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Abstract
Learning the design patterns of proteins from sequences
across evolution may have promise toward generative
protein design. However it is unknown whether lan-
guage models, trained on sequences of natural proteins,
will be capable of more than memorization of existing
protein families. Here we show that language models
generalize beyond natural proteins to generate de novo
proteins. We focus on two protein design tasks: fixed
backbone design where the structure is specified, and
unconstrained generation where the structure is sampled
from the model. Remarkably although the models are
trained only on sequences, we find that they are capable
of designing structure. A total of 228 generated pro-
teins are evaluated experimentally with high overall suc-
cess rates (152/228 or 67%) in producing a soluble and
monomeric species by size exclusion chromatography.
Out of 152 experimentally successful designs, 35 have
no significant sequence match to known natural proteins.
Of the remaining 117, sequence identity to the nearest
sequence match is at median 27%, below 20% for 6
designs, and as low as 18% for 3 designs. For fixed back-
bone design, the language model generates successful
designs for each of eight experimentally evaluated artifi-
cially created fixed backbone targets. For unconstrained
generation, sampled proteins cover diverse topologies
and secondary structure compositions, and have high
experimental success rate (71/129 or 55%). The designs
reflect deep patterns linking sequence and structure, in-
cluding motifs that occur in related natural structures,
and motifs that are not observed in similar structural
contexts in known protein families. The results show
that language models, though only trained on sequences,
learn a deep grammar that enables the design of protein
structure, extending beyond natural proteins.
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Introduction
Generative artificial intelligence for biology has potential to open
up a space of protein design beyond natural proteins. Since amino
acid sequences are the fundamental codes of proteins, learning
to read and write these codes with a language model may have
promise. Language models have played a central role in recent
advances in artificial intelligence (1), including developments in
complex reasoning, mathematical problem solving, image gener-
ation, and natural language generation (2–4). Scaling laws link
performance with the compute, data, and number of parameters
used to train the models (5), and emergence of higher level capabil-
ities is observed with increasing scale (6). In biology, recent work
on evolutionary scale language models of proteins has shown that
a deep knowledge of intrinsic biological properties emerges from
training on protein sequences (7). Information about the folded
three dimensional structure of proteins develops within the mod-
els, extending to atomic resolution structure (8). This information
emerges through training on sequences alone. At the same time
the structural information that emerges as a result of training on
sequences has been shown to depend on the available evolutionary
information, varying as a function of the number of related proteins
in the training data (8, 9). It is an open question across domains to
what extent language models are capable of generalizing outside
their training data. In biology, it is unknown whether language
models can be used to explore a design space beyond that of natural
proteins.

Here we demonstrate that language models generalize beyond nat-
ural proteins to generate de novo proteins, different in sequence
and structure from natural proteins. We experimentally validate a
large number of designs spanning diverse topologies and sequences.
We find that although language models are trained only on the se-
quences of proteins, they are capable of designing protein structure,
including structures of artificially engineered de novo proteins that
are distinct from those of natural proteins. Given the backbone of
a de novo protein structure as a target, the language model gener-
ates sequences that are predicted to fold to the specified structure.
When the sequence and structure are both free, language models
produce designs that span a wide range of fold topologies and
secondary structure compositions, creating proteins which overlap
the natural sequence distribution as well as extend beyond it. De-
signs succeed experimentally across the space of sampled proteins,
including many designs that are distant in sequence from natural
proteins. The model generates motifs that link sequence to the
design of structure and can apply them in new sequence and struc-
tural contexts, including motifs such as complex hydrogen bond
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Figure 1. Overview. (A) Illustration of protein sequence space. Natural sequences (gray) cover a fraction of possible protein sequences. To generalize
beyond natural sequences language models will need to access underlying design patterns. We evaluate language models on (i) a fixed backbone sequence
design task with a set of de novo designed proteins (green), and (ii) via an unconstrained de novo protein generation task (orange). (B) The language
model ESM2 is trained using masked language modeling over millions of diverse natural proteins across evolution. (C) After training, information
about tertiary structure can be identified in the internal attention states of the model. A linear projection translates the attention at a pair of positions
in the sequence to a distribution over inter-residue distances. (D) Probability of a sequence. The model outputs a probability for each amino acid at
every position in the protein, here shown for the designed protein 6W3W. The model gives a higher probability to hydrophilic amino acids at a surface
residue and hydrophobic ones at a residue in the core. (E) Probability of a structure given a sequence. For a given sequence the projection measures the
compatibility of the internal representations of the language model with a structure. Tertiary structure is identified by probability mass on inter-residue
distances less than 8Å. For 6W3W there is a good match between the projected structure (above diagonal) and ground truth structure (below diagonal).
(F) The two terms giving the probability of sequences and structures are used to generate sequences. For fixed target design we use MCMC to generate
sequences given a specified backbone structure, by sampling from the conditional distribution of sequences given a structure. (G) For unconstrained
generation we allow both the sequence and structure to vary. (H) Predicted structures (using AlphaFold) are shown at even intervals across a single free
generation trajectory. The model samples a range of possible topologies before narrowing to the refinement of one topology.
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networks that are not found in sequence- or structurally-similar
known proteins. Overall experimental success rates are high with
152 out of a total of 228 (67%) experimentally evaluated proteins
producing a soluble and monomeric species by size exclusion chro-
matography (SEC). The high success rate extends to proteins that
are distant from natural proteins where 31 out of a total of 49 (63%)
experimentally evaluated proteins succeed.

A deep grammar of protein sequences
We hypothesize that there exists a deep underlying grammar in
protein sequences that makes it possible for the language model
to generalize. To generalize beyond natural proteins, language
models will need to access design patterns that extend outside the
space of natural proteins. Classically this form generalization has
been enabled by an energy function grounded in physics that cap-
tures the native folded state (10). Recently deep learning based
methods grounded in structure have been proposed as a new ap-
proach to this problem by inverting structure prediction (11, 12),
or conditioning on backbone structures (13–15). By modeling the
structure explicitly during training, new deep learning approaches
may capture something similar to the physical energy (16). The
success of language models on this problem suggests that deep pat-
terns in sequences may offer an alternative path to generalization,
independent of an explicit model of the underlying physics.

The classical perspective of evolutionary inference from sequences
is that information about the properties of proteins is encoded into
the sequence patterns of evolutionarily related proteins through
conservation and coevolution. This view develops from the obser-
vation that the statistics of protein families reflect the constraints
acting on the evolution of the sequences including biological struc-
ture and function (17, 18). This insight has formed the basis for
the inference of structure and function from sequences in a protein
family (19), and has also recently been applied with success by
generative models to generate new examples from existing protein
families (20–22). To date experimental validation of sequence
based models for protein design has been limited to natural protein
families.

Accessing a de novo design space distant from naturally occur-
ring protein families is a fundamentally more challenging problem.
This problem by definition cannot be solved by generating new
samples from naturally occurring protein families. To solve this
problem with a model grounded in sequences, it will be neces-
sary to learn sequence patterns that generalize beyond individual
protein families. Evolutionary scale language models go beyond
classic protein family models by training on diverse sequences
across evolution which means that they have the potential to learn
deep patterns across all proteins, including where there is no exper-
imental structure. There is evidence for local patterns in sequences
that generalize beyond individual protein families, in the form of
motifs that are local in the sequence (23) as well as motifs that are
local in 3d space (24). However, the mapping between sequence
and structure is not one-to-one (25), and designing sequences to
reach a well-folded native state requires solving an exponentially
large combinatorial problem to select a set of local sequence pat-

terns which interact non-locally to specify a coherent structure
(26). To design protein structure, the language model will have
to develop an implicit understanding of how sequence determines
structure, including local rules that link the design of structure
with sequence, as well as global rules that determine whether a
sequence is coherent and will fold into a native state.

