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Abstract Human society and natural environment form a complex giant ecosystem, where10

human activities not only lead to the change of environmental states, but also react to them. By11

using collective-risk social dilemma game, some studies have already revealed that individual12

contributions and the risk of future losses are inextricably linked. These works, however, often13

use an idealistic assumption that the risk is constant and not affected by individual behaviors. We14

here develop a coevolutionary game approach that captures the coupled dynamics of15

cooperation and risk. In particular, the level of contributions in a population affects the state of16

risk, while the risk in turn influences individuals’ behavioral decision-making. Importantly, we17

explore two representative feedback forms describing the possible effect of strategy on risk,18

namely, linear and exponential feedbacks. We find that cooperation can be maintained in the19

population by keeping at a certain fraction or forming an evolutionary oscillation with risk,20

independently of the feedback type. However, such evolutionary outcome depends on the initial21

state. Taken together, a two-way coupling between collective actions and risk is essential to avoid22

the tragedy of the commons. More importantly, a critical starting portion of cooperators and risk23

level is what we really need for guiding the evolution toward a desired direction.24

25

Introduction26

Human activities constantly affect the natural environment and cause changes in its quality, which27

in turn affects our daily life and health conditions (Patz et al., 2005; Steffen et al., 2006; Perc et al.,28

2017; Obradovich et al., 2018; Hilbe et al., 2018; Su et al., 2019, 2022). A well-known example is29

climate change, which is one of the biggest contemporary challenges of our civilization (Parmesan30

and Yohe, 2003; Stone et al., 2013). A large number of carbon emissions caused by human activities31

will exacerbate the greenhouse effect, which risks raising global temperatures to dangerous levels.32

The direct consequences of global warming are the melting of glaciers and the rise of sea level,33

which will inevitably affect human activities (Schuur et al., 2015; Obradovich and Rahwan, 2019;34

Moore et al., 2022). Similarly, we can give more examples of coupled human and natural systems35

to continue this list, such as habitat destruction and the spread of infectious diseases (Liu et al.,36

2001, 2007; Chen and Fu, 2019; Tanimoto, 2021; Chen and Fu, 2022). At present, the importance37

of developing a new comprehensive framework to study the coupling between human behavior38

and the environment has been recognized by number of interdisciplinary approaches (Weitz et al.,39

2016; Chen and Szolnoki, 2018; Tilman et al., 2020).40
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Evolutionary game theory provides a powerful theoretical framework for studying the coupled41

dynamics of humanandnatural systems (Maynard Smith, 1982;Weibull, 1997; Stewart and Plotkin,42

2014; Radzvilavicius et al., 2019; Park et al., 2020;Niehus et al., 2021;Han et al., 2021; Cooper et al.,43

2021). Furthermore, coevolutionary game models have recognized the fact that individual payoff44

values are closely related to the state of the environment (Weitz et al., 2016; Szolnoki and Chen,45

2018; Chen and Szolnoki, 2018; Hauert et al., 2019; Tilman et al., 2020; Wang and Fu, 2020; Yan46

et al., 2021). For example, Weitz et al. (Weitz et al., 2016) considered the dynamical changes of47

the environment, which modulates the payoffs of individuals. Their results show that individual48

strategies and the environmental state may form a sustained cycle where strategy swing between49

full cooperation and full defection, while the environment state oscillates between the replete state50

and the depleted state. Along this line, feedback-evolving game systems with intrinsic resource51

dynamics (Tilman et al., 2020), asymmetric interactions in heterogeneous environments (Hauert52

et al., 2019), and time-delay effect (Yan et al., 2021) have been also investigated where periodic53

oscillation of strategy and environment are observed. As a general conclusion, the feedback loop54

between individual strategies and related environment is a key element to maintain long-term55

cooperation and sustainable use of resources.56

Despite of the mentioned efforts, the research on possible consequences of the feedback be-57

tween human activity and natural systems is still in early stage. Staying at the above mentioned58

example, potential feedback loops between human activities and climate change exist (Obradovich59

and Rahwan, 2019). However, most scholars study these two topics, that is, human contributions60

to climate change and social impacts of the changing climate on human behavior, in a separated61

way (Vitousek et al., 1997; Barfuss et al., 2020). On the one hand, some of them usually focus62

on how human behaviors (use of land, oceans, fossil fuel, freshwater, etc.) affect environment63

(Vitousek et al., 1997). On the other hand, researchers who are interested in society and biology64

frequently focus on how environmental change will affect human behaviors (Culler et al., 2015;65

Obradovich and Rahwan, 2019; Celik, 2020). Recently, these two approaches have been merged66

into a single framework, called as collective-risk social dilemma game, which serves as a general67

paradigm for studying climate change dilemmas (Milinski et al., 2008). Within it, a group of in-68

dividuals decide whether to contribute to reach a collective goal. If the total contributions of all69

individuals exceed a certain threshold, then the disaster is averted and all individuals benefit from70

it. Otherwise, the disaster occurs with a probability (also known as the risk of collective failure),71

resulting in fatal economic losses for all participants. Both behavioral experiments and theoretical72

works show that the risk of future losses plays an important role in the evolution of cooperation73

(Milinski et al., 2008; Santos and Pacheco, 2011; Chen et al., 2012a; Vasconcelos et al., 2013; Hilbe74

et al., 2013; Vasconcelos et al., 2014; Barfuss et al., 2020; Domingos et al., 2020; Sun et al., 2021;75

Chica et al., 2022).76

Previous studies based on the collective-risk dilemma game revealed that the risk of collective77

failure could affect individuals’ motivation to cooperate when they face to the problem of collective78

action, but ignored an important practical aspect. That is, human decision-making is not only af-79

fected by changes in the risk state, but also affects the level of risk (Chen et al., 2012a). Indeed, the80

risk of collective failure is lower in a highly cooperative society, but becomes significant in the oppo-81

site case. This fact is not only reflected in climate change (Moore et al., 2022), but also in the spread82

of infectious diseases (Chen and Fu, 2022) and vaccination (Nichol et al., 1998; Chen and Fu, 2019).83

Furthermore, although the risk level varies in a changing population, their relation is not necessar-84

ily straightforward. For example, a study revealed that the infection-fatality risk (IFR) of COVID-1985

in India decreased linearly from June 2020 to September 2020 due to improved healthcare or in-86

creased vaccination (Yang and Shaman, 2022). Throughout the whole process (from March 202087

to April 2021), the statistical curve of IFR is nonlinear, that is, when the epidemic broke out, the88

value of IFR remained at a high level, and then with the increase of vaccination or the improve-89

ment of healthcare, the IFR value gradually decreased, then flattened and remained at a low level90

(Yang and Shaman, 2022). On the other hand, the change of risk is bound to affect individuals’91
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decision-making, which has been confirmed in behavioral experiments and theoretical research92

(Milinski et al., 2008; Pacheco et al., 2014). Though potential feedback loops between strategy and93

risk of future losses are already recognized, a study focusing on their direct interaction is missing.94

Furthermore, it is still an open question whether the character of feedback mechanism plays an95

essential role in the final evolutionary outcome. Hence, how the impacts of risk on human systems96

might, in turn, alter the future trajectories of human decision-making remains largely unexplored.97

To fill this gap, we propose a coupled coevolutionary game framework based on the collective-98

risk dilemma to describe reciprocal interactions and feedbacks between decision-making proce-99

dure of individuals and risk. In particular, we assume that the increasing free-riding behaviors will100

slowly increase the risk of collective failure, and the resulting high-risk level will in turn stimulate101

individual contributions. However, the increase in contribution will gradually reduce the risk of col-102

lective failure, and the resulting low-risk level will promote the prevalence of free-riding behaviors103

again. This general feedback loop is illustrated in Fig. 1. Importantly, we respectively consider two104

conceptually different feedback protocols describing the effect of strategy on risk. Namely, both105

linear and highly nonlinear (exponential) feedback forms are checked. Our analysis identifies the106

conditions for the existence of stable interior equilibrium and stable limit cycle dynamics in both107

cases.108
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Figure 1. Coevolutionary feedback loop of population and risk states in the coupled game system. The
meaning of colors is explained in the legend on the top.

