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Abstract31

Grid cells are neurons in the entorhinal cortex that play a key role in spatial navigation. When subjects32

navigate through spatial environments, grid cells exhibit firing fields that are arranged in a triangular33

grid pattern. As direct recordings of grid cells from the human brain are only rarely possible, functional34

magnetic resonance imaging (fMRI) studies proposed and described an indirect measure of entorhinal35

grid-cell activity, which is quantified as a hexadirectional modulation of fMRI activity as a function of36

the subject’s movement direction. However, it still remains unclear how the activity of single grid cells is37

related to the sum activity of a population of grid cells, which may exhibit hexadirectional modulation38

and thus provide the basis for the hexadirectional modulation of entorhinal cortex activity measured with39

fMRI. Here, we thus performed numerical simulations and analytical calculations to better understand40

how the aggregated activity of many grid cells may be hexadirectionally modulated. Our simulations41

implemented three different hypotheses proposing that the hexadirectional modulation occurs because42

grid cells show head-direction tuning aligned with the grid axes; are subjected to repetition suppression;43

or exhibit a bias towards a particular grid phase offset. Our simulations demonstrate that all three44

hypotheses can, in principle, lead to a hexadirectional modulation of sum grid-cell activity. However, the45

magnitude of the hexadirectional modulation appears to depend considerably on the subject’s navigation46

pattern and the exact biological properties of grid cells. Our results thus indicate that future fMRI studies47

could be designed to test which of the three hypotheses most likely accounts for the fMRI measure of48

grid cells. These findings also underline the importance of quantifying the biological properties of single49

grid cells in humans to further elucidate how hexadirectional modulations of fMRI activity may emerge.50
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1 Introduction51

The neural basis of spatial navigation comprises multiple specialized cell types such as place cells (O’Keefe52

and Dostrovsky, 1971), head-direction cells (Taube et al., 1990), and grid cells (Hafting et al., 2005),53

whose activity profiles result from intricate mechanisms of microcircuits in the medial temporal lobes54

(Tukker et al., 2022). Grid cells are neurons that activate whenever an animal or human traverses the55

vertices of a triangular grid tiling the entire environment into equilateral triangles (Hafting et al., 2005;56

Jacobs et al., 2013). Grid cells may allow the navigating organism to perform vector computations and57

may thus constitute an essential neural substrate for different types of spatial navigation including path58

integration (Stemmler et al., 2015; Bush et al., 2015; Moser et al., 2017; Stangl et al., 2018; Gil et al.,59

2018; Banino et al., 2018; Bierbrauer et al., 2020).60

In rodents, grid cells can be recorded using electrodes inserted into the medial entorhinal cortex61

(EC). In humans, measuring grid cells using invasive methods is only rarely possible, for example, by62

recording single-neuron activity in epilepsy patients who are neurosurgically implanted with intracranial63

depth electrodes (Jacobs et al., 2013; Nadasdy et al., 2017). Hence, to enable the detection of grid cells64

in healthy humans, a functional magnetic resonance imaging (fMRI) method has been developed that65

tests for a hexadirectional modulation of the blood-oxygen-level-dependent (BOLD) signal as a function66

of the subject’s movement direction through a virtual environment (Doeller et al., 2010). We here67

refer to this phenomenon of a hexadirectional modulation of the fMRI signal as “macroscopic grid-like68

representations”, which has been replicated repeatedly in recent years (e.g. Kunz et al., 2015; Bellmund69

et al., 2016; Horner et al., 2016; Constantinescu et al., 2016; Bierbrauer et al., 2020). The mechanisms70

underlying the emergence of such macroscopic grid-like representations remain still unclear, however.71

To provide possible explanations for the emergence of macroscopic grid-like representations, previous72

studies presented several qualitatively different hypotheses on how the activity of single grid cells trans-73

lates into a macroscopically visible hexadirectional fMRI signal (Doeller et al., 2010; Kunz et al., 2019).74

Three main hypotheses have been developed: (i) the “conjunctive grid by head-direction cell hypothe-75

sis”; (ii) the “repetition suppression hypothesis”; and (iii) the “structure-function mapping hypothesis”76

(Fig. 1).77

The conjunctive grid by head-direction cell hypothesis builds on the finding that the firing of con-78

junctive grid by head-direction cells located in deeper layers of the entorhinal cortex and in pre- and79

parasubiculum (Sargolini et al., 2006) is aligned with the grid axes (Doeller et al., 2010). Assuming80

that the directional tuning width of these conjunctive grid by head-direction cells is not too broad,81

movements aligned with the grid axes (as compared to misaligned movements) result in increased spik-82

ing activity of the conjunctive grid by head-direction cell population. Given some correlation between83

population spiking activity and the fMRI signal, this systematic difference in the firing of conjunctive84

grid by head-direction cells when moving aligned versus misaligned with the grid axes may thus cause a85

macroscopically visible fMRI signal with hexadirectional modulation (Fig. 1B).86

The repetition suppression hypothesis (Fig. 1C) is based on the assumption that the phenomenon87

of repetition suppression—i.e., neural activity being reduced for repeated stimuli (Grill-Spector et al.,88

2006)—also applies to grid cells (Doeller et al., 2010; Killian et al., 2012). Critical to this hypothesis is89

that relatively fewer different grid cells are activated more often during movements aligned with the grid90

axes, and relatively more different grid cells are activated less often during misaligned movements. Due91

to this systematic difference in how many grid cells are activated how often, a higher degree of repetition92

suppression at the level of spiking activity or the fMRI signal (i.e., fMRI adaptation) during aligned93

movements as compared with misaligned movements can emerge, again resulting in a hexadirectional94

modulation of fMRI activity as a function of the subject’s movement direction through the spatial95

environment.96
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Figure 1: Qualitative hypotheses on the emergence of macroscopic grid-like representations
in the human entorhinal cortex (adapted from Kunz et al., 2019). (A) Grid-cell properties
comprise grid orientation, grid spacing, and grid phase offset. (B) Macroscopic grid-like representations
(right) may emerge from the firing of conjunctive grid by head-direction cells (left and middle) that exhibit
increased firing when the subject moves aligned as compared to misaligned with the grid axes (right)
(Doeller et al., 2010). (C) In a grid cell population with similar grid orientations and grid spacings
but with distributed phases (left; colored circles represent firing fields of different grid cells), aligned
movements (horizontal pink arrow) lead to more frequent activation (shorter distance between firing
fields) of a smaller number of different grid cells, whereas misaligned movements (diagonal gray arrow)
lead to less frequent activation (larger distance between firing fields) of a higher number of different
grid cells (Doeller et al., 2010). Thus, aligned movements may lead to more pronounced repetition
suppression as compared to misaligned movements (middle), resulting in a hexadirectional modulation
of population spiking activity and thus in the emergence of grid-like representations (right). (D) Because
anatomically adjacent grid cells exhibit similar grid phase offsets (in addition to similar grid orientations
and grid spacings) (Gu et al., 2018), recordings from a limited number of grid cells with a non-random
distribution of phase offsets may lead to macroscopic grid-like representations. The left panel shows the
grid phase offset of four different grid cells, whose anatomical locations are illustrated in the middle panel.
Depending on the subject’s starting location relative to the phase offset of the grid fields, movements
aligned or misaligned with the grid axes lead to higher sum grid cell activity as compared to misaligned
or aligned movements (right panel). D, dorsal; L, lateral; M, medial; V, ventral.
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Regarding the structure–function mapping hypothesis (Fig. 1D), studies in rodents have demonstrated97

that the firing fields of anatomically adjacent grid cells do not only have similar spacing and orientation98

(Stensola et al., 2012), but also a similar grid phase offset to a reference location (Heys et al., 2014; Gu99

et al., 2018). Therefore, recordings from a small area of the entorhinal cortex (e.g. a sufficiently small100

voxel of an fMRI scan) may sample grid cells with similar firing fields, which basically behave like a101

single grid cell. It has been suggested that such a grid cell population might show higher average firing102

rates during aligned movements (because more firing fields are traversed) versus misaligned movements,103

again resulting in macroscopically visible grid-like representations (Kunz et al., 2019).104

In this study, we aimed at quantitatively evaluating the three hypotheses on the emergence of macro-105

scopic grid-like representations using a modeling approach. Our results show that all three hypotheses106

can result in macroscopic grid-like representations under ideal and specific conditions, but the magnitude107

of the hexadirectional modulation varies by orders of magnitude. Key findings are that the subjects’108

type of navigation paths through the spatial environments and the exact biological characteristics of grid109

cells determine how much a given hypothesis contributes to a hexadirectional population signal in the110

entorhinal cortex. In this way, our results help understand how grid cells may have a specific correlate in111

fMRI, make predictions on how future fMRI studies could establish evidence in favor of one of the three112

hypotheses, and suggest that the biological properties of grid cells in humans should be investigated in113

greater detail in order to support or weaken the plausibility of either of the three hypotheses.114

2 Results115

2.1 Navigation strategies116

To evaluate the different hypotheses on the emergence of grid-like representations, we considered three117

different types of navigation trajectories: “star-like walks”, “piecewise linear walks”, and “random walks”.118

We opted for this approach in order to test whether a subject’s navigation pattern—which in itself119

comes with a certain degree of hexasymmetry (“path hexasymmetry”)—influences the emergence of120

hexadirectional sum signals of neuronal activity.121

During each path segment of star-like walks, the simulated agent started from the same (x/y)-122

coordinate and navigated along one of 360 predefined allocentric navigation directions (0° to 359° in123

steps of 1°; Fig. 2B). This ensured that the navigation trajectory itself exhibited a hexasymmetry that124

was essentially zero. Each path had a length of 300 cm, which was ten times the grid scale (see Table 1125

for a summary of all model parameters). After each path segment, the agent was “teleported” back to126

the initial (x/y)-coordinate and completed the next path segment. For real-world experiments, this type127

of navigation including teleportation is unusual, but it can be implemented in virtual-reality experiments128

(Vass et al., 2016; Deuker et al., 2016).129

During piecewise linear walks, the subject also completed 360 path segments of 300 cm length along130

the same 360 predefined allocentric navigation directions, as in the star-like walks. In this case, however,131

the path segments were “unwrapped” such that the starting location of a path segment was identical with132

the end location of the preceding path segment (Fig. 2C). The sequence of allocentric navigation directions133

was randomly chosen. As for star-like walks, piecewise linear walks do not exhibit hexasymmetry a priori.134

Piecewise linear walks are commonly seen in virtual-reality and real-world navigation tasks in humans—135

in particular when subjects are asked to navigate between different goal locations (Doeller et al., 2010;136

Kunz et al., 2015; Horner et al., 2016).137

For random walks, we modeled navigation trajectories following (Kropff and Treves, 2008; Si et al.,138

2012; D’Albis and Kempter, 2017)(for details, see Methods around Eq. (1)), which allowed us to vary the139

tortuosity of the paths. For a certain value of the tortuosity parameter (σθ = 0.5 rad/s1/2) and a time140
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step ∆t = 0.01 s, this led to navigation paths that we considered similar to those seen in rodent studies141

(Fig. 2D; Fig. S2E). Apart from random walks in basically infinite environments, we also simulated142

random walks in finite enclosures (circles and squares) with different sizes and orientations; we found143

that these restrictions had a negligible effect on path hexasymmetry (Figs. S5C and S6C). Because the144

allocentric navigation directions are not predefined for random walks, they exhibit varying degrees of path145

hexasymmetry. The longer the simulated random walks, the smaller the path hexasymmetry (Fig. S1);146

we simulated random walks with a total length of typically 900 m (M = 9 · 105 steps).147

