. doi: 10.1158/2159-8290.CD-19-
0329 

83.  Warburg O (1925) The metabolism of carcinoma cells. J Cancer Res 9:148-163. 
84.  Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, 

Ariyan CE, Gordon R-A, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba 
BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton 
JM, Gupta A, Sznol M (2013) Nivolumab plus Ipilimumab in Advanced Melanoma. N 
Engl J Med 369:122–133. doi: 10.1056/nejmoa1302369 

85.  Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, 
Bo X, Yu G (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics 
data. Innov 2:100141. doi: 10.1016/j.xinn.2021.100141 

86.  Xia Z, Ouyang D, Li Q, Li M, Zou Q, Li L, Yi W, Zhou E (2019) The expression, 
functions, interactions and prognostic values of PTPRZ1: A review and bioinformatic 
analysis. J Cancer 10:1663–1674. doi: 10.7150/jca.28231 

87.  Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O’Brien SA, He Y, Wang L, Zhang 
Q, Kim A, Gao R, Orf J, Wang T, Sawant D, Kang J, Bhatt D, Lu D, Li CM, Rapaport AS, 
Perez K, Ye Y, Wang S, Hu X, Ren X, Ouyang W, Shen Z, Egen JG, Zhang Z, Yu X 
(2020) Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in 
Colon Cancer. Cell 181:442-459.e29. doi: 10.1016/j.cell.2020.03.048 

88.  Zhang X, Huang CT, Chen J, Pankratz MT, Xi J, Li J, Yang Y, LaVaute TM, Li XJ, Ayala 
M, Bondarenko GI, Du ZW, Jin Y, Golos TG, Zhang SC (2010) Pax6 is a human 
neuroectoderm cell fate determinant. Cell Stem Cell 7:90–100. doi: 
10.1016/j.stem.2010.04.017 

89.  Zhang Y, Lucas CG, Young JS, Morshed RA, Mccoy L, Ann N, Bush O, Taylor JW, 
Daras M, Butowski NA, Villanueva-meyer JE, Cha S, Wrensch M, Wiencke JK, Lee JC, 
Pekmezci M, Phillips JJ, Perry A, Bollen AW, Aghi MK, Theodosopoulos P, Chang EF, 
Hervey-jumper SL, Berger MS, Clarke JL, Chang SM, Molinaro AM, Solomon DA (2022) 
glioblastoma leads to improved clinical outcomes. 1–14 

90.  Zheng L, Qin S, Si W, Wang A, Xing B, Gao R, Ren X, Wang L, Wu X, Zhang J, Wu N, 
Zhang N, Zheng H, Ouyang H, Chen K, Bu Z, Hu X, Ji J, Zhang Z (2021) Pan-cancer 
single-cell landscape of tumor-infiltrating T cells. Science (80- ) 374. doi: 
10.1126/science.abe6474 

91.  Zhong S, Zhang S, Fan X, Wu Q, Yan L, Dong J, Zhang H, Li L, Sun L, Pan N, Xu X, 
Tang F, Zhang J, Qiao J, Wang X (2018) A single-cell RNA-seq survey of the 
developmental landscape of the human prefrontal cortex. Nature 555:524–528. doi: 
10.1038/nature25980 

92.  Human Protein Atlas proteinatlas.org 
93.  Dataset: Allen Institute for Brain Science (2021). Allen Cell Types Database -- Human 

Multiple Cortical Areas [dataset]. Available from celltypes.brain-map.org/rnaseq. 
94.  HuBMAP Azimuth https://azimuth.hubmapconsortium.org/references/ 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2022.12.17.520880doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520880
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Methods 
 
Reference data sets  
 
Reference single-cell data was obtained via UCSC cell browser (Nowakowski et al. 
developing brain[52], Eze et al. developing brain[25], Darmanis et al. glioblastoma[20], 
Wang/Muller et al. glioblastoma[82], Allen human cortex[93], Allen human M1 cortex[93]), 
Broad Institute single cell portal (Tirosh et al. oligodendroglioma[78], Filbin et al. diffuse 
midline glioma[27], Reitman et al. pilocytic astrocytoma[67]), and GEO GSE104276 (Zhong et 
al. developing prefrontal cortex[91]), GSE168408 (Herring et al. developing prefrontal 
cortex[34]), GSE144136 (Nagy et al. adult prefrontal cortex[49]), GSE156728 (Zheng et al. T 
cells[90]), GSE154763 (Cheng et al. myeloid cells[18]), and GSE114724 (Azizi et al. immune 
cells[5]). Bulk transcriptomic data and associated annotations were obtained from CPTAC[59] 
via pedcbioportal.kidsfirstdrc.org and, for Bergthold et al., from GEO GSE60898[10].  
 