Methods and Materials109

Collective-risk social dilemma game110

We consider an infinitewell-mixed population inwhichN individuals are selected randomly to form111

a group for playing the collective-risk social dilemma game. Each individual in the group has an112

initial endowment b and can choose one of the two strategies, i.e., cooperation and defection. Co-113

operators will contribute an amount c to the common pool, whereas defectors contribute nothing.114

The remaining endowments of all individuals can be preserved if the overall number of coopera-115
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tors exceeds a threshold value M , where 1 < M < N (Milinski et al., 2008; Santos and Pacheco,116

2011). Otherwise, individuals will lose all their endowments with a probability r, which character-117

izes the risk level of collective failure. Accordingly, the payoffs of cooperators and defectors in a118

group of size N with jC cooperators and N − jC defectors can be summarized as119

PC = b�(jC + 1 −M) + (1 − r)b[1 − �(jC + 1 −M)] − c , (1)
PD = b�(jC −M) + (1 − r)b(1 − �(jC −M)) , (2)

where �(x) is the Heaviside function, that is, �(x) = 0 if x < 0, being one otherwise.120

To analyze the evolutionary dynamics of strategies in an infinite population, we use replicator121

equations to describe the time evolution of cooperation (Taylor and Jonker, 1978; Schuster and122

Sigmund, 1983). Accordingly, we have123

ẋ = x(1 − x)(fC − fD) ,

where x denotes the frequency of cooperators in the population, while fC and fD respectively124

denote the average payoffs of cooperators and defectors, which can be calculated as125

fC =
N−1
∑

jC=0

(

N − 1
jC

)

xjC (1 − x)N−jCPC ,

fD =
N−1
∑

jC=0

(

N − 1
jC

)

xjC (1 − x)N−jCPD ,

where PC and PD are shown in Eqs. (1) and (2). After some calculations, the difference between the126

average payoffs of cooperators and defectors can be written as127

fC − fD =
(

N − 1
M − 1

)

xM−1(1 − x)N−Mrb − c .

In the above replicator equation, we describe a game-theoretic interaction involving the risk of128

collective failure, which is a positive constant in previous works (Santos and Pacheco, 2011; Chen129

et al., 2012a). Here, we are focusing on a dynamical system where there is feedback between130

strategic behaviors and risk. In particular, the impact of strategies on the risk level is channeled131

through a function U (x, r), which depends on both key variables. Then by using the general form132

of the feedback, the coevolutionary dynamics can be written as133

⎧

⎪

⎨

⎪

⎩

"ẋ = x(1 − x)[
(

N − 1
M − 1

)

xM−1(1 − x)N−Mrb − c] ,

ṙ = U (x, r) ,
(3)

where " denotes the relative speed of strategy update dynamics (Weitz et al., 2016), such that134

when 0 < " ≪ 1 the strategies evolve significantly faster than the change in the risk level. In the135

following, we consider both linear and nonlinear forms of feedback describing the effect of strategy136

distribution on the evolution of risk.137

Linear effect of strategy on risk138

In the first case, we assume that the effect of strategies on the risk level takes a linear form, which139

is the most common form that can be used to describe the characteristic attributes between key140

variables. Just to illustrate it by a specific example, the probability of influenza infection among141

individuals who have not been vaccinated decreases linearly with the increase of vaccine coverage142

(Vardavas et al., 2007). Here we consider that the value of risk decreases linearly with the increase143

of cooperation level. Furthermore, by following the work of Weitz et al. (Weitz et al., 2016), we can144

write the dynamical equation of risk as145

ṙ = r(1 − r)[u(1 − x) − x], (4)
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where u(1 − x) − x denotes the increase of risk by the defection level at rate u and the decrease146

by the fraction of cooperators at relative rate one. Then the dynamical system is described by the147

following equation148

⎧

⎪

⎨

⎪

⎩

"ẋ = x(1 − x)[
(

N − 1
M − 1

)

xM−1(1 − x)N−Mrb − c]

ṙ = r(1 − r)[u(1 − x) − x].
(5)

Exponential effect of strategy on risk149

To complete our study we also apply nonlinear form of feedback function. The most plausible150

choice is when the risk level depends exponentially on the population state. To bemore specific, we151

consider that the risk will decrease when the frequency of cooperators in the population exceeds152

a certain threshold value T . Otherwise, the risk level will increase. Such scenario is suitable for153

describing climate change and the spread of infectious diseases, in which the risk can increase154

sharply, such as the occurrence of extreme weather (Eckstein et al., 2021) or a sudden outbreak of155

an epidemic in a region (Yang and Shaman, 2022). Here, we use the sigmoid function to describe156

the effect of strategy on the risk state (Boza and Számadó, 2010; Chen et al., 2012b; Couto et al.,157

2020), which can be written as158

ṙ = r(1 − r)[ 1
1 + e�(x−T )

− 1
1 + e−�(x−T )

] , (6)

β = 0.1

β = 1

β = 5
β = 10

−1

−0.5

0

0.5

1

B
(ξ

)

−1 −0.5 0 0.5 1

ξ

Figure 2. Feedback equation B(�) varies with � for
different values of �. The parameter � determines
the steepness of the curves. When the value of �
is small, the B(�) function is almost constant or
decays linearly by increasing �. For larger � values,
the shape of B(�) approaches a step-like form. In
this parameter area the risk level depends
sensitively on whether the group cooperation
exceeds the threshold T value or not.

where � characterizes the steepness of the func-159

tion and r(1 − r) ensures that the risk state re-160

mains in the [0, 1] domain. For convenience, we161

introduce the variable � = x− T and the function162

B(�) = 1
1+e��

− 1
1+e−��

. Thus we have ṙ = r(1 − r)B(�).163

When � = 0, we know that B(�) = 0. In this situ-164

ation, strategies have no effect on the risk level.165

For � = +∞, the function B(�) becomes steplike166

so that the riskwill decrease only if the frequency167

of cooperators in the group exceeds the thresh-168

old T . Otherwise, the risk level remains high. To169

study the consequence of a proper feedback ef-170

fect we apply a finite � > 0 value. In Figure 2 we171

illustrate how B(�) varies with � for four different172

values of �.173

Accordingly, the feedback-evolving dynami-174

cal system where the effect of strategies on the175

risk state is expressed by the exponential form176

can be written as177

⎧

⎪

⎨

⎪

⎩

"ẋ = x(1 − x)[
(

N − 1
M − 1

)

xM−1(1 − x)N−Mrb − c]

ṙ = r(1 − r)[ 1
1 + e�(x−T )

− 1
1 + e−�(x−T )

].
(7)

