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Abstract 107 

Current whole-brain models are generally tailored to the modelling of a particular modality of data (e.g., 108 

fMRI or MEG/EEG). Although different imaging modalities reflect different aspects of neural activity, we 109 

hypothesise that this activity arises from common network dynamics. Building on the universal principles of 110 

self-organising delay-coupled nonlinear systems, we aim to link distinct electromagnetic and metabolic 111 

features of brain activity to the dynamics on the brain’s macroscopic structural connectome.  112 

To jointly predict dynamical and functional connectivity features of distinct signal modalities, we consider 113 

two large-scale models generating local short-lived 40 Hz oscillations with various degrees of realism - 114 

namely Stuart Landau (SL) and Wilson and Cowan (WC) models. To this end, we measure features of 115 

functional connectivity and metastable oscillatory modes (MOMs) in fMRI and MEG signals - and compare 116 

them against simulated data.  117 

We show that both models can represent MEG functional connectivity (FC) and functional connectivity 118 

dynamics (FCD) to a comparable degree, by varying global coupling and mean conduction time delay. For 119 

both models, the omission of delays dramatically decreased the performance. For fMRI, the SL model 120 

performed worse for FCD, highlighting the importance of balanced dynamics for the emergence of 121 

spatiotemporal patterns of ultra-slow dynamics. Notably, optimal working points varied across modalities 122 

and no model was able to achieve a correlation with empirical FC higher than 0.45 across modalities for the 123 

same set of parameters. Nonetheless, both displayed the emergence of FC patterns beyond the anatomical 124 

framework. Finally, we show that both models can generate MOMs with empirical-like properties. 125 

Our results demonstrate the emergence of static and dynamic properties of neural activity at different 126 

timescales from networks of delay-coupled oscillators at 40 Hz. Given the higher dependence of simulated 127 

FC on the underlying structural connectivity, we suggest that mesoscale heterogeneities in neural circuitry 128 

may be critical for the emergence of parallel cross-modal functional networks and should be accounted for 129 

in future modelling endeavours.  130 
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1 Introduction 131 

The fundamental concepts behind large scale modelling were established as early as 1940s (McCulloch & 132 

Pitts, 1943; Shimbel & Rapoport, 1948; Uttley & Matthews, 1955). However, it was only with the advance of 133 

technology and neuroimaging techniques — which ensured an unprecedented computational power and 134 

spatiotemporal resolution of data — that a procedural framework could be established (Coombes, 2005; 135 

Deco et al., 2008; Honey et al., 2007).  Large scale modelling aims at finding a balance between complexity 136 

and realism, with the goal of explaining data features in a parsimonious and accurate manner. It furnishes a 137 

biophysical approach to investigate how the interaction between structural connectivity and intrinsic 138 

dynamics gives rise to specific spatiotemporal oscillatory patterns.  139 

To date, inter-regional connectivity patterns and anatomically defined brain regions represent one of the 140 

most accurate approximations of the structural organisation — the so called ‘connectome’: long-range 141 

interactions between distant neuronal ensembles are mediated by long axonal projections that can be 142 

registered in-vivo and non-invasively using diffusion MRI (Conturo et al., 1999; Hagmann et al., 2008; Sporns 143 

et al., 2005). The need for such comprehensive mapping has motivated many researchers to make the 144 

structural description more and more detailed, with the aim of describing brain structure on multiple levels 145 

and across different species (Alexander et al., 2007; Matthew F. Glasser et al., 2016; Hagmann et al., 2008; 146 

Ranzenberger & Snyder, 2022; Zalesky et al., 2010). This detailed structural framework will serve to delineate 147 

the space of possibilities in which nodes and their interaction can be modelled as a network. 148 

One of the main questions – in the study of brain oscillations — is to ascertain the relationship between 149 

synchronisation mechanisms and collective behaviour and how they depend on coupling strength. 150 

Computational models of dynamical systems - such as the models of coupled phase (Kuramoto, 1975), limit 151 

cycle (Stuart Landau (Sreenivasan et al., 1987)), and chaotic (Rössler, 1976) oscillators, have been 152 

increasingly employed to study the evolving network dynamics emerging from a structured framework 153 

(Cabral et al., 2022; Cabral et al., 2011; Cofré et al., 2020; Deco et al., 2008). In 1975, Kuramoto presented a 154 

reduced-order model which characterises the within limit-cycle behaviour of nodes, representing the activity 155 

of each oscillator (neuron/neural column/cortical area) in terms of its circular phase (Bick et al., 2020; 156 

Kuramoto, 1975; Park & Lefebvre, 2020). Moving beyond the limit cycle, in 1987, Andronov and colleagues 157 

inspired the implementation of models which include both phase and amplitude modulation (A. et al., 1987). 158 

Among those, the complex Stuart-Landau equation has been used to investigate the appearance of an 159 

oscillatory mean field from a noisy interacting unit (Pikovsky et al., 2003; Pikovsky & Rosenblum, 2015).  160 
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Still governed by the same principles — but motivated by neurobiological realism on a different scale — 161 

neural mass models (NMMs) have provided useful insights into meso- and macroscopic dynamics of 162 

populations of interacting excitatory and inhibitory neurons (Beurle & Matthews, 1956; Wilson & Cowan, 163 

1972). In NMMs, each brain region is no longer modelled as a single oscillator (with its own intrinsic 164 

frequency), but as a population of neurons whose interaction explains oscillatory dynamics. In both cases, 165 

by tuning the model parameters, the system dynamics undergo a phase transition from a noisy to an ordered 166 

state. By coupling an ensemble of oscillators/NMMs, the node dynamics can be modelled by the local 167 

node/population activity plus the interaction with other regions and noisy fluctuations (Breakspear, 2017). 168 

Extensive research has shown that cortical networks maintain a balance between excitatory and inhibitory 169 

activity (Dehghani et al., 2016; Froemke et al., 2007; Sprekeler, 2017; Tao & Poo, 2005; Xue et al., 2014), 170 

proven to be beneficial for the cortical function (Litwin-Kumar & Doiron, 2014; Mariño et al., 2005; Páscoa 171 

Dos Santos & Verschure, 2021; Rubin et al., 2017; van Vreeswijk & Sompolinsky, 1996; Vogels et al., 2011; 172 

Wehr & Zador, 2003). Importantly, such balance is maintained through homeostatic plasticity mechanisms 173 

that scale the strength of synapses onto pyramidal neurons to maintain firing rates stable (Ma et al., 2019; 174 

Turrigiano, 2011; Turrigiano et al., 1998; Vogels et al., 2011). Furthermore, over the last two decades, 175 

modelling studies have highlighted the relevance of incorporating excitatory-inhibitory balance (E/I) to 176 

understand the mechanisms that underwrite this balance. One hypothesis is that synaptic plasticity at 177 

inhibitory synapses (ISP) plays a key role in balancing E/I inputs and contributes to stabilising the firing rates 178 

every time the E/I balance is disrupted by perturbations at the level of incoming excitation. In the context of 179 

connectome-based models, the implementation of ISP prevents certain populations of neurons from 180 

dominating network behaviour and dynamically adapts synaptic weights to regulate the E/I balance (Landau 181 

et al., 2016; Litwin-Kumar & Doiron, 2012). The importance of ISP has been validated on both models of MEG 182 

(Abeysuriya et al., 2018) and fMRI (Hellyer et al., 2016), showing its ability in regulating local activity on 183 

different timescales and generating more realistic functional patterns.  184 

Large-scale models have shown that they can not only generate an accurate representation of empirical data 185 

but also to elucidate structural-functional, and subsequent static-dynamic, relationships. Both structural and 186 

functional neuroimaging allow us to model statistical or physical connections in the brain. While structural 187 

connectivity refers to the anatomical framework by means of tracing fibre tracts, functional connectivity (FC) 188 

is defined as the statistical interaction between disparate brain regions (Friston, 1994). The non-trivial 189 

relationship between SC and FC has been increasingly addressed with different modelling approaches, from 190 

biophysical (Breakspear, 2017; Deco et al., 2009; Deco et al., 2014; Honey et al., 2007; Pinotsis et al., 2012; 191 

Sanz Leon et al., 2013) to statistical, which focus on low-dimensional network diffusion processes or random 192 
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walks (i.e., (Raj et al., 2020), see (Raj et al., 2022) for a comprehensive review). They share the notion of 193 

high-order neural phenomena going beyond the local geometrical clustering but also illustrate how the 194 

interplay between local dynamics and the large-scale anatomical framework gives rise to resting-state brain 195 

activity (Cabral et al., 2011; Deco, Jirsa, et al., 2013; Deco et al., 2014).   196 

As a proof of concept, strong functional interactions can also exist in absence of structural connections 197 

(Hermundstad et al., 2014; Honey et al., 2010) and their spatiotemporal correlation is transiently and 198 

dynamically organised (Friston, 1997; Hutchison et al., 2013). Despite these discrepancies, FC is undoubtedly 199 

constrained by the anatomical framework. Indeed, on slow time scales FC has been found to indirectly reflect 200 

the underlying SC (Honey et al., 2010). In the context of modelling, the FC strongly resembles SC when the 201 

system is close to a phase transition and the agreement is best approximated near a bifurcation. This 202 

suggests that the optimal working point, linking function to structure, is at the edge of criticality (Cocchi et 203 

al., 2017). Although this type of investigation has long been established in the context of fMRI, it has only 204 

recently been applied to the field of electromagnetic data (MEG/EEG) (Cabral et al., 2022; Deco, Cabral, et 205 

al., 2017; Roberts et al., 2019). 206 

In addition, the dynamic aspect of functional connectivity is becoming increasingly important as the 207 

correlation structure shows a rich and dynamic reconfiguration over time (Deco, Kringelbach, et al., 2017; 208 

Hutchison et al., 2013) and its alteration reflects cognitive or neurological dysfunction (Bonkhoff et al., 2021; 209 

Filippi et al., 2019). Today, large-scale models exist that can explain the possible mechanisms behind the 210 

transient motifs of metabolic signals (G. Deco et al., 2021; Deco, Kringelbach, et al., 2017; Vohryzek et al., 211 

2020), but only a few attempts have been made in the context of electrophysiological data (Cabral et al., 212 

2022; Cabral et al., 2014; Deco, Cabral, et al., 2017). Phenomenological models with dynamics on structure 213 

allow the behaviour of different models to be compared against empirical observables (Friston & Dolan, 214 

2010). Although different models have attempted to elucidate the mechanisms underlying each of the 215 

modalities (see (Glomb et al., 2022) for EEG, (Abeysuriya et al., 2018; Hadida et al., 2018; Raj et al., 2020; 216 

Tewarie et al., 2019) for MEG, (Cabral et al., 2022; Cabral et al., 2011; G. Deco et al., 2021; Honey et al., 2007; 217 