Patients 
 
Ganglioglioma tumor samples for deep transcriptomics were obtained per Duke University 
Health System Institutional Review Board (IRB) protocol Pro00072150. The methods were 
carried out in accordance with the approved guidelines, with written informed consent 
obtained from all subjects or their guardians where appropriate. Patient characteristics are 
summarized in supplementary table 1.  
 
SnRNA-seq 
 
Frozen banked tumor tissue was obtained from the Duke Brain Tumor Center Biorepository 
and Database. For quality assurance, RNA integrity number was checked with goal RIN>7. 
Nuclei were isolated. Briefly, 50 mg tissue was minced to ~0.5 mm cubes, transferred to lysis 
solution (10 mM Tris-HCl pH 7.4 (Sigma), 5 mM NaCl (Sigma), 3 mM MgCl2 (VWR), 0.1% NP-
40 substitute (Sigma), and 0.5% RNasin Plus (Promega, aq)), incubated on ice 5 minutes, 
and incubated with tituration 10-15 times every 30 seconds for 10 minutes on ice. Residual 
debris was removed by 70 mcm filter (VWR). Nuclei were centrifuged 300g x5 minutes at 4°C, 
rinsed x2 with resuspension buffer (1% BSA (ThermoFisher), 0.5% RNasin Plus, and 1X PBS 
pH 7.4 (Corning, aq)), resuspended in OptiPrep solution (25 mM KCl (ThermoFisher), 5 mM 
MgCl2 (ThermoFisher), 20mM Tris-HCl pH 7.8 (ThermoFisher), 50% OptiPrep Density 
Gradient Medium (Sigma), and 100 mM sucrose (Sigma, aq)), pelleted 10000g x10 minutes 
at 4°C, resuspended in resuspension buffer, and assessed for intact nuclei. Otherwise, 
snRNA-seq was performed using 3′ v3 Single Cell technology according to the manufacturer’s 
protocol (10X Genomics, San Diego, CA).  
 
CITE-seq 
 
Fresh tumor tissue was obtained for CITE-seq. Tumor cells were dissociated, washed, and 
resuspended. Antibodies for CITE-seq were anti-CD34 (clone 581), anti-CD31 (clone WM59), 
anti-CD45RA (clone HI100), anti-CD3 (clone UCHT1), anti-CD8A (clone RPAT8), anti-CD4 
(clone RPAT4), anti-CD14 (clone 63D3), and anti-CD19 (clone HIB19) TotalSeq-A antibodies 
(BioLegend, San Diego, CA). Cells from one tumor were used to optimize preparation by 
adding variable antibody concentrations to 1 million cells in 50 mcl, washing with 200 mcl 
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FACS buffer, resuspending in 200 mcl FACS buffer, and analyzing by flow cytometry. 
Otherwise, cells were used for CITE-seq using 3′ v3 Single Cell Immune Profiling technology 
according to the manufacturer’s protocol (10X Genomics, San Diego, CA).  
 
Spatial transcriptomics 
 
Frozen banked tumor tissue was obtained from the Duke Brain Tumor Center Biorepository 
and Database. StRNA-seq was performed using Spatial 3' v1 technology according to the 
manufacturer’s protocol (10X Genomics, San Diego, CA).  
 