As we describe below, the emergence of grid-like representations based on the conjunctive hypothesis148

is robust against the specific type of navigation strategy, whereas the other two hypotheses are sensitive149

to particular navigation strategies. Future studies on hexadirectional signals should thus consider the150

kind of navigation paths subjects will use during a given task.151

2.2 Quantifying neural hexasymmetry generated by the three hypotheses152

To test how the activity of grid cells could give rise to hexasymmetry of a macroscopic signal, we used a153

firing-rate model of grid cell activity (Eq. 2). Furthermore, we developed a new measure H to quantify154

neural hexasymmetry (Eq. 12), which is the magnitude of the hexadirectional modulation of the summed155

activity of many cells (for details, see Methods).156

2.2.1 Conjunctive grid by head-direction cell hypothesis157

The conjunctive grid by head-direction cell hypothesis (Doeller et al., 2010) suggests that hexadirectional158

activity in the entorhinal cortex emerges due to grid cells whose firing rate is additionally modulated by159

head direction, whereby the preferred head direction is closely aligned with one of the grid axes (Fig. 2A).160

By modulating the activity of individual grid cells with a head-direction tuning term (Methods, Eq. 3),161

our simulations indeed showed that these properties resulted in a clear hexadirectional modulation of162

sum grid-cell activity (Fig. 2, B–D). When considering different types of navigation trajectories, we found163

that they led to similar distributions of sum grid cell activity as a function of movement direction and,164

accordingly, to similar hexasymmetry values (Fig. 2, B–D). In all three cases, the directions of maximal165

activity were aligned with the grid axes.166

These results were obtained using ideal values for the preciseness of the head-direction tuning (i.e., the167

concentration parameter of head-direction tuning, κc) and the alignment of the preferred head directions168

to the grid axes (i.e., the alignment jitter of the head-direction tuning to the grid axes, σc; Fig. 2A). We169

were thus curious how the hexasymmetry changed when using a wide range of parameter values that170

would also include biologically plausible values. We varied κc between values corresponding to narrow171

tuning widths (κc = 50 rad−2, which corresponds to an angular variability of 1/
√
κc ≈ 8◦) and wide172

tuning widths (κc = 10 rad−2, i.e. an angular variability of approximately 18◦), and σc between values173

of no jitter (σc = 0) and significant jitter (σc = 3◦). We found that a combination of narrow head174

direction tuning widths and no jitter resulted in the largest hexasymmetry H (Fig. 2, E–H), while wider175

tuning widths with non-zero jitter resulted in smaller values for the hexasymmetry. Still, even if using176

non-ideal, biologically plausible parameters (Doeller et al., 2010), the hexasymmetries were relatively177

large compared to those from the repetition-suppression and the structure-function mapping hypotheses178

(see below).179

2.2.2 Repetition suppression hypothesis180

Next, we performed simulations to understand whether the repetition suppression hypothesis (Doeller181

et al., 2010) results in a hexadirectional modulation of population grid-cell activity. This hypothesis182
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Figure 2: Conjunctive grid by head-direction cell hypothesis. (A) Grid tuning (left) and head-
direction (HD) tuning (right) of a single conjunctive cell. Given experimental findings (Doeller et al.,
2010), the preferred head direction aligns with one of the three axes of the grid. Two factors add noise
to this relation: the HD tuning has a certain width (

√
1/κc) and the alignment of grid orientation to HD

tuning angle is jittered (σc). (B–D) Simulation of the conjunctive hypothesis using “ideal” parameters
of κc = 50 rad−2 and σc = 0◦. The scale bars (red) represent a distance of 120 cm. (B) Left: Illustration
of a star-like walk (path segments are cut for illustration purposes), overlaid onto the firing pattern of a
single grid cell. Right: Population firing rate as a function of the subject’s movement direction (which
is identical with head direction in our simulations) for star-like runs with mean firing rate Ã0 = 1279.7
spk/s (for 1024 cells) and path hexasymmetry |T̃6| < 10−10; see Methods for definitions of Ã0 and T̃6.
(C) Left: Illustration of a piece-wise linear walk (cut for illustration purposes), overlaid onto the firing
pattern of a single grid cell. Right: Population firing rate as a function of movement direction for piece-
wise linear walks with Ã0 = 1279.3 spk/s and |T̃6| < 10−10. (D) Left: Illustration of a random walk (cut
for illustration purposes), overlaid onto the firing pattern of a single grid cell. Right: Population firing
rate as a function of movement direction for random walks with Ã0 = 1281.0 spk/s and |T̃6| = 6.7 · 10−3.
(E) Hexasymmetry (color coded) as a function of HD tuning width and alignment jitter for random-walk
trajectories. Higher hexasymmetry values are achieved for stronger HD tuning and tighter alignment
of the preferred head directions to the grid axes. The red symbols correspond to the three parameter
combinations used in subplots (F–H) for further illustration. (F) Population firing rate as a function
of movement direction for a random walk trajectory with jitter σc = 0 and concentration parameter
κc = 50 rad−2 (tuning width ≈ 8.1◦). (G) Population firing rate as a function of movement direction for
a random walk with jitter σc = 1.5◦ and concentration parameter κc = 25 rad−2 (tuning width ≈ 11.5◦).
(H) Population firing rate as a function of movement direction for a random walk with jitter σc = 3◦ and
concentration parameter κc = 10 rad−2 (tuning width ≈ 18.1◦). All simulations presented in this figure
use pc = 100% conjunctive (N = 1024) cells, which is higher than in empirical studies (Sargolini et al.,
2006; Boccara et al., 2010). In subplots B–D and F–H, the black lines and light gray lines represent the
results from the numerical simulations of Eq. (8) and the analytical derivation in Eq. (32), respectively.
H, neural hexasymmetry; spk/s, spikes per second.
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proposes that grid-cell activity is subject to firing-rate adaptation and thus leads to reduced grid-cell183

activity when moving along the grid axes as compared to when moving along other directions than the184

grid axes (Fig. 3A). This difference is due to the fact that the grid fields of fewer grid cells are traversed185

relatively more often when the subjects moves along the grid axes (associated with strong repetition186

suppression), whereas the grid fields of more grid cells are traversed relatively less often when moving187

not along the grid axes (weak repetition suppression) (Doeller et al., 2010).188

The repetition suppression hypothesis depends on two adaptation parameters: the adaptation time189

constant τr and the adaptation weight wr (Eq. 5). We found that the optimal adaptation time constant,190

which leads to the largest hexasymmetry, is roughly the subject’s speed v divided by the grid scale191

s (Fig. 3B). Larger values of the adaptation weight generally resulted in larger hexasymmetry values192

(Fig. 3B), but we ultimately constrained values of the adaptation weight to 0 ≤ wr < 1, as negative values193

would cause enhancement rather than suppression, and values larger than one would lead to suppression194

that is stronger than the peak activity of the single grid cell (Fig. 3B). When examining how the different195

types of navigation trajectories affected hexadirectional modulations based on repetition suppression, we196

found that star-like and piece-wise linear walks resulted in clear and significant hexasymmetry values197

(Fig. 3C, D), which is driven by the long linear segments in these trajectory types. In contrast, random198

walks did not result in a significant hexadirectional modulation of sum grid-cell activity because the large199

tortuosity of the random walk (σθ = 0.5 rad/s1/2) basically removes the effects of repetition suppression.200

Examining in detail which tortuosity values would still lead to some hexadirectional modulation due to201

repetition suppression, we found that σθ . 0.25 rad/s1/2 was the upper bound. For smaller values of the202

tortuosity parameter trajectories are straight enough to allow for a hexadirectional modulation of sum203

grid-cell activity (Fig. S2).204

A notable difference of the repetition suppression hypothesis compared to the conjunctive grid by205

head-direction cell hypothesis is that the apparent preferred grid orientation (i.e., the movement direc-206

tions resulting in the highest sum grid-cell activity) is shifted by 30◦ and is thus exactly misaligned207

with the grid axes of the individual grid cells (Fig. 3, C–D). This is due to the fact that the adaptation208

mechanism suppresses grid-cell activity more strongly when moving aligned with a grid axis as compared209

to when moving misaligned with a grid axis (Fig. 3A).210

2.2.3 Structure-function mapping hypothesis211

We next investigated the structure-function mapping hypothesis, according to which a hexadirectional212

modulation of entorhinal cortex activity emerges in situations when a population of grid cells is recorded213

whose grid phase offsets are biased towards a particular offset (Kunz et al., 2019). In the ideal case, all214

grid phase offsets are identical (and thus all grid cells behave like a single grid cell). This hypothesis215

is called “structure-function mapping hypothesis” because of a direct mapping between the anatomical216

locations of the grid cells in the entorhinal cortex and their functional firing fields in space.217

We found indeed that highly clustered grid phase offsets (κs = 10) resulted in significant hexadi-218

rectional modulations of sum grid-cell activity when the subject performed star-like walks starting at a219

phase offset of (0, 0), i.e. the center of the cluster of firing fields of grid cells (Fig. 4A). Interestingly, we220

observed that the hexasymmetry values during star-like walks were strongly dependent on the subject’s221

starting location relative to the locations of the grid fields: only particular starting locations such as (0, 0)222

or (0.3, 0.3) led to clear hexasymmetry whereas others, e.g. (0.6, 0), did not (Fig. 4D, left). Additionally,223

the “apparent preferred grid orientation” (i.e., the movement directions associated with the highest sum224

grid-cell activity) was shifted by 30◦ for certain offsets in the unit rhombus illustrating the subject’s225

starting locations relative to the firing-field locations (Fig. 4D, right). It was furthermore notable that226

the summed grid-cell activity as a function of movement direction did not show a sinusoidal modulation227
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Figure 3: Repetition suppression hypothesis. (A) Left: Tuning of an example grid cell with
aligned (pink arrow) and misaligned (gray arrow) movement directions. Right: Examples of firing-
rate adaptation (dashed lines) for an aligned run (pink) and a misaligned run (gray). More firing-
rate adaptation (i.e., stronger repetition suppression) occurs along the aligned run. For both runs,
firing rates are reduced compared to the case without adaptation (solid lines). (B) Simulations of
hexasymmetry as a function strength (wr) and time constant (τr) of adaptation (averaged over 20
realisations of 1024 grid cells with phase offsets drawn from a uniform distribution on the unit rhombus)
point to an optimal set of parameters for star-like runs. Red dot marks parameters used in (C–E). (C)
Population firing rate as a function of the subject’s movement direction for a star-like run (at an offset
of (0, 0)). The solid line represents a single run where adaptation does not carry over when sampling
different movement directions (i.e., the “teleportation” between path segments resets the repetition
suppression effects), and movement directions are sampled consecutively from 0◦ to 359◦ in steps of 1◦

(mean firing rate Ã0 = 866.4 spk/s, path hexasymmetry |T̃6| < 10−10). The dashed line represents a
single run with adaptation carry-over and randomly sampled movement directions without replacement
(Ã0 = 839.8 spk/s, path hexasymmetry |T̃6| < 10−10, the corresponding hexasymmetry is shown in
brackets). (D) Population firing rate as a function of movement direction for a piecewise linear walk
(Ã0 = 839.0 spk/s, |T̃6| < 10−10). (E) Population firing rate as a function of movement direction for a
random walk (Ã0 = 839.7 spk/s, |T̃6| = 6.7·10−3). spk/s, spikes per second. For all repetition-suppression
simulations, the grid phase offsets were sampled randomly from a uniform distribution across the unit
rhombus, and the hexasymmetries were averaged over 20 realisations of random grid phase offsets. The
scale bars (red) in (C–E) represent a distance of 120 cm.

but rather exhibited relatively sharp peaks at multiples of 60◦ with additional small peaks in between228

(Fig. 4A, right). This pattern is clearly distinct from the more sinusoidal modulation of sum grid-cell229

activity resulting from the conjunctive grid by head-direction cell hypothesis (Fig. 2) and the repetition230

suppression hypothesis (Fig. 3) .231

When examining piecewise linear walks and random walks, hexasymmetry appeared to be consider-232

ably lower as compared to simulations with star-like walks (Fig. 4, B and C). For piecewise linear walks,233

population grid-cell activity as a function of movement direction again exhibited sharp, non-sinusoidal234

peaks at multiples of 60◦, in both positive and negative directions (Fig. 4B). The hexasymmetry values235

furthermore exhibited large fluctuations and did not show a systematic dependency on the starting lo-236

cation of the subject’s navigation trajectory relative to the locations of the grid fields (Fig. 4, E and F,237

left), which is due to the fact that these navigation trajectories randomize the starting locations of all238

path segments. Accordingly, the apparent preferred grid orientations varied randomly as a function of239

the starting location of the very first path segment and did not exhibit systematic shifts (Fig. 4, E and240