Generative protein design with language models
We evaluate language models generatively, focusing on general-
ization beyond natural proteins. The known protein sequences
sampled by evolution represent only a small fraction of the vast
number of possible proteins (Fig. 1A). To generalize outside the
space of proteins that has been explored by evolution it will be nec-
essary to access deep patterns of protein design that apply outside
this space. We focus on two generative protein design tasks. The
first is fixed backbone design where the objective is to generate
a sequence that folds to the target structure. This task assesses
the ability of the language model, which has been trained only on
sequences, to design protein structures. The second task is free
generation, where the structure is unconstrained and allowed to
vary along with the sequence. This enables characterization of the
full generative capability of the model across diverse sequences and
structural patterns to understand the space of proteins accessible to
the model.

A test set of de novo designed artificial proteins is used to as-
sess generalization beyond natural protein structures. The test set
includes a diverse selection (N = 39) of structurally validated ar-
tificial protein structures from the Protein Data Bank (PDB) (27),
which span a range of lengths (67 ≤ L ≤ 184), and topologies
(Fig. S1 and Appendix A.1). Importantly, these de novo proteins
have meaningful structural differences from proteins belonging to
natural folds, including with respect to ideality, exact repetition,
and symmetry of elements. Since the language model has not been
trained on protein structures, generating designs for these back-
bones tests for the ability of the model to generalize to structures
unlike those of the natural proteins whose sequences it has been
trained on.

The language model, ESM2, is an evolutionary scale model of
protein sequences that has been trained across the full extent of
natural protein sequences (28). The training dataset excludes arti-
ficial sequences, as well as any sequences having similarity to the
test set of de novo proteins used in the evaluations (Appendix A.1).
ESM2 is trained with the masked language modeling objective (29)
to recover the identity of amino acids from their context in the rest
of the sequence (Fig. 1B). This training objective has been shown
to materialize information about the folded structure of proteins
in the internal representations of the model (7–9, 30). Since the
training of the language model is only on sequences, information
about structure that emerges must be the result of the unsupervised
learning of patterns in sequences.

A linear projection from the attention maps of the language model
identifies internal states that reflect protein structure. Previous
work has shown that specific attention maps in transformer protein
language models such as ESM2 encode the proximity of residue
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Figure 2. Design of sequences for de novo structures. (A) Overall evaluation of designs for the de novo target set using an in silico oracle. Root-
mean-square deviation (RMSD) between C-alpha atoms designed structure (oracle prediction) and target structure is plotted for the top 10 designs by
optimization objective for each target. Targets are ordered by increasing length. The language model generates sequences that are predicted to fold to
the target structure for a large majority of de novo backbones in the test set. (33/39 achieve median RMSD < 2.5Å). (B) Experimental outcomes for
ESM designs. A total of 79 designs across 6 de novo backbone targets were selected by a variety of criteria including sequence novelty and manual
inspection for interesting motifs. Designs are considered a success if they are soluble and there is a peak at the expected elution volume by size-exclusion
chromatography (SEC). Designs are categorized as monodisperse when the only peak is at the expected elution volume. Overall, 78% succeed, and 39%
are monodisperse. (C) Experimental outcomes for comparison of designs with and without the language model. For each of the four targets, the top 5 out
of 200 designs by optimization objective were selected for experimental evaluation. Overall 95% of designs with a language model succeed, while
most designs without a language model fail due to insolubility. (D) (Left) Optimization trajectory showing energy specified by the language model vs
RMSD to target, over the course of MCMC optimization. Energy decreases and funnels to low RMSD. (Right) Visualization of the top 5 designs selected
by energy at the end of each trajectory. (E) Language modeling perplexity of designs. Language model designs are seen as probable by the language
model, while high perplexity for the baseline designs indicates their sequences are seen as improbable. This coincides with experimental success. (F)
Comparison of SEC traces between designs with and without a language model. The vast majority of language model designs are soluble and have a
peak at the expected elution volume; in comparison few designs without a language model are soluble. (G) A subset of additional, successful language
model designs are novel with respect to known natural proteins. Examples for four different backbones are shown with the design superimposed on the
predicted structure of the top-significance hit from a sequence search against natural proteins. In each case the closest natural sequence has low sequence
identity (<0.3) and predicted structure with different topology.
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pairs in the structure (9, 30). We fit a linear projection that takes
the attention between two positions in the protein sequence and
outputs a distribution over pairwise distances (Fig. 1C). This maps
an internal attention state of 660 dimensions into 18 inter-residue
distance bins. Because of the limited number of parameters (660
per distance bin for a total of 11,898 including a bias for each
distance bin), far too few to represent the immense complexity
of possible protein structures, the output can be interpreted as a
projection of the structure captured by the internal states of the
model. The projection defines an energy landscape (a function
of the representation states of the language model rather than a
physical energy) that can be used to evaluate the compatibility
of any given structure with the representation of the sequence
produced by the language model. Application to the de novo target
set shows understanding of existing de novo proteins (Table S1
and Figs. S2 and S3).

Together, the models of sequence, and structure given sequence,
specify a generative model of proteins defined by the language
model. The sequence model assigns a probability to any sequence,
by giving a probability for each amino acid at every position in the
protein (Fig. 1D). For natural proteins these probabilities reflect
the functional effects of mutations, structural preferences of amino
acids, and aspects of biochemical function (31). The projection
of structure gives a compatibility between the language model’s
representation of a sequence with a three dimensional structure
(Fig. 1E). In this work, we consider these models to specify a
generative model for protein design:

p(sequence, structure) = p(structure|sequence)p(sequence)

For fixed backbone design, protein sequences are generated by
taking low temperature samples from the conditional distribution
specified by the language model via Markov chain Monte Carlo
(MCMC) with simulated annealing (Fig. 1F, Appendix A.3.1).
Free generation removes the constraint on structure entirely and
generates new proteins by sampling from the joint distribution of
sequence and structure specified by the language model. A blocked
Gibbs sampling approach is introduced which alternates between
sampling a new structure conditioned on the current sequence,
and sampling a new sequence conditioned on the current structure
(Fig. 1G, Appendix A.3.3). An example free generation trajectory
is shown in Fig. 1H. As the temperature is lowered, the trajectory
proceeds from a phase where it samples a range of possible topolo-
gies before narrowing into a single topology that is refined into a
confidently predicted structure in the final stage of optimization.

We perform extensive experimental testing of a total of 228 designs
from the language model. Designs are considered a success that
are well expressed, soluble, and pass a size exclusion chromatog-
raphy (SEC) test for molecular (hydrodynamic) radius indicative
of a properly-folded monomeric species (Appendix A.7). Experi-
mental success of a significant fraction of the generated proteins,
along with independent computational evaluation of the structures,
demonstrates that language models are able to access a design
space beyond that of natural proteins.

Language models design sequences that fold to de
novo structures
Fixed backbone design evaluates generation of sequences to realize
a specified target structure. Use of de novo designed structures as
targets requires the model to generalize beyond natural proteins,
necessitating the use of more general patterns for the design of
structure. Success at this task would indicate that the model has an
understanding of the underlying design principles of protein struc-
ture generalizing to structures not encoded by natural sequences.