SnRNA-seq and CITE-seq data preprocessing and initial processing 
 
Raw sequencing data was processed into unique molecular identifier count (UMI) matrices 
using CellRanger (v6.1.2 for snRNA-seq and v3.1.0 for CITE-seq, human genome build 
GRCh38, cellranger mkfastq -> cellranger count, 10X Genomics). Processing beyond this 
point was carried out in Ubuntu 20.04 using R 4.2.1 or python version 3.x (depending upon 
python packages in use). Within Seurat v4[32], snRNA-seq log-normalization, scaling, 
SCTransformation, PCA, and UMAP (based on PCA dims 1-50) was performed. For the 
snRNA-seq projection shown, SCTransform was run based on all cells, 10k variable features, 
regressing out based on percent mitochondrial RNA, and otherwise defaults. For CITE-seq, 
gene symbols were updated with HGNChelper v0.8.1[81], and this was followed by log-
normalization, scaling, PCA, and UMAP (based on PCA dims 1-50). Neighbors and clusters 
were also found within Seurat. Gene symbols were updated by HGNChelper v0.8.1 for 
analyses sensitive to antiquated gene symbols. For each data set, data integration 
(batch=sample) was attempted using several algorithms with varied feature sets and settings 
(see Supplementary Information 1 for more details) . The benefits of integration (in terms of 
reducing potential technical artifacts, which appeared minimal to begin with) were consistently 
outweighed by the loss of meaningful biological variation (as assessed qualitatively and 
quantitatively by NMI, ARI, ASW (cell type), and isolated label scores). Consequently, 
unmanipulated data was used for downstream analyses.  
 
StRNA-seq data preprocessing and initial processing 
 
Raw sequencing data was processed into unique molecular identifier count (UMI) matrices 
using SpaceRanger v1.3.0 (human genome build GRCh38, spaceranger mkfastq -> 
spaceranger count, 10X Genomics). The graph-based clusters shown were also calculated 
with spaceranger count. Slides were manually annotated (GYL). Empty spots were excluded 
as were those with excessive artifact (folded tissue and excessive blood product in particular). 
Graph-based clusters were then regrouped based on manual annotation for final clusters. 
Processing beyond this point was carried out in Ubuntu 20.04 using R 4.2.1 or python version 
3.x (depending upon python packages in use). Gene symbols were updated by HGNChelper 
v0.8.1.  
 
Initial cell typing 
 
SnRNA-seq and CITE-seq cells were initially typed based expression of a priori markers of 
interest, favoring unbiased atlases where possible, such as the Human Protein Atlas[63, 92] 
and HuBMAP[19, 94]. Markers are outlined in the results. Additionally, cells were typed using 
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Seurat v4-base label transfer to published reference atlases listed under data above[32]. 
Cells were also typed by UCell v2.0.1 signature scoring[3].  
 
Inference of copy number alterations 
 
Neoplastic-appearing cells from merged snRNA-seq or merged CITE-seq data were analyzed 
by inferCNV v1.12.0 in parallel[55]. Oligodendroglioma and associated oligodendrocytes were 
used as positive and negative controls, respectively[78]. Tumor 3 snRNA-seq data was 
excluded due to low complexity. SnRNA-seq and CITE-seq stromal cells were also used as 
controls. For run, cutoff=0.1 was used. Data was subjected to apply_median_filtering with 
window_size=7. Runs were otherwise by defaults. Data was displayed using 
ComplexHeatmap v2.13.2. Results were verified with CopyKAT v1.1.0[28].  
 
Cellular hierarchy 
 
From CellRanger outputs, counts were obtained by velocyto v0.17.17 run10x and otherwise 
using the defaults[46]. Data from different tumors was then merged and then subset by cell 
lineage (e.g. neoplastic, microglia, lymphoid, vascular) based on cell typing for RNA velocity 
analysis by scVelo v0.2.4[9]. The results shown were obtained using the package defaults, 
with modes described in the text. SCENT v1.0.3 signaling entropy rate results shown were 
calculated using the original counts and defaults with the net17Jan16.m used as the protein-
protein interaction network adjacency matrix[77]. CellRank v1.5.1 pseudotimes were 
calculated using the CytoTRACE kernel[31, 42] based on the original counts after merging 
samples and subsetting by lineage (neoplastic, myeloid, and lymphoid). Tumor 3 snRNA-seq 
data was excluded due to low complexity resulting in aberrantly high calculated pseudotime. 
Defaults used unless specified otherwise.  
 
Ligand-receptor analysis 
 
Significant snRNA-seq and CITE-seq ligand-receptor interactions were nominated in an 
unbiased manner among merged snRNA-seq or merged CITE-seq data using CellChat v1.5.0 
and CellPhoneDB v3.1.0[24, 35]. Defaults were used for the results shown.  
 