F, right), which is in contrast to the clear shifts in the apparent preferred grid orientations for star-like241

walks (Fig. 4D).242
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In the above-mentioned simulations for the structure-function mapping hypothesis, we chose high243

values for the clustering of the grid phase offsets from all grid cells. Specifically, we set the clustering244

parameter to κs = 10, due to which the centers of the firing fields of different grid cells were very close245

to each other (insets in Fig. 4, A–C, right). However, previous empirical studies (Gu et al., 2018; Heys246

et al., 2014) showed that the clustering parameters are several orders of magnitude smaller than the247

strong clustering we considered for our earlier simulations. These empirically determined parameters248

are actually relatively close to randomly distributed grid phases (Fig. 4, G–Q), and simple clustering249

is associated with a parameter κs ≈ 0.014 (Fig. 4M). Clustering parameters were also low when we250

implemented higher-order spatial clustering of grid phase offsets by adding some longer-range spatial251

autocorrelations to the grid-phase offsets (Fig. 4, N–Q) (Gu et al., 2018), which led to a clustering252

parameter κs ≈ 0.052 (Fig. 4Q). Taken together, these more “realistic” clustering parameters result in253

clearly reduced hexasymmetries, which is described below and summarized in Fig. 5.254

Together, our results (Fig. 4A–C) indicate that for the structure-function mapping hypothesis the255

navigation pattern has a strong influence on the measured neuronal hexasymmetry H. The hexasym-256

metry was largest (H = 59.7 spk/s) for the star-like walk with specific starting locations [e.g., (0, 0)],257

smaller (H = 12.1 spk/s) for piecewise linear walks, and smallest (H = 8.0 spk/s) for random walks.258

Moreover, the absolute values of these hexasymmetries were quite low compared to the average firing259

rate of about 1024 spk/s of the simulated population of grid cells (N = 1024, each having an average260

firing rate of 1 spk/s). We thus wondered whether the hexasymmetries of the associated navigation paths261

substantially contributed to the neuronal hexasymmetries H.262

In line with this idea, we found that the path hexasymmetries for random walks was proportional to263

1/
√
M for a large number M of steps (Figure S1). We thus examined neural hexasymmetries H across a264

broad range of total trajectory distances (using piecewise linear walks) and observed thatH decreased also265

as 1/
√
M (Fig. 4T). This led us to conclude that the apparent neural hexasymmetry H of summed grid-266

cell activity for piecewise linear walks was driven by random subsamples of all path segments—specifically267

those path segments crossing through grid fields. These subsamples of path segments necessarily exhibit268

higher path hexasymmetries than the full set of path segments that has basically zero path hexasymmetry269

by construction (Fig. S4). Critically, we thus conclude that, for piecewise linear walks, hexasymmetry270

values were driven by a subsampling of the movement directions due to the sparsity of the grid-field271

locations. Similarly, for a random walk with tortuosity σθ = 0.5 rad/s1/2, we derived from Figure S1272

that the expected path hexasymmetry for 9000 s simulation time (M = 0.9 · 106 steps for ∆t = 0.01 s) is273

about 0.007, which results in a contribution to the neural hexasymmetry of H ≈ 7 spk/s for a population274

rate of about 1024 spk/s. This number is similar in magnitude to the obtained neural hexasymmetry275

(H = 8.0 spk/s) in Fig. 4C and in Fig. 5; see also Fig. S4. We thus conclude that also for random walks276

the hexasymmetry H obtained in the structure-function mapping case is mainly determined by the path277

hexasymmetry.278

Taken together, the structure-function mapping hypothesis with strong clustering can produce hex-279

asymmetry values that are larger than expected from path hexasymmetries only with respect to star-like280

walks, including a strong dependence on the subject’s starting location (Fig. 4D, left). This range of281

values is comparable to those of the repetition-suppression hypothesis (Fig. 3), but values are at least282

an order of magnitude smaller than in the conjunctive grid by head-direction cell case (Fig. 2).283

2.3 Overall evaluation of the three hypotheses284

To provide a systematic evaluation of the three hypotheses, we computed 300 realizations of each hy-285

pothesis (using the simulated activity of 1024 cells), separately for each type of navigation and for both286

ideal and more realistic parameter settings (Fig. 5). This resulted in 18 different hypothesis condi-287
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Figure 4: Structure-function mapping hypothesis. (A–C) Left: Short example trajectories
(white) overlaid onto the firing-rate pattern of an example grid cell (colored). Shown trajectories are for
illustration purposes only, and do not reflect the full length of the simulation. The scale bars (red) repre-
sent a distance of 120 cm. Right: Population firing rate as a function of the movement direction. Black
and light gray lines represent the results from the numerical simulations of Eq. (8) and the analytical
derivation in Eq. (32), respectively. Grid phase offsets cells are strongly clustered at (0, 0) with κs = 10
(left inset). (A) Left: Subsegment of a star-like walk. Right: Population firing rate as a function of the
movement direction for star-like runs originating at phase offset (0, 0) with mean firing rate Ã0 = 1362.4
spk/s (spikes/second) and path hexasymmetry |T̃6| < 10−10. The grid phase offsets of the grid cells are
also clustered at (0, 0) (left inset). (B) Left: Subsegment of a piece-wise linear walk. Right: Population
firing rate as a function of the movement direction for a piece-wise linear trajectory. Ã0 = 1244.3 spk/s,
|T̃6| < 10−10. (C) Left: Subsegment of a random walk. Right: Population firing rate as a function of
movement direction for a random walk. Ã0 = 1305.4 spk/s, |T̃6| = 6.7 · 10−3 spk/s. (D) Left: Hexasym-
metry as a function of the subject’s starting location (relative to grid phase offset). Right: Movement
direction associated with the highest sum grid-cell activity, i.e. the phase of peaks in (A, right), has a
bimodal distribution (0 or 30◦).

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.20.521210doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.20.521210
http://creativecommons.org/licenses/by-nc-nd/4.0/


(E) Same as (D) but for piecewise linear walks. (F) Same as (D) but for random walks. (G) Example
of a two-dimensional slice of a three-dimensional (3D) random-field simulation with a spatial resolution
of 15 µm. The simulated volume of (3x3x3) mm3 represents the approximate spatial extent of a voxel
in fMRI experiments. (H) The pairwise phase distance in the rhombus is shown as a function of the
pairwise anatomical distance for all pairs of simulated cells from (G). Since no spatial correlation structure
is induced, the pairwise phase distance between grid cells remains constant when varying the pairwise
anatomical distance between them. (I) The resulting phase clustering for 2003 simulated grid cells in a
(3x3x3) mm3 voxel. Brighter colors indicate a higher prevalence of a particular grid phase offset. The
distribution of grid phases appears to be homogeneous with a clustering concentration parameter of
κs = 0.001. (J–M) Same as (G–I) but for a convolution of the 3D random field with the 3D Gaussian
correlation kernel of width 30 µm shown in (K). Grid cells located next to each other in anatomical
space (. 30 µm) exhibit similar grid phase offsets (L). No clear clustering is visible for a clustering
concentration parameter of κs = 0.014 (M). (N–Q) Same as (J–M) but for the grid-like correlation
kernel shown in (O), which adds some longer-range spatial autocorrelation to the grid phase offsets of
different grid cells. The pairwise phase distance (P) exhibits a dip around 300 µm. Note in (Q) that the
prevalence of particular grid phase offsets is more biased than in (M), with a clustering concentration
parameter of κs = 0.052. (R) Dependence of the clustering concentration parameter κs on the number
N of grid cells in a voxel. A random distribution of grid cells in anatomical space was obtained by
subsampling from the 2003 grid cells simulated in (G–Q) over 300 realizations. We found κs ≈ 0.05 for
103 grid cells in a voxel, and that κs decreases monotonically as N is increased. Convolution of grid
phase offsets with a correlation kernel (as in J–Q) leads to saturation of κs for large N . Note that the
range of values of κs here is three orders of magnitude smaller than the strong clustering considered
in (A–C). The dashed-dotted line depicts the line 1/

√
N for comparison. The vertical dotted line at

N = 203 corresponds to the empirically estimated count of grid cells in a (3x3x3) mm3 fMRI voxel. The
secondary lower horizontal axis shows the average distance between uniformly distributed grid cells in
anatomical space. (S) The distribution of the clustering concentration parameter κs when using either
no kernel, a Gaussian kernel, or a grid-like kernel for 203 grid cells subsampled from the 2003 grid cells
simulated in (G–Q) over 300 realizations. While the grid-like kernel results in a larger maximum value of
the clustering concentration parameter, a large number of realizations results in relatively low clustering.
(T) The dependence of the hexasymmetry on the number of angles sampled when unwrapping the star
for the piece-wise linear walk, averaged over 20 trajectories for each data point. Each additional angle
sampled adds 300 cm to the total length of the path. A line proportional to c /

√
M is plotted for

comparison, where c is an offset parameter (c = 4000 spk/s) chosen such that the slope of |Ã6| can be
compared to the slope of 1/

√
M . The close fit between the solid and dashed lines indicates that the

neural hexasymmetry |Ã6| is highly correlated with the path hexasymmetry |T̃6|. The vertical dotted
line at 360 sampled angles corresponds to the number of angles sampled in the star-like run and the
piece-wise linear run for all main figures.

tions. For each hypothesis condition, we assessed its statistical significance by performing nonparametric288

Mann-Whitney U tests between the neural hexasymmetries (H := |Ã6|; see also Eq. 12) and the product289

|T̃6| · Ã0 with the multipliers path hexasymmetry |T̃6| and average population activity Ã0.290

For the conjunctive hypothesis, we found that all three types of navigation led to significant neural291

hexasymmetries. This was the case for both ideal parameters (Mann-Whitney U tests, all U = 0, all292

P < 0.001) and for more realistic parameters (Mann-Whitney U tests, all U = 0, all P < 0.001). We293

derived the more realistic parameters from a previous study (Doeller et al., 2010). For star-like walks and294

piecewise linear walks, the path hexasymmetries multiplied with the average population activities were295

near zero because we designed these navigation paths to equally cover all different movement directions.296

For random walks, the path hexasymmetries multiplied with the average population activities were at297

values of about 7 spikes per second and showed larger variability because the directions of the random298

walks were not predefined and could thus vary with regard to their hexasymmetries. If the conjunctive299

hypothesis was true, fMRI studies should thus see a hexadirectional modulation of entorhinal fMRI300

activity irrespective of the exact type of the subjects’ navigation paths.301

For the repetition suppression hypothesis, we found that star-like walks and piecewise linear walks302
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resulted in significant neural hexasymmetries for both ideal and weaker parameters (Mann-Whitney U303

tests, all U = 0, all P < 0.001), whereas random walks did not (Mann-Whitney U tests, both U > 1753,304

both P > 0.405). We obtained the weaker, more realistic parameters by dividing the ideal parameters by305

2 because we were not aware of empirical investigations regarding repetition-suppression effects in single306

grid cells. For random walks, the path hexasymmetries multiplied with the average population activities307

were lower as compared to the other two hypotheses because the repetition suppression necessarily leads308

to lower average population activities. If the repetition suppression hypothesis was true, fMRI studies309

should thus observe significant neural hexasymmetries only for star-like walks and piecewise linear walks,310

whereas random walks (with large enough tortuosities, Fig. S2) should not lead to significant neural311

hexasymmetries.312

Regarding the structure-function mapping hypothesis, the statistical tests showed that most of the313

hypothesis conditions resulted in significant neural hexasymmetries as compared to the path hexasym-314

metries multiplied with the average population activities. This was the case for both ideal parameters315

