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Abstract  
The ENCODE Consortium’s efforts to annotate non-coding, cis-regulatory elements (CREs) have advanced 

our understanding of gene regulatory landscapes which play a major role in health and disease. Pooled, non-

coding CRISPR screens are a promising approach for systematically investigating gene regulatory 

mechanisms. Here, the ENCODE Functional Characterization Centers report 109 screens comprising 

346,970 individual perturbations across 13.3Mb of the genome, using a variety of methods, readouts, and 

statistical analyses. Across 332 functionally confirmed CRE-gene links, we identify principles for screening 

endogenous, non-coding elements for causal regulatory mechanisms. Nearly all CREs show strong evidence 

of open chromatin, and targeting accessibility peak summits is a critical component of our proposed sgRNA 

design rules. We provide experimental guidelines to accurately detect CREs with variable, often low, 

transcriptional effects. We discover a previously undescribed DNA strand-bias for CRISPRi in transcribed 

regions with implications for screen design and analysis. Benchmarking five screen analysis tools, we find 

CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity sgRNAs. 

Together, we provide an accessible data resource, predesigned sgRNAs targeting 3,275,697 ENCODE 

SCREEN candidate CREs, and screening guidelines to accelerate functional characterization of the non-

coding genome. 

Introduction 
The non-coding genome contains critical regulators of gene expression and harbors >90% of trait-

associated human genetic variation1–4. Major efforts over the past decade have mapped hundreds of 

thousands of non-coding, candidate cis-regulatory elements (cCREs)5–7. Such efforts have relied primarily 

on mapping sequence conservation and biochemical markers that are correlated with regulatory activity, 

rather than direct functional characterization. Site-specific, programmable, and highly scalable CRISPR 

genome and epigenome manipulation methods have enabled massively parallel perturbation assays to 

identify and characterize functional cis-regulatory elements (CREs). In this text, CREs are the elements with 

empirically characterized endogenous function, whereas cCREs refer to uncharacterized elements–the 

targets of a screen, often nominated by biochemical markers– or those which did not have significant effects 

in a screen but may still have regulatory function in another biological context. 

Various CRISPR-based perturbation methods have been developed to determine a cCRE’s effects 

on target gene expression and/or downstream phenotypes8–14. To date, systematic and comprehensive 

benchmarking of non-coding CRISPR screening methods, and attempts to harmonize the results, have been 

limited by the low number of available datasets and inconsistent reporting. We reasoned that leveraging our 

large resource of datasets with varied library design approaches, perturbation modalities, phenotypic 

readouts, and analysis methods, would enable us to distill useful guidelines for successful execution and 

analysis of these complex experiments. This effort would also provide a uniquely robust and well-suited 

dataset for generating and rigorously testing hypotheses about gene regulation that would otherwise be 

difficult to assemble as a single laboratory. 
The ENCODE4 Functional Characterization Centers have generated the largest collective dataset of 

endogenous cCRE perturbation screens to date, using diverse experimental approaches. Here we compare 

non-coding CRISPR screening approaches, and propose standardized practices and data file formats 
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generalizable to all such screens. We highlight how particular methodologies and experimental parameters 

can be tuned to address specific biological questions and technical limitations. By assembling and jointly 

analyzing this large repository of bulk CRISPR screens, we develop suggested practices for study design, 

analysis, and validation, as well as provide comprehensive benchmarking between methodologies. We 

analyze the strengths and weaknesses of various CRISPR non-coding screens at each screening stage 

including: 1) library design, 2) CRISPR perturbation selection, 3) phenotyping strategy, and 4) analytical 

methods. Finally, we leverage our combined analysis of >100 distinct CRISPR screens to interrogate broader 

properties of gene regulation.  

Results 
Diverse approaches of the ENCODE non-coding CRISPR database identify functional regulatory 
elements overlapping markers of CREs  

The ENCODE4 Functional Characterization Centers have undertaken the largest set of diverse non-

coding CRISPR screens to date, performing >100 experiments in human and mouse biosamples, all of which 

are available on the ENCODE portal15 (see Supplementary Section 1). The data used in this study are 

divided into three targeting approaches (Fig. 1A, Supplementary Tables 1-3): 1) unbiased tiling screens 

that include sgRNAs targeting cCREs and non-cCRE regions within a specific locus (e.g.,  an entire 

topologically associated domain (TAD))9,10,16, 2) screens that select sgRNAs targeting cCREs in a given 

locus12,17,18 and 3) screens that target cCREs in multiple loci or genome-wide19. The different approaches 

have different strengths. For example, tiling screens can identify novel CREs that lack epigenetic marks 

commonly associated with regulatory activity, while cCRE-targeted approaches can screen many more 

putative regulatory elements with the same number of sgRNAs.  

Across each targeting strategy, three major CRISPR perturbation strategies were used: 1) genetic 

perturbations, including creation of small insertions and deletions induced by Cas9 nuclease (Cas9)20,21 and 

paired sgRNA deletions using Cas9 to excise large genomic regions (~2-20 kb)8,16,22; 2) epigenetic 

repression, with deactivated Cas9 (dCas9) fused to a KRAB domain to target transcriptional repression 

(CRISPRi)23–25; or 3) transcriptional activation, with dCas9 fused to activator domains (CRISPRa)26–28 (Fig. 
1A). Following targeting design and perturbation choice, all screens introduced sgRNAs into cells at low 

multiplicity of infection (MOI) via lentiviral transduction. Next, a bulk phenotyping selection method was 

applied9–12,14,16–18,22,29–31, sgRNAs were sequenced, and differences in sgRNA abundance were quantified 

correlating with the measured phenotype. 
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The ENCODE CRISPR screening database contains over 650,000 individual perturbations covering 13.3 Mb 

(0.43%) of the human genome (Methods). Regulatory activity was assayed for 56 genes and growth-related 

phenotypes in 19 human cell lines or induced pluripotent stem cells, collectively identifying 887 regions that, 

when perturbed, significantly impacted a cellular phenotype (Supplementary Tables 1-2, Methods). 