Gene set enrichment analysis (GSEA) 
 
Average log2-fold-change was calculated within Seurat v4 based on the comparisons 
described in the text[32]. Gene lists were sorted by descending log2-fold-change and 
clusterProfiler v4.4.4 gseGO run with p-value cutoff=0.05 with Bonferroni correction[85]. 
GseKEGG and gseWP were performed analogously. Defaults were otherwise used. KEGG 
pathways of interest were visualized by Pathview v1.36.1[45]. 
 
Gene regulatory network inference 
 
Transcription factors were nominated among snRNA-seq and CITE-seq using pySCENIC 
v0.12.0 defaults[69]. Transcription factors/regulons of interest were further curated by 
Wilcoxon rank sum test comparison using AUC log2-fold-change≥0.1. For individual clusters 
this was performed relative to all other clusters. For each neoplastic cluster, it was also 
performed relative to the union of stromal neural clusters. For neoplastic CD34+ cells, it was 
performed relative to neoplastic CD34- cells.  
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StRNA-seq data deconvolution 
 
StRNA-seq spots were deconvoluted using cell2location v0.1[39]. For deconvolution, 
mitochondrial, ribosomal, X, and Y transcripts were excluded. Each of snRNA-seq and CITE-
seq data sets was used as reference in turn. N cells per spot was 12 and detection_alpha=20. 
Training max epochs=1000 for references and =30000 for spatial data. Deconvolution, NMF, 
and cell type-specific gene expression were otherwise calculated using recommended/default 
settings.  
 
Top spatially variable genes  
 
Top spatially variable genes were calculated for each stRNA-seq sample in Seurat v4 using 
the mark-variogram method and defaults otherwise[32].  
 
Bulk transcriptomic data deconvolution  
 
Bulk data deconvolution was performed with granulator v1.1.0 using defaults[60]. Dtangle 
results shown are the results from using defaults within granulator, subsequently scaled to 
total composition of one for each sample. Statistical analysis comparing subpopulations was 
performed using the ggstatsplot v0.9.4.900 package and otherwise as described in the 
text[56].  
 