Across the test set of 39 artificially designed de novo protein struc-
tures, fixed backbone designs generated by the language model are
predicted to closely match the target structures by the AlphaFold
high-resolution structure prediction oracle. We generate 200 differ-
ent designs for each of the de novo target structures (Appendix A.4).
The generative model succeeds in producing low-RMSD designs
for the vast majority of targets in the de novo test set (Fig. 2A).
Subsetting to the best 10 of 200 designs by the language model’s
optimization objective, median RMSD is < 2.5Å for 84% (33/39)
of targets and minimum RMSD is < 2Å for 90% (35/39) of targets.
Structures are also confidently predicted, with median pTM >
0.7 for 56% (22/39) and maximum pTM > 0.7 for 90% (35/39).
Average sequence identity with the targets is low (22%), indicating
that the language model is finding solutions to the design problem
that differ from the original sequence.

Generated proteins have high overall experimental success rates in
the laboratory. We ran an additional set of fixed backbone design
trajectories to explore the diversity of design motifs generated from
the model. A total of 79 fixed backbone designs spanning 6 de
novo targets were selected from a pool including the additional
trajectories for evaluation by a variety of criteria including the pres-
ence of interesting structural motifs (Appendix A.6). Out of this set
of experimentally tested proteins, 97% (77/79) were soluble, 78%
(62/79) were successful, passing a SEC test for the presence of a
peak at the expected elution volume indicating a folded monomeric
species, and 39% (31/79) were monodisperse, exhibiting only a sin-
gle SEC peak at the expected elution volume (Fig. 2B). Successes
span a range of topologies, including a success for length 182 de
novo TIM-barrel 6WVS which has a highly idealized symmetric
structure (Fig. S4). Across the set of experimental successes, se-
quence identity to the original sequence of the target structure is
low (mean = 24%), which suggests that the language model is
exploring a new design space for the target structures.

We perform a controlled experiment to understand the role of the
language model in experimental success of designs. For compar-
ison we use AlphaFold as a model of the probability of structure
given sequence. For a set of four fixed backbone de novo targets
with distinct folds, we generate 200 designs using each method,
with the top 5 by optimization objective for each method selected
for experimental evaluation (Appendix A.3). Experimentally, 95%
(19/20) of language model sequence designs and 5% (1/20) designs
without a language model were successful (Fig. 2C). Augmenting
AlphaFold with an n-gram prior, fails to rescue the designs (0%
success rate, 0/20) (Tables S3 and S4).
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Figure 3. Language models materialize deep patterns of protein design, generating native-like and de novo motifs. (A) Placement of proline or glycine
within three different designed proteins induce curvature on alpha-helices, beta-sheets, and turns. (B,C) Hydrogen bond networks in turns. (B) Helix
dipole capping forms hydrogen bonds to obscure polar backbone atoms in the final helix turn. (C) Hydrogen bond networks formed in turns involving
beta-sheets. (D,E) Comparison of motifs in designed and natural proteins. Designs (left) are compared against the nearest motif in natural proteins found
by sequence search (center), and structure search (right). Hits are sorted by matching amino acids only at motif positions. (D) Example of a hydrogen
bond motif used in one of the designs. Sequence matches are found that have the same motif in aligned positions. However the surrounding sequence
context is significantly different, having 26% sequence identity. (E) Examples of possible de novo hydrogen-bond networks. Not only is the sequence
context different, the motif itself is not present in the aligned positions of any matching natural sequences or structures.

Language model perplexity separates success from failure across
both design methods. MCMC trajectories for the language model
funnel to low RMSD with decreasing energy, with average RMSD
values ranging from 1.1Å to 2.4Å (Fig. 2D). Notably, while
AlphaFold confidently predicts the structures of language model
designs, the language model does not assign high sequence likeli-
hoods to AlphaFold designs. Language model perplexities of select
AlphaFold-designed sequences range from 10.6 to 13.1 (Fig. 2E),
significantly higher than the average de novo target sequence per-
plexity of 6.7. Other metrics have limited ability to identify ex-
perimental success (Fig. S5 and Table S4): the Rosetta all-atom
energy function for modeling and design (32, 33) judges both sets
to be good designs, packing metrics are similar but slightly favor
the (unsuccessful) AlphaFold designs, while hydrophobicity and
SAP score favor the language model designs. Recently autore-
gressive inverse folding models directly conditioned on the target
structure have demonstrated high experimental success rates in
the laboratory (15). We generated sequences with ProteinMPNN
and ESM-IF1 (14). Both models achieve high local confidence
pLDDT (> 90 mean). Their ESM pseudo-perplexity is 5.76 and
5.79 respectively, higher than ESM designs and significantly lower
than AlphaFold designs (Table S2), in line with high experimental
success rates reported for those methods.

Experimental evaluation of both design sets (with and without the
language model) indicates that 19/20 of language model designs
are successful and 9/20 are monomeric (Fig. 2F). Target 6D0T
has no monomeric designs from the language model, though the
ground truth de novo sequence was also found to not be monomeric,
when tested as a positive control (Appendix A.7). Designs without
a language model largely fail due to insolubility.

Including the results of the controlled comparison, and the larger
set of designs evaluated, the language model produced experimen-
tally successful designs for all of a total of 8 de novo backbones.
One possibility is that language model designs succeed because
the model retrieves a protein similar to the target from its training
set. To rule this out, we analyze the overall set of 81 experimental
successes. Each design is searched against UniRef90 (which fully
includes the sequences used to train the language model) to identify
similar sequences (Appendix A.5). For 17 successful designs span-
ning 4 backbones, there are no significant (E-value < 1) sequence
matches whatsoever in the training set. Four of these are shown
in Fig. 2G. Of the remaining 64, sequence identity to the nearest
sequence match is only 27% on average, and is < 30% for 41 of
the 64, spanning each of the 8 tested backbones. This suggests that
the model is not solving the design problem by retrieving similar
sequences it has memorized.
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To further understand whether the model is using homology at
the threshold of detection by sequence similarity, we obtained
AlphaFold predicted structures of hits, including those that do
not reach the significance cutoff (Appendix A.5; Fig. S6). For
19/81 experimental successes top Jackhmmer hits are not structural
matches to the design. For 19 designs spanning 4 backbones,
the top-10 jackhmmer hits (including those that do not reach the
significant threshold) all have TM-score < 0.6. For 8 of those
designs spanning the same 4 backbones, top-10 hits are all likely
to be a different fold (TMscore < 0.5). This suggests that while
in some cases the model is able to use sequence homology at the
threshold of detection, there are also cases where it appears to
have generalized beyond that, further evidence that in many cases
the language model is generating novel solutions to the design
problem which differ both from the ground-truth sequence, and
natural proteins.

Language models materialize deep patterns of
protein design
Generated proteins show evidence of using deep patterns of the
design of protein structure. These patterns occur in the form of
structural motifs used in the design of natural proteins applied in
significantly differing sequence contexts, as well as the formation
of motifs which cannot be found in related structures. Two well-
studied ways that sequence determines structure are through amino
acids that constrain backbone-geometry, and through the role of
chemically diverse side chains in determining the intermolecular
forces that stabilize a protein’s particular folded conformation. Two
amino acids which influence backbone geometry are proline and
glycine. These two amino acids add flexibility to and bend protein
backbones, respectively. In three example designs, the language
model places these residues to induce curvature in various sec-
ondary structure elements: a proline bends an alpha-helix, regular
placement of glycines in beta-sheets promote the flexibility to form
a beta-barrel, and all but one glycine are placed in loops in an NTF2
design (Fig. 3A). A side chain based motif present through fixed
backbone designs is helix dipole capping, where side chains of
amino acids at the ends of alpha-helices obscure otherwise exposed
polar backbone atoms in the final alpha-helix turn (Fig. 3B). A
second side chain based motif is hydrogen-bond networks in bulge-
containing beta-turns, which are present in fixed backbone designs
for beta-barrels, such as 6D0T and 6CZJ (Fig. 3C). This and to a
larger extent the periodic glycines in beta-strands in Fig. 3A were
identified as natural motifs that enabled successful de novo design
of the target beta-barrel in (34).