Fig. 1. The ENCODE non-coding CRISPR Screening Database. A) Overview of CRISPR non-coding strategies 
including 1) perturbation design strategies, 2) CRISPR perturbation modalities, 3) workflow of a standard screen, 4) 
phenotyping strategies, and 5) analysis approaches. B) CRISPR screen data summary from the April 2022 release of 
the ENCODE portal. “Experiments”, “Biosamples”, and “Genes/phenotypes” reflect all human CRISPR screens. 
“Perturbations”, “CREs”, and “CRE-gene links” reflect results of K562-focused analysis. C) Odds ratio for genomic 
annotation overlap with CRISPR screen-identified regulatory elements (N=210, Methods). “All” refers to cell-agnostic 
features. K562 refers to cell-type annotations. All odds ratios were significant at P value<0.01 and values were log10-
transformed for visualization (two-sided Fisher’s exact test). D) Genome browser snapshot of the GATA1 locus 
including H3K27ac (light gray) and DHS signal (dark gray) in K562 cells. CRISPR screen data (signal log2FC) for one 
replicate each of CRISPRi-FlowFISH (dark red), CRISPRi-HCR-FlowFISH (orange), Tycko et. al. 2019 CRISPRi-
Growth (blue), Fulco et. al. 2019 CRISPRi-Growth (purple), and Cas9-Growth (red). E) Pairwise correlations (Pearson) 
of normalized effect sizes on sgRNAs commonly shared by each method (N=176 sgRNAs with GuideScan-aggregated 
CFD specificity score>0.2) in GATA1 locus; multiple rows for the same CRISPR method show replicates. 
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Of the human cell lines, the most experiments were performed in K562 cells and, thus, we leveraged 

data from 53 distinct non-coding CRISPR screens with various experimental designs to gain insights into the 

characteristics and features that define CREs. We first performed a meta-analysis integrating data from these 

experiments and found that 230.6 kb (2.94%) of the 7.8 Mb perturbed in ≥1 experiment displayed control of 

gene expression or cellular growth (Fig. 1B, Supplementary Table 1, Methods). To identify the types of 

genomic states that best predict regulatory activity, we intersected the identified  regions, referred to as CREs 

(n=210, Supplementary Table 4), with annotations of K562 cells and observed the greatest overlap with 

ENCODE SCREEN cCREs (88.6%, 186/210; Fisher’s exact test, P=4.93E-24, OR=6.27), and H3K27ac, 

RNA Pol-II, and H3K4me3 peaks, having the greatest enrichment (OR=28.3, 17.5, 12.8 respectively, P<1e-

5 for each; Fig. 1C, Supplementary Tables 5-6). Similar enrichments were observed for the union set of 

ENCODE SCREEN cCREs and DNase hypersensitive sites (DHSs) annotated in all ENCODE biosamples 

(Supplementary Fig. 1A, Supplementary Table 6). Together, these results suggest that many commonly 

associated features of regulatory activity in genomics studies are also largely indicative of regulatory activity 

in non-coding CRISPR screens. 

We questioned which genomic and biochemical features characterized the CREs identified in these 

non-coding CRISPR screens. The vast majority of CREs overlapped either accessible chromatin regions or 

H3K27ac peaks (95.7%, 201/210, Supplementary Fig. 1B). However, twenty-five CREs are marked by 

H3K27ac peaks but do not overlap DHSs, and 23 overlap DHSs but lack H3K27ac peaks (11.9% and 11.0% 

respectively). In K562 cells specifically, 9 CREs lack either of these features, but 7 of those 9 elements are 

located within DHSs in at least 1 other ENCODE biosample. Of the two remaining elements without overlap 

of any feature, one is a distal intergenic region ~7.7kb upstream of the gene EXOC1L, and directly overlaps 

an annotated NFIC ChIP-seq peak in K562 cells. Similarly, the second element is located within an intron of 

the gene FADS2 and is within 100 bp of an RBFOX2 ChIP-seq peak in K562 cells. Given these transcription 

factors (TFs) are implicated in cancer and cellular proliferation32,33, these results suggest the corresponding 

phenotypic changes may be driven by disruption of transcription factor-mediated regulatory interactions.  

We next compared the quantitative signal of various accessibility measures, histone modifications, 

and trans-factor occupancies to interrogate which feature(s) best defined CREs identified in CRISPR 

screens. We observed that CREs have a greater mean signal than perturbed, non-significant regions, for 

chromatin accessibility, CTCF, EP300, H3K4me3, H3K27ac, and RNA Pol II binding, a lesser mean signal 

for H3K4me1 and H3K27me3, and no significant difference in H3K9me3 signal (Supplementary Fig. 1C, 
Supplementary Table 7). Overall, these results suggest that overlap and signal strength of accessible 

chromatin and active histone marks identify the majority of functional regulatory elements. However, we 

observed that some regulatory elements exhibit different combinations of epigenomic features 

(Supplementary Fig. 1B), in agreement with previous functional characterization experiments performed 

outside of ENCODE in which enhancers identified using MPRA could be classified into subclasses based on 

epigenetic features and reporter activity34. 
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Individual sgRNA validations and effects of common sgRNAs demonstrate CRISPR screen results 
are reproducible. 

To examine the reliability of the datasets, we assessed the agreement between CRE effect sizes and 

individual sgRNA validations from a subset of experiments performed in K562 cells across multiple 

phenotypic readouts and analysis methods9,10,12,17,35. We compared the fold change in gene expression, 

measured via RT-qPCR, to the enrichment or depletion of individual sgRNAs in FACS-based (2 experiments, 

2 genes) and growth-based CRISPR screens (2 experiments, 2 genes) (Supplementary Fig. 2A-D). We 

found that the screen result, computed on an element-level (Supplementary Fig. 2A, B) or on an individual 

sgRNA-level (Supplementary Fig. 2C, D), significantly correlates with the change in mRNA expression of 

the CRE’s target gene in individual sgRNA validation experiments (R2>0.75 for all screens). These individual 

sgRNA results confirm the quality of screen datasets where validation data was available. Validation methods 

to confirm CRE activity are further described in Supplementary Section 2.   