Roberts et al., 2019; Vohryzek et al., 2020) for fMRI, to date, no large-scale modelling approach has 218 

attempted to characterise features across modalities.  219 

In this work, we apply a multi-modal and multi-model approach to recover the underlying neurodynamical 220 

genesis of neuroimaging signals. We aim to contribute to the broad repertoire of generative models by 221 

proposing a comparative analysis between two large-scale models, identifying advantages and limitations, 222 

and testing their applicability in disclosing the network properties of haemodynamic and electrophysiological 223 
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brain activity. This paper starts with a brief review of the theoretical background for generative modelling of 224 

this sort; followed by a description of complementary modelling procedures applied to empirical data. These 225 

analyses provide the basis for a comparative evaluation of different modelling strategies and enable us to 226 

identify their key functional forms.227 
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2 Methods 228 

2.1 Phase-amplitude model: Stuart-Landau  229 

The Stuart-Landau (SL) equation (Equation 1) is the canonical form for describing the behaviour of a 230 

nonlinear oscillating system near an Andronov-Hopf bifurcation (A. et al., 1987; Cocchi et al., 2017). It 231 

describes systems that have a static fixed point but respond to perturbation (i.e., noise, impulse, specific 232 

waveform) with an oscillation, which may be damped or self-sustained depending on the operating point of 233 

the system with respect to the bifurcation (Supplementary Material (SM), Section I, Figure S1).  234 

Our analysis is based on a system of N=78 SL oscillators coupled in the connectome, considering both the 235 

connectivity strength, 𝐶𝑛𝑝, and the conduction delays, 𝜏𝑛𝑝, between each pair of brain areas 𝑛 and 𝑝. The 236 

conduction delays are defined in proportion to the fibre lengths between brain areas, assuming a 237 

homogenous conduction speed 𝑣, such that 𝜏𝑛𝑝 = 𝐷𝑛𝑝/𝑣, where 𝐷𝑛𝑝 is the real fibre length detected 238 

between brain areas 𝑛 and 𝑝. To simulate how the activity in node 𝑛 is affected by the behaviour of all other 239 

nodes 𝑝 (𝑝 ∈ 𝑁 ∧ 𝑝 ≠ 𝑛), we describe the interaction between nodes in the form:  240 

 
𝑑𝑍𝑛

𝑑𝑡
= 𝑍𝑛[𝑎 + 𝑖𝜔 − |𝑍𝑛

2|] + 𝐾 ∑ 𝐶𝑛𝑝[𝑍𝑝(𝑡 − 𝜏𝑛𝑝) − 𝑍𝑛(𝑡)] + 𝛽𝜂1 + 𝑖𝛽𝜂2

𝑁

𝑝≠𝑛

 (1) 

where the complex variable 𝑍𝑛(𝑡) describes the state of the 𝑛𝑡ℎ oscillator at time t.  241 

The first term in Equation 1 describes the intrinsic dynamics of each unit that is the natural excitability of 242 

neuronal assemblies, where 𝜔 = 2𝜋 ∗ 𝑓𝑓 is the angular frequency, with 𝑓𝑓 as the fundamental frequency. As 243 

in (Cabral et al., 2022), we set all nodes with identical natural frequency 𝜔0 = 2𝜋 ∗ 40𝐻𝑧, representing the 244 

ability of a neural mass to engage in gamma-frequency oscillations.  245 

The parameter 𝑎 determines the position of each unit with respect to the limit cycle. For 𝑎 > 0,  a stable 246 

limit cycle appears via a superciritical Hopf bifurcation, while when 𝑎 < 0  there is only a stable fixed point 247 

at the origin 𝑍𝑛 = 0, so the bifurcation point is at 𝑎 = 0. Importantly, if 𝑎 is negative but sufficiently close to 248 

the bifurcation, the system is still weakly attracted to the limit cycle and damped oscillations emerge in 249 

response to external input, with a decay time scaled by 𝑎. 250 
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The second term represents the total input received from other brain areas, scaled by parameter 𝐾, which 251 

sets the strength of all network interactions with respect to the intrinsic node dynamics. Because we focus 252 

on the nonlinear phenomena introduced by time delays, we model the node-to-node interactions using a 253 

particular linear diffusive coupling, as the simplest approximation of the general coupling function, 254 

considering delayed interactions.  The last term of Equation 1 represents the real and imaginary part of 255 

uncorrelated white noise, where 𝜂1 and 𝜂2 are independently drawn from a Gaussian distribution with mean 256 

zero and standard deviation  𝛽 = 0.001. For a detailed exploration and dynamical analysis of SL model see 257 

(Cabral et al., 2022; Choe et al., 2010; Powanwe & Longtin, 2021). 258 

2.2 Neural mass model 259 

Neural mass-models are mean-field approaches that function under the assumption that the activity of a 260 

discrete population of neurons, or neural mass, can be abstracted to its mean, or any other statistic of 261 

interest, at a given time (Breakspear, 2017). In our work, to simulate activity of parcellated cortical regions, 262 

we make use of one of such approaches: the Wilson-Cowan model of coupled excitatory and inhibitory 263 

populations (Wilson & Cowan, 1972). The Wilson-Cowan model describes the firing-rate dynamics of two 264 

recurrently connected populations of excitatory (𝑟𝐸) and inhibitory (𝑟𝐼) neurons, being, for this reason, ideal 265 

to represent local excitatory-inhibitory balance (Abeysuriya et al., 2018). The dynamics of these two variables 266 

can then be described as: 267 

 268 

 𝜏𝐸

𝑑𝑟𝑛
𝐸(𝑡)

𝑑𝑡
= −𝑟𝑛

𝐸(𝑡) + 𝐹 [𝑐𝐸𝐸𝑟𝑛
𝐸(𝑡) − 𝑐𝐸𝐼,𝑛(𝑡)𝑟𝑛

𝐼(𝑡) + 𝐾 ∑ 𝐶𝑛𝑝𝑟𝑛
𝐸(𝑡 − 𝜏𝑛𝑝)

𝑁

𝑝=1

+ 𝜉(𝑡) + 𝑃] (2) 

 𝜏𝐼

𝑑𝑟𝑛
𝐼(𝑡)

𝑑𝑡
= −𝑟𝑛

𝐼(𝑡) + 𝐹 [𝑐𝐼𝐸𝑟𝑛
𝐸(𝑡) + 𝜉(𝑡)] 

(3) 

 269 

where 𝜏𝐸 and 𝜏𝐼 represent the characteristic time constants of the excitatory and inhibitory populations, 270 

respectively, 𝑐𝑋𝑌 describes the coupling from population y to x (e.g., 𝑐𝐸𝐼 represents the inhibitory to 271 

excitatory coupling) and 𝐾 is a scaling factor for structural connectivity, hereby referred to as global coupling. 272 

𝐶𝑛𝑝 represents the structural connection (through white-matter tracts) between nodes 𝑛 and 𝑝 and is based 273 

in human structural connectivity data derived from diffusion tensor imaging (see Structural Connectivity, 274 
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Methods). In turn, 𝜏𝑛𝑝, describes the conduction delay between nodes 𝑛 and 𝑝 and is calculated by dividing 275 

empirically derived tract lengths by a given conduction speed. Notably, these long-range connections are 276 

only implemented between local excitatory populations, in accordance with the evidence that long-range 277 

connections in the human cortex are mostly excitatory (Tremblay et al., 2016) and in line with the state-of-278 

the-art in large-scale modelling (Abeysuriya et al., 2018). As in Abeysuriya, Hadida et al., we add a parameter 279 

𝑃 to the description of 𝑟𝐸, regulating the excitability of excitatory populations (SM, Section I, Figure S1). 280 

To describe the response of neural masses to external input, we use the function 𝐹(𝑥). Shortly, 𝐹(𝑥) can be 281 

roughly equated to the F-I curve of a given population of neurons, and is described as: 282 

 283 

 

𝐹(𝑥) =  
1

1 + 𝑒−
𝑥−𝜇

𝜎

, 

 

(4) 

where 𝜇 represents the input level at which the neural mass reaches half of its maximum response and can 284 

be understood as regulating its excitability, and 𝜎 is the approximate slope of the function at that point, 285 

being equated to the sensitivity of the neural mass to external input. In addition, both excitatory and 286 

inhibitory populations receive uncorrelated additive noise, drawn at each time point from a Gaussian 287 

distribution with mean 0 and standard deviation 0.01. For the chosen parameters describing local 288 

interactions (𝑐𝑋𝑌) ((Abeysuriya et al., 2018), Table 1), the uncoupled Wilson-Cowan node behaves as a Hopf-289 

Bifurcation between a low-activity steady-state and a limit-cycle (Wilson & Cowan, 1972). Therefore, if the 290 

system is close to the bifurcation point, it will transiently exhibit noise-driven oscillations. While the 291 

bifurcation point is determined by 
𝜏𝐸

𝜏𝐼
, the intrinsic frequency of oscillation depends, instead, on 𝜏𝐸𝜏𝐼. Since 292 

cortical networks are thought to generate intrinsic gamma oscillations through the recurrent interaction 293 

between pyramidal cells and fast-spiking inhibitory interneurons (Buzsáki, 2006), we chose 𝜏𝐸 and 𝜏𝐼 so that 294 

the characteristic frequency of isolated neural masses is within the gamma range (~40 Hz) (see SM, Section 295 

I, Figure S2). In addition, to control the level of input necessary for the phase transition between stable 296 

activity and the limit cycle to occur, we regulate the excitability of the neural masses through the parameters 297 

𝜇 and 𝑃. Here, we chose parameters so that an isolated neural mass, with no external input, is in the 298 
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subcritical regime but sufficiently close to the critical bifurcation point, so that damped oscillations emerge 299 

when receiving input from other nodes. 300 

2.3 Homeostatic plasticity 301 

To study the effect of balancing excitation and inhibition at the level of single Wilson-Cowan nodes, we 302 

implemented a homeostatic mechanism known as synaptic scaling of inhibitory synapses (Maffei & 303 

Turrigiano, 2008; Vogels et al., 2011). This type of approach has been previously implemented in large-scale 304 

models of the human cortex (Abeysuriya et al., 2018) and inhibitory synaptic scaling has been shown to play 305 

an essential role in cortical function and homeostasis (Ma et al., 2019). Therefore, we implemented 306 

homeostatic plasticity to adjust local inhibitory weights so that excitatory activity (𝑟𝐸) is corrected towards 307 

a given target firing rate (𝜌). Therefore, the dynamics of local inhibitory couplings 𝑐𝐸𝐼,𝑖 can be described by 308 

the following equation, following (Vogels et al., 2011): 309 

 𝜏ℎ𝑜𝑚𝑒𝑜

𝑑𝑐𝐸𝐼,𝑖

𝑑𝑡
= 𝑟𝑖

𝐼(𝑟𝑖
𝐸 − 𝜌),  

(5) 

where 𝜏ℎ𝑜𝑚𝑒𝑜 is the time constant of plasticity. In the cortex, the homeostatic mechanisms that are 310 

responsible for the maintenance of excitatory-inhibitory balance are known to operate in slow timescales, 311 

often hours to days (Turrigiano, 2011). However, to ensure the computational tractability of our simulations, 312 

we chose 𝜏ℎ𝑜𝑚𝑒𝑜 = 2.5𝑠. This choice is unlikely to affect our results significantly, since the influence of 313 

