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Abstract 

Drug development is a resource and time-intensive process resulting in attrition rates of up to 90%. 

As a result, repurposing existing drugs with established safety and pharmacokinetic profiles is 

gaining traction as a way of accelerating therapeutics development. Here we have developed unique 

machine learning-driven Natural Language Processing and biomedical semantic technologies that 

mine over 53 million biomedical documents to automate the generation of a 911M edge knowledge 

graph. We then applied subgraph queries that relate drugs to diseases using genetic evidence to 

identify potential drug repurposing candidates for a broad range of diseases. We use Carney 

Complex, a disease with no known treatment, to illustrate our approach. This analysis revealed 

Ruxolitinib (Incyte, trade name Jakafi), a JAK1/2 inhibitor with an established safety and efficacy 

profile approved to treat myelofibrosis, as a potential candidate for the treatment of Carney 

Complex through off-target drug activity. 

 

Introduction 

The research and development cycle of a novel drug is extensive, requiring an estimated 1-2  billion 

dollars of investment on average and 10-15 years to reach the market from conception through FDA 

approval.1,2 Ultimately, only an estimated 10-15% of drugs from phase I of clinical trials are approved 

for market use.3 As such, drug repurposing methods to find new applications for currently approved 

or drugs that failed their initial intended purpose is gaining increasing interest as a method for 

accelerating therapeutics development.4 As existing on-market drugs have established safety and 

pharmacokinetic profiles, drug repurposing can shorten the development cycle and mitigate risks early 

in the process.5  An extreme example of successfully repurposed drugs is thalidomide. Originally 

marketed as a morning sickness drug that was pulled from the European market for severe birth 

defects in the 1960s, it was ultimately brought back as a treatment for a range of diseases, including 

many forms of cancer and immune diseases.6 

Leveraging large, complex drug-disease networks has emerged as a powerful approach for indication 

expansion and drug repurposing, particularly for identifying existing therapeutics that can treat rare, 

intractable, or emerging (i.e. viral) diseases.7-10 In network-based approaches, relationships can be 

inferred between entities such as drug-gene or drug-disease as entities within the same biological 

network.11  While graph and network approaches are not novel, new strategies have been developed 

in recent years to execute these queries in a systematic and rational way.  Natural Language Processing 

(NLP) of biomedical literature is a rapidly maturing approach to identifying biological entities and 
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extracting relations and insights from structured and unstructured text.12 As 80% of medical data is 

unstructured, using NLP to extract potential associations between chemicals/drugs, target genes and 

proteins, and disease states from biomedical text provides a powerful avenue for accelerating drug 

discovery and repurposing.13  In addition, as previous work has demonstrated a significant increase in 

odds ratio (>2X) for gaining drug approval when genetic evidence links a gene and a targeted 

disease,14,15 there is great potential to integrate NLP-derived drug-disease associations with available 

genetic and genomic data to focus on genetically supported drug repurposing.  

Here, we describe the results of a subgraph pattern matching methodology, along with potential 

applications leveraging a multimodal knowledge graph built from various public data sources (both 

structured and unstructured) that have been harmonized to common ontologies. We demonstrate 

that graph-based inferences of drug-disease associations are significantly enriched by requiring direct 

or indirect (i.e., pathway-based) genomic evidence within the subgraph.  We also document that 

hundreds of thousands of genomically-informed subgraphs can be identified that associate a known 

drug with a novel disease.  We hypothesized that these novel drug-disease associations could be used 

to evaluate potential drug re-purposing opportunities, and we tested this hypothesis on Carney 

Complex - a rare disease with no available treatments.  

 

Methods 

Construction of the Knowledge Graph 

Our knowledge graph network consists of 911 million edges and enables the development of graph 

queries that identify specific subgraph patterns between start and end nodes (i.e., a drug and a 

disease) and can be calculated at scale. Generating the knowledge graph involved automating large-

scale curation of numerous unstructured and structured data sources, integrating the resulting 

metadata into a hybrid index of databases spanning graph, text and structured databases, and 

deploying graph analytic models that reduce knowledge graph data into subgraphs.   