(Mann-Whitney U tests, all U < 736, all P < 0.001) and more realistic parameters (Mann-Whitney U316

tests for star-like walks and piecewise linear walks, all U = 0, all P < 0.001). We derived the more317

realistic parameters from a previous study (Gu et al., 2018). Only the hypothesis condition with random318

walks and more realistic parameters exhibited no significant neural hexasymmetries (Mann-Whitney U319

test, U = 1786, P = 0.472). However, these results regarding the structure-function mapping hypothesis320

should be treated with great caution. Firstly, the neural hexasymmetries for star-like walks heavily321

depend on the starting location of the subject relative to the grid fields, and different starting locations322

lead to different apparent grid orientations (Fig. 4D). Secondly, the significant results for the navigation323

conditions with piecewise linear walks and random walks actually result from an inhomogeneous sampling324

of movement directions through the grid fields and therefore do not reflect true neural hexasymmetries325

(Fig. 4T). Only the structure-function mapping hypothesis is susceptible to this effect because the grid326

fields are clustered at similar spatial locations (whereas the grid fields are homogeneously distributed327

in the case of the conjunctive hypothesis and the repetition suppression hypothesis). In simulations328

with infinitely long paths, the neural hexasymmetries (for the navigation types of piecewise linear walks329

and random walks) would not be significantly higher than the path hexasymmetries multiplied with330

the average population activities. In empirical studies, this effect can be detected by correlating the331

subject-specific path distances with the subject-specific neural hexasymmetries: if there is a generally332

negative relationship, this will hint at the fact that the neural hexasymmetries are basically due to rel-333

evant path hexasymmetries of path segments crossing the grid fields. In essence, we therefore believe334

that the structure-function mapping hypothesis leads to true neural hexasymmetry only in the case of335

star-like walks.336

2.4 Influence of other factors337

Our simulations above were performed in an infinite spatial environment, which is different from empirical338

studies in which subjects navigate finite environments. We were thus curious whether the size and shape339

of finite environments could affect the strength of hexadirectional modulations of population grid-cell340

activity.341

Our simulations showed that for both circular and square environments, hexasymmetry strengths342

did not considerably depend on the size of the environment when the subject performed random walks343

(Fig. S5). Similarly, rotating the navigation trajectories relative to the grid patterns did not affect the344

hexasymmetry strengths (Fig. S6). These results thus suggest that experiments in animals and humans345

can use various types and sizes of the environments to investigate hexadirectional modulations of sum346

grid-cell activity.347
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Figure 5: Comparison of hexasymmetry resulting from the three hypotheses. Each of the
three hypotheses is implemented for three different types of navigation trajectories: star-like walks
(“star”), piece-wise linear random walks (“p-l”), and random walks with small step size (“rand”). For
each setting, we show the average hexasymmetry |Ã6| for 1024 cells (dark blue bars) and the average
contribution of the trajectory |T̃6| · Ã0 (light blue bars) where Ã0 is the (variable) average population
activity; see Methods for definitions of symbols. The violin plots depict the distributions for firing-rate
hexasymmetry (red) and path hexasymmetry (orange). For each hypothesis, we calculate the hexas-
ymmetry for “ideal” parameters (conjunctive: pc = 1, κc = 50 rad−2, σc = 0; repetition suppression:
τr = 3 s, wr = 1; clustering: κs = 10) as well as more realistic parameters [conjunctive “Doeller”:
pc = 0.33, κc = 10 rad−2, σc = 3◦ motivated by (Doeller et al., 2010; Boccara et al., 2010; Sargolini
et al., 2006); repetition suppression “weaker”: τr = 1.5 s, wr = 0.5; clustering “Gu”: κs = 0.1 motivated
by (Gu et al., 2018)]. The parameters for the random-walk scenario are T = 9000 s and ∆t = 0.01 s; see
Table 1 for a description of parameters. Each hypothesis condition was simulated for 300 realizations.
***, P < 0.001; n.s., not significant; (***), a seemingly significant result (P < 0.001) that is thought to
be spurious (see Results section). For pair-wise comparisons of the hexasymmetry values from different
trajectory types for each set of parameters, see Fig. S3.

3 Discussion348

We performed numerical simulations and analytical estimations to examine how the activity of grid cells349

could potentially lead to a neural population signal in the entorhinal cortex. Such a neural population350

signal has been observed in multiple fMRI studies (Doeller et al., 2010; Kunz et al., 2015; Constantinescu351

et al., 2016; Horner et al., 2016; Bellmund et al., 2016; Stangl et al., 2018; Nau et al., 2018; Julian et al.,352

2018; Bierbrauer et al., 2020; Julian and Doeller, 2021; Bongioanni et al., 2021; Moon et al., 2022) and353

iEEG/MEG studies (Maidenbaum et al., 2018; Chen et al., 2018; Staudigl et al., 2018; Chen et al., 2021;354

Wang and Wang, 2021), and consists of a hexadirectional modulation of the entorhinal fMRI/iEEG signal355

as a function of the subject’s movement direction through its spatial environment. We examined three356

hypotheses that have been previously suggested as potential mechanisms underlying the emergence of357

the hexadirectional population signal in the entorhinal cortex (Doeller et al., 2010; Kunz et al., 2019)358

and found that all three hypotheses can—in principle and in ideal situations—lead to a hexadirectional359

modulation of entorhinal cortex population activity.360

A major observation of this study is that the way how subjects navigate through the environment361

has a major influence on whether a hexadirectional population signal can be observed. We distinguished362

three major types of navigation: navigation with random walk trajectories in which straight paths are363

quite short and resemble the navigation pattern in rodents; navigation with piecewise linear trajectories364

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.20.521210doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.20.521210
http://creativecommons.org/licenses/by-nc-nd/4.0/


in which the subject navigates along straight paths combined with random sharp turns between the365

straight segments; and navigation with star-like trajectories, in which the subject starts each path from366

a fixed center location and navigates along a straight path with a predetermined allocentric direction367

and distance. Critically, we found that the conjunctive hypothesis leads to a hexadirectional population368

signal irrespective of the specific type of navigation; that the repetition suppression hypothesis leads to369

hexadirectional population signals only in the case of star-like trajectories and piecewise linear trajec-370

tories (but not for random trajectories); and that for the structure-function mapping hypothesis “true”371

hexadirectional population signals can only be observed for star-like trajectories.372

The observation that the type of navigation paths influences whether a hypothesis can lead to hexadi-373

rectional population signals of the entorhinal cortex is informative to future fMRI/iEEG studies, which374

could empirically evaluate which of the three hypotheses is most likely to be true: By asking or requiring375

the subjects to navigate in different ways through the task environments (in a star-like fashion, in a376

piecewise linear fashion, and in a random fashion), these future fMRI/iEEG studies could demonstrate377

whether hexadirectional population signals are present in all three navigation conditions (speaking in378

favor of the conjunctive hypothesis); whether they are present only during star-like or piecewise linear379

trajectories (in favor of the repetition suppression hypothesis); or whether they are mainly visible for380

star-like trajectories and exhibit a systematic decrease with increasing trajectory length for piecewise381

linear and random walks (in this case speaking in favor of the structure-function mapping hypothesis).382

In contrast to this major effect of navigation type on the presence of hexadirectional signals, the size383

and shape of the environment did not influence the strength of the hexadirectional signals in a relevant384

manner (Figs. S5 and S6).385

Another insight of this study is that the exact biological properties of grid cells play a major role386

regarding the question whether hexadirectional population signals can be observed. For example, the387

conjunctive hypothesis cannot lead to hexadirectional population signals if the tuning width of the388

conjunctive grid by head-direction cells is too broad or if the preferred directions of the conjunctive389

cells are not precisely aligned with the grid axes of the grid cells. The structure-function mapping390

hypothesis heavily relies on the property of neighboring grid cells to share a similar grid phase offset391

(i.e., a high spatial autocorrelation of grid phases) and whether there might be longer-range spatial392

autocorrelations between the grid phases (Gu et al., 2018). Whereas it currently seems possible that393

grid cells and conjunctive grid by head-direction cells meet the necessary biological properties for the394

conjunctive hypothesis (Doeller et al., 2010), it seems unlikely to us that the grid phases are clustered395

strongly enough to facilitate a hexadirectional population signal. Regarding the repetition suppression396

hypothesis, we are currently not aware of detailed measurements of the relevant grid-cell properties (i.e.,397

the adaptation time constant τr and the adaptation weight wr) so that it remains unclear to us to what398

extent the repetition suppression hypothesis is biologically plausible. Future studies may thus quantify399

the relevant properties of (human) grid cells in greater depth in order to help clarify which hypothesis400

regarding the emergence of hexadirectional population signals may most likely be true.401

A topic that this study did not investigate is the question of how the sum signal of single neurons402

translates into fMRI and iEEG signals. In neocortical regions such as the auditory cortex, a clear linear403

relationship between single-neuron activity and fMRI activity has been observed (Mukamel et al., 2005),404

but it remains elusive whether this linear relationship also applies to the entorhinal cortex in general405

and to entorhinal grid cells in particular. In the neighboring hippocampus, for example, the relationship406

between single-neuron activity and the fMRI signal is highly complex (Ekstrom, 2010; Kunz et al., 2019).407

Future studies are needed to detail the relationship between single-neuron firing and fMRI/iEEG signals408

in the entorhinal cortex. This would allow us to clarify whether a hexadirectional modulation of sum409

grid-cell activity directly results in a hexadirectional modulation of fMRI/iEEG activity or whether410

currently unknown factors modulate the expression of hexadirectional fMRI/iEEG signals.411
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4 Conclusion412

Using numerical simulations and analytical derivations we showed that a hexadirectional neural pop-413

ulation signal can emerge from the activity of grid cells given the ideal conditions of three different414

hypotheses. Whether a given hypothesis leads to a hexadirectional population signal is significantly in-415

fluenced by the subjects’ type of navigation through the spatial environment and by the exact biological416

properties of human grid cells.417

5 Methods418

5.1 Trajectory modeling419

To describe grid-cell activity as a function of time t during which a subject (animal or human) is420

exploring an environment, we model three distinct trajectory types. We first describe trajectory types in421

environments without bounds, which are quasi infinite, and then add rules that account for boundaries.422

5.1.1 Environments without boundaries423

The first trajectory type is a random walk Xt = [xt, yt], which is defined by424

dXt

dt
= v [cos(θt), sin(θt)] (1)

with θt = σθ · Wt where σθ controls the tortuosity of the trajectory and Wt is a standard Wiener425

process. In a numerical simulation with a time step ∆t, the angle is updated in each time step by426

θt+∆t = θt + σθ · ∆W where ∆W is a normally distributed random variable with variance ∆t. The427

variable v depicts the (constant) speed.428

The second type of navigation is a star-like walk, where the subject moves radially outwards from429

a predefined origin in space at a certain angle θ on a straight line to a maximum distance rmax at a430

constant speed v. In simulations, this movement is repeated (with the same predefined origin) for Nθ431

angles that are equally spaced on the interval [0, 2π). Within each individual radial path, the subject432

does not turn around and move back to the origin, i.e., the entire trajectory of Nθ radial paths is not433

continuous.434

Finally, we introduce a piecewise linear walk, which is constructed by placing all the radial paths of435

the star-like walk end-to-end such that they form one single continuous trajectory of length Nθ rmax. The436

trajectory thus consists of successive straight runs for the simulated subject, which can be interpreted437

as a random walk with a time step ∆t = rmax/v and directions that are sampled uniformly without438

replacement from a predetermined set of angles. In comparison to the random walk and the star-like439

walk, this procedure presumably reflects the situation in human virtual-reality setups most closely, as440

participants often move along straight trajectories with intermittent turns (Doeller et al., 2010; Kunz441

et al., 2015; Horner et al., 2016).442

5.1.2 Environments with boundaries443

Most virtual-reality studies in humans use finite instead of infinite spatial environments to examine grid-444

like representations. We wondered whether the size and the shape of these finite environments might445

modulate the strength of macroscopic grid-like representations obtained through one or more of the three446

hypotheses. Hence, we performed our simulations not only in infinite but also in finite environments with447

a given size (between one and six times the grid spacing) and shape (circle and square).448
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For random-walk trajectories, we enforce that the navigating subject stays within the circular or449

square environment by performing an “out-of-bounds check” at each time point. This means that,450

after every time step ∆t, we measure the distance that the subject has moved outside of the boundary.451