In the following section, we respectively inves-178

tigate the coevolutionary dynamics of strategy179

and risk when considering linear and exponen-180

tial feedback froms. We note that the details of theoretical analysis can be found in the Appendix.181
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)
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Hopf bifurcation

M 

M 0
0

Figure 3. Representative plot of stable evolutionary outcomes in System I when linear strategy feedback on
risk level is assumed. Different colors are used to distinguish the stability of different equilibrium points in
the parameter space (u, cb ). The blue line indicates that the system undergoes a Hopf bifurcation at u = M−1

N−M .
Here x∗2 is the real root of the equation Γ(x) =

c
b where Γ(x) =

(N−1
M−1

)

xM−1(1 − x)N−M , and ( u
1+u , r

∗) is the interior
fixed point where r∗ = c

(N−1M−1)(
u
1+u )

M−1( 1
1+u )

N−M b
. The dashed curve represents that the value of Γ( u

1+u ) changes

with u when u > M−1
N−M . The horizontal dashed line represents that Γ(M−1

N−1 ) =
c
b when u >

x∗2
1−x∗2

. The vertical

dashed line represents that u = x∗2
1−x∗2

when Γ(x∗2) <
c
b < Γ(

M−1
N−1 ).

Results182

System I: coevolutionary dynamics with linear feedback183

We first consider the case of linear feedback. More precisely, we assume that the risk value of184

collective failure will decrease linearly with the increase of cooperation and increase linearly with185

the increase of defection level. The resulting dynamical system is presented in Eq. (5). After some186

calculations, we find that this equation system has at most seven fixed points, which are (0, 0),187

(0, 1), (1, 0), (1, 1), ( u
1+u
, r∗), (x∗1, 1), and (x

∗
2, 1), where r∗ =

c

(N−1M−1)( u
1+u )

M−1( 1
1+u )

N−M b
, x∗1 and x

∗
2 are the real188

roots of the equation
(N−1
M−1

)

xM−1(1 − x)N−Mb = c. We further perform theoretical analysis for these189

equilibrium points, as provided in Appendix 1. In order to describe the stable states of System I190

for the complete parameter regions, we present a schematic plot in the parameter space (u, c
b
), as191

shown in Fig. 3. We use different colors to distinguish the evolutionary outcomes for specific pairs192

of key parameters. In the following, we discuss the representative results in detail.193

System I has an interior equilibrium point.194

When
(N−1
M−1

)

( u
1+u
)M−1( 1

1+u
)N−Mb > c, we know that our coevolutionary system has an interior fixed195

point. According to its stability, we can distinguish three sub-cases here. Namely, when u > M−1
N−M

,196

then the existing interior fixed point is stable. Besides, since
(N−1
M−1

)

(M−1
N−1

)M−1(1− M−1
N−1

)N−Mb > c, there197

exist seven fixed points in the system, namely, (0, 0), (0, 1), (1, 0), (1, 1), ( u
1+u
, r∗), (x∗1, 1), and (x

∗
2, 1). Here198

only (0, 1) and ( u
1+u
, r∗) are stable (marked by yellow area in Fig. 3). Besides, we provide numerical199

examples to illustrate the above theoretical analysis (see the top row of Fig. 4). We find that bi-200

stable dynamics can appear, that is, depending on the initial conditions the system will evolve to201

one of two stable equilibria: here (0, 1) which means high-risk without cooperators, or the interior202

fixed point suggests that cooperation can be maintained at a high level when the value of risk203

exceeds an intermediate value. Furthermore, we note that the results are not affected qualitatively204
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by the feedback speed (see the second column of Fig. 1 in Appendix 1).205

If the enhancement rate of risk caused by defection drops to a certain threshold, namely u =206

M−1
N−M

, a Hopf bifurcation takes place, which is supercritical (marked by blue line in Fig. 3). In this207

situation, System I has all seven fixed points. As analyzed in Appendix 1, only (0, 1) is stable. Fur-208

thermore, we provide numerical examples to illustrate our theoretical analysis (see the second row209

of Fig. 4). We find that the system is bi-stable: depending on the initial fractions of cooperators and210

risk, the system can evolve either to a high-risk state without cooperation or to a limit cycle where211

the frequencies of cooperation and risk show periodic oscillations. In addition, we find that the key212

observations do not change qualitative by increasing the feedback speed (see the second column213

of Fig. 1 of Appendix 1).214

When the enhancement rate of risk caused by defection is weak and meets u < M−1
N−M

condition,215

then the interior fixed point is unstable. Besides, since
(N−1
M−1

)

(M−1
N−1

)M−1(1− M−1
N−1

)N−Mb > c, there exist216

all seven fixed points. According to the theoretical analysis presented in Appendix 1, only (0, 1) fixed217

point is stable. In the third row of Fig. 4, we present some representative numerical examples. They218

show that all trajectories in the state space terminate at the fixed point (0, 1), which is consistent219

with our theoretical results. This means that no individual chooses to contribute to the common220

pool, leading to the failure of collective action, and finally, all individuals inevitably lose all their221

endowments.222

System I has no interior equilibrium point.223

The alternative case is when there is no interior fixed point, namely,
(N−1
M−1

)

( u
1+u
)M−1( 1

1+u
)N−Mb ≤224

c. In this situation, when
(N−1
M−1

)

(M−1
N−1

)M−1(1 − M−1
N−1

)N−Mb > c, System I has six fixed points, which225

are (0, 0), (0, 1), (1, 0), (1, 1), (x∗1, 1), and (x
∗
2, 1), respectively. The theoretical analysis, presented in Ap-226

pendix 1, shows that (0, 0), (1, 0), (1, 1), and (x∗1, 1) are unstable, (0, 1) is stable, and (x
∗
2, 1) is stable for227

x∗2 <
u
1+u

(shown by green area in Fig. 3). In the bottom row of Fig. 4, we provide some numerical ex-228

amples to illustrate our theoretical results. The phase plane dynamics show that most trajectories229

in phase space converge to the stable equilibrium point (x∗2, 1), which suggests that driven by the230

high risk of future loss, most individuals will contribute to the common pool. Besides, the remain-231

ing trajectories in the phase space will converge to the fixed point (0, 1), which means a complete232

failure when all individuals lose all remaining endowments.233

Furthermore, we prove that the fixed point (x∗2, 1) is unstable when x
∗
2 >

u
1+u

in Appendix 1. For234

the special case of x∗2 =
u
1+u

, we find that one eigenvalue of the Jacobian matrix at (x∗2, 1) is zero and235

the other one is negative. We provide the stability analysis of this fixed point by using the center236

manifold theorem (Khalil, 1996). When
(N−1
M−1

)

(M−1
N−1

)M−1(1 − M−1
N−1

)N−Mb ≤ c, (0, 1) is the only stable237

equilibrium point of the System I.238

System II: coevolutionary dynamics with exponential feedback239

In this section, we consider the case of exponential feedback. Here, there are at most seven equi-240

librium points of the replicator equation (7). Namely, (x, y) = (0, 0), (0, 1), (1, 0), (1, 1), (x∗1, 1), (x
∗
2, 1),241

and (T , c

(N−1M−1)TM−1(1−T )N−M b
), in which x∗1 and x

∗
2 satisfy the equation

(N−1
M−1

)

xM−1(1 − x)N−Mb = c and242

x∗1 <
M−1
N−1

< x∗2 (Santos and Pacheco, 2011). For convenience, we set r̄ = c

(N−1M−1)TM−1(1−T )N−M b
. Here243

the first six equilibria are boundary fixed points, and the last one is an interior fixed point. In244

