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Motivation: Efficient resource allocation contributes to an or-
ganism’s fitness and improves success in competition. The Re-
source Balance Analysis (RBA) computational framework en-
ables the analysis of an organism’s growth-optimal configura-
tions in various environments, at genome-scale. The existing
RBApy software enables the construction of RBA models on
genome-scale and the calculation of medium-specific, growth-
optimal cell states, including metabolic fluxes and the abun-
dance of macromolecular machines. However, to address the
needs of non-expert users, there is a need for a simple program-
ming API, easy to use and interoperable with other software
through convenient formats for models and data.

Results: The RBAtools python package enables the convenient
use of RBA models and addresses non-expert users.

As a flexible programming interface, it enables the implemen-
tation of custom workflows and simplifies the modification of
existing genome-scale RBA models and data export to various
formats. The features comprise simulation, model fitting, pa-
rameter screens, sensitivity analysis, variability analysis, and
the construction of Pareto fronts. Models and data are repre-
sented as structured tables, in HTML, and common formats for
fluxomics and proteomics visualization.

Availability: Details about RBA can be found at rba.inrae.fr.
RBAtools documentation, installation instructions,

and tutorials are available at sysbioinra.github.io/rbatools.
Contact:

wolfram.liebermeister @inrae.fr, anne.goelzer @inrae.fr

Introduction

How can we understand and anticipate the impact of genomic
modifications and environmental perturbations on the behav-
ior of microbial cells? A guiding idea is that organisms effi-
ciently allocate their resources (1), (2), (3) to succeed within
their ecological niche. Resource Balance Analysis (RBA) is
a conceptual and computational framework that implements
this principle as a constraint-based modeling method (4), pre-
dicting growth-optimal cellular states (2), (5). It allows for
simulating responses to genomic (e.g. gene-knockouts and
the addition of heterologous metabolic pathways) or envi-
ronmental perturbations (e.g. nutrient limitation). Due to
its formulation as a linear optimization problem (LP), RBA
can handle detailed cell models at genome-scale. Available
RBApy (6) software facilitates the construction of genome-
scale RBA models and the prediction of growth rates and
corresponding cellular states (i.e. metabolic fluxes and abun-

dance of molecular machines). However, RBApy lacks func-
tionality for custom analysis workflows and for exploring re-
source allocation beyond growth-optimal states.

RBAtools

RBAtools is a programming interface based on RBApy with
extended capabilities for the exploration, manipulation and
simulation of RBA models. It provides new and more con-
venient functionality for defining the growth medium, ma-
nipulating model components and parameters, and directly
editing the LP problem. The new methods can be easily
combined to define custom workflows for simulation and
analysis. RBAtools also facilitates programmatic access to
model components and their relationships, and the export into
human-readable formats such as SBtab (7) or CSV. Further-
more, predicted fluxes and protein levels can be converted
into intuitive visualizations with Escher maps (8) and Pro-
teomaps (9). RBAtools provides elementary functions for
setting parameters or manipulating and solving the LP prob-
lem, enabling the implementation of custom algorithms. In
addition, it includes high-level methods for simulation and
analysis workflows used in resource allocation modeling. Be-
low we showcase some analysis methods from the RBAtools
library (for implementation details, see the supplementary
materials).

Prediction of cell phenotypes for biotechnology: RBAtools
provides various modeling methods for biotechnology, to im-
prove the production of added-value compounds: models
can be modified to simulate gene knock-outs, enzyme inhi-
bition, enzyme overexpression or underexpression, changes
in cell dry-mass composition, and the addition of heterol-
ogous metabolic pathways. Known characteristics such as
measured metabolite exchanges (e.g added-value compound)
or machinery abundances can be imposed, and the result-
ing phenotype (maximum growth rate, metabolic activity and
quantitative proteome) can be inferred. It is possible to pre-
dict Monod curves (Fig. 1a) and to infer the minimum re-
quired concentration of a limiting substrate in the medium
for a fixed given growth rate (as in chemostat).

Sensitivity to model parameters: Modifiable model param-
eters allow for different types of sensitivity analyses, imple-
mented in the RBAtools library. (i) By screening parameter
values and predicting associated cellular states, effects on the
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Fig. 1. Analyses of a genome-scale B. subtilis cell model, performed with RBAtools.
(a): Phenotype prediction. Screen over external glucose concentrations as sole car-
bon source and resulting maximal growth rates (Monod curve) and corresponding
optimal exchange fluxes of glucose, oxygen and acetate. A glucose concentration
of 0.025 mM, at the onset of overflow metabolism, is used as a reference condition
in other panels (dashed black lines). (b): Sensitivity analysis. Global sensitivity
of (growth optimal) cellular states to the uncertainty of enzyme efficiencies. For
each enzyme efficiency in the model, a scaling factor = is applied, where In(z)
is drawn from a normal distribution with .+ = 0 and o = In(1.1). The respective
maximal growth rates and optimal oxygen exchanges are determined for 1000 sam-
ples. The two modes in the distribution of oxygen uptake rates correspond to two
different metabolic configurations, respiration and overflow metabolism, which are
normally used at low or high glucose concentrations, respectively. Around the refer-
ence concentration of 0.25 mM (critical concentration for wild type), a cell may show
either configuration, depending on its enzyme efficiencies, and uncertainty in these
parameters may have large effects. (c): Resource Variability Analysis. feasible
ranges of glucose and oxygen uptake at growth rates between 0 and the maximum.
Around the maximum growth rate the feasible regions collapse to the respective
optimal values. (d): Pareto analysis. Pareto efficient trade-offs between investment
in non-native cytosolic protein, and additional ATP-turnover at various fractions of
the maximal growth rate (imax)- Lines represent simulated Pareto fronts.

phenotype can be assessed. (ii) Local fitness sensitivities,
defined as the partial derivative of growth rate to the param-
eter value, can be determined. (iii) Global parameter uncer-
tainty and the resulting variability can be studied by sampling
global sets of enzyme capacities and predicting the resulting
phenotypes (Fig. 1b).

Resource Variability Analysis and multi-objective opti-
mization: Biotechnology needs to consider trade-offs be-
tween cell variables (e.g. between cell growth and the pro-
duction of compound production). Similar to Flux Variabil-
ity Analysis (10), RBAtools allows users to determine fea-
sible ranges of metabolic fluxes and machinery concentra-
tions, providing ultimate bounds at predefined growth rates
(Fig. 1c). By relating these ranges to growth rate, trade-
offs between extreme production/consumption capabilities
and cellular fitness can be assessed. RBAtools can also di-
rectly trace Pareto fronts between state variables (e.g. vari-
ables representing the usage of alternative metabolic routes,
or the production of additional ATP versus additional pro-
teins) at a given growth rate and environment (Fig. 1d). Aside
from these predefined procedures, versed users can easily im-
plement their own custom methods based on more fundamen-
tal functionalities on model- and LP manipulation.
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Conclusion

We developed a versatile and convenient programming inter-
face for RBA models, more flexible and user-friendly than
existing tools, enabling deep exploration of cellular behavior
on genome-scale. It leverages the idea of cellular resource
allocation to model the physiology of cells by combining
biochemical facts, optimality considerations, and organism-
specific empirical knowledge. While RBApy remains the tool
for building RBA models, RBAtools with its simplified inter-
face and extended functionality allows users to easily sim-
ulate the impact of genomic or environmental perturbations
on cell phenotypes. This makes it useful for a wide range of
applications in synthetic biology, metabolic engineering or
white biotechnology.
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