This is done differently in square and circular environments, both of which are centered at the origin452

(x = 0, y = 0). In the square environment, we define the variables ∆x and ∆y as the distance the453

subject has moved out of bounds in the x and y coordinates, respectively. Let L be the half of the454

length of its sides. ∆x and ∆y are then defined as ∆x = max [|x| − L, 0] and ∆y = max [|y| − L, 0]. For455

circular environments, let R be the radius of the circle, and let ~r = (x, y) be the position vector of the456

subject. We then introduce the measure ∆r := max [||~r|| −R, 0], such that ∆r is non-zero only when457

the subject has moved outside of the circular boundary. If at any time point either ∆x, ∆y, or ∆r are458

non-zero, the out-of-bounds check fails. In this case, we reject the movement in this time step and keep459

resampling a new angle θt (Kropff and Treves, 2008; Si et al., 2012) until the check succeeds, meaning460

that the subject has made a move that is within the boundaries of the environment. If ∆x, ∆y, or ∆r461

remain non-zero for 50 consecutive samples of θt, we temporarily increase the tortuosity σθ by a factor462

1.1. Without this increase in tortuosity, the subject tends to get stuck when approaching the boundary463

at angles close to the perpendicular or at the corners of the square boundary. The tortuosity is reset464

to its initial value once a valid move is made. We visually checked the random-walk trajectories, which465

show some oversampling along the boundaries, and found that they were comparable to the navigation466

trajectories in rodent studies (e.g. Hafting et al., 2005).467

5.2 Implementation of grid cell activity468

The activity profile Gi of grid cell i (for i = 1, ..., N in a population of N grid cells) is modelled as the469

product of three cosine waves rotated by 60◦ (= π/3) from each other:470

Gi(x, y) =
Amax

8

2∏
k=0

(
1 + cos

[
4π√
3si

sin
(π

3
k + γi

)
(x− si xoff,i) +

4π√
3si

cos
(π

3
k + γi

)
(y − si yoff,i)

])
(2)

where Amax is the grid cell’s maximal firing rate, si depicts the cell’s grid spatial scale (“grid spacing”),471

xoff,i and yoff,i are the phase offsets of the grid (“grid phase”) in the two spatial dimensions (called x472

and y here), and γi is the orientation of the grid (“grid orientation”); see Table 1 for numerical values of473

parameters and Fig. 1A for an illustration of the three grid characteristics.474

To describe the activity of many grid cells (for example in a voxel for an MRI scan), we sum up the475

firing rates of N grid cells in Eq. (2). For a given trajectory Xt = [xt, yt], the macroscopic activity as a476

function of time t is then simply described by the sum
∑N
i=1Gi(xt, yt).477

5.3 Implementation of the three hypotheses to explain macroscopic grid-like478

representations479

Here we summarize how the activity in a population of N grid cells can be described if they also exhibit480

(i) head-direction tuning, (ii) repetition suppression (i.e., firing-rate adaptation), or (iii) grid phases that481

are clustered across grid cells.482

In all our models, the activity Gi of a grid cell is described by Eq. (2). Different grid cells typically483

have different phase offsets (xoff,i, yoff,i) but the same grid spacing si := s, ∀i and grid orientation484

γi := γ, ∀i (Hafting et al., 2005; Boccara et al., 2010; Gardner et al., 2022).485
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5.3.1 Conjunctive grid by head-direction cell hypothesis486

To include head-direction tuning in our model, we note that a given trajectory Xt has an angle θt at487

time t. The summed firing rate, i.e. the population activity, Ac from N such conjunctive cells can then488

be described by489

Ac(t) =
N∑
i=1

Gi(xt, yt)hi(θt) (3)

where the upper index ‘c’ indicates “conjunctive” and where we incorporate conjunctive grid-head direc-490

tion (HD) tuning via the (scaled by factor 2π) von-Mises distribution491

h(θ) =
1

I(κc)
exp(κc cos(θ − µc)) (4)

with concentration parameter κc and preferred angle µc. The symbol I represents the modified Bessel492

function of the first kind of order 0. The parameter κc describes the width of the HD tuning: if κc −→∞,493

the HD tuning is sharpest; the smaller κc, the wider the HD tuning (see Fig. 2); for κc = 0, there is no494

HD tuning, and our scaling leads to h(θ) ≡ 1. We choose the preferred angle as µc = π
3 k + η where k is495

randomly drawn from {0, 1, 2, 3, 4, 5} and η is randomly drawn from a normal distribution with mean 0496

and standard deviation σc. For σc = 0, the directional tuning is thus centered around a multiple of 60◦.497

The parameter σc introduces jitter in the alignment of directional tuning to one of the grid axes.498

We modelled the cases in which all grid cells show HD tuning (“ideal” case, fraction of conjunctive499

cells: pc = 1) as well as a more “realistic” case in which only a third of the cells is conjunctive (pc = 1/3;500

(Boccara et al., 2010; Sargolini et al., 2006)). We note that this is an approximation, since the proportion501

of conjunctive cells is highly variable across layers of the entorhinal cortex, with up to 90% conjunctive502

cells in layer V.503

5.3.2 Repetition suppression hypothesis504

To incorporate repetition suppression in the model, we add an explicit dependence of grid-cell activity505

on time t. Specifically, we subject the firing rate Gi of a grid cell to an adaptation mechanism:506

Gri (xt, yt, t) = max [Gi(xt, yt)− wr a(t), 0] (5)

τr
da

dt
= Gi(xt, yt, t)− a(t) ,

where a depicts the adaptation variable, and τr and wr are the repetition-suppression time constant and507

the weight of the suppression, respectively. The upper index ‘r’ in Gri indicates “repetition suppression”.508

The adaptation time constant τr is usually on the order of seconds, and the adaptation weight wr is509

restricted to the interval [0, 1]. The maximum operation ‘max(x)’ in Eq. (5) ensures that the output510

firing rate Gri is always positive. Together, the summed firing rate Ar from N such adapting cells can511

then be described by512

Ar(t) =

N∑
i=1

Gri (xt, yt, t) . (6)

We note that the explicit dependence of the firing rate Gri of grid cell i on time t needs to be considered513

separately for every cell for repetition suppression, which makes numerical simulations more computa-514

tionally expensive. In contrast, the functions Gi (in Eq. (3)) and hi (in Eq. (4)) for the conjunctive515

hypothesis depend also on time but only implicitly via the location [xt, yt] and the direction θt of move-516
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ment at time t — and therefore the explicit time dependence of individual cells can be disregarded, which517

makes numerical simulations computationally cheaper.518

5.3.3 Structure-function mapping hypothesis519

The structure-function mapping hypothesis relies on a preferred grid phase for neighboring cells. We520

use two possible choices for the set of grid phases (xoff,i, yoff,i): they are either randomly uniformly521

distributed or clustered. For clustered spatial phases, we draw xoff,i and yoff,i independently, each from522

a univariate von-Mises distribution (with a defined central phase µs and concentration parameter κs).523

For a uniform distribution of grid phases, we note that even random fluctuations can lead to a certain524

degree of clustering of the grid-phase sample. We can describe the resulting summed activity of N grid525

cells simply by526

As(t) =
N∑
i=1

Gi(xt, yt) (7)

with the upper index ‘s’ representing “structure-function”.527

5.4 Quantification of hexasymmetry of neural activity and trajectories528

Combining the mathematical descriptions of grid cell activity for the three hypotheses (“conjunctive”,529

“repetition suppression”, and “structure-function”), we can denote the resulting population activity A530

of N grid cells by531

A(t) =
N∑
i=1

Gri (xt, yt, t)hi(θt) (8)

where Ai(t) := Gri (xt, yt, t)hi(θt) is the firing rate of cell i. To derive from A the activity as a function of532

movement (or heading) direction θt, we focus on time steps of length ∆t in which the trajectory is linear.533

In time step m, i.e., for time t in the time interval [tm, tm+1) where tm = m∆t and m is an integer, the534

trajectory has the fixed angle θm. The time-discrete mean activity Ā(tm) associated to this interval is535

the average of A(t) along the linear segment of the trajectory:536

Ā(tm) =
1

∆t

∫ tm+1

tm

dt

N∑
i=1

Gri (xt, yt, t)hi(θm) =

N∑
i=1

hi(θm)
1

∆t

∫ tm+1

tm

dtGri (xt, yt, t). (9)

The integral in Eq. (9) is either calculated analytically, as derived in the following section, or numerically.537

For a total number of M time steps in a trajectory, the (normalized) mean activity Ã(φ) as a function538

of some head direction φ is then539

Ã(φ) =
1

M

M−1∑
m=0

δ(φ− θm) Ā(tm). (10)

where δ is the Dirac delta distribution. With complex Fourier coefficients cn (with n ∈ N) defined as540

cn =

∫ 2π

0

dφ c(φ) exp(−njφ) (11)
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we can quantify the hexasymmetry H of the activity of a population of grid cells as541

H :=
∣∣∣Ã6

∣∣∣ (11)
=

∫ 2π

0

dφ Ã(φ) exp(−6jφ)
(10)
=

∣∣∣∣∣ 1

M

M−1∑
m=0

Ā(tm) exp(−6jθm)

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

Ãi6

∣∣∣∣∣ (12)

where Ãi6 is the 6th Fourier coefficient of cell i. Furthermore, the average (over time) population activity542

can be expressed as543

Ã0 =
1

M

M−1∑
m=0

Ā(tm) . (13)

The hexasymmetry H could be generated by various properties of the cells, but H as defined above544

contains also contributions from the hexasymmetry of the underlying trajectory. This is due to the fact545

that we sum up in Eq. (10) the population activities Ā(tm) without taking into account the distribution546

of movement directions θm. In this way, a hexasymmetry that is potentially contained in the subject’s547

navigation trajectory contributes to the hexasymmetry H of the neural activity.548

Empirical (fMRI/iEEG) studies (e.g. Doeller et al., 2010; Kunz et al., 2015) addressed this problem of549

trajectories spuriously contributing to hexasymmetry by binning the movement direction and normalizing550

the summed neural activity by the total time the subject moved in the respective movement-direction551

bin. However, this procedure has the disadvantage that the derived hexasymmetry depends on the552

parameters of binning, e.g. the angular resolution and the placement of bins. Moreover, the estimated553

hexasymmetry is biased by uneven coverage of bins — with a failure of the procedure if a bin has554

no entry, which prohibits a generalization to arbitrary narrow bins. In contrast, our new approach to555

hexasymmetry in Eq. (12) has the advantage that it is independent of any discretization of movement556

direction and that it allows an analytical treatment (see next section).557

To nevertheless be able to quantify how much a specific trajectory contributed to the neural hex-558

asymmetry H =
∣∣∣Ã6

∣∣∣, we also explicitly quantified the hexasymmetry of navigation trajectories and559

interpreted H relative to the path hexasymmetry. To quantify the hexasymmetry of a trajectory, we560

used the same approach as in Eq. (10) and defined the distribution of movement directions of the tra-561

jectory by562

T̃ (φ) =
1

M

M−1∑
m=0

δ(φ− θm). (14)

The hexasymmetry of the trajectory is then
∣∣∣T̃6

∣∣∣ :=
∣∣∣ 1
M

∑M−1
m=0 exp(−6jθm)

∣∣∣, which is similar to Eq. (12).563

To be able to estimate how much of the hexasymmetry H of neuronal activity is due to the hexasymmetry564

of the trajectory, we compare the relative hexasymmetry of the activity,
∣∣∣Ã6/Ã0

∣∣∣, with the relative565

hexasymmetry of the trajectory,
∣∣∣T̃6/T̃0

∣∣∣, noting that T̃0 ≡ 1. The two terms being similar in magnitude,566

i.e.
∣∣∣Ã6/Ã0

∣∣∣ ≈ ∣∣∣T̃6

∣∣∣, indicates that the trajectory is a major source of hexasymmetry whereas H =567 ∣∣∣Ã6