𝜏ℎ𝑜𝑚𝑒𝑜 in our system is in determining how quickly local inhibitory weights evolve towards their steady state. 314 

In fact, if homeostatic plasticity is sufficiently slow to be decoupled from fast dynamics of intrinsic 315 

oscillations, 𝑐𝐸𝐼 will reach nearly the same steady state, independently of the time constant (SM, Section I, 316 

Figure S3). We also ran simulations not considering homeostatic plasticity to pursue a comparative analysis 317 

(see SM, Section I, Figure S4).  318 
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2.4 Models Parameters  319 

Wilson-Cowan Stuart-Landau 

Parameter Value Description Parameter Value Description 

K [0.1, 14] Global coupling, scaling factor of 

structural connectivity 

K [4.0, 2000] Global coupling, scaling factor of 

structural connectivity 

Mean Delay [0, 15] Mean conduction delay across 

non-zero connections 

Mean Delay [0, 15] (ms) Mean conduction delay 

across non-zero connections 

𝜏𝐸 2.5 (ms) Time constant of excitatory 

population 

a -5 Bifurcation parameter 

𝜏𝐼 5 (ms) Time constant of inhibitory 

population 

𝜔 2𝜋*40 (radians) Intrinsic frequency of 

oscillation 

𝑐𝐸𝐸  3.5 Recurrent coupling of excitatory 

populations 

𝛽 0.001 Standard deviation of additive 

gaussian noise 

𝑐𝐼𝐸 3.75 Coupling from excitatory to 

inhibitory populations 

 

P 0.31 Adjusts excitability of excitatory 

population 

𝜇 1 Firing threshold of activation 

function F(x) 

𝜎 0.25 Sensitivity of activation function 

F(x) 

𝜏ℎ𝑜𝑚𝑒𝑜 2500 (ms) Time constant of 

homeostatic plasticity 

𝜌 0.22 target firing rate of homeostatic 

plasticity 

𝜉 N 

(0,0.01) 

Additive gaussian noise 

Table 1. Table of parameters, values and descriptions for the Wilson-Cowan and Stuart Landau model.  320 

2.5 Hemodynamic model  321 

To extract a blood-oxygenation-level-dependent (BOLD) signal equivalent from our simulations, we make 322 

use of a forward hemodynamic model (Friston et al., 2000), that incorporates the Balloon-Windkessel model 323 

(Friston et al., 2003). In short, hemodynamic models describe how population firing rates (a proxy for 324 
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neuronal activity) influence the vasculature, which in turn affects blood flow, inducing changes in blood 325 

vessel volume and deoxyhemoglobin content, which underlie BOLD signals.  In our work, we chose to use 326 

the activity from the excitatory populations (𝑟𝐸) only as the input of the Balloon-Windkessel model. This 327 

choice is unlikely to influence final results, given the similarity between 𝑟𝐸 and 𝑟𝐼 in the Wilson-Cowan model 328 

(SM, Section I, Figure S1). All of the parameters were taken from (Friston et al., 2003). In addition, we 329 

downsample simulated BOLD signals to a period of 0.72s to equate the sampling frequency of the empirical 330 

data used in this work (see fMRI, Methods). 331 

 332 

2.6 Model optimisation 333 

We performed model optimization by treating the global coupling (K) and mean delay (mean tract length 334 

divided by conduction velocity) as free parameters for both models. For the Wilson-Cowan model, we fixed 335 

the target firing rate (𝜌) of homeostatic plasticity at 0.22. We also ran simulations for different values of 𝜌 336 

(see SM, Section I, Figure S5). For both models, we performed a grid search over the mentioned free 337 

parameters, with 25 logarithmically spaced values of K and 16 values of mean delays in steps of 1ms. 338 

Parameter ranges can be consulted in Table 1. For the SL model, simulations with the two highest values of 339 

K explored led to instability and results are, therefore, not presented.  340 

For the WC simulations, due to the dynamics of homeostatic plasticity, there was a need to ensure that local 341 

inhibitory weights reached a stable or quasi-stable steady state before activity was recorded. Therefore, 342 

during simulations, we record 𝑐𝐸𝐼 weights every 10s, enough to capture their slow dynamics. We then 343 

monitor the evolution of 𝑐𝐸𝐼  and allow simulations to run for either 500 minutes of simulation time or until 344 

local weights converged to a steady state for all network nodes, evaluated via the condition described in 345 

supplementary material (SM, Section I, Figure S6). After ensuring that 𝑐𝐸𝐼 reached a steady state, we disable 346 

plasticity and record 20 minutes of model activity. Although the slow dynamics of E-I homeostasis prevent it 347 

from interacting with the fast dynamics of neural activity, we follow this procedure similarly to previous 348 

approaches (Abeysuriya et al., 2018; Hellyer et al., 2016). Regarding the SL model, we run and record 20 349 

minutes of simulation. We ran simulations with an integration time step of 0.2ms.  350 

For both models, after obtaining 20 minutes of simulations, we passed the simulated activity through a 351 

haemodynamic model to obtain a synthetic BOLD signal and remove the first and last 2.5s to avoid boundary 352 
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effects, thus obtaining 15 minutes of BOLD signal timeseries (Friston et al., 2000). We then stored the last 353 

50 seconds of simulated activity (downsampled to 250 Hz) as MEG signals. We compared simulated and 354 

empirical FC matrices (see Data and Model Analysis, Methods) through the correlation coefficient between 355 

their upper triangular parts, and FCD distributions, through the Kolmogorov-Smirnov (KS) distance between 356 

them (Lopes et al., 2007). To identify an optimal working point for each model and each measured modality 357 

(BOLD, MEG theta, MEG alpha and MEG beta – see below for details), we iterate over a range of thresholds 358 

for FC correlation (𝑐𝑐 ≥ 𝑡ℎ𝐹𝐶 ) and FCD KS distance (𝐾𝑆 ≤ 𝑡ℎ𝐹𝐶𝐷 )) and identify the maximum value of  359 

𝑡ℎ𝐹𝐶 − 𝑡ℎ𝐹𝐶𝐷  for which both conditions can be satisfied by at least one point in the parameter space (see 360 

SM, Section II, Figure S7). We then define our model’s working point, for each modality, as the combination 361 

of parameters that satisfies both thresholds. Since we primarily focus on the representation of relevant FC 362 

patterns, we impose 0.45 as the minimum 𝑡ℎ𝐹𝐶 . 363 

2.7 Data collection and processing 364 

2.7.1 Ethics statement 365 

All human data used in this study is from the public repository of the Human connectome Project (HCP) 366 

(https://www.humanconnectome.org), which is distributed in compliance with international ethical 367 

guidelines. 368 

2.7.2 Structural Connectivity  369 

The NxN matrices of structural connectivity, C, and distances, D, used in the brain network model were 370 

computed from diffusion spectrum and T2-weighted Magnetic Resonance Imaging (MRI) data obtained from 371 

32 healthy participants scanned at the Massachusetts General Hospital centre for the Human connectome 372 

Project (http://www.humanconnectome.org/).  373 

Briefly, the data were processed using a generalised q-sampling imaging algorithm implemented in DSI 374 

Studio (http://dsi-studio.labsolver.org).  A white-matter mask, derived from the segmentation of the T2-375 

weighted anatomical images, was used to co-register the images to the b0 image of the diffusion data using 376 

the SPM12 toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). In each participant, 200,000 377 

fibres were sampled within the white-matter mask. Fibres were transformed into Montreal Neurological 378 

Institute (MNI) space using Lead-DBS (Horn & Blankenburg, 2016) . 379 
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The connectivity matrix C was obtained by counting the number of fibres detected between each pair of 380 

N=78 brain areas defined in the Automated Anatomical Labelling (AAL) parcellation scheme. Similarly, the 381 

distance matrix D was obtained by computing the mean length of all fibres detected between each pair of 382 

N=78 cortical brain areas. 383 

2.7.3 fMRI 384 

Empirical fMRI data from healthy subjects was obtained from the public database of the Human Connectome 385 

Project (HCP), WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 386 

1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for 387 

Neuroscience Research, and by the McDonnell Center for Systems Neuroscience at Washington 388 

University(Van Essen et al., 2013). More specifically, this data was obtained from 99 unrelated subjects 389 

(mean age 29.5, 55% females). Each subject underwent four resting-state fMRI sessions of around 14.5 390 

minutes on a 3-T connectome Skyra scanner (Siemens) with the following parameters: TR = 0.72 s, echo time 391 

= 33.1 ms, field of view = 208x180mm, flip angle = 52º, multiband factor = 8, echo time = 33.1 with 2x2x2 392 

isotropic voxels with 72 slices and alternated LR/RL phase encoding. For further details, on the standard 393 

processing pipeline for HCP data, please consult (M. F. Glasser et al., 2016) and 394 

https://www.humanconnectome.org/study/hcp-young-adult/data-releases. In this work, we use the data 395 

from the first session of the first day of scanning only.  396 

We further parcellate voxel-based data into 90 anatomically segregated cortical and subcortical regions, 397 

excluding the cerebellum, using the Anatomic Automatic Labeling (AAL) atlas. Given that we focus on cortical 398 

dynamics, we exclude the 12 subcortical regions, and perform a voxel-wise average of BOLD signals 399 

associated with each of the remaining 78 cortical regions, reducing the size of our data to 78 areas x 1200 400 

TR timeseries.  401 

2.7.4 MEG  402 

Pre-processed sensor level MEG data, along with a defaced structural MRI and the appropriate affine 403 

transformation matrix mapping between the MRI and MEG spaces were downloaded from the HCP data 404 

repository (Wu-Minn HCP 1200 Subjects Data Release). Each of the 89 subjects underwent 6-minute resting 405 

state scans (where they were instructed to lie still and keep their eyes open), giving a total of 267 datasets. 406 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.19.520967doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.19.520967
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

 

Full details of the pre-processing steps performed by the HCP team can be found in the HCP manual 407 

(https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Re408 

ference_Manual.pdf).  409 

All processing steps were carried out in FieldTrip (Oostenveld et al., 2011) in MATLAB 2021b. The anatomical 410 

MRI was linearly transformed from the native MRI space to the MEG scanner space, before being segmented 411 

into grey matter, white matter, and cerebral spinal fluid. This segmentation informed the construction of a 412 

Nolte single shell head model (Nolte, 2003). A common template array of voxels (isotopically distributed on 413 

a grid with 8mm separation, confined to lie within the brain) was non-linearly aligned from MNI space to 414 

each of the individual subject’s anatomical images using SPM8’s “old normalise” function (Ashburner & 415 