Appendix 2, we analyze the stability of these equilibria under four different parameter ranges by245

evaluating the sign of the eigenvalues of the Jacobian (Khalil, 1996). The basins of each solution246

in parameter space (T , c
b
) are shown in Fig. 5. In the following, we will discuss the evolutionary247

outcomes depending on whether System II has an interior equilibrium point.248

System II has an interior equilibrium point.249

In this case c <
(N−1
M−1

)

TM−1(1 − T )N−Mb, there are three typical dynamic behaviors for the evolution250

of cooperation and risk according to the stability conditions of the interior equilibrium point (for251

details, see Appendix 2).252

7 of 24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.19.520980doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.19.520980
http://creativecommons.org/licenses/by/4.0/


0.0 0.2 0.4 0.6 0.8 1.0
Fraction of cooperators

R
is

k
1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0 20 40 60 80 100 0 20 40 60 80 100

Time, t Time, t

Sy
st

em
 s

ta
te

s

Sy
st

em
 s

ta
te

s

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of cooperators

R
is

k

0.5

0.4

0.3

0.2

0.1

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0 200 400 600 800 1000

Time, t Time, t

Sy
st

em
 s

ta
te

s

S
ys

te
m

 s
ta

te
s

(d) (e) (f)

100 101 102 103 104 105

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of cooperators

R
is

k

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0 20 40 60 80 100

Time, t

S
ys

te
m

 s
ta

te
s

(g) (h)

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0 20 40 60 80 100 0 20 40 60 80 100

Time, t Time, t

S
ys

te
m

 s
ta

te
s

S
ys

te
m

 s
ta

te
s

(j) (k)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of cooperators

R
is

k

1.0

0.8

0.6

0.4

0.2

0.0

(i)

Fraction of cooperators
Risk

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1.0

O
ne

 in
te

rio
r f

ix
ed

 p
oi

nt
N

o 
in

te
rio

r f
ix

ed
 p

oi
nt

u 
< 

M
 - 

1 
N

 - 
M

 
u 

= 
M

 - 
1 

N
 - 

M
 

u 
> 

M
 - 

1 
N

 - 
M

 

0

0.2

0.4

0.6

0

0.2

0.4

0.6

Fraction of cooperators
Risk

Fraction of cooperators
Risk

Fraction of cooperators
Risk

Fraction of cooperators
Risk

Fraction of cooperators
Risk

Fraction of cooperators
Risk

Figure 4. Coevolutionary dynamics on phase planes and temporal dynamics of System I when linear feedback is considered. Filled circles
represent stable and open circles denote unstable fixed points. The arrows provide the most likely direction of evolution and the continuous
color code depicts the speed of convergence in which red denotes the highest speed, while purple represents the lowest speed of transition. On
the right-hand side, blue solid line and red dash line respectively denote the fraction of cooperation and the risk level, as indicated in the legend.
The first three rows show the coevolutionary dynamics when u > M−1

N−M , u = M−1
N−M , and u < M−1

N−M , respectively. The bottom row shows
coevolutionary dynamics when

(N−1
M−1

)

( u
1+u )

M−1( 1
1+u )

N−Mb < c. Parameters are N = 6, c = 0.1, b = 1, u = 2, " = 0.1,M = 3 in panel (a). The initial
conditions are (x, r) = (0.4, 0.3) in panel (b) and (x, r) = (0.1, 0.1) in panel (c). N = 6, c = 0.1, b = 1, u = 2

3 , " = 0.1,M = 3 in panel (d). The initial
conditions are (x, r) = (0.4, 0.3) in panel (e) and (x, r) = (0.4, 0.5) in panel (f). N = 6, c = 0.1, b = 1, u = 0.5, " = 0.1,M = 3 in panel (g). The initial
conditions are (x, r) = (0.4, 0.3) in panel (h). N = 6, c = 0.1, b = 1, u = 4, " = 0.1,M = 3 in panel (i). The initial conditions are (x, r) = (0.4, 0.3) in panel (j)
and (x, r) = (0.1, 0.1) in panel (k).
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Figure 5. A representative diagram about stable solutions of System II when strategy feedback on risk level is
exponential. We use different colors to distinguish the stability of equilibrium points in the parameter space
(T , cb ). The blue line indicates that the system undergoes a Hopf bifurcation at T = M−1

N−1 . Here (T , r̄) is the
interior fixed point where r̄ = c

(N−1M−1)TM−1(1−T )N−M b
. The dashed curve represents that the value of Γ(T ) changes

with T when T > M−1
N−1 . The horizontal dashed line represents that Γ(

M−1
N−1 ) =

c
b when T > x

∗
2. The vertical

dashed line represents that T = x∗2 when Γ(x
∗
2) <

c
b < Γ(

M−1
N−1 ).

When T > M−1
N−1

, the interior fixed point is stable. Besides, since
(N−1
M−1

)

(M−1
N−1

)M−1(1− M−1
N−1

)N−Mb−c >253

0, there exist two boundary fixed points, which are (x∗1, 1) and (x
∗
2, 1). Thus the system has seven254

fixed points, which are (0, 0), (0, 1), (1, 0), (1, 1), (x∗1, 1), (x
∗
2, 1), and (T , r̄). From the Jacobian matrices,255

we can conclude that the fixed points (0, 0), (0, 1), (1, 0), (1, 1), (x∗1, 1), and (x
∗
2, 1) are unstable, while256

(0, 1) and (T , r̄) are stable. The latter case is shown in the top row of Fig. 6, where we plot the257

phase plane and temporal dynamics of the system. It suggests that there is a stable interior fixed258

point, and most trajectories in phase space converge to this nontrivial solution. Accordingly, the259

system can evolve into a state where the risk is kept at a low level and almost half of the individuals260

contribute to the common pool. The remaining trajectories in the phase space will converge to the261

alternative destination in which the risk level becomes particularly high and cooperators disappear.262

Wenote that these qualitative results are robust for different feedback speeds (see the first column263

of Fig. 1 in Appendix 2).264

When T = M−1
N−1

, the eigenvalues of Jacobian matrix at the interior fixed point are a purely imag-265

inary conjugate pair. Then, according to the Hopf bifurcation theorem (Kuznetsov et al., 1998;266

Guckenheimer and Holmes, 2013), the system undergoes a Hopf bifurcation at T = M−1
N−1

and a limit267

cycle encircling around interior equilibrium emerges. By calculating the first Lyapunov coefficient,268

we can evaluate that the limit cycle is stable (see Appendix 2). Besides, there exist two boundary269

fixed points, (x∗1, 1) and (x
∗
2, 1), because

(N−1
M−1

)

(M−1
N−1

)M−1(1 − M−1
N−1

)N−Mb− c > 0. Thus the system has all270

seven fixed points. As we discuss in Appendix 2, only the fixed point (0, 1) is stable. A representa-271

tive numerical example is shown in the second row of Fig. 6, which is conceptually similar to those272

we observed for System I. More precisely, the population either converges toward a limit cycle in273

the interior space, or arrives to the undesired (0, 1) point where there are no cooperators, but just274

high risk. Last, similar to previous cases, we observe that the feedback speed does not affect the275
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Figure 6. Coevolutionary dynamics on phase planes and temporal dynamics of System II when exponential feedback is assumed. Filled circles
represent stable and open circles denote unstable fixed points. The arrows provide the most likely direction of evolution and the continuous
color code depicts the speed of convergence in which red denotes the highest speed, while purple represents the lowest speed of transition.
Blue solid line and red dash line respectively denote the fraction of cooperation and the risk level, as indicated in the legend. The first three rows
show the coevolutionary dynamics when T > M−1