Clinical data analysis 
 
Bergthold et al.[10] and CPTAC[59] bulk transcriptomic data was filtered for those with 
annotation of outcomes (event free survival in particular). Kaplan-Meier curves were 
calculated survfit from survival package v3.4.0[76] and plotted with log-rank p-values using 
ggsurvplot from the survminer library v0.4.9[2]. Correlograms of available clinical annotations 
were created by calculation of bias-corrected Cramer's V for nominal vs. nominal variables, 
Spearman for numeric vs. numeric variables, and ANOVA for nominal vs. numeric variables. 
Multi-gene signature z-scores were calculated by multiplying n gene z-scores and taking the 
nth root. Multi-gene Mann Whitney U-test scores were calculated using UCell[3]. Prognostic 
models were developed by supervised machine learning in mlr3 using mlr3proba[41, 71]. 
Bergthold et al. relative-count expression combined with clinical annotations was subjected to 
importance scoring using surv.rfsrc learner, the top 2.5% features were selected, and 
surv.aorsf learner selected with subsequent sequential feature reduction and learner 
algorithm hyperparameterization yielding tuned model using a 14-feature signature (resection 
status combined with 13 transcripts: UBE2M, ELAVL1, FRY, IGFBP4, STX4, PSMC6, MTX2, 
NFE2L3, C1QB, ELANE, SMARCD2, ZNF117, and ABL1). Surv.aorsf final parameters were 
n_tree=10000, n_split=5, n_retry=24, mtry_ratio=0.8111, control_type=cph, and 
split_min_stat=11.2. The model was validated on CPTAC FPKM expression combined with 
clinical annotations. 
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Figure 1: Ganglioglioma single nucleus RNA-seq. 
(A) UMAP plot of SCTransformed data from 34,907 nuclei, colored by Seurat cluster. 
(B) Feature plots of log1p[RNA] of select cell typing markers, P2RY12 (microglia), CD3D (T 
lymphocyte), VWF (endothelial), RBFOX3 (pan-neuron), AQP4 (astrocyte), GPR17 (oligodendrocyte 
precursor cell, OPC), CNP (oligodendrocyte), and CD34 (endothelial and stem cell). Colored from 0 
(grey), to maximum log1p for the transcript plotted (black), via yellow, then orange, then red. 
(C) Heatmap of Seurat label transfer prediction scores (from 0 to 1) for ganglioglioma nuclei queried 
against developing brain (Nowakowski et al.)  reference atlas with query nuclei as columns and 
reference annotations as rows. Note cluster colors in legend should be the same as cluster colors 
throughout. 
EN-V1-1=early born deep layer/subplate excitatory neuron V1;
OPC=oligodendrocyte precursor cell; 
vRG=ventricular radial glia;
RG-div2=dividing radial glia (S-phase);
oRG=outer radial glia;
IN-CTX-CGE1 or 2=CGE/LGE-derived inhibitory neurons;
U1, U2, U3, and U4= unknown 1, 2, 3, and 4;
glyc=glycolysis;
nEN-late=newborn excitatory neuron - late born;
nEN-early1 or 2=newborn excitatory neuron - early born;
IPC-nEN1 , 2, or 3=intermediate progenitor cells excitatory neuron-like;
EN-PFC1=early born deep layer/subplate excitatory neuron prefrontal cortex;
tRG=truncated radial glia;
IPC-div1=dividing intermediate progenitor cells radial glia-like;
MGE-RG1=medial ganglionic eminence radial glia 1;
IN-STR=striatal neurons;
RG-div1=dividing radial glia (G2/M-phase);
IPC-div2=intermediate progenitor cells radial glia-like;
MGE-IPC1, 2, or 3=medial ganglionic eminence progenitors;
nIN1, 2, 3, 4, or 5=medial ganglionic eminence newborn neurons;
EN-PFC2 or 3=early and late born excitatory neuron prefrontal cortex;
EN-V1-2=early and late born excitatory neuron V1;
MGE-div=dividing medial ganglionic eminence progenitors;
IN-CTX-MGE2=medial ganglionic eminence-derived Ctx inhibitory neuron, cortical plate-enriched;
IN-CTX-MGE1=medial ganglionic eminence-derived Ctx inhibitory neuron, germinal zone enriched;
EN-V1-3=excitatory neuron V1 - late born;
RG-early=early radial glia;
MGE-RG2=medial ganglionic eminence radial glia 2.
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Figure 2: Ganglioglioma neoplastic cellular hierarchy. 