Designs also exhibit complex hydrogen bonding networks. Some
design successes include hydrogen bonding networks between
four or more polar and even charged residues in the interior of
structures. Design of buried polar and charged interactions is dif-
ficult due to the geometric constraints of energetically satisfying
such interactions (35). Notably, the bond networks shown span a
range of intermolecular force categories: among predicted struc-
tures, F129, a beta-barrel, contains a salt-bridge, F025 contains
a pi-cation bond, and F030 contains a T-shaped pi-pi interaction

(Fig. S7). The original designs for the examples shown have purely
hydrophobic interiors. While these hydrogen bonding networks
can only be fully confirmed by high-resolution structural studies,
the biophysical properties observed (high yield of monodisperse
protein with the expected retention volume) is consistent with their
accuracy, since inaccurate placement of these residues is likely to
lead to mis-folding and aggregation.

The hydrogen-bonding networks with polar residues are realized in
new sequence contexts, indicating a strong form of generalization
beyond the sequences used for training the model. We retrieve the
most similar aligned sequences via Jackhmmer search of UniRef90
and similar, aligned structures via Foldseek (36) search of Al-
phaFold DB (37). Returned sequences are all sorted by minimum
edit distance at aligned motif positions, and the closest matching
motif is shown. (Appendix A.5.4). For generated protein F030
(Fig. 3D, Fig. S7), sequence search does recover a natural protein
with this motif in aligned positions. However the surrounding
sequence context in the design is dissimilar, having a full-sequence
identity of 26%. For F129 and F092 (Fig. 3E, Fig. S7), not only
does the surrounding sequence context have low sequence identity,
the motif itself is not present in the aligned positions of any match-
ing natural sequences or structures. Use of these motifs in fixed
backbone designs is a remarkable form of generalization, since the
model is applying them in new sequence contexts, and structures
that are distinct from natural proteins.

Language models generate novel structures and
sequences
Language models generate new protein sequences that differ signif-
icantly from natural sequences. We sample a large set (N = 25,000)
of proteins of fixed length (L = 100) without constraint on the
structure. The blocked Gibbs sampling method which traverses the
joint landscape of sequence and structure provides a more diverse
set of proteins than previous unconstrained generation methods
(Table S5).

Generations cover a variety of topologies with sequences overall
dissimilar from natural proteins. Structures are predicted for all
generated sequences using Alphafold, and generations are pro-
jected into two dimensions using t-SNE based on their pairwise
structural distance measured by TM-score (Fig. 4A). In a hier-
archical clustering of the structures, 7,663 distinct clusters were
identified at a TM-score threshold of 0.75. The distribution of the
generated secondary structures reveals a range of patterns with 52%
of generations containing mostly alpha helices, 22% containing
mostly beta sheets, and 28% a mix of alpha helices and beta sheets
(Fig. 4B). A large fraction of the generations are well predicted by
the oracle (median pLDDT = 84.49, 70% pLDDT > 70; Fig. 4C).

Many of the generations are distant in sequence from natural pro-
teins. We measure the distance of generated sequences from natural
proteins by searching each generation against the 200M natural
sequences in AlphaFold DB (37). This also enables comparison
of the structure of the nearest sequence match to that of the gener-
ated protein. Overall the language model generates proteins which
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Figure 4. Language models generate novel structures and sequences. (A) Embedding of the structural space spanned by the generated proteins using
t-SNE. Color indicates sequence identity to the best matching native sequence. A large fraction of the space has low sequence identity to natural proteins
with 16% of generations having no significant sequence match to a natural protein. Designs that succeeded in experimental evaluation are indicated
with green stars. (B) Distribution of secondary structure for generations. Experimental successes (green) are observed over differing compositions of
secondary structure. (C) Distributions of pLDDT and pTM indicate designs are well predicted (median pLDDT of 84.5) by the in silico oracle. (D)
Density plot of sequence and structural similarity to natural proteins. For each generated protein the best matching native sequence is retrieved from
AlphaFoldDB. Each generated protein is plotted by its sequence similarity (x-axis) and structure similarity (y-axis) to the match, with hits that do not
pass the significance threshold marked at zero on the x-axis. Generated proteins occupy a part of the space distinct from natural proteins, with a fraction
having minimal sequence similarity to natural proteins (lower left quadrant). Designs passing in silico filters and experimental successes are coextensive
with the overall distribution of generations. (E) Overall outcome of experimental evaluations. The majority of tested designs (55%) passed the solubility
test and had an elution volume peak in the correct confidence interval (top). Additionally a high fraction (63%) of the evaluated proteins distant from
natural sequences are successful (bottom). (F) Predicted structures of six experimental successes (top). Structures are aligned against the oracle predicted
structure of their top significant hit from a sequence search of natural proteins (bottom); in all examples the predicted topology is different. (G) For
generations in panel F, the same motifs as in Fig. 3A - 3C are shown: Proline and Glycine inducing curvature, helix capping, and hydrogen-bond networks
in turns. Even on proteins with minimal similarity to naturals, the language model produces known motifs.
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show a clear separation from the distribution of natural proteins,
including a fraction that are distant from known proteins. Fig. 4D
shows the distribution of similarity to known proteins, where each
generation is plotted according to its sequence (x-axis) and struc-
tural (y-axis) similarity to its top sequence hit, with insignificant
(E-value > 1) hits placed at x=0 (16.6% of generations, in total). A
large part of the distribution of generated proteins have structures
different from those predicted for their nearest sequence match,
further evidence that the model is not simply memorizing known
proteins. A set of 15k natural proteins are also shown. Natural
proteins cluster in the upper right corner, while generated proteins
occupy a distinct part of the space. A significant fraction of the lan-
guage model generated proteins (15.5%) have minimal similarity
to natural proteins (lower left quadrant), with minimal sequence
similarity (Seq-id < 0.2) of the nearest match, and a predicted
structure likely to be a different fold (TM-score < 0.5).

A large fraction of the designs, including those that are distant from
natural proteins, succeed experimentally. We selected a number
of designs that passed our in silico quality filters for experimental
evaluation. Out of the total set of generations, 20% (N = 5,198)
passed the quality filters (Appendix A.4). A total of 129 of that set
were expressed and evaluated, and 55% (71/129) were found to be
experimentally successful. The 71 structures and their metrics are
shown in Fig. S8, marked with a green star in Figs. 4A, 4B and 4D.
Overall, 96% of the free generations that were evaluated were
soluble, 55% had an elution volume peak in the correct confidence
interval, and 30% were monodisperse (Fig. 4E top, Appendix A.7).