N−1 , T =
M−1
N−1 , and T <

M−1
N−1 , respectively. The bottom row shows the case when

c >
(N−1
M−1

)

TM−1(1 − T )N−Mb. Parameters are N = 6, c = 0.1, b = 1, T = 0.5, � = 5, " = 0.1,M = 3 in panel (a). The initial conditions are (x, r) = (0.4, 0.3)
in panel (b) and (x, r) = (0.1, 0.1) in panel (c). N = 6, c = 0.1, b = 1, T = 0.4, � = 5, " = 0.1,M = 3 in panel (d). The initial conditions are (x, r) = (0.4, 0.3)
in panel (e) and (x, r) = (0.4, 0.5) in panel (f). N = 6, c = 0.1, b = 1, T = 0.2, � = 5, " = 0.1,M = 3 in panel (g). The initial conditions are (x, r) = (0.4, 0.3)
in panel (h). N = 6, c = 0.1, b = 1, T = 0.8, " = 0.1,M = 3 in panel (i). The initial conditions are (x, r) = (0.4, 0.3) in panel (j) and (x, r) = (0.1, 0.1) in
panel (k).
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behavior qualitatively, as illustrated in the second column of Fig. 1 of Appendix 2.276

The interior fixed point is unstable when T < M−1
N−1

. Besides, there are two boundary fixed points,277

(x∗1, 1) and (x
∗
2, 1), because

(N−1
M−1

)

(M−1
N−1

)M−1(1 − M−1
N−1

)N−Mb − c > 0. In this situation, the system has all278

seven fixed points. Theoretical analysis, presented in Appendix 2, confirms that only (0, 1) is stable.279

This is illustrated in the third row of Fig. 6 where all trajectories terminate in the mentioned point,280

signaling that the tragedy of the commons state is inevitable.281

System II has no interior equilibrium point.282

When c ≥
(N−1
M−1

)

TM−1(1 − T )N−Mb, there is no interior fixed point in System II. In this case, when283
(N−1
M−1

)

(M−1
N−1

)M−1(1− M−1
N−1

)N−Mb−c < 0, there are four equilibrium points, namely, (0, 0), (0, 1), (1, 0), (1, 1)284

where (0, 1) is stable. When
(N−1
M−1

)

(M−1
N−1

)M−1(1 − M−1
N−1

)N−Mb − c > 0, there exist two boundary fixed285

points, (x∗1, 1) and (x
∗
2, 1). Altogether, the system has six fixed points, which are (0, 0), (0, 1), (1, 0),286

(1, 1), (x∗1, 1), and (x
∗
2, 1). As we discuss in Appendix 2, the fixed points (0, 0), (1, 0), (1, 1), (x∗1, 1) are287

unstable, while (0, 1) is stable. In the special case of x∗2 < T , the fixed point (x∗2, 1) becomes stable.288

In this exotic state there is a significant cooperation at a high risk level. A representative numerical289

illustration is shown in the bottom row of Fig. 6, signaling the importance of the initial conditions,290

because the trajectories converge either to the fixed point (0, 1) or to (x∗2, 1).291

Discussion292

Humanbehavior and thenatural environment are inextricably linked. Motivatedby this fact, rapidly293

growing research efforts have recognized the importance of developing a new comprehensive294

framework to study the coupled human-environment ecosystem (Stern, 1993; Liu et al., 2007;295

Farahbakhsh et al., 2022). Starting from the powerful concept of coevolutionary game theory, sev-296

eral works focus on depicting the reciprocal interactions and feedback between human behaviors297

and natural environment - both the impact of human behaviors on nature and the effects of en-298

vironment on human behaviors (Weitz et al., 2016; Chen and Szolnoki, 2018; Tilman et al., 2020).299

Along this research line, we have developed a feedback-evolving game framework to study the300

coevolutionary dynamics of strategies and environment based on collective-risk dilemmas. Here,301

the environmental state is no longer a symbol of resource abundance, but depicts the risk level of302

collective failure. More precisely, we assume that the frequencies of strategies directly affect the303

risk level and reversely, the change of risk state stimulates individual behavioral decision-making.304

Importantly, we have explored both linear and highly nonlinear feedback mechanisms which char-305

acterize the link between the main system variables.306

In particular, we have incorporated the strategies-risk feedback mechanism into replicator dy-307

namics and explored the possible consequences of coevolutionary dynamics. We have shown that308

sustainable cooperation level can be reached in the population in two different ways. First, the309

coevolutionary dynamics can converge to a fixed point. This fixed point can be in the interior, in-310

dicating that the frequency of cooperators and the level of risk can be respectively stabilized at311

a certain level, or at the boundary, indicating high-level cooperation can be maintained even at a312

significantly high-risk environment. Second, the system has a stable limit cycle where persistent os-313

cillations in strategy and risk state can appear. In addition, we have found that the above described314

evolutionary outcomes do not depend significantly on the character of feedback mechanism how315

strategy change affects on risk level. No matter it is linear or nonlinear, what really counts is the316

existence of the proper feedback. Importantly, we have theoretically identified those conditions317

which are responsible for the final dynamical outcomes. Interestingly, it is worth emphasizing that318

the relative evolutionary speed of strategy and risk level does not alter the behavior qualitatively,319

hence underlines the robustness of our observations.320

Previous theoretical studies have revealed that the coevolutionary gamemodels describing the321

complex interactions between collective actions and environment can produce periodic oscillation322

dynamics (Weitz et al., 2016; Tilman et al., 2020). Although our feedback-evolving game model323
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can also produce persistent oscillations, there are some differences. In particular, we have the-324

oretically proved that Hopf bifurcation can take place and a stable limit cycle can appear in the325

system, which is different from the heteroclinic cycle dynamics reported by Weitz et al. (Weitz326

et al., 2016). Besides, we have found that the existence of a limit cycle does not depend on the327

speed of coupling, whereas Tilman et al. (Tilman et al., 2020) reported the opposite conclusion.328

Furthermore, we observe that a small amplitude oscillation is more conducive to maintaining the329

stability of the system than a large magnitude oscillation because a higher risk will make it easier330

for all individuals to lose all their endowments.331

The reciprocal feedback process, though many types have not been well characterized, occurs332

at all levels of our life (Liu et al., 2007; Ezenwa et al., 2016; Obradovich and Rahwan, 2019). Con-333

sequently, they may play an indispensable role in maintaining the stability of human society and334

the ecosystem. Mathematical modeling based on evolutionary game theory is a powerful tool for335

addressing social-ecological and human-environment interactions and analyzing the evolutionary336

dynamics of these coupled systems. The mathematical framework proposed in this paper consid-337

ers two characteristic forms to describe the effect of strategy on risk, namely, linear and nonlinear338

(exponential) forms of feedback. Although these two forms can be equivalent under some limit339

conditions, there are essential differences. On one hand, linear relationship is a relatively simple340

way to describe the correlation mode of two factors, which is common in real society. For ex-341

ample, with the increase of protection awareness and vaccination proportion, the mortality rate342

of the epidemic decreased gradually (Yang and Shaman, 2022). Furthermore, linear feedback has343

been used to describe the interactions between actions of the population and environmental state344