Friston, 2005). This meant that there was a “standard” source model used in the pipeline, with one-to-one 416 

correspondence between sources across subjects.  417 

Nearest-neighbour interpolations between this template grid and the atlases that we used in this study were 418 

used, allowing us to parcellate voxels into anatomically defined brain regions. A volumetric lead field matrix 419 

was calculated for each of the voxel locations. We collapsed the rank of the lead field for each voxel from 420 

three to two by executing a singular value decomposition (SVD), thus eliminating any sensitivity to the 421 

weakly contributing radial component of the lead field (Ahlfors et al., 2010; Hämäläinen et al., 1993).  422 

The pre-processed sensor level MEG recordings were further band-pass filtered between 1 and 45Hz and 423 

downsampled to 250Hz. These data were used to construct a covariance matrix for the construction of 424 

linearly constrained minimum variance (LCMV) beamformer weights (Van Veen et al., 1997). This matrix was 425 

regularised by adding 1% of the average eigenvalue to the diagonal to improve numerical stability and boost 426 

the reconstruction accuracy of the estimated time series (Van Veen et al., 1997). At each voxel location, a 427 

separate SVD was run on the 3-dimensional vector time series to extract the optimal lead field orientation 428 

in order to maximise the SNR of beamformer weights (Sekihara et al., 2004), thus collapsing the 3 element 429 

timeseries to a single time series for each voxel. 430 
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2.8 Data and Model Analysis  431 

2.8.1 fMRI FC  432 

To compute functional connectivity (FC) from BOLD signals, both empirical and simulated, we calculate pair-433 

wise correlations between all individual timeseries from each of the 78 cortical areas of the AAL atlas, using 434 

the Pearson’s correlation coefficient. We then averaged FC over the 99 subject-specific correlation matrices 435 

to obtain a 78x78 empirical FC matrix, against which simulated FC matrices can be compared.  436 

 437 

2.8.2 MEG FC 438 

Upon obtaining estimates for the neural source currents, data were parcellated into nodes pertaining to 439 

each atlas. The first principal component was extracted from all voxels within each ROI. Data were then 440 

corrected for spurious correlations arising from source leakage between brain regions by means of 441 

symmetric orthogonalization (Colclough et al., 2015). After bandpass filtering the data, we took the analytical 442 

signal of the Hilbert envelope for all brain regions and derived whole brain functional connectivity networks 443 

by calculating the pair-wise Pearson correlation between each network node. Note that this was done on 444 

both the broadband and frequency-specific bands of activity. Finally, we calculated the average amplitude 445 

envelope FC matrix over all subjects and sessions. See SM, section IV, for further details on amplitude 446 

envelope correlation, MEG source leakage correction and beamforming methods.   447 

 448 

2.8.3 fMRI Functional Connectivity Dynamics 449 

While research has mostly focused of the static properties of FC, recent results show that functional 450 

connectivity exhibits complex spatiotemporal dynamics, with the transient reinstatement of connectivity 451 

states (Deco, Kringelbach, et al., 2017). Here, to evaluate functional connectivity dynamics (FCD), we make 452 

use of the method presented in (Abeysuriya et al., 2018; G. Deco et al., 2021; Deco, Kringelbach, et al., 2017). 453 

We first split data in NT windows of 80 samples (~1 minute) with 80% overlap and compute FC within each 454 

window following the method described in the previous section. Then, for all pairs of windows, we compute 455 

the Pearson’s correlation between the upper triangle of their respective FC matrices. We thereby obtain an 456 
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NT x NT matrix containing all pairwise correlations between the windowed FC matrices. We then concatenate 457 

the values in FCD matrices across subjects to obtain an empirical distribution, against which we compare 458 

FCD distributions from each simulation. 459 

2.8.4 MEG Functional Connectivity Dynamics 460 

To compute FCD from MEG signals we make use of a similar method to that described in the previous section, 461 

with minor changes, given the nature of MEG signals. First, we filter MEG data at three frequencies of 462 

interest (theta: 4-8 Hz, alpha: 8-13 Hz, beta: 13-30 Hz) and compute frequency-specific amplitude envelopes 463 

as described in the analysis section of the methods. Then, we split each time-series into windows of 500 464 

samples (2s), with 50% overlap.  While the appropriate window size for the calculation of FCD in MEG signals 465 

is not yet clear, partly due to the heterogeneity in timescales of the emergence of spatiotemporal MEG 466 

patterns, our chosen value is within the range previously used in literature (Liuzzi et al., 2019). Finally, we 467 

follow the procedure described for BOLD signals, for each frequency band. From the empirical MEG data, 468 

we then obtain frequency-specific distributions of FCD.  469 

 470 

2.8.5 Metastable Oscillatory Modes  471 

Previous results suggest that coupled oscillators with delayed interactions give rise to the emergence of 472 

metastable oscillatory modes (MOMs) (Cabral et al., 2022). These MOMs consist in transient moments of 473 

synchronization between clusters of nodes in a network at frequencies that are lower than the intrinsic 474 

frequency of oscillation of uncoupled nodes.  475 

To detect MOMs in both empirical and simulated fMRI and MEG data we first filter timeseries at the bands 476 

of interest (fMRI: 0.008-0.08 Hz, MEG theta: 4-8 Hz, MEG alpha: 8-13 Hz, MEG beta: 13-30 Hz). Then, we 477 

calculate the respective Hilbert envelopes by computing the absolute value of the Hilbert transform of 478 

timeseries from each individual area. Hilbert envelopes are then Z-scored (𝑍 = (𝑥 − 𝜇)/𝜎, where 𝑥 is the 479 

Hilbert envelope,  𝜇 its mean and 𝜎 its standard deviation) and a threshold of 2 is applied for the detection 480 

of MOMs. While the threshold is arbitrary, assuming that data is normally distributed, a value of 2 represents 481 

the threshold above which an incursion of the signal is distinct from noise with a significance level of p<0.05 482 
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(Hellyer et al., 2016). Different thresholds were tested, leading to the same qualitative results when 483 

comparing simulated and empirical data (SM, Section II, Figure S11).  484 

While in the original approach MOMs were detected using a threshold derived from activity of models 485 

without delayed interactions (Cabral et al., 2022), we chose instead to threshold timeseries against their 486 

own standard-deviation. We followed this approach to compare the properties of MOMs from simulated 487 

and empirical results, since the original method does not allow for the detection of MOMs in empirical data. 488 

Similar methods have been applied to the detection of neural avalanches in MEG and MRI data (Hellyer et 489 

al., 2016; Sorrentino et al., 2021). 490 

To quantify the properties of MOMs, similarly to (Cabral et al., 2022), we use of the following metrics: 491 

1. Size: number of areas with amplitude higher than threshold at a given point in time 492 

2. Duration: continuous time interval during which an amplitude timeseries is higher than threshold 493 

3. Occupancy: proportion of time a network exhibits oscillations with above-threshold amplitude. 494 

3 Results 495 

In order to investigate the spontaneous dynamics observed in resting state fMRI and MEG data of healthy 496 

individuals, we used two generative brain network models with different degree of realism, namely the 497 

Stuart Landau model – based on a system of delayed coupled oscillators, and the extended version of Wilson 498 

and Cowan model – based on a system of coupled excitatory and inhibitory neural populations including 499 

delays and homeostatic inhibitory plasticity. We focus on functional connectivity and spatiotemporal data 500 

features and show the ability of large-scale models in reproducing key empirical patterns across modalities. 501 

Additionally, by linking endogenous oscillations and neuroanatomic structure, we explore the emergence of 502 

itinerant dynamics in both models and how it relates to transient properties of multiresolution brain activity. 503 

The pipeline overview is illustrated in Figure 1.  504 

 505 

 506 
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 507 

Figure 1. a. To build our structural connectivity (SC) we use averaged diffusion tensor imaging (DTI), generated by delineating 508 

the white matter fibres orientation of 32 healthy subjects and a cortical parcellation (AAL) for partitioning the grey matter 509 

interface into 78 Region of Interests (ROIs). In the final SC graph, each ROI becomes a node and fibres become edges. b. We 510 

use this connectome to inform both phenomenological models. Both models are characterised by non-linear differential 511 

equations, whose parameters are tuned according to physiological plausibility to generate the oscillatory patterns observed 512 

empirically. Building on previous findings, the intrinsic frequency of all units is set at ω = 40Hz and each unit is perturbed 513 

with uncorrelated white noise for both models (Cabral, Castaldo et al. 2022).  In this study, we optimised two global 514 

parameters; namely, the coupling strength and the mean conduction delay, which were varied over specific ranges to best 515 

explain the empirical data features. For each combination of these two parameters, the models generate an oscillatory 516 

pattern. To create a blood-oxygenation-level-dependent (BOLD) signal from our simulations, a forward hemodynamic model 517 

is implemented, while we do not apply any additional steps to represent the simulated MEG signals. c. Both simulated and 518 

empirical signals follow the same pre-processing and analysis steps before being compared: for each combination of global 519 

parameters, we compute and compare the models’ and empirical functional connectivity, functional connectivity dynamics 520 

and properties of metastable oscillatory modes (see Methods for details). 521 

3.1 Suitability of two large-scale models for simultaneously representing empirical motifs of static 522 

and dynamic functional connectivity   523 

Both models reasonably approximate patterns of connectivity and temporal variability observed in empirical 524 

BOLD fMRI and MEG signals. Yet, delays have a different impact depending on which signal is reproduced. 525 

As shown in Figure 2b and Figure 3b, delays play a key role in shaping the frequency content of MEG 526 

connectivity profiles and this observation holds for both models.   527 
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However, when it comes to assessing the key patterns seen in the fMRI data, unlike in the WC model, delays 528 

do not affect the SL oscillatory dynamics (Figures 2a, 3a). The static functional connectivity and dynamical 529 

profiles are plotted for those values in the parameter space that optimise both FC and FCD simultaneously, 530 

displayed as white stars in the parameter space (see Methods).  531 

Nevertheless, for the WC model, there is a region of parameter space where the simulated metabolic 532 

patterns approximate the empirical patterns, when delays are set to zero (Figures 2-3a, i). This result aligns 533 

with the literature on fMRI modelling, which succeeded in approximating haemodynamic activity without 534 

considering delays (Deco, Kringelbach, et al., 2017). However, it should be noted that when accounting for 535 

local dynamics — whose intrinsic frequency is higher than the intrinsic frequency of low-frequency signals 536 

(i.e., fMRI) – delays have been shown to induce much richer and realistic dynamics (Cabral et al., 2014; Deco, 537 

Cabral, et al., 2017).  538 

Additionally, the WC model reveals frequency-specific FC (Figure 2a-b, i) and spatiotemporal dynamical 539 

patterns (Figure 3a-b, i) for a broader range of coupling strength and specific range of mean delay values 540 

when compared to the SL model (Figure 2-3, ii). This may be a consequence of the homeostatic mechanism 541 

in the WC model, which compensates for changes in coupling by regulating the local excitatory/inhibitory 542 