(A) Violin plots of neoplastic cell expression (log1p[RNA], base 2) of individual neuroectodermal 
markers by cluster (left) or by CD34 status (right). 
(B) Feature plot of ganglioglioma neoplastic tumor 1, 4, and 5 nuclei CellRank/CytoTRACE 
pseudotime (tumor 3 nuclei excluded due to low complexity which resulted in aberrantly high 
calculated pseudotime for tumor 3 nuclei). 
(C-D) Violin plots of CytoTRACE pseudotime by ganglioglioma cluster (C) or CD34 status (D). 
(E) Random walk of earliest pseudotime cells (black dots) via CellRank/CytoTRACE pseudotime to 
predicted terminal states (yellow dots). 
(F-H) Differentiation potency was also inferred via SCENT signaling entropy rate (SR) for 
ganglioglioma neoplastic nuclei. Feature and violin plots of SR shown analogous to B-D above for 
CytoTRACE pseudotime. 
(I) Signaling entropy rate versus CytoTRACE pseudotime for ganglioglioma neoplastic nuclei 
(except tumor 3), colored by CD34 status (CD34+ in blue, CD34- gray). Gray line represents linear 
least-squares fit to (all of the neoplastic) data, with gray shading representing the 95% confidence 
interval. 
(J-L) Neoplastic cell scVelo RNA velocity-derived pseudotimes by dynamical (J), stochastic (K), and 
steady state (L) modes. 
(M) RNA velocity steady state pseudotime vs CytoTRACE pseudotime, colored by CD34 status 
(CD34+ in blue, CD34- gray). Gray line represents linear least-squares fit to (all of the neoplastic) 
data, with gray shading representing the 95% confidence interval. 
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Figure 3: Ganglioglioma 
neoplastic cell 
communications of interest 
by snRNA-seq evaluated 
with CellChat. 
(A) Significant PTN-
PTPRZ1 interaction as 
nominated by CellChat with 
results shown as hierarchy 
plots. Line thickness 
reflects strength of 
observed interaction. 
Interactions targeting 
neoplastic cells on the left 
plot and interactions 
targeting stromal cells on 
the right plot. Note that 
within each plot, neoplastic 
cluster sources are on the 
left and stromal cluster 
sources are on the right. 
Neoplastic targets are in 
the same order as 
neoplastic sources in the 
left plot, and stromal targets 
are in the same order as 
stromal sources in the right 
plot. 
(B-C) Analogous to (A) 
except for FGF1-FGFR1 (B) 
and PGFA-PDGFRB (C).
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Figure 4: Ganglioglioma snRNA-seq gene set enrichment analysis.
(A) Dotplots of top 10 (or fewer if Bonferroni-adjusted p-value>0.05) most activated or suppressed 
GO pathways when comparing neoplastic-appearing cells as a whole to normal-appearing neural 
cells. Bonferroni-adjusted-p-value shown as well as gene count in each pathway. 
(B) Dotplots of top 10 (or fewer if Bonferroni-adjusted p-value>0.05) most activated or suppressed 
GO pathways when comparing CD34+ neoplastic-appearing cells as a whole to CD34- neoplastic-
appearing cells. Bonferroni-adjusted-p-value shown as well as gene count in each pathway.
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A B Figure 5: 
Ganglioglioma 
significant 
transcription factors. 
(A) Left: Scatterplots 
of PAX6 cluster-based 
SCENIC AUC and 
transcription factor 
expression vs 
CytoTRACE 
pseudotime or SCENT 
signaling entropy rate 
(SR) with data colored 
by cluster (legend to 
the topright of the 
figure). Loess best fit 
shown as a black 
curve; gray shading 
for the 95% 
confidence interval. 
Right: CD34 status-
based SCENIC AUC 
and transcription 
factor expression vs 
CytoTRACE 
pseudotime or SCENT 
signaling entropy rate 
(SR) with data colored 
by CD34 status 
(CD34+ blue, CD34- 
gray). Loess best fit 
shown as a black 
curve; gray shading 
for the 95% 
confidence interval. 
(B) Analogous results 
to (A) are shown for 
SOX2 (cluster-based 
results only due to 
CD34-based regulon 
not meeting filters).  
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E