(Weitz et al., 2016; Tilman et al., 2020). However, linear link cannot fully describe the relationship345

between variables in real societies. For example, in recent years, extreme weather phenomena346

have occurred more frequently, with greater intensity and wider impact areas. Thus the feedback347

between human behaviors and environment may take on a more complex nonlinear form. In this348

work, we consider that the strategy of the population has an exponential effect on risk level, and349

such form can describe the phenomenon that risk will rise and fall sharply with the change of strat-350

egy frequency (Fig. 2). It is worth emphasizing that although we use different forms of feedback351

to describe the impact of strategies on risk, the evolutionary dynamics have not changed substan-352

tially which highlights the prime importance of the feedbackmechanism independently of its actual353

form.354

Our feedback-evolving gamemodel reveals that the coupled strategy and environment system355

will produce a variety of representative dynamical behaviors. We find that the undesired equilib-356

rium point (0, 1) in our feedback system is always evolutionarily stable, which does not depend on357

whether the effect of strategy on risk is linear or exponential. Such evolutionary outcome means358

that all individuals are unwilling to contribute to achieving the collective goal, which leads to the359

failure of collective action, and all individuals inevitably lose their remaining endowments. In real-360

world scenarios, such as climate change (Milinski et al., 2008) and the spread of infectious diseases361

(Cronk and Aktipis, 2021; Chen and Fu, 2022), once thewhole society is in such a state, it is undoubt-362

edly disastrous for the public. Therefore, how to adjust and control the system to deviate from this363

state is particularly important for policymakers.364

Finally, it is worth emphasizing that the feedback loop operates over time. In this situation, the365

change of risk state or strategy frequencymay lead to the change of other factors, such as collective366

target, which provides an opportunity for the emergence of new feedback loops. Thus, multiple367

types of feedback loops are possible in a single coupled system. Such multiple feedback loops368

have been confirmed in the coupling system of animal behavior and disease ecology (Ezenwa et al.,369

2016). Therefore, a promising expansion of our current model could be to consider the multiple370

feedback loops.371
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Appendix 1540

We first study the case where the strategy of the population has a linear effect on the risk
level. Then the dynamical system can be written as

⎧

⎪

⎨

⎪

⎩

"ẋ = x(1 − x)[
(

N − 1
M − 1

)

xM−1(1 − x)N−Mrb − c],

ṙ = r(1 − r)[u(1 − x) − x].

This equation system has at most seven fixed points, which are (0, 0), (0, 1), (1, 0), (1, 1),
( u
1+u
, c

(N−1M−1)( u
1+u )

M−1( 1
1+u )

N−M b
), (x∗1, 1), and (x

∗
2, 1), where x

∗
1 and x

∗
2 are the real roots of the equation

(N−1
M−1

)

xM−1(1−x)N−Mb = c. For convenience, we introduce the abbreviation r∗ = c

(N−1M−1)( u
1+u )

M−1( 1
1+u )

N−M b

and Γ(x) =
(N−1
M−1

)

xM−1(1−x)N−M . In the following, we analyze the stability of these equilibrium
points.

541

542

543

544

545

546

547

548

549

550

(1) When 0 < r∗ < 1, namely, Γ( u
1+u
) > c

b
, the system has an interior fixed point. Accord-

ingly, the Jacobian for the interior fixed point is

J ( u
1 + u

, r∗) =

[

ā11 ā12
ā21 0

]

,

where ā11 =
c
"
[M − 1 − u(N−1)

u+1
], ā12 =

1
"

(N−1
M−1

)

( u
1+u
)M ( 1

1+u
)N−M+1b, and ā21 = −r∗(1 − r∗)(1 + u).

551

552

553

554

555

556

(i) When ā11 > 0, namely, u < M−1
N−M

, the existing interior fixed point is unstable. Since
Γ(M−1

N−1
) > c

b
, we can know that the two boundary fixed points (x∗1, 1) and (x

∗
2, 1) exist. Thus,

the system has seven fixed points in the parameter space, namely, (0, 0), (0, 1), (1, 0), (1, 1),
( u
1+u
, r∗), (x∗1, 1), and (x

∗
2, 1). The Jacobianmatrices of these equilibrium points are respectively

given as follows.

557

558

559

560

561

For (x, r) = (0, 0), the Jacobian is

J (0, 0) =

[

− c
"

0
0 u

]

,

thus the fixed equilibrium is unstable.

562

563

564

565

566

For (x, r) = (0, 1), the Jacobian is

J (0, 1) =

[

− c
"

0
0 −u

]

,

thus the fixed equilibrium is stable.

567

568

569

570

571

For (x, r) = (1, 0), the Jacobian is

J (1, 0) =

[

c
"

0
0 −1

]

,

thus the fixed equilibrium is unstable.

572

573

574

575

576

For (x, r) = (1, 1), the Jacobian is

J (1, 1) =

[

c
"

0
0 1

]

,

thus the fixed equilibrium is unstable.

577

578

579

580

581

For (x, r) = (x∗1, 1), the Jacobian is

J (x∗1, 1) =

[

c
"
(M − 1 − x∗1(N − 1)) c

"
x∗1(1 − x

∗
1)

0 (1 + u)x∗1 − u

]

,
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thus the fixed equilibrium is unstable since x∗1 <
M−1
N−1

.

582

583

584

585

586

For (x, r) = (x∗2, 1), the Jacobian is

J (x∗2, 1) =

[

c
"
(M − 1 − x∗2(N − 1)) c

"
x∗2(1 − x

∗
2)

0 (1 + u)x∗2 − u

]

,

because u < M−1
N−M

and x∗2 >
M−1
N−1

, then 1 − 1
1+u

< M−1
N−1

< x∗2. Thus this fixed equilibrium is
unstable.

587

588

589

590

591

592

(ii) When ā11 = 0, namely, u = M−1
N−M

, the trace and determinant of the Jacobian matrix at
the interior equilibrium point are respectively given by

tr(J ( u
1 + u

, r∗)) = ā11 = 0,

det(J ( u
1 + u

, r∗)) = −ā12ā21 =
r∗(1 − r∗)(1 + u)

"

(

N − 1
M − 1

)

( u
1 + u

)M ( 1
1 + u

)N−M+1b > 0.

The eigenvalues of the Jacobian matrix can be calculated

�1 =
ā11 +

√

ā211 + 4ā12ā21
2

= �̄ + iw̄,

�2 =
ā11 −

√

ā211 + 4ā12ā21
2

= �̄ − iw̄,

where �̄ = ā11
2
= 0 and w̄2 = −ā12ā21.

593

594

595

596

597

598

599

600

601

602

603

Accordingly, we know that the eigenvalues satisfy the following conditions

Re(�) = �̄ = 0,

lm(�) =

√

−ā211 − 4ā12ā21
2

≠ 0,

dRe(�)
du

|u= M−1
N−M

= −
c(N − 1)
2"(u + 1)2

= −
c(N −M)2

2"(N − 1)
< 0.

The first two conditions imply that the eigenvalues of Jacobian matrix at ( u
1+u
, r∗) has a pair

of pure imaginary roots. The third condition means that the pair of complex-conjugate
eigenvalues crosses the imaginary axis with nonzero speed. According to Hopf bifurcation
theorem (Kuznetsov et al., 1998), we know that a Hopf bifurcation takes place at u = M−1

N−M
.