(E/I) balance. More specifically, within reasonable bounds, local homeostatic plasticity compensates for the 543 

higher levels of incoming excitatory input resulting from increased global coupling, thus maintaining the local 544 

dynamics at a desired level. Furthermore, homeostatic plasticity attenuates the effect of different node 545 

degrees in the connectivity graph, allowing for more uniform dynamics across the connectome.  546 

The importance of delays in the WC model — with homeostatic plasticity — is even more apparent when 547 

analysing the fit to empirical FCD over global couplings and target firing rates (SM, Section I, Figure S5). 548 

Taking BOLD signals as an example: a mean delay of 4ms affords a broad region in parameter space where 549 

FCD is accurately represented, which is not seen for other mean delays. Accordingly, we clearly see the 550 

differential role of global parameters in tuning the underlying simulated network dynamics when a local 551 

parameter (i.e., firing rate) is considered, highlighting the importance of multiscale interactions. On the other 552 

hand, under the SL model, the coupling and the conduction delays gives rise to frequency-specific 553 

connectivity patterns: The further the frequency of interest is from the intrinsic frequency of the model, the 554 

greater the range of possible optimum delays (Figure 2b, ii). Interestingly, in the SL model, the best 555 
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agreement (white stars) follows a frequency-suppression rule: the lower the frequency band in which the 556 

signal is filtered, the longer the range of optimal delays.  557 

This suggests that in the presence of delays — and when nodes are sufficiently connected — the frequency 558 

of global connectivity decreases due to an increase in overall synchrony. Besides, for the WC model, FCD 559 

deteriorates for higher levels of coupling where the network engages in supercritical dynamics, abolishing 560 

the relationship between frequency suppression and synchrony at lower frequencies.   561 

 562 

Figure 2.  Frequency-specific connectivity patterns emerge from the model network parameter space. a. Model 563 

performance in explaining empirical BOLD fMRI static connectivity measures: Pearson correlation between BOLD fMRI FC 564 

(averaged across 99 HCP participants) and simulated FC for each pair of parameters (Mean Delay and Global Coupling) for 565 

WC and SL model. i) Top - For the WC model, the selected optimal point (white star) for BOLD fMRI is C=7.55, MD=4ms, with 566 
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correlation of c= 0.479 and ks-distance value of ks=0.107. Bottom - Empirical and simulated fMRI BOLD FC for 78 AAL cortical 567 

brain areas in the optimal point. ii) Top - For the SL model, the optimal point for BOLD fMRI is C=1194.16, MD=5ms, with 568 

correlation of c= 0.469 and ks-distance value of ks=0.489. Bottom - Empirical and simulated fMRI BOLD FC for 78 AAL cortical 569 

brain areas in the optimal points. b. Model performance in representing empirical MEG connectivity measures: Pearson 570 

correlation between Hilbert envelope FC of MEG (averaged across 89 HCP participants) and simulated Hilbert envelope FC 571 

for each pair of parameters, for theta [4-8 Hz] (left), alpha [8-13Hz] (middle), beta [13-30Hz] (right) for WC and SL model. i) 572 

Top - The selected WC parameters for MEG are C=0.34, MD=3ms for theta; C=0.42, MD=3ms for alpha; C=0.78, MD=4ms for 573 

beta with correlation values of c_theta=0.460, c_alpha=0.465, c_beta=0.514 and ks-distance values of ks_theta=0.084, 574 

ks_alpha=0.194, ks_beta=0.395. Bottom - Empirical and simulated Hilbert envelope MEG FC matrices for theta (left), alpha 575 

(middle), and beta (right) band in the selected optimal point. ii) Top - The selected SL model parameter combinations for 576 

MEG are C=549, MD=4ms for theta; C=711.32, MD=1ms for alpha; C=194.8, MD=2ms for beta with correlation values of 577 

c_theta=0.471, c_alpha=0.494, c_beta=0.588 and ks-distance values of ks_theta=0.168, ks_alpha=0.104, ks_beta=0.149. 578 

Bottom - Empirical and simulated Hilbert envelope MEG FC matrices for theta (left), alpha (middle), and beta (right) band in 579 

the optimal point. White stars indicate the model working points, chosen through simultaneous optimization for the 580 

representation of empirical FC and FCD, as described in the Methods section. 581 
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 582 

Figure 3. Dynamical spatiotemporal patterns emerge from the model network parameter space. a. Model performance in 583 

representing empirical BOLD fMRI dynamical connectivity measures: Kolmogorov-Smirnov (KS) distance between empirical 584 

BOLD fMRI FCD histograms (averaged across 99 HCP participants) and simulated FCD histograms for each pair of parameters 585 

(Mean Delay and Global Coupling) for WC and SL model.  i) Top - For the WC model, the optimal parameters (white star) for 586 

BOLD fMRI are C=7.55, MD=4ms, with ks-distance value of ks=0.107. Bottom - Empirical and simulated fMRI BOLD FCD 587 

distribution for 78 AAL cortical brain areas in the optimal point. ii) Top - For the SL model, the optimal points for BOLD fMRI 588 

are C=1194.16, MD=5ms, with ks-distance value of ks=0.489. Bottom - Empirical and simulated fMRI BOLD FCD distribution 589 

for 78 AAL cortical brain areas in the optimal point. b. Model performance in representing empirical MEG connectivity 590 

measures: Kolmogorov-Smirnov (KS) distance between empirical Hilbert envelope MEG FCD histograms (averaged across 591 
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89 HCP participants) and simulated Hilbert envelope FCD histograms for each pair of parameters, for theta [4-8 Hz] (left), 592 

alpha [8-13Hz] (middle), beta [13-30Hz] (right) for WC and SL model. i) Top – For the WC model, the optimal points for MEG 593 

are C=0.34, MD=3ms for theta; C=0.42, MD=3ms for alpha; C=0.78, MD=4ms for beta with ks-distance values of 594 

ks_theta=0.084, ks_alpha=0.194, ks_beta=0.395. Bottom - Empirical and simulated frequency-specific MEG FCD distribution 595 

for 78 AAL cortical brain areas in the optimal point. ii) Top - For the SL model, the optimal points for MEG are C=549, 596 

MD=4ms for theta; C=711.32, MD=1ms for alpha; C=194.8, MD=2ms for beta with ks distance values of ks_theta=0.168, 597 

ks_alpha=0.104, ks_beta=0.149. Stars indicate the optimal point where both FC correlation and the FCD ks distance are 598 

maximised and minimised, respectively. Bottom - Empirical and simulated frequency-specific MEG FCD distribution for 78 599 

AAL cortical brain areas in the optimal point. White stars indicate the model working points, chosen through simultaneous 600 

optimization for the reproduction of empirical FC and FCD, as described in the Methods section. 601 

To assess the impact of integrating delays, quantitative results are also shown for the null-delay scenario 602 

(Tables 2 and 3). Interestingly, the role of delays is even more evident when optimising for each of the 603 

features individually (SM, Section II, Table S1-S2). Table 2 and Table 3 show the correlation and distance 604 

values for FC and FCD optimised simultaneously, respectively; in both cases, including and excluding delays.  605 

There are a few features that can be identified from the ensuing distributions of FCD values. First, empirical 606 

BOLD distributions have a longer tail than the distributions for all MEG frequencies. This is likely due to the 607 

80% overlap between sliding windows used for BOLD signals, which leads to higher correlation values close 608 

to the diagonal of the FCD matrix. Second, MEG distributions shift towards higher correlation values for 609 

higher frequency bands. Since we used the same window size (2s) for all frequencies, higher frequency 610 

oscillations lead to more cycles within a sliding window and, subsequently, to more fluctuations in 611 

amplitude. Correlations between signals are, therefore, less impacted by noise. 612 

 613 

Best fit (Pearson correlation) with delays, optimised 

for FC and FCD 

Best fit (KS distance) with delays, optimised for FCD and 

FCD 
 

fMRI MEGTheta MEGAlpha MEGBeta fMRI MEGTheta MEGAlpha MEGBeta 

WC 0.479 0.460 0.465 0.514 0.107 0.084 0.194 0.395 

SL 0.469 0.471 0.494 0.588 0.489 0.168 0.104 0.149 

Table 2. Performance values, optimised for both FC and FCD features, accounting for delays. Note that for Pearson 614 

correlation a greater value corresponds to a better fit whereas for KS distance it’s the opposite. 615 
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 616 

Best fit (Pearson correlation) without delays, 

optimised for FC and FCD 

Best fit (KS distance) without delays, optimised for FCD 

and FCD 
 

fMRI MEGTheta MEGAlpha MEGBeta fMRI MEGTheta MEGAlpha MEGBeta 

WC 0.419 0.331 0.286 0.144 0.268 0.721 0.712 0.458 

SL 0.458 0.226 0.217 0.443 0.584 0.074 0.147 0.149 

Table 3.  Performance values, optimised for both FC and FCD features, disregarding delays. Note that for Pearson 617 

correlation a greater value corresponds to a better fit whereas for KS distance it’s the opposite. 618 

To summarise the ability of both models to reproduce static and dynamical fMRI/MEG patterns, we 619 

performed a cross-modality analysis to search for a region of conjunction (Figure 4). Regarding FC, as shown 620 

in the previous results, for the WC model there is a narrow vertical region where the delay must be very 621 

specific to ensure a good fit across modalities. Therefore, we find no consistent region where FC can be 622 

accurately represented for all modalities. However, this analysis confirms the importance of accounting for 623 

delays in neural mass modelling.  624 

On the other hand, the SL model is generally better at simultaneously reproducing empirical FC across 625 

modalities. One plausible reason for this is that, for each modality, there is a broad region where FC can be 626 

adequately reproduced so it is easier to find regions of overlap. Although the more we move towards slow 627 

signals the more this region expands horizontally, there is an optimal range of parameters - that is between 628 

1-4ms and for high couplings, where the model evinces an alignment in performances across modalities.  629 

Regarding the FCD, the cross-modality performance of the SL gets considerably worse. There are no points 630 

in the parameter space where the model can perform well for more than two modalities simultaneously. 631 

Therefore, this result suggests that SL dynamics are more sensitive to changes in global parameters such as 632 

couplings and delays. For the WC model, this dialectic is not so evident. In fact, there is a region of fast delays 633 

and weak coupling where simulated FCD accurately represents empirical results across modalities.  634 

Furthermore, it appears there is a stronger relationship between delays and couplings in shaping WC FCD, 635 

where longer delays require stronger couplings. The most likely reason the WC model performs better in 636 

this regard is the fact that local dynamics are actively regulated towards a common target across the brain, 637 
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through E-I homeostasis. This reflects a multiscale interaction between local and global dynamics that 638 

renders WC dynamics less dependent on the global parameters.   639 

 640 

Figure 4. Model performance in explaining static and dynamical connectivity features across modalities. Agreement plots 641 

indicating the number of modalities (BOLD, MEG theta, MEG alpha, MEG beta) with correlation between empirical and 642 

simulated FC above 0.45 and KS distance below 0.35 for Wilson and Cowan and Stuart Landau model.  643 