To interrogate how different screening approaches compared at the same CREs, we identified 

sgRNAs used multiple times across sixteen screens at two commonly studied loci, GATA1 (Fig. 1D) and 

MYC (Supplementary Fig. 3A). The underlying library size and targeting overlap of the GATA1 and MYC 

screens varied (Fig. 1D, Supplementary Fig. 3B, C). Altogether, these screens deployed over 140,000 

individual sgRNA, perturbing 1,655 cCREs in GATA1 and MYC flanking regions that are 1.3 Mb and 2.0 Mb 

wide, respectively. For the 176 sgRNAs common between all five GATA1 screens (after filtering with 

GuideScan36,37 CFD specificity scores≥0.2 to reduce possibly confounding off-target effects17), we observe 

strong replication within a screening approach (n=5; Pearson Correlation; min: 0.59, max: 0.90, mean: 0.77). 

For CRISPRi, there was strong correlation between experiments (n=36; Pearson Correlation min: 0.42, max: 

0.90, mean: 0.56). In contrast, there was low (n=18; Pearson Correlation min: 0.15, max: 0.32, mean: 0.21) 

correlation between CRISPRi and Cas9 tiling experiments (Fig. 1E).  CRISPRi experiments, whether 

interrogated by HCR-FlowFISH or growth, identified similar CREs at the MYC locus as well (Supplementary 
Fig. 3A). We reason it is because small indel mutations induced by Cas9 elicit greater effects in exons by 

causing nonsense mediated decay, whereas CRISPRi elicits greater effects in promoters and enhancers by 

perturbing essential mechanisms of gene regulation (Supplementary Fig. 3D).  

Integrated analysis of CRISPR screens provides guidelines for selecting cCRE targets and sgRNAs 
We next sought to improve the selection of sgRNAs for non-coding CRISPRi screens and determine 

how to balance scale, sensitivity, and practicality. To do so, we analyzed 15 highly sensitive CRISPRi HCR-

FlowFISH screens perturbing over 100 kb at 8 loci in K562 cells8–10,16. While dCas9 and Cas9 can be used 

to interrogate cCRE function, they are not ideal for discovering CREs in non-tiling screens due to their limited 

perturbation ranges and effect sizes, and are thus excluded from this discussion. 

The HCR-FlowFISH datasets were comprehensive tiling screens that targeted all regions regardless 

of cCRE or other epigenetic feature prioritization; however, for cCRE-targeting approaches, defined targets 

can be prioritized based on epigenetic features. Consistent with our findings above, we observed that the 

significant CREs identified across the HCR-FlowFISH screens are enriched in accessible chromatin (74%) 

or H3K27ac ChIP-seq peaks (80%; 87% have at least one feature), with the overwhelming majority having 

both epigenetic features (Supplementary Fig. 4A). Thus, a combination of these and other CRE-associated 
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epigenetic features (Supplementary Fig. 1B) can be used to nominate cCRE targets. As enhancers can be 

thousands to millions of nucleotides away from their target gene, screening all potential cCREs in this range 

may not be feasible12,38. In such cases, prioritizing cCREs <100 kb away from target genes was sufficient to 

identify 90% of the significant CREs, consistent with a previous single-cell study39. cCREs can be selected 

within topologically associating domains (TADs), and all significant CREs from the HCR-FlowFISH screens 

were found to be within the same TAD as their target gene8–10,16. Predictive modeling using  the Activity-by-

Contact Model (ABC)12,38 identified 43% of the significant elements and contact-mapping datasets generated 

via promoter-capture Hi-C40 can also be used to prioritize cCREs–noting that some elements may be missed.  

Optimizing the sgRNAs targeting each cCRE is crucial for maximizing perturbation strengths without 

compromising practicality or scale. cCREs are often nominated based on DHS or H3K27ac peaks, which 

span hundreds of base pairs and therefore may provide flexibility in sgRNA choice and positioning. We 

compared sgRNA perturbation effects within significant, non-promoter enhancers and observed sgRNAs 

overlapping the DHS peak induced significantly stronger perturbations than those overlapping the H3K27ac 

peak (Fig. 2A, binomial test P value<0.001). Further, sgRNA effects across tiled loci revealed local 

perturbation maxima near the enhancer’s DHS summit (Supplementary Fig. 4B). Aggregating all significant 

enhancers together, we found that sgRNA effects are generally strongest nearest the DHS summit, with a 

near-linear decrease as a function of distance from the summit (Fig. 2B, Supplementary Fig. 4C-D). 

We compared methods for selecting sgRNA subsets and concordantly found that choosing sgRNAs 

closest to the DHS summit performed better than selecting sgRNAs further from the summit, randomly, or 

when evenly spaced apart (Fig. 2C). This selection method is straightforward, only requiring summit calls, 

which are standard output from peak callers such as MACS241.  

Next, we investigated the minimally sufficient number of sgRNAs needed to test a target’s significance 

at a given effect size. We performed a conservative power analysis on a GATA1 FlowFISH screen10 and 

observed that 10 sgRNAs, selected randomly from within the significant GATA1 enhancer, are required to 

provide over 95% power to detect enhancers with a 20% or greater effect on gene expression (Fig. 2D). 