∣∣∣� Ã0

∣∣∣T̃6

∣∣∣ suggests that hexasymmetry has a neural origin.568

5.4.1 Analytical derivation of mean activity569

In the following, we provide derivations that allow us to analytically integrate Eq. (9) for the conjunc-570

tive grid by head-direction cell hypothesis and the structure-function mapping hypothesis but not for571

the repetition suppression hypothesis. The respective results are shown in Fig. 2B–H and Fig. 4A–C,572

demonstrating that they are very similar to the numerical results.573
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We analytically calculate the mean activity Ā by averaging A along a linear segment of a trajectory574

(cf. Eq. (9)). For convenience, the following abbreviations are used in Eq. (2) with the same grid spacing,575

si = s, and the same grid orientation, γi = γ, for all cells i:576

a :=
4π√
3s

(15)

bx,i := s xoff,i, by,i := s yoff,i (16)

ck,x := sin
(π

3
k + γ

)
, ck,y := cos

(π
3
k + γ

)
. (17)

A single grid cell577

We start with a single grid cell without head-direction tuning and without repetition suppression. Eq. (2)578

can be described in polar coordinates579

Gi(rt, ψt) =
Amax

8

2∏
k=0

(1 + cos [a ck,x (rt cos(ψt)− bx,i) + a ck,y (rt sin(ψt)− by,i)]) . (18)

In order to integrate along a piece of a straight line through the origin (similarly to the star-like walk),580

the angle ψt ≡ ψ̄ can now be kept fixed (for that particular straight line) and we only have to consider581

Gi(rt, ψ̄). If we define rm and rm+1 as the distances from zero that the subject is located at at times tm582

and tm+1 respectively, integration by substitution gives us583 ∫ tm+1

tm

dt r′tGi(rt, ψ̄) =

∫ rm+1

rm

dr Gi(r, ψ̄). (19)

Since the speed of movement r′t ≡ v is assumed to be constant along the whole trajectory and ∆r = v∆t,584

for ∆r := rm+1 − rm, we obtain585

1

∆t

∫ tm+1

tm

dtGi(rt, ψ̄) =
1

∆t
· 1

v

∫ rm+1

rm

dr Gi(r, ψ̄) =
1

∆r

∫ rm+1

rm

dr Gi(r, ψ̄). (20)

586

587

Thus, we have588

Ā(tm) =
1

∆r

∫ rm+1

rm

dr Gi(r, ψ̄) = (21)

=
1

∆r

Amax

8

∫ rm+1

rm

dr
2∏
k=0

(
1 + cos

[
a ck,x

(
r cos(ψ̄)− bx,i

)
+ a ck,y

(
r sin(ψ̄)− by,i

)])
=

(22)

=
1

∆r

Amax

8

(∫ rm+1

rm

dr 1︸ ︷︷ ︸
=:(A)

+
2∑
k=0

∫ rm+1

rm

dr zk(r)︸ ︷︷ ︸
=:(Bk)

+

∫ rm+1

rm

dr z0(r)z1(r)︸ ︷︷ ︸
=:(C0,1)

(23)

+

∫ rm+1

rm

dr z0(r)z2(r)︸ ︷︷ ︸
=:(C0,2)

+

∫ rm+1

rm

dr z1(r)z2(r)︸ ︷︷ ︸
=:(C1,2)

+

∫ rm+1

rm

dr z0(r)z1(r)z2(r)︸ ︷︷ ︸
=:(D)

)
, (24)

where zk(r) := cos
[
a ck,x

(
r cos(ψ̄)− bx,i

)
+ a ck,y

(
r sin(ψ̄)− by,i

)]
. The four parts (A) – (D) are inte-589
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grated separately. We obtain590

(A) = r
∣∣∣rm+1

rm
(25)

(Bk) =


sin(r dk − ek) · 1

dk

∣∣∣rm+1

rm
if dk 6= 0

cos(ek)r
∣∣∣rm+1

rm
if dk = 0

(26)

(Ck,l) =



1
2

[
sin(r(dk + dl)− (ek + el))

1
dk+dl

+ sin(r(dk − dl)− (ek − el)) 1
dk−dl

] ∣∣∣rm+1

rm
if dk 6= ±dl

[sin(2r dk − ek − el) + 2r dk cos(ek − el)] · 1
4dk

∣∣∣rm+1

rm
if dk = dl 6= 0

[sin(2r dk − ek + el) + 2r dk cos(ek + el)] · 1
4dk

∣∣∣rm+1

rm
if dk = −dl 6= 0

r cos(ek) cos(el)
∣∣∣rm+1

rm
if dk = dl = 0

(27)

(D) =



1
4

[
sin [(d0 + d1 + d2)r − (e0 + e1 + e2)] 1

d0+d1+d2

+ sin [(d0 + d1 − d2)r − (e0 + e1 − e2)] 1
d0+d1−d2

+ sin [(d0 − d1 + d2)r − (e0 − e2 + e2)] 1
d0−d1+d2

+ sin [(d0 − d1 − d2)r − (e0 − e1 − e2)] 1
d0−d1−d2

] ∣∣∣rm+1

rm
if none of the denominators is zero

same as above with any term of the form

sin [(d0 ± d1 ± d2)r − (e0 ± e1 ± e2)] 1
d0±d1±d2

replaced by cos(e0 ± e1 ± e2)r if d0 ± d1 ± d2 = 0

(28)

with the abbreviations591

dk = a
(
ck,x cos(ψ̄) + ck,y sin(ψ̄)

)
(29)

ek = a (ck,x bx,i + ck,y by,i). (30)

Note that ek actually depends on the cell index i which is omitted in Eqs. (25) - (28) in order to keep592

the notation simpler.593

594

Head-direction tuning595

For a conjunctive grid by head-direction cell, the head-direction tuning depends only on the angle (which596

is fixed when integrating along a straight line through zero) and not at all on the distance from zero.597

The mean activity is thus obtained from the mean activity of a grid cell without head-direction tuning598

by multiplying it with h(θ) defined in Eq. (4):599

1

∆r

∫ rm+1

rm

dr Gi(r, ψ̄)hi(ψ̄) =
1

∆r
hi(ψ̄)

∫ rm+1

rm

dr Gi(r, ψ̄). (31)

600

601

Many cells602

For more than one cell, the total mean activity (population rate) can simply be calculated as the sum of603

22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.20.521210doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.20.521210
http://creativecommons.org/licenses/by-nc-nd/4.0/


the mean activities of the single cells604

1

∆r

∫ rm+1

rm

dr
N∑
i=1

Gi(r, ψ̄)hi(ψ̄) =
1

∆r

N∑
i=1

hi(ψ̄)

∫ rm+1

rm

dr Gi(r, ψ̄). (32)

605

606

Trajectories607

The derived analytical description of the mean activity can be applied only to pieces of linear trajectories608

through zero. For the star-like walk, we can simply integrate609

1

rmax

∫ rmax

0

dr Gi(r, θ) for θ ∈
{

0,
2π

Nθ
, 2

2π

Nθ
. . .

}
. (33)

Piece-wise linear trajectories and random walk trajectories consist of segments of straight lines that do610

not necessarily pass through zero. In order to integrate along the m-th segment of a trajectory from611

(xtm , ytm) to (xtm+1
, ytm+1

) with movement direction θm, we shift this path segment to the origin by612

subtracting (xtm , ytm) from the grid offset (xoff, yoff) and then integrating613

1

rm+1

∫ rm+1

0

dr Gi(r, θm), (34)

where rm+1 =
√

(xtm+1
− xtm)2 + (ytm+1

− ytm)2.614

5.4.2 Upper bound for hexasymmetry of path trajectories615

In the following we derive approximations for the expected value of the hexasymmetry
∣∣∣T̃6

∣∣∣ of a path616

trajectory described by the number of time steps M , the movement tortuosity σθ, and the time step size617

∆t. These approximations can be used to assess the contribution of the underlying trajectory to the618

overall hexasymmetry of neural activity.619

From the definition of the Fourier coefficients in Eq. (11) and the movement direction distribution in620

Eq. (14), we get the sixth Fourier coefficient of a trajectory:621

T̃6 =

∫ 2π

0

dφ
1

M

M−1∑
m=0

δ(φ− θm) exp(−6jφ)

=
1

M

M−1∑
m=0

exp(−6jθm) =
1

M

(
M−1∑
m=0

cos(6 θm)− j
M−1∑
m=0

sin(6 θm)

)
. (35)

The hexasymmetry of the trajectory can thus be expressed as622

∣∣∣T̃6

∣∣∣ =
1

M

√√√√(M−1∑
m=0

cos(6 θm)

)2

+

(
M−1∑
m=0

sin(6 θm)

)2

. (36)
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We simplify the sum of squares in Eq. (36)623

(
M−1∑
m=0

cos(6 θm)

)2

+

(
M−1∑
m=0

sin(6 θm)

)2

=
M−1∑
m=0

(cos(6 θm))2 + 2
M−1∑
m1=0

M−1∑
m2=m1+1

cos(6 θm1) cos(6 θm2)

+
M−1∑
m=0

(sin(6 θm))2 + 2
M−1∑
m1=0

M−1∑
m2=m1+1

sin(6 θm1
) sin(6 θm2

)

= M +
M−1∑
m1=0

M−1∑
m2=0
m2 6=m1

cos(6 (θm1
− θm2

)) (37)

with the help of the multinomial theorem and the trigonometric identity cos(α − β) = cos(α) cos(β) +624

sin(α) sin(β). If E (cos(6(θm1 − θm2))) is known, we can compute the expected value of the square of the625

hexasymmetry of the path trajectory as626

E
(∣∣∣T̃6

∣∣∣2) = E

 1

M2

M +
M−1∑
m1=0

M−1∑
m2=0
m2 6=m1

cos(6 (θm1
− θm2

))




=
1

M2

M +

M−1∑
m1=0

M−1∑
m2=0
m2 6=m1

E (cos(6(θm1 − θm2)))

 . (38)

As E(X2) = (E(X))2 + Var(X) for any random variable X, we can use the result in (38) to obtain the627

upper bound628

E
(∣∣∣T̃6

∣∣∣) ≤√E
(∣∣∣T̃6

∣∣∣2). (39)

In the following, we focus on the derivation of E (cos(6(θm1 − θm2))). Using the movement statistics629

∆W ∼ N (0,∆t) (40)

θt+∆t = θt + σθ∆W (41)

that were introduced below Eq. (1), the distribution of θm (after m time steps) can be derived when we630

start at some angle θ0:631

θ1 = θ0 + σθ∆W ∼ WN
(
θ0, σ

2
θ∆t

)
,

θ2 = θ1 + σθ∆W ∼ WN
(
θ0, 2σ

2
θ∆t

)
...