In order to determine the stability of the existing limit cycle from Hopf bifurcation, we need
to calculate the first Lyapunov coefficient. We denote that F1(x, r) =

x(1−x)
"
[
(N−1
M−1

)

xM−1(1 −
x)N−Mrb − c] and F2(x, r) = r(1 − r)[u(1 − x) − x].

604

605

606

607

608

609

610

611

612

613

614

Let q, p ∈ ℂ2 respectively denote the eigenvectors of the Jacobian matrix J (T , r∗) and its
transpose,

q =

(

−ā12i
w̄
1

)

, p =

(

−iw̄
ā12
1

)

, (8)

which satisfy

Jq = iw̄q,

J T p = −iw̄p.

To achieve the necessary normalization < p, q >= p̄1q1 + p̄2q2 = 1, we can take

q =

(

−iā12
2w̄
1
2

)

, p =

(

−iw̄
ā12
1

)

, (9)
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According to Ref. (Kuznetsov et al., 1998), we construct the complex-valued function

G(x, r) = p̄1F1(
u

1 + u
+ xq1 + rq̄1, r∗ + xq2 + rq̄2) + p̄2F2(

u
1 + u

+ xq1 + rq̄1, r∗ + xq2 + rq̄2),

where p, q are given above, to evaluate its formal partial derivatives with respect to x, r at
(T , r∗), obtaining g20 = Gxx, g11 = Gxr, and g21 = Gxxr. After some calculations, we can get the
first Lyapunov coefficient

l1 =
1
2w̄2

Re(ig20g11 + w̄g21).

Specifically, when l1 < 0, a unique and stable limit cycle bifurcates from the equilibrium ap-
pears, while when l1 > 0, the Hopf bifurcation is subcritical such that an unstable limit cycle
will be generated. Due to the complexity of the system, it is difficult to conduct bifurcation
analysis collectively. Here we conduct a numerical analysis to investigate the stability of the
existing limit cycle when the model parameters are consistent with Fig. 4(d). By using the
algorithm in Ref. (Kuznetsov et al., 1998), we can get l1 = −1.407166124 × 10−8 < 0, which
implies that the Hopf bifurcation is supercritical.

615
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618
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620
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622
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626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

Besides, since Γ(M−1
N−1

) > c
b
, we can state that the two boundary fixed points (x∗1, 1) and

(x∗2, 1) exist. Thus the system has seven equilibrium points, which are (0, 0), (0, 1), (1, 0), (1, 1),
( u
1+u
, r∗), (x∗1, 1), and (x

∗
2, 1), respectively. Accordingly to the sign of the eigenvalues of the

Jacobian matrices, we know that only (0, 1) is stable.

645

646

647

648

(iii) When ā11 < 0, namely, u > M−1
N−M

, the trace and determinant of the Jacobian matrix at
the interior equilibrium point are respectively given by

tr(J ( u
1 + u

, r∗)) = ā11 < 0,

det(J ( u
1 + u

, r∗)) = −ā12ā21 =
r∗(1 − r∗)(1 + u)

"

(

N − 1
M − 1

)

( u
1 + u

)M ( 1
1 + u

)N−M+1b > 0.

Thus the interior fixed point is stable. Besides, since Γ(M−1
N−1

) > c
b
, two boundary fixed points,

(x∗1, 1) and (x
∗
2, 1), exist. Thus there are seven fixed points in the system, which are (0, 0), (0, 1),

(1, 0), (1, 1), ( u
1+u
, r∗), (x∗1, 1), and (x

∗
2, 1), respectively. Here, the fixed points (0, 1) and ( u

1+u
, r∗)

are stable, while others are unstable.

649

650

651

652

653

654

655

656

657

(2) When r∗ ≥ 1, namely, Γ( u
1+u
) ≤ c

b
, the system has no interior equilibrium point. In this

case, whenΓ(M−1
N−1

) > c
b
, the systemhas six fixedpoints, which are (0, 0), (0, 1), (1, 0), (1, 1), (x∗1, 1),

and (x∗2, 1), respectively. According to the sign of the largest eigenvalues of the Jacobian ma-
trices, we can say that (0, 0), (1, 0), (1, 1), (x∗1, 1) are unstable, while (0, 1) is stable. Particularly,
when x∗2 <

u
1+u

, the fixed point (x∗2, 1) is stable, and it is unstable when x
∗
2 >

u
1+u

. When x∗2 =
u
1+u

,
we know that one eigenvalue of the Jacobian matrix is zero and the other eigenvalue is neg-
ative. Then we study its stability by using the center manifold theorem (Khalil, 1996). For
the fixed point (x∗2, 1), the Jacobian matrix can be written as

J (x∗2, 1) =

[

11 12
0 0

]

,

where 11 =
c
"
(M − 1 − x∗2(N − 1)) and 12 =

c
"
x∗2(1 − x

∗
2). To do that, we take z1 = x − x∗2 and

z2 = r − 1, then the system can be rewritten as

⎧

⎪

⎨

⎪

⎩

ż1 =
1
"
(x∗2 + z1)(1 − x

∗
2 − z1)[

(

N − 1
M − 1

)

(x∗2 + z1)
M−1(1 − x∗2 − z1)

N−M (z2 + 1)b − c],

ż2 = (z2 + 1)(−z2)[u(1 − x∗2 − z1) − x
∗
2 − z1].
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Let Q be a matrix whose columns are the eigenvectors of J (x∗2, 1), which can be written as

Q =

[

1 − 12
11

0 1

]

.

Then we have

Q−1JQ =

[

11 0
0 0

]

.

We further take [�1 �2]T = Q−1[z1 z2], and then we have �1 = z1 +
12
11
z2 and �2 = z2. It leads

to

�̇2 = −�2(�2 + 1)[u(1 −
u

1 + u
− �1 +

12
11
�2) −

u
1 + u

− �1 +
12
11
�2].

According to the center manifold theorem, we know that �1 = ℎ(�2) is a center manifold.
Then we start to try ℎ(�2) = O(|�2|2), which yields the reduced system

�̇2 = −(1 + u)
12
11
�22 − (1 + u)

12
11
�32 + O(|�2|

4).

Since −(1 + u) 12
11

≠ 0, the fixed point �2 = 0 of the reduced system is unstable. Accordingly,
the fixed point (x∗2, 1) of the original system is unstable.
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693

When Γ(M−1
N−1

) = c
b
, the system has five fixed points, which are (0, 0), (0, 1), (1, 0), (1, 1), and

(M−1
N−1

, 1), respectively. According to the sign of the eigenvalues in the Jacobian matrices, we
can state that only (0, 1) is stable. When Γ(M−1

N−1
) < c

b
, the system has four fixed points, namely

(0, 0), (0, 1), (1, 0), and (1, 1). Here only (0, 1) is stable.
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696
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Appendix 1 Figure 1. Coevolutionary dynamics of System I for different " values when linear
feedback effect of strategy on risk level is considered. Parameters are N = 6, c = 0.1, b = 1, andM = 3.
u = 2 in left column and u = 2∕3 in right column. The initial conditions are (x, r) = (0.4, 0.3).
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Appendix 2703

System II with exponential feedback is described by

⎧

⎪

⎨

⎪

⎩

"ẋ = x(1 − x)[
(

N − 1
M − 1

)

xM−1(1 − x)N−Mrb − c],

ṙ = r(1 − r)[ 1
1 + e�(x−T )

− 1
1 + e−�(x−T )

].

where the parameter � > 0 represents the steepness of the function.