A high success rate is also observed for generations that are distant
from natural proteins. For a set of 49 distant generations (Fig. 4D,
bottom-left quadrant), 31 of 49 (63%) are successful in experimen-
tal evaluation. For these 31 experimental successes we perform a
deeper analysis of similarity to natural proteins. We further search
each against UniRef90 which provides comprehensive coverage of
natural proteins and fully contains the language model’s training
set. Out of 31 distant designs, 16 have no significant (E-value <
1) sequence matches whatsoever (Fig. S9). We obtain predicted
structures for the top-10 sequence matches regardless of their sig-
nificance. For 12 out of the 31 distant designs (5 of which are
shown in Fig. 4F), none of the sequence matches are likely to have
the same fold (TM-score < 0.5) (Fig. S9). Predicted structures are
generally confident (78% of predictions with pLDDT > 70, aver-
age pLDDT = 81.24). Structural motifs observed in fixed backbone
designs such as proline and glycine placement, helix capping, and
hydrogen-bond networks, also appear within de novo generations
(Fig. 4G). As a whole these results show that the language model
generalizes outside the space of natural proteins to generate de
novo proteins.

Evolutionary scale language models
Transformer protein language models were introduced by (7),
which found evidence for the emergence of information about
function and tertiary structure from the unsupervised training. Con-
current work at a smaller scale examined LSTM-based models
(38–40). Large scale protein language models with billions of pa-

rameters have now been open sourced (8, 41–43). Generative use
of language models has recently been explored by in silico studies
(44, 45), and experimentally with confirmation of function for new
sequences generated for existing protein families (22). To the best
of our knowledge, experimentally validated work (20, 22, 46) with
sequence based models has not crossed the threshold of < 30%
identity to natural proteins.

Conclusions
The classical picture of sequence space as being constituted by
independent local evolutionary landscapes around each protein
family would suggest that language models will be limited to a
memorization of the space of natural proteins. Consistent with this,
the information about structure that emerges in language models of
proteins has been shown to depend on the evolutionary information
available to the model during training, which would appear to be
unencouraging for the potential to use language models genera-
tively beyond natural proteins. Here we have presented evidence
counter to this: language models generalize beyond natural protein
families to generate proteins in a sequence space distant from natu-
ral proteins. Our results are the first time purely sequence based
approaches have been shown to generalize beyond natural proteins,
and are promising for sequence based generative artificial intelli-
gence for de novo protein design, where we have demonstrated
that there exists a space of de novo proteins, distant from those in
nature, that are designable by generative language models.

This generalization points to a deeper structure underlying natural
sequences, and to the existence of a deep grammar that is learnable
by a language model. Our results suggest that the vast extent of
protein sequences created through evolution contains an image of
biological structure and function that reveals design patterns that
apply across proteins, that can be learned and recombined by a
fully sequence based model. The generalization beyond natural
proteins does not necessarily indicate that language models are
learning a physical energy. Language models may still be learning
patterns, rather than the physical energy, but speculatively, in the
limit of infinite sequence data, these patterns might approximate
the physical energy. At a minimum the language model must have
developed an understanding of the global coherence of a protein
connecting the sequence and folded structure.

The existence of a deep grammar across proteins would explain the
two observations which prima facie seem to contradict each other:
that the understanding of natural proteins depends on evolutionary
support in the training data, and also that the language models
generalize outside of known natural protein families. If there is
a power law distribution of learnable patterns, then it is expected
that many protein structures will be designable with the common
patterns that have the most support in the training data. At the
same time, the frequency that patterns are observed in the training
data will correspond with the learnability of the patterns. It will
take greater amounts of training data, and model capacity, to learn
rare patterns. This is consistent with the observation of both gener-
alization to a new design space (that is accessible via the patterns
that have been learned), and dependence on support in training
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data (the proteins composed of rare patterns are harder to learn). If
scaling laws continue to hold for protein language models we can
expect their generative ability will continue to improve. As models
and data scale, the existence of a learnable underlying grammar
would predict that the rare patterns will be learned, expanding both
the predictive ability of the model, and the design space that is
accessible.
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A. Methods
A.1. Data

A.1.1. De Novo TARGET SET

A held-out set of de novo proteins is used for the task of design
with a fixed target backbone. A diverse set (N = 39) of de novo
structures from the Protein Data Bank (27) was selected, which
span a range of lengths (67 ≤ L ≤ 184), folds (e.g. alpha-bundle,
beta-barrel, NTF2, Rossman) and de novo design methods
(26, 34, 47–56). See Fig. S1 for a visual display of all x-ray crystal
structures comprising the de novo target set. These proteins were
designed by humans, rather than by natural evolutionary processes.
Importantly, these de novo proteins have meaningful structural
differences from proteins belonging to natural folds. For example,
NTF2 targets have unnatural binding pockets (55), beta-barrels are
narrower and have short beta-turns (34), and some designs were
entirely new folds at the time of their creation (47). Although these
proteins are by definition distinct in both sequence and structure
from natural proteins, each protein in the target set is queried
against UniRef100 (28), which subsumes the training set of ESM2,
and all sequences returned as matches by Jackhmmer search are
excluded from the language model’s training, see next section.

The Protein Data Bank Identification Codes (PDB IDs) of
the de novo target set are:
1QYS,2KL8,2KPO,2LN3,2LTA,2LVB,2N2T,2N2U,2N3Z,
2N76,4KY3,4KYZ,5CW9,5KPE,5KPH,5L33,5TPJ,5TRV,
6CZG,6CZH,6CZI,6CZJ,6D0T,6DG6,6DKM A,6DKM B,
6DLM A,6DLM B,6E5C,6LLQ,6MRR,6MRS,6MSP,6NUK,
6W3F,6W3W,6WI5,6WVS,7MCD

A.1.2. SEQUENCE DATASET USED TO TRAIN ESM2

The language model used throughout this work is ESM2 650M (8).
Therefore, all pretraining settings described in that work apply for
the language model used here.

To test whether the language model’s understanding of proteins
generalizes from natural to de novo space, it is critical that the
model did not see de novo proteins at train time. To this end,
we first remove all sequences from ESM2’s train set labeled as
“artificial construct” on the UniProt (57) website, when 2021 04
was the most recent release (1,027 total proteins). To guard against
mislabeled proteins, and to further remove sequences in the train
set which may bear similarity to the target set, we additionally
perform Jackhmmer (58) searches of each de novo sequence against
UniRef100 2021 04 with flags --num-iter 1 {max, and
remove all hits returned by the tool from ESM2’s training set
(58,462 proteins).

A.1.3. STRUCTURE PROJECTION DATASET

The structure projection network was trained on a nonredundant
dataset from PDB consisting of 15,051 proteins (structure release
dates prior to 1 May 2018) used in Yang, et. al. (59).

A.1.4. HELDOUT SET OF NATURAL PROTEINS

A small (N = 214) set of natural proteins with structures in the
PDB was selected to serve as a baseline comparison when evalu-
ating language model de novo protein understanding in Figs. S1
and S2 and Table S1. The set is composed of PDBs available on
July 2020 that have sequence identity < 0.3 to the dataset used to
train the structure projection, according to mmseqs2 (60). A length
filter of 50 ≤ L < 250 was applied to roughly match the length
distribution of the de novo target set (67 ≤ L ≤ 184).

A.2. Models

A.2.1. ESM2

We use ESM2 650M (8) as our choice of large-scale protein
language model throughout this work. ESM2 is a Transformer
model trained via masked language modeling over the universe
of known, natural protein sequences. At training time, protein
sequences are shown to the model with a fraction of their residues
masked, randomly permuted to a different amino acid, or left
unmodified, according to standard BERT noise probabilities
(7). The model’s task is to predict those masked residues given
bi-directional context of all unmasked residues in the input. ESM2
is trained only on natural protein sequences; sequences annotated
as artificially constructed and sequences matched by sequence
search with de novo target set queries were removed from the
language model’s training set Appendix A.1.2.