Since this GATA1 screen was well-powered and reproducible, 10 sgRNAs should be considered the 

minimum if coverage and replicates cannot be maintained or experimental noise is anticipated to be greater 

(Supplementary Fig. 5A-B).  

sgRNA design parameters including specificity and sequence filters can strongly impact CRISPR 

screen results17. In evaluating these filters in ENCODE screens, we found that the magnitude of the effect 

differed between gene expression versus proliferation-based phenotypic screens. Low specificity sgRNAs 

often confound proliferation-based screens due to off-target toxicity17. While a GuideScan-aggregated CFD 

specificity score≥0.2 can filter them out, this removes a large proportion of sgRNAs that are near the DHS 

summits due to increased local GC content and Cas9 PAM availability (Supplementary Fig. 5C)42. However, 

we found that screens with gene expression readouts (e.g. HCR-FlowFISH) were not as sensitive to these 

off-target effects (Supplementary Fig. 5D, Odds ratio=1.432 vs 1.811 for GATA1 HCR-FlowFISH vs. 

proliferation screens; Fisher’s exact test P value>0.2) — presumably because any off-target effects of such 

sgRNAs are less likely to impact the expression of a specific gene than a more general phenotype like cellular 

proliferation. Therefore, specificity filters as stringent as a GuideScan-aggregated CFD specificity score ≥0.2 
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may not be needed for HCR-FlowFISH. sgRNA spacer sequence also affects efficacy: sgRNAs containing 

the U6 promoter termination sequence (‘TTTT’)43 had reduced relative effect sizes (Supplementary Fig. 5E, 

Welch’s t-test P=1.7e-4). 

 

Negative control sgRNAs are necessary to calibrate the null phenotype and test significance. Current 

screens employ either non-targeting sgRNAs, which do not target anywhere in the genome, or safe-targeting 

sgRNAs44, which target regions presumed to be biochemically inactive. Previous growth screens with Cas9 

nuclease suggest that safe-targeting sgRNAs have stronger effects than non-targeting sgRNAs due to the 

effects of DNA damage44. In contrast, we did not observe a significant difference in the average effect of non-

targeting versus safe-targeting sgRNAs in a CD164 CRISPRi HCR-FlowFISH screen that included 1,000 of 

both types of negative controls (Welch’s t-test, P value=0.23). However, safe-targeting sgRNAs had 

significantly greater variance, demonstrating that they are more stringent controls for significance testing 

(Supplementary Fig. 6A, variance of safe-targeting sgRNAs=1.17 or non-targeting sgRNAs=0.86, Levene’s 

test P value<0.001). While a greater number of negative control sgRNAs reduces their variance, there is no 

statistically significant difference in the variance of 700 safe-targeting controls compared to all 1,000 

(Supplementary Fig. 6B). Thus, we recommend including at least this number of safe-targeting sgRNAs, 

and encourage the use of a common set of safe-targeting sgRNAs (Supplementary Tables 8, 9) to allow 

direct, robust comparisons across screens44. These safe-targeting sgRNAs were designed based on 

Roadmap Epigenomic data, and may intersect activation-associated epigenetic features in a novel cell type 

or sample–thus, we advise ensuring that the selected safe-targeting sgRNAs target epigenetically inert 

regions. 

Fig. 2. Integrated analysis of non-coding CRISPR screens provides guidelines for selecting cCRE targets and 
sgRNAs. A) Average effects of all sgRNAs within DHS or H3K27ac peaks at significant enhancers intersecting both 
epigenetic features. B) bigWig P value signal tracks for H3K27ac ChIP-seq and DNase-seq, and base pair-normalized 
effects of 6338 sgRNAs within +/- 1 Kb of the DHS summit, for 27 significant enhancers intersecting 32 DHS and 
H3K27ac peaks. C) Comparison of sgRNA selection strategies. Points reflect the effects of 10 sgRNAs selected by the 
indicated method for significant enhancers, normalized to the mean effect of all sgRNAs in that enhancer. ‘Random’ is 
the average of 100 random subsets from across the DHS peak. ‘Distal’ are sgRNAs closest to half the median DHS 
peak length (179 bp) from the summit. Every ‘nth’ sgRNA is selected by arranging sgRNAs in order of their PAM’s 
genomic coordinate, and selecting every nth sgRNA such that their ranked orders are evenly spaced. ‘Closest’ sgRNAs 
are nearest to the DHS summit. Boxes show the quartiles, with a line at the median, lines extend to 1.5 times the 
interquartile range, and dots beyond lines show outliers. D) Power simulation to detect significant effects on GATA1 
expression as a function of the element’s effect size and the number of sgRNAs. Power was computed by simulations 
using three replicates of GATA1 CRISPRi-FlowFISH data, where sgRNA effects in the eGATA1 element were scaled 
such that the average adjusted effect of all sgRNAs in the enhancer was 10-50%. 
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Finally, sufficient numbers of sgRNAs targeting the measured gene’s promoter, or the promoter(s) of 

genes known to regulate the measured phenotype, should be included as positive controls to ensure that 

strong perturbations can be sensitively detected, and to establish the upper bound of measurable effect 

sizes. These can be selected from established, genome-wide, gene-targeting CRISPRi libraries44–46. We 

compared the average effects of the 10 sgRNAs closest to each FANTOM and refGene TSSs for the HCR-

FlowFISH genes, along with the 4-10 sgRNAs from the human CRISPRi Dolcetto46 or hCRISPRi-v245 

libraries that were also included in our libraries–these sgRNAs often target one or more TSSs for a given 

gene and are selected for features that improve on-target efficacy. We found that sgRNAs from the Dolcetto 

or hCRISPRi-v2 libraries provided average effects similar to the maximum average effect from perturbing all 

of the FANTOM and/or refGene TSS(s) for 12 out of 14 genes (Supplementary Fig. 6C). However, for the 

gene FADS2, there were >2-fold greater effects at some FANTOM and refGene TSS(s) than with the 

published sgRNAs.  Given that neither Dolcetto nor hCRISPRi-v2 was consistently best, including sgRNAs 

from both published libraries increases the likelihood of having potent positive controls, but designing 10 

sgRNAs nearest every TSS–where space allows–maximizes it. 