704

705

706

707

708

This equation system has at most seven fixed points, which are (0, 0), (0, 1), (1, 0), (1, 1), (T ,
c

(N−1M−1)TM−1(1−T )N−M b
), (x∗1, 1), and (x

∗
2, 1), where x

∗
1 and x

∗
2 are the real roots of the equation

(N−1
M−1

)

xM−1(1−

x)N−Mb = c and x∗1 <
M−1
N−1

< x∗2. For simplicity, we introduce the abbreviation r̄ = c

(N−1M−1)TM−1(1−T )N−M b

and Γ(x) =
(N−1
M−1

)

xM−1(1 − x)N−M . In the following, we study the stabilities of equilibria based
on whether the system has an interior equilibrium point.

709

710

711

712

713

(1) When 0 < r̄ < 1, namely, Γ(T ) > c
b
, System II has an interior equilibrium point.714

The Jacobian matrix evaluated at this equilibrium is

J (T , r̄) =

[

a11 a12
a21 0

]

,

where a11 =
c
"
(M − 1 − T (N − 1)), a12 =

1
"

(N−1
M−1

)

TM (1 − T )N−M+1b, and a21 = −
r̄(1−r̄)�
2

. Notice that
1
"

(N−1
M−1

)

TM (1 − T )N−M+1b > 0 and − r̄(1−r̄)�
2

< 0, then the trace and determinant of the Jacobian
matrix are respectively given by

tr(J (T , r̄)) = c
"
(M − 1 − T (N − 1)),

det(J (T , r̄)) = 1
"

(

N − 1
M − 1

)

TM (1 − T )N−M+1b
r̄(1 − r̄)�

2
> 0.

The eigenvalues of the Jacobian matrix can be calculated

�1 =
a11 +

√

a211 + 4a12a21
2

,

�2 =
a11 −

√

a211 + 4a12a21
2

.

Here we set that �(T ) = a11
2
, w2(T ) = −

a211+4a12a21
4

, and T0 =
M−1
N−1

.

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

(i) When a11 > 0, namely, T < T0, the interior equilibriumpoint is unstable. Since Γ(T0) >
c
b
,

we can know that the two boundary fixed points (x∗1, 1) and (x
∗
2, 1) exist. Thus, the system

has seven fixed points in the parameter space, namely, (0, 0), (0, 1), (1, 0), (1, 1), (T , r̄), (x∗1, 1),
and (x∗2, 1).

731

732

733

734

735

For (x, r) = (0, 0), the Jacobian is

J (0, 0) =

[

− c
"

0
0 1−e−�T

1+e−�T

]

,

thus the fixed equilibrium is unstable.

736

737

738

739

740

For (x, r) = (0, 1), the Jacobian is

J (0, 1) =

[

− c
"

0
0 − 1−e−�T

1+e−�T

]

,
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thus the equilibrium point is stable.

741

742

743

744

745

For (x, r) = (1, 0), the Jacobian is

J (1, 0) =

[

c
"

0
0 1−e�(1−T )

1+e�(1−T )

]

,

thus the fixed point is unstable.

746

747

748

749

750

For (x, r) = (1, 1), the Jacobian is

J (1, 1) =

[

c
"

0
0 − 1−e�(1−T )

1+e�(1−T )

]

,

thus the fixed equilibrium is unstable.

751

752

753

754

755

For (x, r) = (x∗1, 1), the Jacobian is

J (x∗1, 1) =
⎡

⎢

⎢

⎣

c
"
(M − 1 − x∗1(N − 1)) c

"
x∗1(1 − x

∗
1)

0 − 1−e�(x
∗
1−T )

1+e�(x
∗
1−T )

⎤

⎥

⎥

⎦

,

thus the fixed equilibrium is unstable since x∗1 < T0.

756

757

758

759

760

For (x, r) = (x∗2, 1), the Jacobian is

J (x∗2, 1) =
⎡

⎢

⎢

⎣

c
"
(M − 1 − x∗2(N − 1)) c

"
x∗2(1 − x

∗
2)

0 − 1−e�(x
∗
2−T )

1+e�(x
∗
2−T )

⎤

⎥

⎥

⎦

,

thus the fixed equilibrium is unstable since T < T0 < x∗2.

761

762

763

764

765

(ii) When a11 = 0, namely, T = T0 = M−1
N−1

, we have �(T0) = 0. Moreover, w2(T ) =

−
a211+4a12a21

4
= 1

"

(N−1
M−1

)

TM (1 − T )N−M+1b r̄(1−r̄)�
2

> 0. Therefore, the eigenvalues of the Jacobian
matrix are a purely imaginary conjugate pair �1,2(T0) = ±iw(T0). Considering that

)�(T )
)T

|T0 =
− c(N−1)

2"
< 0, then we know that the system undergoes a Hopf bifurcation at T = T0 and there

exists a limit cycle around the interior equilibrium. Accordingly, we can evaluate the direc-
tion of the limit cycle bifurcation by computing the first Lyapunov coefficient l1 of the system.
Here we also conduct numerical calculations to investigate the stability of the existing limit
cycle when the model parameters are consistent with Fig. 6(d). By using the algorithm in
Ref. (Kuznetsov et al., 1998), we can get l1 = −1.876221498×10−8, which implies that the Hopf
bifurcation is supercritical.

766

767

768

769

770

771

772

773

774

775

Besides, since Γ(T0) >
c
b
, we know that there are seven equilibrium points in System II.

They are (0, 0), (0, 1), (1, 0), (1, 1), (T , r̄), (x∗1, 1), and (x
∗
2, 1). According to the sign of the eigen-

values of the Jacobian matrices, only (0, 1) is stable.

776

777

778

(iii) When a11 < 0, namely, T > T0, the interior equilibrium point is stable. Besides, since
Γ(T0) >

c
b
, we find that there are seven fixed points in the system, which are (0, 0), (0, 1), (1, 0),

(1, 1), (T , r̄), (x∗1, 1), and (x
∗
2, 1), respectively. Here, the fixed points (0, 1) and (T , r̄) are stable,

while others are unstable.

779

780

781

782

(2) When r̄ ≥ 1, namely, Γ(T ) ≤ c
b
, System II has no interior equilibrium point. In this case,

when Γ(T0) >
c
b
, the system has six fixed points, which are (0, 0), (0, 1), (1, 0), (1, 1), (x∗1, 1), and

(x∗2, 1), respectively. According to the sign of the largest eigenvalues of the Jacobianmatrices,
we can say that (0, 0), (1, 0), (1, 1), (x∗1, 1) are unstable, while (0, 1) is stable. Particularly, when
x∗2 < T , the fixed point (x∗2, 1) is stable, and it is unstable when x∗2 > T . When Γ(T0) =

c
b
,

the system has five fixed points, which are (0, 0), (0, 1), (1, 0), (1, 1), and (T0, 1), respectively.
According to the sign of the eigenvalues in the Jacobian matrices, we can see that only (0, 1)
is stable. When Γ(T0) <

c
b
, the system has four fixed points, namely (0, 0), (0, 1), (1, 0), and

(1, 1). Here only (0, 1) is stable.
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784

785

786

787

788

789

790

791
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Appendix 2 Figure 1. Coevolutionary dynamics of System II for different " values when the strategy
feedback on risk is exponential. Parameters are N = 6, c = 0.1, b = 1, � = 5, andM = 3. T = 0.5 in the
left column and T = 0.4 in the right column. The initial condition is (x, r) = (0.4, 0.3).
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