The curation of unstructured data was accomplished by deploying proprietary machine learning 

algorithms that perform four specific tasks: Named Entity Recognition (NER), Biomedical Ambiguity 

Resolution (BAR), Semantic Relationship Quantification (SRQ) and Causal Context Expression Curation 

(CEC).  NER models include deep neural network models within spaCy frameworks that are custom 

trained to recognize drug discovery domain entities such as genes, drugs, disorders, phenotypes, 

adverse events, etc.  The BAR processes employ custom machine learning algorithms that resolve 

Figure 1.  Example of Named Entity Recognition (NER) and Biomedical Ambiguity Resolution (BAR) processes 
applied to a sentence from the biomedical literature (tagging the terms highlighted in green), with resulting 
Semantic Relationship Quantification (SRQ) scores as described in the text. 

SRQ = 0.32 

SRQ = 0.90 

SRQ = 0.86 
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synonyms, acronyms and ambiguous terms to enhanced versions of biomedical ontologies (e.g., 

HGNC, EFO, MESH, etc.).  The base model for SRQ was a large transformer-style model pre-trained on 

a large multi-domain corpus of scientific text and fine-tuned on expertly annotated gold standard data.  

The SRQ model outputs a score representing the confidence of a meaningful semantic relationship 

between the two entities in a sentence.  All resulting candidate relationships evaluated by the SRQ 

model are given a semantic relationship prediction score between 0 and 1. A score of 0 represents a 

prediction that entities mentioned within a single sentence merely co-occur and do not have a 

meaningful semantic relationship, while a score approaching 1 indicates a prediction of a high 

likelihood that two biomedical entities are semantically related. For example, consider the sentence 

in Figure 1.  In this figure, three gene entities were extracted and mapped by the NER-BAR pipeline 

components. The pairwise combination of these extractions results in three candidate relationships 

to be evaluated by the SQR model. In this example, the model evaluates that this sentence does not 

by itself represent evidence of a semantic relationship between TRAF6 and PLK, returning an SQR 

score of 0.32. However, it does represent evidence of a relationship between each of those and KLF4 

with the model returning a score of 0.86 between TRAF6 and KLF4 and 0.90 between PLK and KLF4. 

This differs from other approaches that may only evaluate relationships simply by syntactic proximity, 

which correlates fewer words between entities to stronger semantic relationships, or by co-

occurrence in a sentence or document.  Raw semantic scores from the SRQ model were then rescaled 

such that a threshold of 0.5 maximized model performance against the validation set of annotated 

data. Relationships with SQR scores of below 0.5 were filtered out. Those with SQR scores of 0.5 and 

greater were used to construct the knowledge graph, and semantic scores were rescaled with an affine 

transformation from 0.5-1 to 0-1, rounding to the nearest 0.2 cutoffs. The end value is then presented 

as the “confidence” of a single piece of evidence. The CEC, built using syntactic dependency graphs, 

then processes the directionality of entities in cause-and-effect relationships, along with biomedical 

verbs and adverbs that are foundational for scientific insight. The curation of structured data sources 

involved transforming source fields to align with the same data schema outputted by the unstructured 

processes noted above.   

The resulting knowledge graph is then stored in a database architecture that employed a graph 

database for graph data, a SOLR database for text format data and BigQuery for structured data.  All 

data across the databases are interconnected with metadata links that enable the analysis to span 

graph format, text format and structured format data.  This database architecture enables insights 

from subgraphs generated by the graph databases paper to index source text from source literature 

and patent documents as well as compare subgraph patterns to structured data from clinical trials.   

While publicly available data sources were utilized in constructing the tellic knowledge graph used in 

this analysis, customer-specific deployments that include proprietary data have also been used to 

validate the conclusions. Public data sources typically fall into two categories: unstructured text from 

PubMed, PMC, bioRxiv, medRxiv, arXiv, Google Patents and NIH grants, and structured data with a 

standardized format (e.g., HGNC, GWAS, dbSNP, and CPDB).  
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Subgraph Identification and Validation 

To assess the inference power of these sub-graphs, a validation set of 96,707 clinically supported Drug-

Disease relationships was defined, derived from a set of 6,226 drugs tested in Phase 1-4 clinical studies 

against 2,840 unique indications.  These data are supplied as Supplementary Material. 