θm ∼ WN
(
θ0,mσ

2
θ∆t

)
(42)

whereWN (µ, σ2) denotes the wrapped normal distribution with parameters µ and σ2, which correspond632

to the mean and variance of the corresponding unwrapped distribution (Jammalamadaka and Sengupta,633

2001).634

In the following, we will derive the probability distribution of θm1
− θm2

. We first define Xm1
∼635

N (θ0,m1σ
2
θ∆t) and Xm2

∼ N (θ0,m2σ
2
θ∆t) as the unwrapped versions of θm1

and θm2
, respectively, and636

GXm1−Xm2
as the distribution function of their difference Xm1

−Xm2
. Then, the distribution function637
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(Fisher, 1995) of θm1
− θm2

reads as638

Fθm1−θm2
(z) =

∞∑
k=−∞

[
GXm1−Xm2

(z + 2πk)−GXm1−Xm2
(2πk)

]
(43)

=
∞∑

k=−∞

 ∫∫
x−y≤z+2πk

fXm1 ,Xm2
(x, y) dx dy −

∫∫
x−y≤2πk

fXm1 ,Xm2
(x, y) dx dy

 (44)

=
∞∑

k=−∞

[∫ ∞
−∞

∫ z+2πk+y

−∞
fXm1 ,Xm2

(x, y) dxdy −
∫ ∞
−∞

∫ 2πk+y

−∞
fXm1 ,Xm2

(x, y) dx dy

]
(45)

=
∞∑

k=−∞

∫ ∞
−∞

∫ z+2πk+y

2πk+y

fXm1 ,Xm2
(x, y) dx dy (46)

where fXm1 ,Xm2
(x, y) is the joint probability distribution.639

In order to calculate the distribution of θm1
− θm2

, we have to take the dependence between the two640

angles θm1
and θm2

into account. We will first consider the case m1 > m2. In this case, the conditional641

distribution of θm1
given θm2

= y is wrapped normal with conditional mean E(θm1
|θm2

= y) = y and642

conditional variance Var(θm1
|θm2

= y) = (m1 −m2)σ2
θ∆t. The same can be said about the unwrapped643

versions of θm1
and θm2

. We will use this result to calculate the joint probability distribution644

fXm1 ,Xm2
(x, y) = fXm1

(x|Xm2
= y)fXm2

(y). (47)

By applying the Leibniz integral rule in (∗) we obtain the probability density of θm1 − θm2 :645

fθm1
−θm2

(z) =
d

dz
Fθm1

−θm2
(z) =

d

dz

∞∑
k=−∞

∫ ∞
−∞

∫ z+2πk+y

2πk+y

fXm1
,Xm2

(x, y) dxdy (48)

(∗)
=

∞∑
k=−∞

∫ ∞
−∞

fXm1 ,Xm2
(z + 2πk + y, y) dy (49)

=
∞∑

k=−∞

∫ ∞
−∞

fXm1
(z + 2πk + y|Xm2

= y)fXm2
(y) dy (50)

=

∞∑
k=−∞

∫ ∞
−∞

1

σθ
√

2π(m1 −m2)∆t
exp

(
− (z + 2πk + y − y)2

2(m1 −m2)σ2
θ∆t

)
(51)

· 1

σθ
√

2πm2∆t
exp

(
− (y − θ0)2

2m2σ2
θ∆t

)
dy (52)

=
∞∑

k=−∞

[
1

σθ
√

2π(m1 −m2)∆t
exp

(
− (z + 2πk)2

2(m1 −m2)σ2
θ∆t

)]
·
∫ ∞
−∞

fXm2
(y) dy.︸ ︷︷ ︸

=1

(53)

For m2 > m1, we derive in the same way as above646

fθm1
−θm2

(z) =
∞∑

k=−∞

∫ ∞
−∞

fXm1
(z + 2πk + y)fXm2

(y|Xm1
= z + 2πk + y) dy

=

∞∑
k=−∞

1

σθ
√

2π(m2 −m1)∆t
exp

(
− (z + 2πk)2

2(m2 −m1)σ2
θ∆t

)
. (54)
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Finally, for m2 = m1, we have θm2
= θm1

. Altogether, we thus get647

θm1
− θm2

∼ WN
(
0, |m1 −m2|σ2

θ∆t
)
. (55)

In order to calculate an upper bound for the average path hexasymmetry, we will now use Eq. (55)648

in Eq. (38). Since E(<(Z)) = <(E(Z)) for a complex random variable Z and the n-th moment of a649

wrapped normal distribution with parameters µ and σ2 is E (exp(j X)n) = exp
(
j n µ− 1

2n
2σ2
)
, we can650

derive651

E (cos(6(θm1 − θm2))) = E (< (exp(j 6 (θm1 − θm2)))) = <
(
E
(
exp(j (θm1 − θm2))6

))
= <

(
exp

(
j 6µm1,m2

− 1

2
36σ2

m1,m2

))
= exp

(
−1

2
36σ2

m1,m2

)
, (56)

where µm1,m2 := 0 and σ2
m1,m2

:= |m1 −m2|σ2
θ∆t. We thus obtain652

E
(∣∣∣T̃6

∣∣∣2) =
1

M2

M +
M−1∑
m1=0

M−1∑
m2=0
m2 6=m1

exp

(
−1

2
36σ2

m1,m2

)

=
1

M2

M +
M−1∑
m1=0

M−1∑
m2=0
m2 6=m1

exp

(
−1

2
36 |m1 −m2|σ2

θ∆t

) . (57)

The solid lines in Figure S1 show the square root of Eq. (57) (cf. Eq. (39)).653

From Eq. (57) we can derive simplified approximations for two limiting cases. For convenience, we use654

α := 1
2 36σ2

θ∆t. First, if α � 1, i.e. if the new direction after one step is almost uniformly distributed655

or independent of the previous direction, we can neglect the double sum and we have656

E
(∣∣∣T̃6

∣∣∣) ≤ 1√
M
. (58)

The corresponding line is shown in red in Figure S1. Note that in Figure S1 (with simulation step657

size ∆t = 0.01 s), α � 1 corresponds to σθ � 2.36. A comparison with results from numerical sim-658

ulations shows that for any σθ > 3.5 the Eq. (58) constitutes a viable upper bound of the mean path659

hexasymmetry.660

Second, we assume Mα� 1, i.e. the direction after M steps is almost independent from the original661

direction. The double sum in Eq. (57) can then be approximated:662

M−1∑
m1=0

M−1∑
m2=0
m2 6=m1

exp (−α |m1 −m2|) = 2

M−1∑
m1=0

M−1∑
m2=m1+1

exp (−α |m1 −m2|) (59)

= 2
M−1∑
m=1

(M −m) exp (−αm) ≈ 2
∞∑
m=1

(M −m) exp (−αm) (60)

= 2

(
M

( ∞∑
m=0

(exp (−α))
m − 1

)
−
∞∑
m=1

m (exp(−α))
m

)
(61)

= 2

(
M

exp(α)− 1
− exp(α)

(exp(α)− 1)
2

)
, (62)

where the first series in (61) is a geometric series and the second series is the polylogarithm function of663
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order -1. We further approximate664

2

(
M

exp(α)− 1
− exp(α)

(exp(α)− 1)
2

)
≈ 2M

exp(α)− 1
. (63)

For α � 1, the error in the last approximation is exp(α)

(exp(α)−1)2
≈ 1+α

α2 , which, if Mα � 1, is negligible665

compared to the remaining term M
exp(α)−1 . Since exp(α)

exp(α)−1 is a strictly monotonically decreasing function666

of α, this approximation does not only hold for α� 1 but is good in general.667

Inserting Eq. (63) into Eq. (57) gives668

E
(∣∣∣T̃6

∣∣∣2) =
1

M2

(
M +

2M

exp(α)− 1

)
=

1

M

(
1 +

2

exp(α)− 1

)
. (64)

Hence, we get the approximation (for Mα� 1)669

E
(∣∣∣T̃6

∣∣∣) .

√
1

M

(
1 +

2

exp(α)− 1

)
. (65)

This expression is used to compute the dashed lines in Figure S1, which all have slope 1/
√
M but a670

prefactor that depends on α = 18σ2
θ∆t.671

For α � 1 (but still Mα � 1), we can use in Eq. (64) the first-order Taylor expansion of the672

exponential function at 0 to obtain673

1

M

(
1 +

2

exp(α)− 1

)
≈ 1

M

(
1 +

2

α

)
≈ 1

M
· 2

α
=

1

M
· 1

9σ2
θ∆t

. (66)

Hence the path hexasymmetry for α� 1 and Mα� 1 can be approximated by674

E
(∣∣∣T̃6

∣∣∣) .
1√
M
· 1

3σθ
√

∆t
, (67)

which allows us to see how the key variables M , σθ, and ∆t interact in this limiting case. For instance,675

given a certain trajectory A with MA steps and random walk parameters σθA and ∆tA, we can use676

Eq. (67) to derive how many steps MB are necessary in a second trajectory B with parameters σθB677

and ∆tB to achieve the same mean path hexasymmetry. From Eq. (67), we know that the two path678

hexasymmetries will have the same upper bound if679

1√
MA

· 1

3σθA
√

∆tA
=

1√
MB

· 1

3σθB
√

∆tB
⇔ MB

MA
=
σ2
θA∆tA
σ2
θB∆tB

. (68)

Hence, the number of time steps MA has to be multiplied by a factor ∆M :=
σ2
θA∆tA
σ2
θB∆tB

:680

MB = ∆M ·MA. (69)

We illustrate the above considerations with an example: Let σθA = 1 rad/s
1/2

, σθB = 0.5 rad/s
1/2

681

and ∆tA = ∆tB = 0.01 s. From the given values, we obtain682

∆M =
σ2
θA∆tA
σ2
θB∆tB

=
1

0.25
= 4. (70)

Thus, the mean hexasymmetry value of a trajectory with σθA = 1 after MA time steps is the same as683

the mean hexasymmetry value of a trajectory with σθB = 0.5 after MB = 4 ·MA time steps. Results684

27

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.20.521210doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.20.521210
http://creativecommons.org/licenses/by-nc-nd/4.0/


from numerical simulations of path hexasymmetries, shown in Figure S1, support the derived theoretical685

approximations.686

5.5 Random-field simulations687

To quantitatively evaluate the structure-function mapping hypothesis, we set out to simulate a set of688

grid cells in three-dimensional anatomical space. The grid phases associated with these grid cells follow689

the correlation structure suggested by (Gu et al., 2018) and (Heys et al., 2014). Our aim is to quantify690

the clustering of grid phases for a realistically-sized fMRI voxel given this correlation structure.691

We use a three-dimensional representation of a voxel with a volume of (3 mm)3. Within this voxel,692

we define a grating of 2003 potential grid cells that are equally spaced in the voxel, with a distance693

between neighbouring cells of 15 µm along the axes of the grating. To generate a set of random but694

spatially correlated grid phases on this area, we first define two random unit vectors in the complex695

plane, Z1 and Z2, for each of the 2003 potential grid cells in the voxel; angles of the unit vectors are thus696

drawn from a uniform distribution on the interval [0, 2π). Z1 and Z2 are further resolved into their real697

and imaginary components Re(Zi) and Im(Zi), respectively, where i ∈ {1, 2}. To generate correlations698

between grid phases, we then convolve the two resulting gratings of 2003 components separately with699

either a Gaussian kernel (Fig. 4K) or a grid kernel (Fig. 4O) to yield the convolved components Re(Ẑi)700

and Im(Ẑi). The grid phases can be obtained by first calculating the angles of the new set of complex701

numbers and normalizing the result by 2π:702

x̂off =
arg(Ẑ1)

2π

ŷoff =
arg(Ẑ2)

2π
.

(71)

We note that x̂off and ŷoff are defined on the interval [0, 1) and correspond to the grid phases of a single703

grid cell mapped to the unit square. Transforming the result to the unit rhombus yields the grid phases704

xoff and yoff in the x and y direction respectively:705

xoff = x̂off +
ŷoff

2

yoff =

√
3

2
ŷoff

(72)

To find the average pairwise grid phase distances as a function of the pairwise anatomical distances,706

108 pairs of grid cells are sampled randomly from the uniform distribution defined on the discrete space707

of grating cell positions. The Euclidean distance in anatomical space between the two grid cells in each708

pair is calculated and sorted into 50 bins of equal width on the interval [10, 500] µm. Then, for each pair709

of grid cells, n1 and n2, 8 copies of the grid phase (xoff,2, yoff,2) of the second cell n2 are made, which are710

offset from the initial position of the grid phase such that they are positioned at the same phase within711

unit rhombi laid end-to-end on a 3 × 3 grid. The minimum distance between the grid phase of the cell712

n1 and the grid phase of each of the copies of the cell n2 is taken as the pairwise phase distance. Finally,713

the pairwise distance between grid phase offsets per distance bin is obtained by taking the mean over all714

grid cell pairs whose Euclidean distance in anatomical space falls into the corresponding bin (Fig. 4H,715

L, P).716

To estimate the clustering concentration parameter κs in Fig. 4, the phases x̂off and ŷoff are mapped717

to a circular distribution by multiplying them with 2π. The sets of grid phases
{

2πx̂ioff | i ∈ {1, 2, ..., N}
}

718

and
{

2πŷioff | i ∈ {1, 2, ..., N}
}

are then each separately fit to a one-dimensional von Mises distribution to719

obtain a clustering concentration parameter for each axis. The final value of κs is taken as the average720
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of these two values.721

Table 1: Parameters: descriptions and values.