To facilitate design of sgRNA libraries in accordance with these recommendations, we provide a 

summary of common sgRNA design tools and highlight the specific requirements, advantages and 

disadvantages, and experimental parameters for each (Supplementary Table 10).  As a resource, we used 

GuideScan247 to design sets of sgRNAs with and without filters (GuideScan2-aggregated CFD specificity 

score ≥0.2 and no ‘TTTT’ sequences) for all human and mouse ENCODE SCREEN6 cCREs 

(Supplementary Fig. 7, Supplementary Table 8, Supplementary Section 3). These sets include at least 

10 sgRNAs for targeting 85% and 60% (without and with filters, respectively) of the 249,464 human proximal 

enhancer-like cCREs and 86% and 70% of the 111,218 in mouse (Supplementary Table 11). Importantly, 

the design guidelines provided here are based on modeling of data produced from experiments that were 

conducted at similar and sufficient coverage and power. These experimental guidelines are discussed below, 

and deviations from the following recommendations may require that additional controls or sgRNAs be 

included per target element. 

Cell coverage and sequencing depth impact CRE detection accuracy and sgRNA dropout  
We next interrogated how varying the number of cells per sgRNA (cell coverage) impacts accuracy 

of CRE identification, using CRISPRi HCR-FlowFISH experiments at the GATA1 locus (Methods, 
Supplementary Table 12). Three CREs were previously identified and verified in all our CRISPRi screens, 

including growth screens10 (Fig. 1D, 3D). We tested whether positive sgRNA targets (those contained within 

the three CREs, N=288) can be distinguished from negative sgRNA targets (those outside the three CREs, 

N=13,444) by their log2FC effect sizes, where the coordinates of the three CREs were obtained using the 

CASA peak caller9. At low cell coverage (20x), effect sizes of both sets of sgRNA targets had high variance, 

leading to limited statistical power for distinguishing positive signals from negative control background (Fig. 
3A). With increasing cell coverage, the variance of negative sgRNA targets approaches zero (Levene’s test 

P<2.2e-16 for all pairs of 20 vs. 50x, 50 vs. 100x, and 100 vs. 200x), while the variance of positive sgRNA 

targets stabilizes for coverages ≥50x (Levene’s test, P value=0.010, 0.87, 0.22 for 20 vs. 50x, 50 vs. 100x, 

and 100 vs. 200x comparisons, respectively). These variance reductions led to significantly higher precision 
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and sensitivity for distinguishing positive sgRNA targets from negative sgRNA targets, by their effect sizes, 

relative to 20x cell coverage (Fig. 3B). Further, CASA peak calling with 50x-200x cell coverage resulted in 

accurate identification of the known GATA1 CREs, while the 20x data resulted in spurious CRE calls lacking 

CRE-associated epigenetic marks (Fig. 3C). Lastly, with cell coverage of 20x, we observe a high dropout 

rate (percent of sgRNAs with <10 mapped reads in low- or high-expression sorting bins) of ~12%, which 

decreases to less than 1% with cell coverage greater than 50x (Supplementary Fig. 8). Based on these 

strong to moderate GATA1 CREs, experimental cell coverage of at least 100x should be considered the 

minimum, although higher coverage is advised when feasible. For example, coverage as high as 11,000x 

has been used in non-coding growth-based screens17.  

We also sought to derive sequencing depth guidelines for non-coding CRISPR screens. We bootstrap 

sampled on average 5x to 1000x sequencing reads per sgRNA across each of the 20x, 50x, 100x, and 200x 

cell coverage GATA1-locus HCR-FlowFISH screens and assessed normalization strategies (Fig. 3D, 
Supplementary Fig. 9, Methods). With 250x sequencing depth or higher, accuracy (AUPRC for 

distinguishing positive and negative sgRNA targets by log2FC effect sizes) of HCR-FlowFISH screens for 

GATA1 CREs is limited by cell coverage, such that further increase in sequencing depth only marginally 

improves accuracy. We repeated the analysis in five other CRISPR screens, including growth screens 

performed at GATA1 and MYC loci, finding 250x sequencing depth was a reasonable minimum for CRE 

identification accuracy. Further, we observed saturations of biological replicate correlation of guide effects 

and of guide dropout rate starting at 250x sequencing depth (normalized bootstrap avg. bio-replicate log2FC 

R>0.9 & average dropout rate <2%, for all screens, Fig. 3E,F, Supplementary Fig. 10). Overall, our analyses 

suggest a sequencing depth of at least 250x for similar CRISPRi screens.  

CASA provides more conservative CRE calls than other analysis methods 
Non-coding CRISPR screens can produce noisy results when individual targeting sgRNAs generate 

variable effects in a genomic interval (Fig. 4A). Multiple analysis approaches, or ‘peak callers’, aggregate 

individual sgRNA measurements from dense tiling screens to nominate CREs. We investigated  the use of 

five peak callers: element-level aggregation of DESeq2 (aggrDESeq2), CASA, CRISPR-SURF, MAGeCK, 

and RELICS9,48–51. The underlying statistical models, input parameters, ease of use, and output formats vary 

with each method (Methods, Supplementary Table 13). We benchmarked the identification of GATA1 

CREs using a CRISPRi tiling growth screen, excluding confounding low-specificity sgRNAs (GuideScan 

aggregated CFD > 0.2) (Fig. 4). While a comprehensive, fully validated, ground truth CRE set is lacking, 

these CREs have been rigorously epigenetically profiled and studied across multiple functional 

characterization assays9,10,12,15. 
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All peak callers nominate the promoter for GATA1 (Fig. 4A) as an active element. Additionally, CREs 

called by all five peak calling methods corresponded with significantly higher guide effects than shuffled 

control elements (Fig. 4B, P≤2.2e-16, Welch’s t-test), and CREs supported by at least four callers are also 

supported by chromatin accessibility or H3K27ac signal (Fig. 4A). However, the total number of CREs varied 

across each method with aggrDESeq2 identifying the greatest number, and CASA and RELICS identifying 

the least number of CREs (aggrDESeq2: n=21, CASA: n=3, CRISPR-SURF: n=14, MAGeCK: n=10, 