The language model is used to approximate p(sequence) via
the pseudo-likelihood (61). Let us first define the probability
pθ(xi|x−i) over the possible amino acids at position i in sequence
x, conditioned on the remainder of sequence. This conditional
probability is obtained by constructing x−i where amino acid i is
replaced with <mask>, and computing the language model prob-
abilities at position i. The pseudo-likelihood is then defined as∏
i p(xi|x−i).

A.2.2. STRUCTURE PROJECTION

The structure projection is a single learned affine projection (linear
projection with bias term) from ESM2 internal representations
to inter-residue distance, applied identically to each position-pair
[i, j] of the protein.

In its implementation, the (N = 660) attention maps computed
during ESM2 inference for a given sequence are used as input to a
linear projection. At position [i, j] we compute zij with (N = 18)
dimensions: zij = Wprojectionattention mapsij + bprojection.
The vectors zij are the softmax logits which define the categorical
distribution p(dij |sequence) over binned inter-residue distance
between the carbon-beta atoms, known as distogram (62).
Under a conditional pairwise independence assumption we use∏
ij,j 6=i p(dij |sequence) to approximate p(structure|sequence).

There are 660 ∗ 18 + 18 = 11, 898 total learned parameters in
the structure projection. The binning resolution of the model is
≈1Å, with 16 bins spanning the range [2.5Å, 20Å). The very
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first bin represents <2.5Å, and the very last bin represents >20Å.
Symmetry was applied to prediction logits, since distograms are
by definition symmetric (dij = dji). Weights of the ESM2 model
were frozen during training of the structure projection.

The structure projection was trained on a random subset of 80%
of the sequence and structure pairs published in Yang, et. al (59)
Appendix A.1.3. As in that work, distograms are constructed from
inferred Carbon-beta coordinates of protein backbones. We trained
the model for 10 epochs with a batch size of 4 and learning rate of
1e-2 using categorical cross-entropy loss between all [i, j] pairs in
the predicted distogram and ground truth distogram. There are no
common structures between the dataset used to learn the structure
projection and the de novo target set.

A.2.3. N-GRAM PRIOR

Background distributions of uni-, bi-, and tri- gram (n-gram) amino
acid frequencies were determined via the amino acid frequencies in
UniRef50, release 2018 03. During design, the Kullback–Leibler
divergence (DKL) is calculated between the n-gram frequencies of
the background distribution and of the designed sequence. DKL

terms are added with equal weight to produce a single n-gram
energy term. Conceptually this can also be seen as using the
n-grams as a language model p(sequence) (63) which can be
combined with the ESM transformer language model. Concretely,
the energy function is defined between n-gram frequencies of our
design sequence and background:

Engram =
∑

i∈{1,2,3}

DKL(ngrami(x), ngrami,bg)

A.3. Tasks

A.3.1. FIXED BACKBONE DESIGN

The goal of fixed backbone design is to generate a protein sequence
x for a target backbone y. As in (59), the backbone is derived
from the set of 3D coordinates of the protein’s Carbon-beta atoms
(inferred for glycines), with length equal to the number of residues
in the protein. These 3D coordinates are converted to a distogram
of binned pairwise distances Appendix A.2.2.

We’d like to sample sequences x with high likelihood, conditioned
on the target backbone, Y:

x ∼ p(x|y = Y )

To sample from this distribution, we first note from Bayes rule
that this is equivalent to sampling from the unnormalized product
of unconditional sequence prior p(x) and a conditional structure
distribution p(y|x):

p(x|y = Y ) =
p(x)p(y = Y |x)

p(y = Y )
∝ p(x)p(y = Y |x)

• p(x): approximated by the language model’s pseudo-
likelihood computed by multiplying marginal likelihoods

when masking out each individual token, and the n-gram
prior.

• p(y = Y |x): approximated by the distogram distribution from
the language model with structure projection head, evaluated
for the target Y .

• p(y = Y ): constant, in the case of a fixed target.

To sample p(x|y = Y ), we utilize an energy-based sampling
procedure, via Markov-Chain Monte-Carlo (MCMC). Formally,
our full energy function for sampling from p(x)p(y = Y |x) is the
following expression for a randomly selected sequence index i:

E(x) = λpEprojection(y = Y |x)+λLMELM (x)+λnEngram(x)

where:

Eprojection(y = Y |x) = −
∑

ij,dij<10Å

logp(yij = Yij |x)/L2

ELM (x) = −
∑
i

log p(x′i|xı)1(x
′
ı = xı)/L

Engram(x) =
∑

i∈{1,2,3}

DKL(ngrami(x), ngrami,bg)

In the above energy function E(x), the first term Eprojection spec-
ifies sequence-structure consistency, taking only pair-positions into
account which are in contact in the target, i.e. have inter-residue
distance dij < 10Å . The term ELM specifies sequence negative
log likelihood, and the term Engram is based on the n-gram model
of sequence likelihood. The terms are composed together with
separate weights λp = 3, λLM = 2, λn = 1 enforcing different
prioritizations of each objective, which were determined by hy-
perparameter sweeps. The overall energy function E(x) defines a
Boltzmann distribution:

p(x) =
1

Z
e−E(x)/T ∝ e−E(x)/T

A uniform random amino acid mutation x′i at a randomly selected
sequence index i is proposed at each step with Metropolis accep-
tance rate α:

α = min(1, e−E(x′)/T /e−E(x)/T )

Mutations to cysteine were disallowed, as their presence would
interfere with experimental evaluation. Note that by defining ac-
ceptance as the ratio of E(x′) and E(x), the relative ratio between
ELM (x′) and ELM (x) can be efficiently approximated in 1 for-
ward pass through the language model (by computing marginal
substitution likelihoods at the substituted position), as opposed to
the L forward passes required to explicitly compute ELM (x).
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We perform 170,000 steps of MCMC sampling. We use a geo-
metrically decaying temperature schedule for simulated annealing.
Every 10,000 steps, we decay the temperature T by 2, from an
initial value of 8 to a terminal value of approximately 6e-5. Full
design trajectories take ≈ 10 hours for a fixed backbone design
with sequence length≈ 100 on a single 32GB Volta gpu. We could
achieve successful designs on most targets (low target RMSD ac-
cording to the oracle) with fewer steps, but the step count was
increased to achieve best performance, especially for longer fixed
backbone designs, e.g. 6WVS (L = 182).

A.3.2. FIXED BACKBONE DESIGN WITHOUT A LANGUAGE
MODEL

Designs from the language model (“LM”) were compared against
designs from a baseline with a powerful structure predictor, but no
language model (“no-LM”). For this baseline, AlphaFold was used
as the structure model.

To keep the comparison with LM designs matched, AlphaFold’s
pairwise distance (distogram) output was used as p(structure =
Target|sequence). Since no transformer language model is used,
there is no p(sequence) term and fixed backbone design without a
language model optimizes for sequences that have high likelihood
p(structure|sequence). Additionally, to ensure a fully matched
comparison against the LM designs, a second set of no-LM designs
were generated, which include the same Engram term used for LM
designs Appendix A.2.3. The additional n-gram term can be inter-
preted as adding a weak n-gram language model. The coefficient
of this n-gram term was selected via a line sweep Table S3. In the
main comparison, we only feature results from the set without the
n-gram term, since that set was more successful experimentally
(1/20 successes vs. 0/20 successes with n-gram term).