Drug-Disease Subgraph Models 

With a graph containing 

over 900 million 

relationships, a large 

number of subgraphs can 

be created to answer a 

wide range of questions. 

For this paper, we have 

chosen relatively simple 

subgraphs that relate a 

Drug to a Disease through a 

specific gene or genes, with 

or without genetic 

evidence, as shown in 

Figure 1. Such subgraphs 

can be used to assess the 

potential for a given drug 

to have therapeutic value 

in the treatment of an associated Disease.   The Gene-Disease relationship was defined in three 

different graph representations requiring either: 1) direct literature support between both a drug and 

a gene and that same gene and a disease, resulting in a subgraph that contains only three entities 

(DD3, Figure 1A), 2) direct literature support between a drug and a gene and a known variant of that 

gene that has an association with a disease, resulting in a subgraph of four entities (DD4, Figure 1B), 

or 3) direct literature support between a drug and a gene, a gene1-gene2 relationship based on known 

pathways, and known variant of the second gene that has an association with a disease.  This results 

in a subgraph containing five linked entities (DD5, Figure 1C).  For this analysis, pathway membership 

for DD5 was defined as all gene pairs with confidence scores > 0.8 in the Consensus Path Database 

(CPDB). All relationships extracted from unstructured data required a minimum of 5 pieces of evidence 

and an average semantic confidence score of >0.5 across all evidence. A list of source data for each 

relationship type is included in Supplemental Materials.  

 

Results and Discussion 

The total counts of all DD3, DD4, and DD5 subgraphs identified in the tellic graph are shown in the 

second column in Table 1 (column titled ‘Total Subgraph Counts').  For purposes of validating the DD3, 

DD4 and DD5 subgraphs, a subset of known drugs with reported clinical trial activity against known 

diseases was constructed, such that the enrichment of clinically supported Drug-Disease associations 

 
Figure 2.  Drug-Disease subgraphs of A) length 3 (DD3), B) length 4 (DD4), 
and length 5 (DD5) as described in the text.  Subgraphs were validated using 
clinical evidence to support a therapeutically relevant Drug-Disease 
association as shown in Table 1.  
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using the subgraphs described in this work could be assessed.   A set of 6,226 drugs that have achieved 

at least Phase 1 status were identified, which were reported in clinical trials for a set of 2,840 unique 

diseases (see Supplemental Material).  This results in more than 17 million random pairwise 

connections between all drugs and diseases in this set, while only 96.7K drug-disease pairs are 

reported to have clinical trial activity.  The validation set for the DD3, DD4, and DD5 subgraphs was 

then limited to these specific Drugs and Diseases, with the resulting counts shown in column 3 of Table 

1 (column titled ‘Drug-Indication Subgraph Counts’). From these data, the ‘random’ chance of a drug-

disease pair having clinical support is 0.55% (96.7K clinically supported out of 17 million total possible 

pairs). In the 37M DD3 subgraphs, there are 4.7M unique drug-indication pairs in the validation set, 

73K of which are clinically supported, resulting in a validation ratio of 1.56%.  While this 2.85-fold 

enrichment over random suggests that the availability of literature support increases the likelihood of 

a drug-disease association having clinical support, it is likely biased by the fact that nearly all drug-

disease and gene-disease pairs being tested in clinical trials would be supported by literature evidence.  

Requiring at least one genetic association between the gene and disease significantly decreases the 

overall subgraph count but increases the validation ratio to 8.76% (DD4-1).  This validation ratio 

increases to 19.52% when at least five variants (DD4-5) that mediate a gene-disease association have 

been reported, indicating that increasing levels of genetic support leads to increasing levels of clinically 

supported drug-disease associations.  These levels of enrichment were observed even when the 

clinical support was required to be Phase 2 and beyond and across oncology and non-oncology 

indications (see Supplemental Material).  Note that while all variants in DD4-2 through DD4-5 were 

associated with the same gene and indication, no attempt was made to cluster variants based on their 

chromosomal location. A similar pattern could be observed within the DD5 subgraphs (see bottom 5 

rows in Table 1), which add an additional connection between genes sharing the same pathway. The 

overall enrichment values are lower than those of DD4 subgraphs, likely due to the subgraph pattern 

resulting in a larger count of subgraphs and a subsequent “dilution” of the data. However, the overall 

pattern of an increasing validation ratio corresponding to the level of genetic support holds, also 

suggestive of more novel opportunities for drug repurposing being found within this analysis pattern.  