Fig. 3.  Cell coverage and sequencing depth impact reliable detection of CREs. A) Distributions of HCR-FlowFish 
guidewise log2FC effect sizes (total 13,732 PAMs targeted) at various cell coverages, separately for sgRNA targets 
within (N=288) and outside known GATA1 CREs (N=13,444). B) Precision-recall curve for identifying GATA1 CRE-
targeting sgRNAs using effect sizes from various cell coverages (AUPRC: 20x=0.44, 50x=0.77, 100x=0.81, 200x=0.82; 
CRISPRi HCR-FlowFish). C) log2FC signals for 20x and CASA peak calls shared across all coverages and unique to 
20x D) AUPRC for identifying GATA1 CRE-targeting sgRNAs with varying sequencing depth (bootstrap sampled) and 
cell coverages (20x, 50x, 100x, 200x). Dots and error bars indicate averages and 99% confidence intervals over 10 
bootstrap samples. E) Biological replicate reproducibility (guidewise log2FC Pearson correlation), normalized to 5000x 
sequencing depth and F) guide dropout rate (dropout defined as <10 mapped reads) in diverse CRISPRi screens with 
varying sequencing depth (bootstrap sampled). Dots show an average of over 100 bootstrap samples. Growth datasets 
are (1) Tycko et. al. 2019 and (2) Fulco et. al. 2019. 
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RELICS: n=3). To assess the accuracy of each approach, we quantified the number of nucleotides within the 

proposed CREs that overlap annotated ENCODE SCREEN cCREs, H3K27ac peaks, and DHSs (Fig. 4C). 

CASA, CRISPR-SURF, and MAGeCK, identified CREs with a greater proportion of nucleotides overlapping 

these annotations while aggrDESeq2 CREs yielded the largest total overlap but also identified a greater 

proportion of CREs outside of these annotations. We then measured pairwise Jaccard Similarity between 

the set of nucleotides nominated by each of the five peak callers and three previously identified GATA1 

regulatory elements (Supplementary Fig. 11A). We found that these canonical elements are most similar 

to CASA and RELICS CREs and least similar to aggrDESeq2 CREs. Finally, we inspected the intersection 

Fig. 4. CRISPR screen analysis tools identify CREs with varying selectivity. A) sgRNA mediated growth effects 
(blue), H3K27ac-ChIP signal (pink), and DNase Hypersensitivity signal (gray) for a CRISPRi growth screen at the 
GATA1 locus. sgRNAs are filtered to remove any low-specificity sgRNAs (GuideScan aggregated CFD<0.2) which 
could cause confounding off-target toxicities. Dense tracks show peak calls using 5 different CRISPR screen analysis 
tools: CASA (orange), aggrDESeq2 (green), MAGeCK (red), CRISPR-SURF (purple), and RELICS (brown). Zoomed-
in regions show log2FC of individual sgRNA effects (points, mean; bars, min-max range of observations between n=2 
replicates). B) Distribution of average guide effects calculated from two experimental replicates for sgRNAs falling 
within peaks identified by different CRISPR screen analysis tools (center line, median; notch confidence interval of 
the median; box limits, first and third quartiles; whiskers range of all data points; violin, kernel density estimation). C) 
Total peak area inside and outside of annotated chromatin features and ENCODE SCREEN cCREs for each peak 
caller. 
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of GATA1 CRE calls from each method and found CASA was the only peak calling method that lacked 

unique, and potentially spurious, GATA1 CRE calls (Supplementary Fig. 11B).  

To determine the susceptibility of each peak caller to potential sgRNA off-target effects, we re-

analyzed the GATA1 screen with low-specificity sgRNAs included (Methods; Supplementary Fig. 12A-D). 

Without filtering, the total number of CREs called by aggrDESeq2 increased by >3x (21 CREs vs 68 CREs), 

and that method identified the greatest number of CREs not identified by other methods, suggesting this 

approach is particularly sensitive to false positives caused by off-target effects. The total number of CREs 

called by CRISPR-SURF, MAGeCK, and RELICS increased by 12, 4, and 2, respectively. In contrast, the 

number of CREs identified by CASA did not change. Taken together, these results support CASA as the 

preferred method for CRE calling as it may be less affected by off-target effects of low specificity sgRNAs 

and its CRE calls exhibited the greatest proportion of overlap with CRE-associated annotations. To facilitate 

future analytical development and benchmarking, we propose processed data file formats that capture critical 

experimental parameters and include sgRNA-level and CRE-level effect quantification (Supplementary 
Sections 4, 5). 

Perturbation dynamics affect screen sensitivity 
Our integrated dataset provides an opportunity to investigate possible interactions between 

perturbation timing, sgRNA effect sizes, and phenotyping strategy, which remain largely uncharacterized and 

variable across non-coding screens. Conceptually, a high effect-size sgRNA would be expected to display 

detectable phenotypic impacts sooner than a weaker-effect size sgRNA, rendering measurement timing a 

critical aspect of experimental design. 

To explore how CRISPR perturbation dynamics and experimental design affect measured 

phenotypes, we analyzed data from several time points from a CRISPRi growth screen at the GATA1 locus, 

in which we delivered sgRNAs by lentivirus into a cell line constitutively expressing the CRISPRi machinery. 

There is no clear consensus on if the initial plasmid pool of sgRNAs or an early time point post lentiviral-

delivery should be used as the comparator to an endpoint sample when computing sgRNA effects. We 

sequenced sgRNAs in the pre-delivery plasmid pool (plasmid), at seven days after lentiviral guide delivery 

to cells (T7, the earliest time after selection for sgRNA delivery), and at an endpoint after twenty-one days 

(T21), (Fig. 5A). Comparing plasmid to T7, we observe a significant CRE at the promoter, but do not identify 

the distal eGATA1 and eHDAC6 CREs (Fig. 5B). However, both distal CREs are identified in the plasmid-

T21, or T7-T21 comparisons (Fig. 5B) and the peak at the promoter widens by ~1 kb with increasing sgRNA 

effect sizes. 