A gradient-based public algorithm for producing AlphaFold-based
designs was used. Baseline designs were produced by ColabDesign
(12, 16) (commit hash e7bb3def), using the design 3stage()
AfDesign recipe, which alternatingly and then simultaneously opti-
mizes across all 5 AlphaFold pTM model replicas. It was found
that more steps improved the convergence to low target RMSD
over the course of optimization, so the default number of steps
used was scaled up by a factor of 5, for a total of 1500 soft iters,
500 temp iters, and 50 hard iters. This design protocol requires
less steps of optimization due to employing gradient-based opti-
mization; the algorithm can update each position in the sequence
at each step, whereas the MCMC protocol we employ only makes
a single mutation at each step. Although AlphaFold’s distogram
output was optimized rather than its atomic structure prediction
output, all designs were verified to have< 1Å RMSD to target and
> 0.8 pTM according to the AlphaFold Oracle Appendix A.4.1.

LM and no-LM protocols were used to produce 200 designs per
target each. Simple selection of the top 5/200 seeds (per target)
according to each protocol’s optimization objective was used to
select designs for experimental evaluation Appendix A.6.2.

A.3.3. FREE GENERATION

The goal of free (unconstrained) generation is to design a new
protein sequence x which is sampled from the universe of possible
sequences x and their associated backbones y. As in the previous
section, backbones of designs are represented by the distogram
distribution over pairwise distances. In particular, we wish to
sample sequences x and associated structures y with high joint
probability:

x, y ∼ p(x, y)

We utilize an energy-based sampling procedure to sample both
sequence x and structure backbone y from this joint distribution. In
particular, we utilize a blocked Gibbs MCMC sampling procedure
where, starting from an initially random sequence x, we sample a
definite backbone y for the current sequence

ysampled ∼ p(y|x)

and then sample an updated sequence x’ given the current backbone
y.

x′ ∼ p(x|y = ysampled)

During the p(y|x) sampling phase, inter-residue distances are sam-
pled independently at all pair-positions in the distogram. During
the p(x|y) sampling phase, 3 steps of the MCMC protocol for
fixed backbone design are performed (see prior section), where the
sampled backbone ysampled is used as a target.

In total, 170,000 steps of MCMC are performed, where a step
is comprised of a p(y|x) sampling phase and a p(x|y) sampling
phase. For p(x|y) sampling, the same temperature schedule is used
as in fixed backbone design: temperature is decayed by a factor
of 2 every 10,000 steps, from 8 to ≈ 6e − 5. For the structure
sampling step, a fixed temperature of 1 is used. Annealing both
temperatures led to low diversity (alpha-bundle) solutions which
indeed have very high p(y|x) and p(x|y), which did not happen
with fixed p(y|x) temperature. With this protocol to sample from
the joint distribution, a diverse set of topologies was generated with
varied secondary structure content (Fig. 4A; Fig. 4B), respectively.
Finally, as in fixed backbone design, mutations to cysteine were
disallowed, as their presence would interfere with experimental
testing.

A.4. In silico Quality Metrics

A.4.1. STRUCTURE ORACLE

Designed sequences were given as input to AlphaFold for an in
silico assessment of their structure. AlphaFold serves as a pow-
erful orthogonal predictor of protein structure, as the AlphaFold
model differs from ESM2 in its architecture, objective, and train-
ing data. When evaluation designs, sequences are input without
generating a multiple sequence alignment (MSA) nor using any

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521521doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521521
http://creativecommons.org/licenses/by-nc-nd/4.0/


Language models generalize beyond natural proteins

templates. We follow the standard protocol of predicting structure
and confidence scores (pTM captures global confidence, pLDDT
captures local confidence) with all 5 publicly released models, then
select the most confident output by pLDDT. Amber relaxation
was performed on the selected, predicted structure. All predicted
structures of designs in this study come from this pipeline, and
structural metrics described in the following sections are calculated
using these predictions. Confidence metrics pTM and pLDDT, as
well as RMSD to target structure where available, can be used for
selecting designs as well Appendix A.6.

A.4.2. SOLUBILITY AND AGGREGATION METRICS

Three in silico metrics are used for the purpose of filtering out
candidates with strong evidence that they will not be soluble or
monomeric:

1. Hydrophobic Solvent Accessible Surface Area (SASA) com-
putes the SASA for each hydrophobic residue. It quantifies
how much of the protein’s surface, which is accessible to the
solvent, is hydrophobic. High hydrophobic SASA is prob-
lematic as for monomeric proteins we expect the SASA to be
mostly polar in order to stay in solution rather than aggregat-
ing via exposed hydrophobic surface area.

2. Net Charge: a simplified sequence-based net charge by count-
ing positively and negatively charged amino acids in the se-
quence, to try to avoid proteins with zero net charge, as this
may lead to aggregation in polar solvents.

3. The spatial aggregation propensity (SAP) is a metric intro-
duced to quantify the aggregation propensity, i.e. whether the
protein will aggregate into non-functional and typically insol-
uble assemblies (64). SAP score identifies surface exposed
patches of hydrophobic residues and computes a weighted
sum of atoms with positive hydrophobicity score. The SAP
metric is useful to study and filter both fixed backbone de-
signs and free generations, as in both cases we aim to design
monomeric proteins. This requires the monomer to be soluble
and have mostly hydrophilic amino acids on the surface, cor-
responding to low SAP score (65). This metric is correlated
but can be complementary to the hydrophobic SASA. For
comparison across sequence lengths, we use average SAP
score, i.e. averaged over residues.

For fixed backbone designs tested experimentally, we use SAP
score during selection except for those in the “LM vs. no-LM”
comparison where no additional in-silico metrics are used for fil-
tering (Methods; Selection of designs for experimental evaluation).
When filtering free generations, we use all three hydrophobicity
metrics with relatively loose thresholds, and combine them with
logical “and”, i.e. the candidate has to pass all filters. Firstly, hy-
drophobic SASA < 1.7 times the “ideal surface” computed using
the ideal sphere for the same length protein. Secondly, we require
sequence-based net charge ≥ 2 or ≤ −2. Finally, we filter for
averaged SAP scores ≤ 0.4, and relax this threshold to 0.5 when
the predicted structure contains at least 25% beta strands.

A.4.3. PACKING METRICS

Two metrics are used to filter candidates which are likely not well-
packed:

1. Protein Packing is quantified with the Rosetta PackStat filter,
and is an approximate implementation of RosettaHoles (66).
This is a stochastic algorithm, so it is averaged across 100
repeats. It returns a score between 0 and 1, where 1 means
perfect packing. We keep free generation candidates only if
packing > 0.55.

2. Shape Complementarity of secondary structure elements in
the structure (67) is implemented in the Rosetta SSShapeCom-
plementarity filter with loops=“true” helices=“true”. This
metric aims to quantify whether the surface normals from
different interacting secondary structures are well-aligned,
indicating that secondary structure elements fit well together.
We keep free generation candidates only if shape complemen-
tarity > 0.6.

The Packing and Shape Complementary metrics were computed
twice: once on the structure from the AlphaFold pipeline after
Amber relaxation, and once after an additional step of Rosetta
minimization with the beta nov16 (32). Logical “or” between
structure filters is used: if either of the structures passes the filter,
the filter is satisfied.