Table 1. Subgraph pattern count of DD3, DD4 and DD5 with clinical evidence enrichment based on 
semantic relationships 

Subgraph Pattern 
Total Subgraph 

Counts 
Drug-Indication 

Subgraph Counts 
Documented 

Phase 1+ 
Clinically 

Supported 
Enrichment 

All pairs 17,681,840 17,681,840 96,707 0.55% - 

DD3 37,304,935 4,708,463 73,425 1.56% 2.85 

DD4-1 (≥1 Variant) 517,044 219,000 19,185 8.76% 16.02 

DD4-2 (≥2 Variant) 181,916 93,212 11,893 12.76% 23.33 

DD4-3 (≥3 Variant) 80,480 49,095 7,852 15.99% 29.24 

DD4-4 (≥4 Variant) 48,796 32,100 5,563 17.33% 31.69 

DD4-5 (≥5 Variant) 31,701 21,487 4,195 19.52% 35.70 

DD5-1 (≥1 Variant) 4,467,507 770,519 31,302 4.06 7.43 

DD5-2 (≥2 Variant) 1,730,087 376,583 21,448 5.70 10.41 

DD5-3 (≥3 Variant) 948,198 240,034 16,275 6.78 12.40 

DD5-4 (≥4 Variant) 668,278 179,316 12,893 7.19 13.15 

DD5-5 (≥5 Variant) 523,476 142,842 10,712 7.50 13.71 
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This work defines two subgraph patterns (DD4 and DD5) that algorithmically encode such genetic 

associations and can be routinely applied at scale across the constructed knowledge graph.  The 

resulting inferences can now be further investigated to identify new targets with some level of drug 

validation or new therapeutic opportunities for existing drugs. 

 

Application to Rare Genetic Diseases 

The DD4 and DD5 sub-graphs described in this work can be used to complement target validation 

activities, looking for genes or gene pathways that have both a genetic association to a disease and 

some evidence of clinical activity with at least early stage (Phase 1 and beyond) drug candidates.  

When limited to on-market drugs, these sub-graphs then represent potential drug-repurposing 

opportunities.  This can be useful for indication expansion, where the genetic evidence supports 

treatment of a disease that is pathophysiologically related to an existing indication for that drug.  

When limited to on-market drugs, such graphs also represent an opportunity to identify potential 

novel treatments for rare diseases.   

There is an urgent need to find on-market drugs to treat rare diseases. Unfortunately, clinical trials for 

rare diseases may be too slow to help patients and too costly to justify the investment by most 

pharmaceutical companies.  Thus, repurposing on-market drugs gives the physician and patients a 

potential avenue for treatment.  Multiple approaches to repurposing drugs for the treatment of rare 

diseases have led to the identification of promising candidate drugs, some of which are in the 

advanced stages of clinical trials or already approved.4,5  Despite these efforts, it is estimated that 

fewer than 6% of all rare diseases have an approved treatment option, highlighting the tremendous 

unmet medical need.16  As the specific gene or genes involved in the onset and progression of these 

diseases are known, the DD4 and DD5 as subgraphs described here can be restricted to include at least 

one of these genes, yielding a focused number of genetically supported drug-disease inferences that 

can be further evaluated. 

We demonstrate the use of this knowledge graph for the identification of potential drug-repurposing 

candidates against Carney Complex (CNC). CNC is a rare multiple endocrine neoplasia (MEN) syndrome 

inherited in an autosomal-dominant manner and characterized by cardiac and noncardiac 

myxomatous tumors, multiple endocrine tumors, and distinctive pigmented lesions of the skin.17  

According to the National Organization for Rare Diseases (NORD), approximately 600 affected 

individuals have been reported since the disorder was first described in the medical literature in 