While the sgRNA effect sizes from these two time point comparisons are correlated (R2=0.71), a 

subset of sgRNAs (<1%) displayed time point-dependent effects (Fig. 5C). These sgRNAs are strong 

(log2FC>3) in a plasmid-T21 comparison, but have reduced effect sizes in a T7-T21 comparison (see dashed 

line bounded region in Fig. 5C, right panel). These sgRNAs largely target the GATA1 TSS. One of these 

sgRNAs (sgTSS-2) has been individually validated to reduce GATA1 expression and growth 

(Supplementary Fig. 2C and Supplementary Table 12). Another validated sgRNA (sgTSS-1, 

Supplementary Fig. 2C) displays the third strongest effect (out of 9,923 sgRNAs) in the plasmid-to-T21 

comparison (log2FC=5.4) and the strongest effect in the plasmid-to-T7 comparison (log2FC=5.7), but this 
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sgRNA drops out by T7 and is not observed in the T7-to-T21 comparison thus becoming a false negative 

possibly due to the rapid nature of its effect. Together, this suggests these rapidly depleted sgRNAs can 

cause bonafide growth phenotypes, and the strongest hits may be most affected by reduced sensitivity in the 

T7-to-T21 comparison. 

We reasoned that screens based on complex cell phenotypes, such as growth, may be more sensitive 

to perturbation dynamics than screens that directly readout transcriptional changes, given the need for 

sufficient time for gene expression to manifest impact on the downstream phenotype. Indeed, an HCR-

FlowFISH screen of GATA1, in which sgRNA abundances were compared pre- and 2 days post-CRISPRi 

induction by doxycycline, identified both the promoter and the two distal CREs (Fig. 1D). This screen format 

was not susceptible to reduced power to detect the strongest TSS-targeting sgRNAs, as was observed when 

comparing T21 and T7 in the growth-based readout. Together, we suggest comparisons to plasmid sgRNA 

abundance before starting phenotypic selection, for example by measuring sgRNA abundance in the input 

plasmid library or in cells before CRISPRi expression in an inducible system. 

Fig. 5. Perturbation dynamics impact screen sensitivity and resolution. A) Timeline of CRISPRi growth screen 
with quantified sgRNA abundances of the sgRNA plasmid library pre-delivery, and 7 and 21 days after sgRNA lentiviral 
delivery. B) CRISPRi growth screen at GATA1 locus shown with varied time point comparisons (top: Plasmid vs T7, 
middle: T7 vs T21, bottom: Plasmid vs T21) used to compute sgRNA effect sizes. Each dot shows the average log2(fold-
change) effect size of two biological replicates for an sgRNA, and the error bar shows the range. CASA peak calls for 
significant growth effects are shown. The GATA1-regulating CREs eGATA1, GATA1 TSS, and eHDAC6 are labeled 
with their corresponding CASA peak calls. C) Scatter plot of sgRNA effect sizes as determined by varied time point 
comparisons. Each dot shows the average of two biological replicates for an sgRNA. Black or colored dots are sgRNAs 
targeting the TSS or enhancers, respectively. The sgRNAs along the diagonal line of points, including sgTSS-1, drop 
out by T7 and thus are absent from the T7 vs T21 comparison. sgRNAs selected for validation assays are labeled 
(Supplementary Table 14). 
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CRISPRi effects in the gene body are strand-specific 
Most CRISPR screens model and analyze sgRNA effects without considering the potential impact of 

which DNA strand is targeted. However, strand independence of CRISPRi perturbations has not been 

empirically assessed. Analyzing a CRISPRi growth screen tiling GATA1, we surprisingly found sgRNAs 

targeting the coding strand affected growth while template-targeting sgRNAs did not (P-value<1e-15, Fig. 
6A). This difference was only observed in the gene body, perhaps related to RNA Pol II binding the template 

strand during gene transcription. We again observed significantly greater effects for sgRNAs targeting the 

coding strand within the gene body in the FADS1 and FADS2 HCR-FlowFISH CRISPRi tiling screens (P 

value<1e-15, Fig. 6B). These coding-strand effects were uniform throughout the transcribed gene body and 

ended at the transcription end site (Supplementary Fig. 13A). Notably, strand-bias was not observed for 

sgRNAs targeting the promoters (Fig. 6A-C). We did not observe such effects from the same library of 

sgRNAs targeting either strand in the gene body when using dCas9 alone (Fig. 6A), or when using CRISPRa 

(Fig. 6D), suggesting this phenomenon depends on the KRAB repressor and not solely on dCas9 binding 

(Fig. 6.E) 

To determine if this effect was present more generally, we expanded our comparison to 17 additional 

experiments (Methods). In all 17 CRISPRi screens, the average effect sizes of sgRNAs targeting coding 

strands within gene bodies were more than 2-fold higher than those targeting the template strands (Fig. 6D). 

In contrast, for all 17 corresponding promoters, there was no difference between coding and template strands 

(Supplementary Fig. 13B). 