Parameter Description Values (unless varied) or Range

Trajectories

∆t Simulation time step 0.01 s

T Simulated duration 9000 s

v Movement speed 10 cm/s

σθ Movement tortuosity 0.5 rad/s1/2

rmax Length of a linear path in the star-like run 300 cm

Nθ Number of angles to sample in the star-like run 360

Grid cells

N Number of grid cells in a voxel 1024

s Grid scale 30 cm

γ Grid orientation 0◦

Amax Maximum firing rate for one grid cell 1 spk/s

(xoff, yoff) Grid phase (2-dimensional) ([0,1], [0,1])

Conjunctive grid by head-direction cell hypothesis

µc Preferred head direction [0, 2π) (multiples of 60◦ for σc = 0)

κc
Concentration parameter for direction tuning

for the ideal and “realistic”1 cases
{50, 10} rad−2

σc
Alignment jitter of direction tuning to grid

axis for the ideal and “realistic”1 cases
{0, 3}◦

pc
Fraction of conjunctive cells in a population

for the ideal and “realistic”2 cases
{1, 1/3}

Repetition suppression hypothesis

τr Adaptation time constant {3, 1.5} s

wr Adaptation weight for the ideal and “weaker” cases {1, 0.5}

Structure-function mapping hypothesis

µs Central phase of cluster (0, 0)

κs
Concentration parameter for clustering

for the ideal and “realistic”3 cases
{10, 0.1}

1(Doeller et al., 2010)
2(Boccara et al., 2010; Sargolini et al., 2006)
3(Gu et al., 2018)
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J.L.S Bellmund, L. Deuker, T.N. Schröder, and C.F. Doeller. Grid-cell representations in mental simu-736

lation. eLife, 5:e17089, 2016.737

A. Bierbrauer, L. Kunz, C.A. Gomes, M. Luhmann, L. Deuker, S. Getzmann, E. Wascher, P.D. Gajewski,738

J.G. Hengstler, M. Fernandez-Alvarez, M. Atienza, D.M. Cammisuli, F. Bonatti, C. Pruneti, A. Perce-739

sepe, Y. Bellaali, B. Hanseeuw, B.A. Strange, J.L. Cantero, and N. Axmacher. Unmasking selective740

path integration deficits in Alzheimer’s disease risk carriers. Science Advances, 6:eaba1394, 2020.741

C.N. Boccara, F. Sargolini, V.H. Thoresen, T. Solstad, M.P. Witter, E.I. Moser, and M.-B. Moser. Grid742

cells in pre- and parasubiculum. Nature Neuroscience, 13:987–994, 2010.743

A. Bongioanni, D. Folloni, L. Verhagen, J. Sallet, M.C. Klein-Flügge, and M.F.S. Rushworth. Activation744
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Figure S1: Hexasymmetry of random walk trajectories. The (horizontal) orange dashed line
shows the offset (or maximum) of the path hexasymmetry, T̃0 ≡ 1. The (diagonal) red dashed line
shows the average path hexasymmetry |T̃6| = 1/

√
M associated with randomly sampling a movement

direction at each time step from a uniform distribution on the interval [0, 2π). Solid colored curves show
an upper bound for the mean path hexasymmetry of a random walk as a function of the number of time
steps (square root of Eq. (57)) for five different movement tortuosities σθ and a simulation time step size
∆t = 10 ms. The corresponding five colored dashed lines show an approximation (|T̃6| ∝ 1/

√
M , Eq. (65))

to the solid curves; the approximation is excellent if the number M of time steps is large enough. Colored
dots show the respective mean path hexasymmetries obtained from numerical simulations (Eq. (1)). The
black arrow shows the multiplicatory shift in the number of time steps that is necessary to obtain the

same hexasymmetry for a trajectory with σθ = 0.5 rad/s
1/2

as for a trajectory with σθ = 1 rad/s
1/2

, as
derived in Eq. (70).
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Figure S2: Effect of tortuosity on the hexasymmetry for the repetition-suppression hypoth-
esis with random walks (∆t = 0.01 s, T = 9000 s, τr = 3 s, wr = 1). (A) The hexasymmetry |Ã6|
(blue) and the scaled path hexasymmetry |T̃6| · Ã0 (orange) as a function of the movement tortuosity σθ
of a random walk. The shaded areas represent the standard error when averaging over 100 realizations of
the trajectory, each with an initial direction sampled from a random uniform distribution on the interval
[0, 2π). (B) The mean difference between |Ã6| and |T̃6| · Ã0 as a function of the movement tortuosity
σθ. Note that |Ã6| ≥ |T̃6| · Ã0 for σθ ≤ 0.4. For σθ > 0.4 the two curves begin to overlap: repetition-
suppression ceases to have a significant effect and the hexasymmetry |Ã6| is primarily dictated by the
path hexasymmetry. The dip in the mean difference near σθ ∼ 0.1 is thought to be due to numerical
noise. (C) The mean firing rate Ã0 does not depend on movement tortuosity σθ, indicating that any
effect of repetition-suppression on the population firing rate is small. (D) Path hexasymmetry |T̃6| as a
function of the movement tortuosity σθ. The solid line depicts the mean path hexasymmetry averaged
over 100 realizations of a trajectory, while the dashed line plots the analytical result in Eq. (65). (E)
Leftmost panel: Five examples (colored line segments) of a piece-wise linear (“p-l”) trajectory; each lin-
ear path segment has a length of 300 cm. Three rightmost panels: Five example random walk (“rand”)
trajectories (colored curves) for three different values of the movement tortuosity σθ with total simula-
tion time T = 60 s and a total path length of 600 cm. For illustration purposes, the initial directions of
example random walk trajectories were chosen such that they are regularly distributed on the interval
[0, 2π). When viewed on a scale within the range of ±600 cm, increasing the tortuosity from 0.1 to 0.5
results in increasingly more curved trajectories. The bright dots in all panels of (E) show the grid fields
with grid spacing 30 cm, which is small when viewed on this scale. In the simulations for Figs. 2–5, the
random walk trajectories have total lengths of 90, 000 cm or longer and use a movement tortuosity of

σθ = 0.5 rad/s
1/2

.
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Figure S3: Pair-wise comparisons of the hexasymmetry values from different trajectory
types for each set of parameters. The compared trajectory types are star-like walks (“star”),
piecewise-linear walks (“p-l”), and random walks (“rand”). For each hypothesis, we calculate the hex-
asymmetry for ideal parameters (conjunctive: pc = 1, κc = 50 rad−2, σc = 0; repetition suppression:
τr = 3 s, wr = 1; clustering: κs = 10) as well as more realistic parameters (conjunctive: pc = 0.33,
κc = 10 rad−2, σc = 3◦; repetition suppression: τr = 1.5 s, wr = 0.5; clustering: κs = 0.1). In the case
of the repetition-suppression hypothesis, the solid blue bars show the star-like walk with a carry-over
of the repetition-suppression mechanism when teleporting between different path segments, while the
transparent bars with the dotted blue borders represent the star-like walk with no carry-over of the
repetition-suppression effect across different path segments. For the star-like walk, the starting phase
of the star is sampled from a uniform distribution across the unit rhombus between realizations, and
remains constant within each realization of the star-like walk trajectory. The direction of movement for
both the star-like walk and the piece-wise linear walk is sampled randomly without replacement from
the integer angles {0, 1, 2, ..., 359}◦. The parameters for the random-walk scenario are T = 9000 s and
∆t = 0.01 s. Each hypothesis condition was simulated for 300 realizations. ***, P < 0.001; n.s., not
significant. Note that the scales of the horizontal axes are different across subpanels.
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Figure S4: Hexasymmetry resulting from piece-wise linear walks (“p-l”) and random walks
(“rand”) as a function of the percentage of subsampled path segments for the structure-
function mapping hypothesis. Values of “ideal” parameters (left) and more realistic parameter values
(“Gu”; right) are identical to the ones used in Fig. 5. The thinner gradient bars show the percentage of
subsampled path segments required to produce the corresponding scaled path hexasymmetry |T̃6| · Ã0.
The thicker dark blue and light blue bars represent the hexasymmetry |Ã6| and the path hexasymme-
try multiplied by the mean firing rate |T̃6| · Ã0, respectively. The percentages of path segments were
subsampled from 1% to 100% in steps of 1%. In the case of the random walk trajectories, e.g. subsam-
pling 100% of the path segments yields |T̃6| · Ã0 = |Ã6| = 7.92 spk/s. For each percentage value, the
path hexasymmetry was averaged over 100 different realizations of the piece-wise linear or random walk
trajectory.
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Figure S5: Effect of size and shape of finite environments on hexasymmetry. (A) Examples
of bounded trajectories (red) within square boundaries (bottom; “size” indicates half of side length)
or circular boundaries (top; “size” indicates radius) of varying sizes (increasing from left to right).
Trajectories are overlaid on the firing field of an example grid cell. The lengths of the depicted trajectories
are modified for illustration purposes, and do not reflect the full extent of trajectories used to calculate
hexasymmetries. (B) Hexasymmetry for the three hypotheses for different sizes of the boundaries;
blue, circular boundary; orange, square boundary. For the conjunctive grid by head-direction cell and
structure-function mapping hypotheses, the “realistic” parameter sets were used, while the optimal
parameter set was used for the repetition-suppression hypothesis; for values of the parameters, see
Table 1. Overall, the obtained values of the hexasymmetry have a weak (if any) dependence on boundary
shape and size (apart from fluctuations due to noise in different realizations), and the obtained values
are similar in magnitude to those obtained in infinite environments: Fig. 2H for “conjunctive” (with a
factor 3 difference due to 3-fold different values of pc), Fig. 3E for “repetition suppression”, and Fig. 4C
for “structure-function mapping”. (C) Path hexasymmetry for different sizes of the boundaries. In (B)
and (C), lines represent the mean and shaded areas represent the standard error as obtained from 20
trajectories.
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Figure S6: Effect of rotation of finite environments on hexasymmetry. (A) Examples of
bounded trajectories (red) within circular (top) or square (bottom) boundaries for different rotation
angles (numbers at top) relative to the grid orientation. Trajectories are overlaid on the firing field of
an example grid cell. The lengths of the depicted trajectories are modified for illustration purposes,
and do not reflect the full extent of trajectories used to calculate hexasymmetries. (B) Hexasymmetry
for the three hypotheses for different rotation angles of the trajectory; blue: circular boundary; orange:
square boundary. The periodic fluctuation in neural hexasymmetry for the conjunctive hypothesis with
a square environment is due to the alignment of the edges of the square with the grid axes whenever
the trajectory is rotated by multiples of 30◦ and 60◦ combined with the tendency of the subject to move
along the walls of the boundary. With circular boundaries, these fluctuations are closer to the order of
the standard error, and are due to a combination of directional bias in the trajectory and noise in the
arrangement of grid phase offsets. Otherwise, the obtained values of the hexasymmetry have a weak (if
any) dependence on boundary shape and orientation (apart from fluctuations due to noise in different
realizations), and the obtained values are similar in magnitude to those obtained in infinite environments:
Fig. 2H for “conjunctive” (with a factor 3 difference due to 3-fold different values of pc), Fig. 3E for
“repetition suppression”, and Fig. 4C for “structure-function mapping”. For the conjunctive hypothesis
and the structure-function mapping hypotheses, the “realistic” parameter sets were used, while the
optimal parameter set was used for the repetition-suppression hypothesis; for values of the parameters,
see Table 1. (C) Path hexasymmetry does not depend on the rotation angle of the trajectory. In (B)
and (C), lines represent the mean and shaded areas represent the standard error as obtained from 20
random walk trajectories with the same parameters as in Table 1.

39

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.20.521210doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.20.521210
http://creativecommons.org/licenses/by-nc-nd/4.0/