1985.18  Inactivating mutations in the Protein Kinase cAMP-Dependent Type I Regulatory Subunit 

Alpha (PRKAR1A) protein are found in approximately 70% of CNC cases and are closely associated with 

other MEN syndromes (17-19).19,20  Thus, we sought to identify subgraph patterns between existing 

drugs and Carney Complex that required genetic associations with either PRKAR1A or other genes in 

the pathway. 
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Exploration of the DD4 subgraph (see 

Figure 2B) involving CNC and PRKAR1A was 

not possible, as there are no on-market 

drugs with activity against PRKAR1A that 

could be found in either the public domain 

or internally to AbbVie. Thus, we expanded 

to other genes that share a pathway with 

PRKAR1A as defined by the Consensus Path 

Database (CPDB) in order to construct 

potential DD5 subgraphs (see Figure 2C). 

With this expansion, a directed DD5 

subgraph pattern for drug repurposing for 

CNC was identified, as illustrated in Figure 3.  

As shown in Table 2, there are 27 genes that share a pathway 

with PRKAR1A at the highest confidence level (CPDB 

confidence score > 0.99).  Of these genes, only GSK2B, MTOR, 

PRKACA, PRKACB, and RPS17 have on-market drugs with at 

least moderate (IC50 < 1 µM) reported activity.  It is important 

to note that for many of these drugs, the reported activity 

against the gene is not the primary or designed mechanism of 

action.  

Review of the literature evidence in the subgraph analysis 

revealed PRKACA to be of particular interest in connection to 

PRKAR1A. PRKAR1A is a regulatory protein, and the 

inactivating mutations in PRKAR1A disrupt the interaction 

with PRKACA and lead to increased catalytic activity of the 

PRKACA oncogene.19 Over 125 pathogenic PRKAR1A 

mutations have been identified to date in CNC cases, caused 

by single base pair substitutions, small insertions/deletions 

(<15bp), combined rearrangements, and large deletions. 

Functionally, these mutations result in increased PKA-

dependent cAMP signaling.21 Mutations in PRKACA that 

disrupt binding to the PRKAR1A regulatory domain also 

increase-PKA-dependent cAMP signaling and are found in 

patients with Cushing Syndrome and other adrenocortical 

disorders.  Both of these pieces of genetic evidence support 

the potential of PRKACA inhibitors in the treatment of CNC 

and other forms of hypercortisolism, and in fact the use of 

small molecule PRKACA inhibitors in this disease setting was 

postulated as far back as 2014.22 In 2015, Berthon et al. 

reported that inactivation of PRKAR1A leads to constitutive 

Table 2.  Genes that share a pathway 
with PRKAR1A, with availability of on-
market drugs with at least moderate 
(sub-µM) potency. 

Gene 
On-Market Drug? 
(IC50 < 1 µM) 

GSK3B Yes 

MTOR Yes 

PRKACA Yes 

PRKACB Yes 

RPS17 Yes 

AGO2 None found* 

AGO3 None found 

AKAP1 None found 

AKAP4 None found 

BCL2L11 None found 

BTRC None found 

CCNE1 None found 

CEP250 None found 

CUL3 None found 

CUL7 None found 

GRB2 None found* 

MEN1 None found* 

MYO7A None found 

PPP1R12A None found 

PRKACG None found 

PRKAR1B None found 

PRKAR2B None found 

PYCARD None found 

SMAD2 None found 

SOX2 None found 

TAB1 None found 

YWHAZ None found 

*Only weak (IC50 > 1 µM) inhibitors 
could be found against these genes  

 
Figure 3.  Directed DD5 subgraph for identification of drug 
repurposing opportunities for CNC.  The subgraph was 
required to contain both PRKAR1A and CNC, as highlighted 
in orange.  Ruxilitinib, which exhibits activity against 
PRKACA, was identified as a potential option. 
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activation of PRKACA and adrenocortical, suggesting that inactivation of PRKACA may be a means to 

treat CNC.23  

There are no on-market drugs have been developed against PRKACA as the primary mechanism of 

action.  However, the subgraph analysis captured the reported off-target activity of Ruxolitinib (Incyte, 

trade name Jakafi) against PRKACA as reported by the HMS LINCS Project24 and Eberl et al.25 It is 

important to note that target activity alone is insufficient to quality a drug for repurposing, and many 

other considerations must be evaluated to understand therapeutic potential, including drug exposure 

and pharmacokinetic data, efficacy in current indications, human safety profiles, and more.  A key 

consideration is whether drug exposures achieved at approved doses are sufficiently high to achieve 

a therapeutic effect relative to PRKACA activity, especially since this off-target activity is likely 

significantly reduced relative to the reported mechanism of action for the drug.   