 644 

3.2 Rich but constrained functionality emerges from the invariant anatomical architecture 645 

The repertoire of functional networks lies upon the hidden structural architecture of connections that 646 

facilitates hierarchical functional integration (Park and Friston 2013). Here, we explore the performance of 647 

two large-scale generative models, with the goal of understanding the underlying processes that give rise to 648 

coherent large-scale functional networks. Nonetheless, both modelling approaches have the human DTI-649 

based structural connectome as the only empirically derived element. Therefore, such models can also be 650 

understood as a nonlinear system which, taking the connectome as the input, can be used to evaluate the 651 

possible causal mechanisms for a phenomenon of interest to emerge (i.e., functional connectivity patterns).  652 

By investigating the non-trivial structure-function relationship, we highlight two main findings: simulated FC 653 
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correlates with empirical FC better than the structural connectivity (SC) alone (Figure 5). However, this 654 

correlation is still lower than the correlation between simulated FC and SC (Figure 6).  655 

More specifically, figure 5 shows that, for both models, simulated FC is generally better than SC patterns 656 

alone at explaining empirical FC. This can be clearly seen in both BOLD fMRI and in the MEG cases, where 657 

the agreement between SC and simulated FC is significantly higher than between SC and empirical envelope 658 

FC, demonstrating the capability of generative models to model dynamics that the structure alone is unable 659 

to reproduce. Under this perspective, it is worth noting that the empirically derived input to our models is 660 

not limited to the structural connectome, but also the tract-length between each pair of areas. Therefore, 661 

while not impacting directly on the structure of functional interactions, the information from tract lengths 662 

is relevant, when including mean delays.   663 

Concomitantly, large-scale models are useful to validate the predictive validity of structural information in 664 

relation to predicting the functional connectivity, proving that the realistic between-area strength of the SC 665 

is necessary for functional networks and their related topological features to emerge. As a proof of concept, 666 

without the right structure there is no emergence of function (SM, Section III, Figure S13). 667 
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 668 

Figure 5. Beyond the anatomical framework. a. Scatter plot of Empirical Functional Connectivity (FC) versus empirical 669 

Structural Connectivity (SC) with a correlation value of cc=0.33. b. Scatter plot of MEG FC versus SC for theta (left), alpha 670 

(middle), beta (right) with a correlation value of ccTheta=0.42, ccAlpha=0.39, ccBeta=0.44. c. Scatter plot of BOLD fMRI FC versus 671 

simulated WC FC with a correlation value of cc=0.48. d. Scatter plot of empirical versus simulated WC MEG FC SC for theta 672 

(left), alpha (middle), beta (right) with a correlation value of ccTheta=0.46, ccAlpha=0.52, ccBeta=0.42. e. Scatter plot of Empirical 673 

BOLD fMRI FC versus Simulated SL FC with a correlation value of cc=0.47. f. Scatter plot of empirical versus simulated SL 674 

MEG FC for theta (left), alpha (middle), beta (right) with a correlation value of ccTheta=0.45, ccAlpha=0.49, ccBeta=0.59. 675 

Notwithstanding the benefit of the above-mentioned biophysical models, the correspondence between 676 

structure and function is still not optimal (ccMax < 0.6). One of the possible reasons may be that the 677 

alignment between structural and empirical functional data is weak in both fMRI and MEG scenarios 678 

(Figure 6a-b). Additionally, as shown in Figure 6c/f, the functional topology patterns seem being largely 679 

constrained by structure, regardless of the model implemented — the relationship between FC and SC 680 

remains the same for both models. 681 
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 682 

Figure 6. The role of the connectome. a. Scatter plot of empirical BOLD fMRI Functional Connectivity (FC) versus Structural 683 

connectivity (SC) with a correlation value of cc=0.33. b. Left - Scatter plot of MEG theta FC versus SC with a correlation value 684 

of cc=0.42. Note that the correlation plots here are the same as in Fig. 5 (a, b) and are replicated here for the reader’s 685 

convenience.  Middle - Scatter plot of MEG alpha FC versus SC with a correlation value of cc=0.39. Right - Scatter plot of 686 

MEG beta FC versus SC with a correlation value of cc=044. Brain plots showing the 5% strongest connections of empirical 687 

FC. c. Scatter plot of simulated WC BOLD fMRI FC versus SC, with a correlation value of cc=0.38. d. Left - Scatter plot of 688 

simulated WC MEG theta FC versus SC, with a correlation value of cc=0.55. Middle - Scatter plot of simulated WC MEG alpha 689 

FC versus SC, with a correlation value of cc=0.55. Right - Scatter plot of simulated WC MEG beta FC versus SC, with a 690 

correlation value of cc=0.69. e. Scatter plot of simulated SL BOLD fMRI FC versus SC, with a correlation value of cc=0.48. f. 691 

Left - Scatter plot of simulated SL MEG theta FC versus SC, with a correlation value of cc=0.58. Middle - Scatter plot of 692 

simulated SL MEG alpha FC versus SC, with a correlation value of cc=0.63. Right - Scatter plot of simulated SL MEG beta FC 693 

versus SC, with a correlation value of cc=0.66. Brain plots showing the 5% strongest connections of simulated FC.  694 
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3.3 Metastable oscillatory modes reflect coupling among brain regions 695 

A key feature of the metastable regime is a dynamic modulation of the frequencies in the connectome 696 

expressed by the itinerant succession of dynamical modes. To address the temporal evolution of simulated 697 

and empirical signals we investigated how inherently unstable neural communities can engage in stable 698 

transient and partially synchronised modes, named metastable oscillatory modes (MOMs) (Cabral et al., 699 

2022).  700 

To detect MOMs and characterise them in space and time, we band-pass filter the simulated and empirical 701 

signals around the peak frequency and obtain the corresponding amplitude envelopes using the Hilbert 702 

transform. Here, we consider that a brain region evinces a MOM if the amplitude increases by 2 standard 703 

deviations above the global mean amplitude in that frequency range (coloured shades in Figure 7) (see 704 

Metastable Oscillatory Modes, Methods). We illustrate MOMs for 800s of BOLD fMRI signals, and 10s of 705 

source reconstructed MEG signals. To demonstrate their concurrent appearance, we display simulated 706 

MOMs in one single point of the parameter space for each model. To choose this point, for each model, we 707 

pick the parameters for which the model best describes functional connectivity dynamics across modalities 708 

(SM, Section II, Figure S9). Nonetheless, models can generate MOMs with similar properties in other points 709 

of the parameter space when delays are considered (SM, Section II, Figure S12).  As shown in figure 7, all 710 

areas engaging in each coalition exhibit the simultaneous emergence of an oscillation, resonating at the 711 

same collective frequency.  712 

This analysis reveals distinct spatially-organised subsystems, which are thought to contribute to the 713 

formation of functional connectivity maps. More precisely, we find that both simulated and empirical MOMs 714 

are structured in space and emerge simultaneously across several brain areas, but also in time, here lasting 715 
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about 10s for BOLD, between 100 and 200ms for MEG alpha and MEG theta, and less than 100ms for MEG 716 

beta.   717 

 718 

Figure 7. Emergence of transient-like dynamics in empirical and simulated signals. Examples of empirical and simulated signals in 719 

78 anatomically-defined regions plotted over 800s minutes for BOLD fMRI and 10 seconds for MEG. The coloured parts show the 720 

points in time when the signal power exceeds a certain threshold. For each modality, the threshold is defined as the 2-standard 721 

deviation of the amplitude of the signal itself. The transient itinerance is characterised in terms of duration, occupancy, and size 722 

(see Methods). 723 

  724 
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4 Discussion 725 

MEG and BOLD signals are believed to reflect two different aspects of neural activity, occurring at timescales 726 

that are orders of magnitude apart. While BOLD signals are thought to represent changes in haemodynamics 727 

(Hillman, 2014) — likely triggered by synaptic transmission; namely, the most energy intensive process in 728 

the human brain (Harris et al., 2012) — MEG signals reflect changes in magnetic fields created by dipole 729 

currents that flow along neuronal processes (Lopes da Silva, 2013). These dipole currents depend on 730 

dendritic synaptic input (Lopes da Silva, 2013) and are, therefore, related to the same processes involved in 731 

the generation of BOLD signals. Nonetheless, even though both modalities share the same neural substrate, 732 

large-scale models, to date, are usually tailored to represent only one modality at a time. A common example 733 

is the practice of tuning the intrinsic frequency of oscillation of local populations to the frequencies of 734 

interest in the respective modalities (e.g. ~10 Hz for MEG, <0.01 Hz for BOLD) (Abeysuriya et al., 2018; Deco, 735 

Cabral, et al., 2017; Deco, Kringelbach, et al., 2017). In this work, we argue that models should be able to 736 

simultaneously generate multiresolution modalities with the same underlying generative (neuronal) 737 

mechanisms, without tuning parameters a priori to selectively reproduce features of interest. Combining 738 

multiresolution, multimodal data with large-scale modelling allows one, potentially to disentangle the 739 

generative mechanisms behind brain function and its dynamical underpinnings.   740 

The first step we take towards cross-modality is to impose an intrinsic oscillation frequency of ~40Hz, in the 741 

gamma range. In the human cortex, gamma rhythms are thought to be generated by a myriad of mechanisms 742 

(Buzsáki & Wang, 2012), such as reciprocal interactions between pyramidal neurons and fast-spiking 743 

interneurons (Buzsáki, 2006). Indeed, BOLD signal fluctuations have been hypothesised to arise from 744 

changes in synchrony between oscillators in the gamma band (Deco et al., 2009). Furthermore, in the case 745 

of MEG, recent results suggest that functional networks in lower-frequency bands (i.e. theta, alpha and beta) 746 

can be generated through delayed interactions between gamma oscillators (Cabral et al., 2022). Therefore, 747 

multiresolution recordings might reflect different aspects of gamma activity and models with local gamma 748 

oscillations might reproduce the empirical properties of both BOLD and MEG FC. 749 

Models of brain networks should not only reflect the statistical dependencies among brain areas (i.e. FC), 750 

but also the dynamics underlying the spontaneous and transient appearance of functional networks (Baker 751 

et al., 2014; Cabral et al., 2017; Quinn et al., 2019; Vidaurre et al., 2016; Vohryzek et al., 2020). Therefore, 752 
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we focus on the performance of models in the representation of both FC and its dynamics (FCD) across 753 

modalities. As demonstrated by recent research (Deco, Kringelbach et al. 2021 this approach is relevant not 754 

only because it offers more constraints for model validation, but also because FCD has been tied to the 755 

metastable dynamics characteristic of healthy brain function (Deco, Kringelbach et al. 2017). 756 