Many enhancers reside within gene bodies52, motivating us to consider if these CRISPRi effects 

throughout gene bodies could be distinguished from effects at intragenic enhancers. FADS2 contains 

intragenic enhancers, as determined by concordant signals from CRISPRi HCR-FlowFISH, DHS, and 

H3K27ac ChIP-seq (Fig. 6B). In contrast to elsewhere in the gene body, sgRNAs targeting both strands in 

these two enhancers had a significant effect on FADS2 expression, although sgRNAs targeting the coding 

strand had a moderately greater effect than those targeting the template strand (P value=0.034 and 0.018 

respectively, Fig. 6B and Supplementary Fig. 13C). Practically, these results demonstrate the necessity of 

considering strand to reliably identify intragenic CREs with CRISPRi: in CREs there are strong effects from 

sgRNAs targeting both strands, throughout the rest of the gene body there are subtle effects from coding 

strand-targeting sgRNAs only. 
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Discussion 
Multiple CRISPR-based methods have been employed to examine cis-regulatory mechanisms yet 

there has not been a consensus on experimental design parameters and analysis methods. Differences in 

the design, execution, and analysis of CRISPR screens and lack of common controls render a systematic 

evaluation of methodologies difficult, especially comparisons of screen sensitivity and specificity. To address 

these limitations, we performed a comprehensive analysis of the ENCODE non-coding CRISPR screen 

datasets and proposed guidelines for successful assay implementation, standardized file formats, and 

Fig. 6. CRISPRi effects in the gene body are strand-specific. A) Strand-specific CRISPRi growth screen effects 
tiling GATA1. CRISPRi and dCas9 tracks show the average of two biological replicates, comparing Day 21 to plasmid 
(N=2,541 coding- and 2,263 template-strand targeting sgRNAs). B) Strand-specific CRISPRi HCR-FlowFish screen 
effects tiling FADS1 and FADS2. CRISPRi tracks show the average of two biological replicates, comparing high- versus 
low-expression bins for the target gene (N=4,609 and 4,942 sgRNAs per strand). C) Distributions of sgRNA effects 
(average of 2 screen replicates) in the gene body, and at the promoter (within 2 kb upstream of TSS), when sgRNAs 
are categorized by target strand, in the (top) GATA1 CRISPRi growth screen (n=2026, 1731, 34, 27, 100, and 77 
sgRNAs from left to right boxes) and the (bottom) FADS1 HCR-FlowFish screen (n=3121, 3249, 90, 69, 520, and 702 
sgRNAs). Boxes show the quartiles, with a line at the median, vertical lines extend to 1.5 times the interquartile range, 
and dots show outliers. Asterisk denotes significance with P<1e-15 by T-test. D) Strand-specificity across screens tiling 
17 loci for sgRNAs targeting the gene body. Each point is the average effect of all sgRNAs from a screen targeting that 
region, averaged across two screen biological replicates, with color indicating the phenotypic readout, and shape 
indicating the type of CRISPR perturbation. E) Proposed model of gene body strand bias, wherein dCas9 binding could 
be reduced on the template strand due to competition with Pol-II-mediated transcription, rendering KRAB ineffective. 
In contrast, when targeting the coding strand, KRAB can be effective. 
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processed data expectations. Implementing the guidelines proposed here will facilitate further cross-screen 

comparisons, meta-analyses, and improved power for CRISPR screens.  

The ENCODE4 Functional Characterization Centers identified 887 CREs, but these experiments 

were performed in a limited set of biosamples and represent a small fraction of the true number of functional 

CREs. The identified CREs may be biased by the library designs, phenotypic readouts, specific genomic loci 

perturbed, and analysis methods used in these experiments. More systematic screening with high-quality 

design, execution, and analysis across multiple phenotypes and genomic regions is needed to capture the 

full range of cis-regulatory mechanisms. Building a larger, diverse collection of "gold-standard" CREs will 

improve guidelines for selecting sgRNAs at elements overlapping non-accessible but otherwise active (e.g. 

by H3K27ac) regions, and will empower refinement and benchmarking of methodological guidelines and 

analysis techniques, especially for characterizing CREs of weak effect.  

cCRE-targeting screens can interrogate thousands of perturbations at once, but lack full-genome 

saturation scale. Balancing sensitivity and specificity, especially for modest effect size CREs, with screening 

scale requires rational, evidenced based sgRNA library design. One important future design consideration is 

our observation that the strongest sgRNAs are nearest to distal CRE DHS summits. This can be potentially 

attributed to increased accessibility improving CRISPRi efficiency and/or higher transcription factor motif 

density, but we note additional modeling will help determine an sgRNA sequence’s contribution to on-target 

efficacy.  

We observed a previously unreported CRISPRi strand bias specific to gene bodies, which correlates 

with previous findings that gene body transcription displaces Cas9 nuclease53. Whereas others have 

recommended use of template strand-targeting sgRNAs with Cas9, reasoning that Cas9 displacement could 

be productive for genome editing, our results show coding strand-targeting guides are stronger for 

epigenome editing with CRISPRi. We suggest using strand-aware analysis to distinguish intragenic CREs 

from the subtle effects of CRISPRi throughout the gene body. Future research could illuminate how CRISPRi 

in the gene body, but outside of CREs, mechanistically impacts gene expression. 

We compared several peak callers for de novo CRE discovery in tiling screens and found that while 

they all identify positive control CREs, CASA maintained both sensitivity and precision while others were 

more prone to false positives from off-target noise. In both sparse, cCRE-targeting and cCRE/locus-tiling 

screens, including biological replicates and increasing sgRNA number were critical for detecting weak 

elements and improving power. We note that even for strong CREs, many more sgRNAs are needed than 

often used in current screens (suggested minimum: 10 sgRNAs within 100 bp of the DHS peak). We advise 

considering the guidelines described in this study (i.e. experimental coverage, peak caller comparisons, 

sgRNA numbers per element) as minimums, and empirically evaluating power in new experimental systems. 

We expect future analytical packages could incorporate replication, strand-bias, and sgRNA efficacy to 

improve CRE detection. 

Identifying functional CREs with perturbation experiments is an imperative step towards understanding the 

mechanisms that govern gene regulation and how disruption of these CREs contribute to disease. However, 

optimal experimental and analytical parameters are needed to increase the scale and/or sensitivity of 

CRISPR screens, especially as they are increasingly applied with multiplexed readouts and in single-cell 
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schemas. By providing specific, evidenced-based recommendations based on a diverse set of CRISPR 

screens in the ENCODE database, along with suggested sgRNAs for cCREs, this work will accelerate the 

functional characterization of regulatory elements genome-wide and make non-coding CRISPR screening 

methods accessible to the broader community. 
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