We illustrate some of these considerations for 

Ruxolitinib, a JAK1/2 inhibitor approved for the 

treatment of myelofibrosis.  According to the 

cellular activity shown in Table 3, Ruxolitinib is 

approximately 10- to 100-fold less potent 

against PRKACA than JAK1/2 (the primary 

mechanism of action for the approved 

indications).26  At the approved dose of 20 mg, 

the observed Cmax level for Ruxolitinib in healthy 

volunteers is between 650 and 1160 nM.25 This 

results in a Cmax/IC50 ratio of ~6 for PRKACA, 

suggesting that at least some level of PRKACA inhibition may be achieved with Ruxolitinib at currently 

approved oral doses.  However, this ratio is substantially lower than that achieved for JAK1 and Jak2 

(Cmax/IC50 ratio > 300 in both cases, see Table 4).  While this is lower target coverage of PRKACA relative 

to JAK1/2, it is not known what level (or duration) of PRKACA inhibition may be required to restore 

normal PKA-dependent cAMP signaling.  It is also not known what role JAK1/2 inhibition may play in 

MEN disorders.  The fact that Ruxolitinib is approved in an oncology setting makes it an intriguing 

opportunity for further clinical and non-clinical exploration in Carney Complex and other MEN 

disorders. 

 

Conclusion 

In this paper, we have demonstrated the potential behind utilizing a 911M edge knowledge graph built 

from publicly available data sources for drug repurposing. Of particular note is the utilization of NLP 

to mine unstructured biomedical text to enrich the knowledge graph with connections and evidence 

that cannot be derived strictly from structured sources. We leverage subgraph analysis against the 

knowledge graph to calculate all possible genetically supported Drug-Gene-Disease paths of length 4 

(DD4) and length 5 (DD5, expanded by pathway membership). Consistent with other studies, these 

genetically supported subgraphs show significant enrichment of clinically validated drug-indication 

pairs, supporting their use in disease expansion and drug repurposing initiatives.   

Table 3. Potency and estimated exposures of 
Ruxolitinib against Jak1/2 and PRKACA 

 Ruxolitinib 

Target 
Cellular 

Potency (nM)a 

Human 

Cmax/IC50
b 

JAK1 1 1000 

JAK2 3 333 

PRKACA 160 6.3 

aTaken from Eberl et al.25 
bBased on Human Cmax of 1000 nM reported for 
recommended 20 mg/day dose of Ruxolitinib from 
Shi et al.26 
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We have also illustrated the application of such subgraphs in the case of drug repurposing for CNC, a 

rare genetic disease for which no current therapies exist.  While no drugs have been designed against 

PRKACA, chemical proteomic studies revealed moderate drug activity against (see Tables 3 and 4), and 

this information is captured and exposed as connections in the graph.  Further exploration of the 

human pharmacokinetic profile of Ruxolitinib (developed as a JAK1/2 inhibitor) indicates that at least 

some level of PRKACA inhibition is achieved at currently approved doses.  As a criticism, we have no 

evidence that Ruxolitinib will work for CNC. However, an on-market drug with a reasonable safety 

profile and with a label for cancer (myelofibrosis in the case of Ruxolitinib) could be considered for 

patients with CNC. While we recognize this is a critical decision between the prescribing physician and 

patient, it is also important to note that many rare diseases will not be large enough to conduct a 

clinical trial. We hope our strategy here in utilizing subgraph analysis derived from compiled 

knowledge graphs could be leveraged by the Pharmaceutical Industry in a pre-competitive forum in 

partnership with payers, providers, and patients. Though not directly utilized in this analysis, we 

believe that additional use of our causal expression curation to enrich the knowledge graph with 

cause-effect relationships can be used to expand this subgraph analysis strategy to a range of 

applications beyond drug repurposing. We encourage developing a series of pilots to evaluate this 

opportunity.  
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