4.1 Role of delayed interactions  757 

Conduction delays have been shown to define a rich dynamic framework for the emergence of resting brain 758 

oscillations (Abeysuriya et al., 2018; Cabral et al., 2014; Petkoski & Jirsa, 2019). Building on previous research 759 

(Cabral et al., 2022), by including delays, we see a significant improvement of model performance when 760 

explaining empirical-wise MEG static and dynamic patterns.   761 

However, in the fMRI context, while the WC generates patterns similar to empirical patterns for both cases 762 

(with and without delays), the SL model is sensitive to changes in delays. We think that this decreased 763 

dependence of low frequency oscillatory patterns on the mean delay (for the explored range) is related to 764 

the ratio between the period of oscillations and the delay itself. For example, while for beta rhythms (~25 765 

Hz, 40ms period) a change of 10ms in the mean delay represents the 25% of an oscillation cycle, for the 766 

slower BOLD rhythms (~0.01 Hz, 100s period), the same change only accounts for 0.01% of a cycle. Therefore, 767 

we hypothesise that, for higher frequency bands, changes in conduction velocity have a greater impact in 768 

the ability of regions to synchronise at those frequencies due to greater changes in phase-relationships.   769 

On this note, our results highlight the importance of delays for the generation of slow signals, such as BOLD 770 

fluctuations, when implementing neural mass models with “synaptic-like” communication between nodes 771 

(i.e., WC models). Accordingly, previous research implementing similar models informed by a macaque 772 

connectome (Deco et al., 2009), showed that BOLD signal fluctuations could be generated by transient 773 

synchronisation of coupled Wilson-Cowan nodes resonating at 40Hz. Importantly, this model was also 774 

sensitive to changes in conduction velocity, showing an optimal range of conduction speeds, even though 775 

local E-I balance was not modelled. Moreover, previous modelling results suggest that deficits in the 776 

regulation of axonal myelination could have a significant impact on the ability of coupled oscillators to 777 

synchronise at high frequencies, as our results suggest as well (Pajevic et al., 2014). Finally, the profound 778 

importance of modelling conduction delays was established using Bayesian model comparison (comparing 779 
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models with and without delays) at the inception of dynamic causal modelling for fast, event-related 780 

responses as measured with EEG (David et al., 2006). 781 

The effect of conduction delays was not seen for the SL model in the context of fMRI, likely due to the fact 782 

that the coupling is diffusive, rather than synaptic-like, thus reflecting the phase relationships between 783 

oscillations at specific frequency bands. Therefore, as mentioned above, the same interaction delay can have 784 

a different impact on oscillations with frequencies that are orders of magnitude apart. As a whole, these 785 

results speak to the use of delayed interactions, especially when the purpose is to find a common explanation 786 

for static and dynamic features of different neuroimaging modalities. 787 

The importance of modelling delays leads to questions regarding their role in the brain. Our results suggest 788 

that conduction delays underscore the emergence of relevant dynamics, especially when looking at 789 

frequency-specific oscillatory bands (high-frequency in the SL, across frequencies for the WC).  Therefore, it 790 

would follow that axonal conduction velocities should be precisely structured in the human brain. However, 791 

empirically, there is a high level of heterogeneity in the distribution of axonal diameters and levels of 792 

myelination (Boshkovski et al., 2021; Liewald et al., 2014; Lutti et al., 2014; Pajevic et al., 2014) , both of 793 

which determine conduction speeds (Powanwe & Longtin, 2019; Saab & Nave, 2017), with complex 794 

interactions between both (Waxman, 1980). Furthermore, research suggests a dynamical regulation of 795 

myelination, at least in sensory systems (Saab & Nave, 2017). We suggest that such heterogeneities (or 796 

activity -dependent myelination) are an important aspect of computational architectures and message 797 

passing in the brain. Accounting for heterogeneous conduction velocities could help large-scale models — 798 

such the ones implemented here — to better explain empirical patterns of MEG connectivity, which are less 799 

clearly constrained by structural connectivity. 800 

4.2 Role of E/I balance in the WC model 801 

The importance of excitatory-inhibitory balance for cortical function is well known in the literature (Dehghani 802 

et al., 2016; Froemke et al., 2007; Sprekeler, 2017; Tao & Poo, 2005; Xue et al., 2014), along with the 803 

existence of synaptic plasticity in response to perturbations and developmental changes (Ma et al., 2019; 804 

Turrigiano, 2011; Turrigiano et al., 1998; Vogels et al., 2011). 805 
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Furthermore, the implementation of an extended version of the WC approach, builds on previous and 806 

established work demonstrating the significance of accounting for E-I balance in neural-mass models with 807 

excitatory and inhibitory populations (Abeysuriya et al., 2018; Deco et al., 2019; Hellyer et al., 2016).  808 

One of the first effects - observed with the addition of the inhibitory synaptic plasticity (Abeysuriya et al., 809 

2018; Vogels et al., 2011) is the tolerance of the model at strong coupling levels (SM, Section I, Figure S4). 810 

This tolerance allows one to explore a wider region of parameter space. Furthermore, since our cortical 811 

connectome has a wide range of node degrees (sum of incoming connections to a node) — which vary by at 812 

least one order of magnitude — nodes receive varying levels of excitatory input. Therefore, including a 813 

compensatory mechanism to adjust local dynamics protects against these discrepancies and generates more 814 

uniform dynamics across the brain.   815 

Accordingly, our results show that the ability of the WC model with plasticity to accurately reproduce FCD 816 

features is less sensitive to parameter variations than the SL, particularly with respect to BOLD signals. This 817 

suggests that E-I homeostasis has a strong impact, especially on slow dynamics. For example, while adding 818 

plasticity does not impact greatly on the ability of the WC model to represent MEG FC and FCD, the same is 819 

not seen for BOLD signals, with models unable to represent BOLD FC when homeostasis is not modelled (FC 820 

cc = 0.2, FCD KS = 0.13) (SM, Section I, Figure S4). In addition, while the WC model without plasticity can 821 

reproduce MEG accurately, it does so for combinations of parameters with a broader range of mean delays 822 

(BOLD = 8ms, MEGTheta = 5ms, MEGAlpha = 2ms, MEGBeta = 0 ms), compared to the WC model with plasticity 823 

(3-4 ms). Therefore, we suggest that the addition of E-I homeostasis is important for cross-modality validity 824 

of generative models, particularly regarding the reproduction of ultra-slow dynamics.   825 

4.3 Structure-function relationship 826 

One of the most important issues when modelling large-scale brain activity – with a structural connectome 827 

as a substrate — is to ensure that the models with dynamics outperform models based on the structural 828 

connectome alone. By contrasting the correlation between empirical FC and SC vs empirical FC and simulated 829 

FC, our results show that for both models and modalities, the optimised models with dynamics always 830 

provide an improvement in the prediction of empirical FC. Furthermore, this difference is even more evident 831 

when optimising models to represent FC only (SM, Section II, Table S1-S2). Therefore, both models used to 832 

model local dynamics, Stuart-Landau and Wilson-Cowan, account for emergent properties of human FC that 833 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.19.520967doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.19.520967
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

 

are not captured by structural connectivity alone. Besides stressing the role of non-linear dynamics and 834 

interactions in brain networks, this further establishes the validity of integrating delayed interactions in 835 

models for the prediction of even static FC (Cabral et al., 2011; Deco et al., 2009). In fact, although there is 836 

an established exponential relationship between connection strength and distance (Ercsey-Ravasz et al., 837 

2013), there are exceptions to this rule, shown to be relevant for large-scale functional networks (Gustavo 838 

Deco et al., 2021). Therefore, we argue that the conduction delays between areas enrich models beyond the 839 

underlying structural framework. 840 

Furthermore, although the WC model with plasticity performed better when reproducing dynamical 841 

spatiotemporal features (FCD) especially for BOLD, its added complexity did not guarantee a better 842 

resemblance of functional patterns. This suggests that models could benefit from the inclusion of more 843 

detailed empirically-derived information about sources of heterogeneity such as local microcircuitry (Wang, 844 

2020) or myelination (Boshkovski et al., 2021) as discussed in detail below. 845 

Importantly, a common finding — across modalities and modelling approaches — is the higher correlation 846 

between simulated FC and SC, compared to empirical FC and SC. This leads to two possible and not exclusive 847 

interpretations: First, both modelling approaches are overly constrained by the structural connectome that 848 

lacks information about the strength of effective connectivity and the direction of connectivity (e.g., 849 

forwards versus backwards). In addition, research suggests that there are gradients in microcircuitry 850 

organisation, such as asymmetries in laminar specific forward and backward connections and recurrent 851 

excitation or the distribution of inhibitory interneurons (Wang, 2020), that reflect the hierarchical 852 

organisation of the human cortex (Felleman & Van Essen, 1991). Not only is this hierarchical organisation 853 

functionally relevant for processes such as perception (van Vugt et al., 2018) and memory (Froudist-Walsh 854 

et al., 2021), but recent modelling results show that accounting for these asymmetries improves the 855 

reproduction of FC and FCD, while allowing for the emergence of important (i.e., non-dissipative) dynamics, 856 

such as vortices, turbulence and ignition dynamics (G. Deco et al., 2021). In addition, the spatial distribution 857 

of such asymmetries and variations in synaptic time constants might also explain why we observe particular 858 

frequency bands more strongly in certain anatomical regions, as is the case of beta in the parietal cortex and 859 

alpha in the occipital lobe. Indeed, myelination imaging indicates that these regions include areas with the 860 

highest myelin content (Matthew F. Glasser et al., 2016; Rowley et al., 2015), which could relate to higher 861 
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conduction speeds (Saab & Nave, 2017), favourable to the emergence of relevant functional networks at 862 

these higher frequencies.  863 

Second, structural connections may be underestimated using tractography. One example is the limited 864 

ability of DTI to estimate interhemispheric white matter tracts, leading to a difficulty in reproducing the 865 

strong homotopic interhemispheric functional correlations present in fMRI (Deco, Ponce-Alvarez, et al., 866 