Figure 6: Ganglioglioma-associated myeloid cells. 
(A) Myeloid supercluster feature plots of RNA concentrations (log1p, base 2) for key general myeloid 
(PTPRC, ITGAM, CD14), microglia (P2RY12, TYROBP, SALL1, SPI1), macrophage (CD44, 
SIGLEC1), classical proinflammatory (IL1A, TNF, CD40; no expression for IL6, so not shown), anti-
inflammatory (IL10, TGFB1), tissue reparative M2 (CD163, MSR1, MRC1, CD68), and M1 
proinflammatory (TLR2, CD86, HLA-DRA, NOS2) markers as well as C1QB and SPP1. 
(B) Microglia feature plot of cellular hierarchy by CellRank/CytoTRACE pseudotime. 
(C) Heatmap of microglia expression of transcripts encoding lymphocyte stimulatory and inhibitory 
ligands of interest a priori. 
(D) Hierarchy plots of CellChat results showing significant involvement of microglia in TGFB and CSF 
pathways. Lines weighted by interaction significance. 
(E) Most (top 10 or fewer if Bonferroni-adjusted-p-value>0.05) activated or suppressed Wikipathways 
compared to the bulk ganglioglioma population for each of the microglial clusters. 
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Figure 7: Ganglioglioma-infiltrating lymphocytes. 
(A) Lymphocyte feature plots of RNA concentrations for key general T lymphocyte (PTPRC, CD2, 
CD3 (CD3E, CD247)), T helper (CD4), cytotoxic T lymphocyte (CD8 (CD8A and CD8B), GZMA, 
PRF1), and regulatory T (IL2RA, FOXP3) markers. 
(B) Heatmap of lymphocyte RNA concentrations (log1p, base 2) for important markers of cytotoxic T 
lymphocyte state. 
(C) Heatmap of ganglioglioma cell expression of a priori important T cell modulating ligands. 
(D) Most (top 10 or fewer if Bonferroni-adjusted-p-value>0.05) activated or suppressed GO pathways 
for lymphocyte clusters. 
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Figure 8: Ganglioglioma spatial transcriptomics 
shown for two samples from tumor 1 and tumor 4.
(A-B) Spatial feature plots of final clusters for tumor 
1 (A) and tumor 4 (B).  Note ‘U’ in the final cluster 
name is used to denote union of multiple Space 
Ranger-generated graph-based (kNN) clusters. 
(C) GO term enrichment for select tumor 1 clusters. 
(D-E) Cell type proportions per spot as determined 
by cell2location with snRNA-seq as reference for 
tumor 1 (D) and tumor 4 (E). OPC=oligodendrocyte 
precursor cell. VLMC=vascular leptomeningeal cell. 
(F) Tumor 1 cell2location-calculated neuroectoderm 
neural precursor cell-like cell abundance per spot. 
(G) Analogous to (F) but for tumor 4.
(H-J) Inverse correlation of neuroectoderm neural 
precursor-like cell proportion and that of vascular 
(H), microglial (I), and lymphoid (J) cells, shown for 
tumor 1 spot cell proportions calculated by 
cell2location with snRNA-seq clusters as reference. 
Points and curves are colored according to the cell 
type whose proportion is being compared to the 
proportion of neuroectoderm neural precursor-like 
cells. Curves (outlined in black to enhance visibility) 
represent non-linear (exponential) least-squares fit 
for each reference cell type.
(K) Overall (left) and cell type-specific (right) 
expression of neuroectoderm neural precursor cell-
like cell markers as well as important transcription 
factors and ligand-receptor pairs based on 
snRNA/CITE-seq analysis.
(L) Feature plots of log1p (base 2) [RNA]  for 
examples of top spatially-variable features from 
tumor 1, as determined by mark-variogram method 
in Seurat. 
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Figure 9: Pediatric low grade glioma bulk transcriptomic data deconvolution in light of snRNA/CITE-
seq results.
(A) CPTAC pediatric low grade glioma and ganglioglioma bulk RNA-seq deconvolution example 
using dtangle method with snRNA-seq data cell type reference. 
(B) Bergthold et al. low grade glioma bulk RNA-seq deconvolution analogous to (A).
(C) Violin plots with CPTAC tumor OPC-like, mixed neuron, and neuroectoderm-like cell composition, 
by diagnosis. Medians marked with red dots and labeled. Statistical comparisons by Mann Whitney 
with p-values shown.
(D) Analogous to (C) for Bergthold et al. tumors except for statistical testing, Kruskal−Wallis was 
used initially, followed by Dunn test with Bonferroni adjustment as needed. 
OPC=oligodendrocyte precursor cell, DA=diffuse astrocytoma, GG=ganglioglioma, 
ODG=oligodendroglioma, DNT=dysplastic neuroepithelial tumor, NOS or LGG=low-grade glioma, not 
otherwise specified. PA=pilocytic astrocytoma.
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Figure 10: Low grade glioma outcomes analysis. 
(A-B) Kaplan-Meier EFS (95% CI shaded, dotted line for median) for Bergthold et al. patients overall 
(A) and by resection status (B). 
(C) Kaplan-Meier EFS (95% CI shaded, dotted line for median) for Bergthold et al. patients by UCell 
score quartile for the gene signature of CD34, SOX2, CD99, and CTSC. 
(D) Forest plot of COXPH EFS HR for Bergthold et al. patients with continuous variables kept 
continuous. Includes HR for Z-score for the gene signature of CD34, SOX2, CD99, and CTSC.
EFS=event-free survival, NR=none reported, GTR=gross total resection, NTR=near total resection, 
G/NTR=gross or near total resection, STR=subtotal resection, WT=wild-type. DA=diffuse 
astrocytoma, GG=ganglioglioma, ODG=oligodendroglioma, DNT=dysplastic neuroepithelial tumor, 
NOS or LGG=low-grade glioma, not otherwise specified. PA=pilocytic astrocytoma.
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