2013). Furthermore, recent results show that communication between cortical areas at different frequency 867 

bands has varying degrees of dependence on the underlying anatomy (Vezoli et al., 2021), suggesting that 868 

empirical FC reflects processes that go beyond structure; i.e., functional connectivity reflects ‘dynamics on 869 

structure’. 870 

4.4 Metastable Oscillatory Modes 871 

Analysis of recurrent metastable oscillatory modes may elucidate the mechanisms behind the functional 872 

integration - segregation relationship (Friston, 1997; Friston, 2000). As phenomenologically shown in recent 873 

work (Cabral et al., 2022), and further validated in the current study, when the coupling is sufficiently strong, 874 

the emergent dynamics will start to resemble the complex and intermittent dynamics observed in neuronal 875 

timeseries. As we further increase the extrinsic coupling of our models, the system locks into a regime of 876 

complete entrainment losing the frequency-specific intermittency. 877 

In both models, we selected a single point in parameter space to illustrate how the concomitant emergence 878 

of frequency-specific coherent patterns manifests, from slow to fast oscillations. This speaks to a unified 879 

model of the brain - in which each parameter combination can reflect a particular neural state with its own 880 

prominent frequency, specific connectivity, and network topology. Remarkably, in this study, MOMs were 881 

detected in both fMRI and MEG signals. Although similar methods have been successfully applied in the 882 

context of fast oscillations (i.e. MEG (Sorrentino et al., 2021)) the appearance of metastable fluctuation in 883 

the fMRI context is relatively unexplored.  884 

Our results suggest that self-limiting transient oscillations are detectable also in signals with spontaneous 885 

sustained periodicity, such as fMRI timeseries. This is in line with the notion that  synchronisation 886 

underscores fMRI correlations (Lu et al., 2007) and the potential of fMRI to map neural oscillations (Lewis et 887 

al., 2016), suggesting the possible coexistence of both transient events and sustained oscillations in the brain 888 
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(van Ede et al., 2018). Furthermore, characterising MOMs according to properties such as size, occupancy 889 

and duration can help in validating the dynamic aspect of the models and investigating similarities with 890 

empirical data.  891 

5 Limitations and Future Work 892 

5.1 Averaging (over subjects) 893 

We used the structural connectome - derived from the average of 32 DTI scans - in this work to define the 894 

connectivity matrix. These data were acquired as part of a study separate from the MEG and fMRI HCP data. 895 

Averaging over subjects in DTI studies is deemed a necessary step in order to reduce the effect of signal loss 896 

due to changes in local magnetic susceptibility, which can lead to the aberrant inferences about diffusion 897 

direction being estimated and false positives and false negatives (Damoiseaux & Greicius, 2009).  898 

In effect, we used the average structural connectivity matrix derived from one group to reproduce functional 899 

data similar to another group. We suspect that this may have limited our ability to find better correlations 900 

between the real and synthetic FCs. This issue suggests a similar analysis, in the future, where an individual’s 901 

tractography image is used to predict that subject’s MEG and fMRI features. In order to leverage the 902 

improved SNR of group-average data while accommodating heterogeneity over subjects (Quinn et al., 2021; 903 

Wens et al., 2014), a hierarchical model could be entertained. 904 

5.2 MEG source reconstruction 905 

Beamformers are a popular method for source reconstruction within the field of MEG, and have been used 906 

in FC studies (e.g.  (Baker et al., 2014; Brookes et al., 2011; Hipp et al., 2012; Liuzzi et al., 2017). Often, they 907 

are chosen because of their ability to suppress sources of interference from outside source space (Boto et 908 

al., 2021; Cheyne et al., 2007; Litvak et al., 2010). 909 

Despite their simplicity and popularity, beamformers are limited in the sense that they are, fundamentally, 910 

a spatial filter and therefore lack a generative model. This can make comparisons between alternative source 911 

inversion results non-trivial. Moreover, beamformers are known to suppress brain areas which exhibit high 912 

areas of zero-phase-lag (instantaneous) connections, i.e. correlated sources (Van Veen et al., 1997). Recent 913 

work has shown that using a beamformer for studies into the default mode network (DMN) at rest can be 914 

pernicious (Sjøgård et al., 2019). This provides an argument for using a source inversion algorithm with a full 915 
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generative (i.e., forward) model which can account for correlations between brain areas in the source space, 916 

e.g. CHAMPAGNE (Owen et al., 2012) or Multiple Sparse Priors (MSPs) (Friston et al., 2008). However, at the 917 

time of writing, MSPs has been primarily optimised for time-averaged data and cannot readily be applied to 918 

resting-state scans.  919 

An alternative approach - that we could have adopted in this work - would have been to side-step the ill-920 

posed inverse problem altogether and instead focus efforts on maximising the similarity between sensor 921 

level covariance matrices (or some other statistic) of the simulated and real MEG datasets. This would have 922 

removed the confound of source leakage during the model screening process, although we would have to 923 

have accounted for variations in head position and greater levels of sensor noise which the beamformer 924 

implicitly reduces. 925 

5.3 Generation of hemodynamic and electrophysiological data  926 

One of the main limitations of our modelling approaches is the fact that while we used a generative approach 927 

to go from neuronal activity (e.g. LFPs or population firing rates) to BOLD signals (Buxton et al., 1998; Friston 928 

et al., 2000) we do not follow the same approach for generating MEG signals. Instead, we assume that the 929 

signals generated by our models can be directly mapped to source-reconstructed MEG. However, the 930 

MEG/EEG inverse problem is insoluble, and all source inversion algorithms (beamformers, minimum norm 931 

etc.) impose some form of assumption. In the fMRI context, hemodynamic models reflect the physiological 932 

relationship between population activity and the blood oxygenation measured through BOLD signals and 933 

they have been extensively validated (Buxton et al., 1998; Friston et al., 2000; Handwerker et al., 2012). 934 

Therefore, our results would benefit from a similar generative model to compute the source dipole currents 935 

that are detected via MEG (Lopes da Silva, 2013). Nonetheless, since both our models can still reveal 936 

empirically relevant spatiotemporal patterns of MEG signals in a comparable manner, one might argue that 937 

this issue undermine our conclusions. 938 

5.4 Subcortical Structures 939 

In this work, network dynamics are modelled without accounting for the influence of subcortical nodes. The 940 

first reason is due to inadequate subcortical resolution offered by common atlases used in our modelling 941 

(i.e., AAL, Schaefer, Desikan-Killiany). The second is related to the difficulty in modelling the dynamics of 942 

some subcortical structures using the SL and WC models, which either consider nodes as oscillators or as 943 
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networks of reciprocally coupled excitatory and inhibitory neurons, suitable for cortical dynamics. While this 944 

approach could still be valid for structures such as the hippocampus, similar in structure to the cortex 945 

(Kandel, 2021), it would fail to accurately represent the dynamics of areas such as the striatum, which is 946 

mostly composed of inhibitory neurons (Lanciego et al., 2012), or the cerebellum, which has a distinct 947 

microcircuitry (Voogd & Glickstein, 1998). The omission of subcortical structures could impact our results, 948 

for example by disregarding the influence of widespread thalamocortical projections in the establishment of 949 

alpha rhythms (Halgren et al., 2019; Roux et al., 2013) and in supporting interhemispheric connectivity 950 

(Teipel et al., 2009; Wang et al., 2019). Nonetheless, such approaches would require more complex models 951 

with multilevel structures (Meier et al., 2022). See (van Wijk et al., 2018), for a fuller discussion of this issue 952 

in neural mass modelling. 953 

5.5 E-I Homeostasis 954 

Regarding the implementation of E-I homeostasis, we modelled E-I balance through inhibitory plasticity 955 

(Abeysuriya et al., 2018; Deco et al., 2019; G. Deco et al., 2021; Vogels et al., 2011). While research shows 956 

the importance of inhibitory connections for the maintenance of balance  (Luz & Shamir, 2012; Vogels et al., 957 

2013; Vogels et al., 2011), there are other mechanisms in place such as scaling of recurrent excitation 958 

(Turrigiano et al., 1998) or regulation of intrinsic excitability of excitatory populations (Desai et al., 1999), 959 

which have not yet been explored in large-scale models. While the oscillatory dynamics of WC nodes are 960 

determined by the excitatory and inhibitory time constants (see Neural mass model, Methods), changes in 961 

local inhibition might further affect local dynamics, especially in highly connected nodes, which require 962 

stronger local inhibition. Therefore, including additional homeostasis mechanisms, that synergistically 963 

interact with each other, may reveal relevant patterns of local microcircuitry, possibly related to gradients 964 

in cortical organisation (Wang, 2020). 965 

5.6 Model Optimisation 966 

On a more methodological level, the use of a grid search for model optimization, despite being common in 967 

large-scale modelling research (Cabral et al., 2022; Deco, Cabral, et al., 2017; Hellyer et al., 2016), is an 968 

inefficient method to explore the parameter space. This can be solved by making use recent advances such 969 

as Bayesian optimization (Hadida et al., 2018) and corresponding variational procedures used in dynamic 970 

causal modelling (Frässle et al., 2017; Razi et al., 2017). In addition, different metrics of performance could 971 
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have been used to compare empirical and simulated data, such as power-spectrum similarity (Verma et al., 972 

2022), and distance measures such as KL-divergence, KS-distance or mean-squared error between matrices 973 

(Savva et al., 2019). 974 

5.7 Relationship between BOLD and MEG signals 975 

One of the main perspectives offered by exploring the model performance across modalities is the fact that 976 

our models can generate simultaneous MEG and BOLD signals. This is relevant, given the fact that the 977 

relationship between MEG and fMRI signals is not yet fully understood (Garcés et al., 2016; Hall et al., 2014). 978 

In addition, recent results suggest that this relationship is not homogeneous across the brain, and that it is 979 

driven by differences in local circuitry related to the cortical hierarchy (Shafiei et al., 2022). Therefore, 980 

multimodal models might help to elucidate the interactions between the processes behind the two signals, 981 

particularly with studies involving the perturbation of dynamics through the application of external currents. 982 

We propose future studies to focus on the mechanistic relationship between MEG and fMRI, and how MEG 983 

features such as the relative power at different frequency bands, cross-frequency interactions and 984 

synchronisation can reflect the properties of hemodynamic signals. Please see (Friston et al., 2019; Jafarian 985 

et al., 2020; Wei et al., 2020) for further discussion.  986 

5.8 Model Augmentation with Heterogeneity  987 

Given our conclusions on the constraints imposed by the connectome in both models we explored, a crucial 988 

future step in modelling research is the inclusion of empirically derived sources of heterogeneity in large-989 

scale computational models. Recent endeavours have shown the use of including transcriptomically derived 990 

differences in the excitability of local populations in the representation of static (Demirtaş et al., 2019) and 991 

dynamic (G. Deco et al., 2021) features of large-scale brain activity. In addition, results suggest that the 992 

variations in structure-function coupling across the cortical hierarchy are shaped by heterogeneities in local 993 

E-I balance and myelination levels (Fotiadis et al., 2022), or in cortico-subcortical interactions in terms of 994 

neuroreceptors density maps (Beliveau et al., 2017), temporal time-scales (Baldassano et al., 2017), gene 995 

expression (Hawrylycz et al., 2012), myelin content (in terms of T1/T2-weighted MRI signal) (Glasser & Van 996 

Essen, 2011) and functional connectivity (Kong et al., 2021) - offering further explanations as to why 997 

empirical FC exhibits characteristics that cannot be explained solely by SC. Therefore, we believe that it is 998 

essential for further modelling studies to make use of multilevel datasets (Arnatkevicĭūtė et al., 2019; Royer 999 
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et al., 2022) to constrain models with directed connectivity that define cortical hierarchies (G. Deco et al., 1000 

2021). 1001 
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