A.4.4. GLOBULARITY METRICS

A final set of metrics are used to screen out proteins which are not
globular and have oblong shapes such as extended helix bundles.
We follow Dill et al. (68) and define the idealized radius of a
protein based on its number of residues as 2.24 * (num residues
** 0.392 ) (68), and its corresponding ideal surface area based on
this radius. Using these as reference values, we define relative
SASA and relative radius of gyration. The following metrics and
thresholds are used:

1. The Radius of Gyration is the root mean square distance from
the center of mass (not taking residue weights into account).
We keep candidates if the relative radius of gyration is < 1.5.

2. Total solvent accessible surface area (SASA) computed by
Rosetta TotalSasa. We keep candidates if the relative SASA
is < 3.

3. Contact Order was computed but we did not filter on this
metric. The sample of free generations spanned a range of
Contact Order values.

A.5. Comparison to natural proteins

A.5.1. SETTINGS USED FOR SEQUENCE SEARCH

Designed sequences are tested for their distance from natural pro-
tein sequences via querying them against large-scale sequence
databases. We emphasize that comparisons described throughout
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this section (except in the case of motifs) are made for hits returned
by sequence search; comparison of predicted structure for designs
to known structure databases always returns hits likely to possess a
similar fold (Fig. S10).

For sequence search, we use jackhmmer 3.3.2, a sequence search
tool from the HMMER suite (58). Two jackhmmer settings were
modified from their defaults, based on failure modes observed dur-
ing during our analysis, which queries distant / de novo sequences
against large-scale (> 100M sequences) search databases:

1. One Iteration. Jackhmmer was run with only 1 iteration,
instead of multiple (the default). This change was made be-
cause it was observed that additional iterations resulted in a
growing amount of returned spurious hits, when given distant
sequences as input, such as de novo ground truth sequences.
Specifically, for query sequences with few natural sequence
homologs, false positives increasingly dominated the query
profile used on subsequent jackhmmer search iterations.

2. Sorting by E-value of the best-scoring domain. Through-
out this paper, Jackhmmer results are always sorted according
to best-domain (rather than full-sequence) E-value. It was
found that ranking hits by full-sequence E-value frequently
led to more spurious top hits. Specifically, designs—which
comprise a single domain in fixed backbone design, and
have a single-domain-like globular structure in free gener-
ation—tended to match long, repetitive hit sequences con-
taining a repeated domain. In these cases, multiple weak per-
domain matches resulted in a high cumulative full-sequence
significance, even though the design had no strong match to
any single domain in the hit sequence. This is a known po-
tential failure mode stated in the user’s guide (69). Though
significance is determined by E-value for the best domain
match, when top jackhmmer hits are subsequently analyzed
(e.g. for calculating sequence identity and predicting struc-
ture) the full hit sequence is used.

Overall, Jackhmmer was run with non-default settings (-n 1 –seed
0).

Designs are compared against their sequence hits on three major
axes: E-value, Sequence Identity, and TM-score:

1. E-value. Jackhmmer returns an E-value for each hit, which
quantifies the significance of each hit’s sequence match to
the query. Specifically, E-value is the number of false posi-
tives that are expected to score as or more strongly than the
given hit due to random chance. Hits with a (best-domain)
E-value < 1 are considered significant. At this significance
level, we expect one hit on average to be falsely considered
significant, when querying each design against some large
sequence database.

2. Sequence Identity. Sequence identity of the design to each of
its hits was calculated via local alignment with Biotite’s (70)
biotite.sequence.align.align optimal()

given the BLOSUM62 substitution matrix applied to the
full sequence of the design and the full sequence of the hit.
Sequence identity was calculated as the number of matching
characters in the two aligned sequences divided by the full
length of the original query sequence (rather than just the
length of the aligned region).

3. TM-score. Designs were also compared to some fraction
of their top hits via TM-score of their predicted structures
from the TM-align tool (71). Predicted structures of designs
are obtained using the (AlphaFold, single-sequence) structure
oracle (Appendix A.4.1). Predicted structures for (the full se-
quences of) top jackhmmer hits are obtained from AlphaFold
DB, or the structure oracle given an MSA (instead of a single
sequence) as input.

A.5.2. COMPARISON OF ALL FREE GENERATIONS TO NATURAL
PROTEINS IN ALPHAFOLD DB

In the case of Fig. 4D, each of the 25k free generations and the
≈15k natural proteins from (59) was queried against the sequences
in AlphaFold DB (37), which comprise UniProt 2021 04 (57).
Because all sequences in this database have a structure predicted
by AlphaFold, searching against this database enables compari-
son of predicted structure at scale. We compare designs to only
their single most significant (by best-domain E-value) hit, on
the bases of sequence-identity and TM-score of predicted struc-
tures, fetched from the url: https://alphafold.ebi.ac.
uk/files/AF-<UniProtID>-F1-model_v3.pdb. The
bottom-left quadrant of Fig. 4D, where sequence-identity < 0.2
and TM-score of predicted structure < 0.5 was used to define
a set of 49 distant free generations, of which 31 (67%) succeed
experimentally. Generations that have no significant (best-domain
E-value < 1) hits are displayed at 0 sequence identity in that plot,
to distinguish them from generations possessing significant hits,
visually. Results from this comparison are used in Fig. 4D, the
definition of ”49 distant free generations” in the Introduction, and
the analysis of free generations.

A.5.3. COMPARISON OF EXPERIMENTALLY EVALUATED
DESIGNS TO NATURAL PROTEINS IN UNIREF90

In all other cases, when we compare experimentally evaluated
designs to known natural proteins, we query against UniRef90
2021 04 (28), which fully contains the set of sequences seen by
the language model during training.

Unlike in the comparison of designs natural proteins AlphaFold
DB, where we consider top-hit statistics, only, we perform a more
comprehensive analysis:

1. E-value. Same as the comparison to AlphaFold DB. (Best-
domain) E-value of the top hit = minimum over all hits due to
sorting.

2. Sequence Identity. Is calculated as a maximum over se-
quence identities for all significant (best domain E-value < 1)
hits.
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3. TM-score. Is calculated as a maximum over the
top-10 sequence hits. Predicted structures are ac-
quired https://alphafold.ebi.ac.uk/files/
AF-<UniProtID>-F1-model_v3.pdb where possi-
ble. However, a fraction of UniRef90 proteins (≈ 20%) are
not present in AlphaFold DB. For these proteins, predicted
structures were obtained by folding their (full) sequences via
the structure oracle, given an MSA produced by jackhmmer
on UniRef90 (same settings as in Jumper et al. (72) as input
rather than just the single hit sequence. Of the 228*10=2280
total jackhmmer hits considered throughout this paper, 4 (1
significant) had their TM-scores omitted from analysis, due to
not being in AlphaFold DB and failing during oracle structure
prediction because of GPU memory limitations (all are length
> 1000). These errors do not affect the sequence statistics of
jackhmmer hits (sequence identities, E-values).

UniRef90 is not the exact set of sequences seen by ESM2 during
training. Two filters were applied to remove sequences labeled
“ariticial” by UniProt (N = 1,027) and all sequences hit by Jackhm-
mer when querying with ground truth sequences of de novo targets
(N = 58,462) Appendix A.1.2. It was discovered that for many
fixed backbone designs, top-hits found in UniRef90 belonged to
the sequences that had been removed. For this reason, we omit
from consideration all hits that had been removed from ESM2’s
training set, when calculating the 3 (E-value, Sequence-identity,
TM-score) metrics described above.

Results from this comparison are used in most statements of se-
quence novelty throughout this paper. Specifically: the statement
of natural sequence dissimilarity in the Abstract and the detailed
comparisons of experimentally evaluated fixed backbone and free
generation designs to natural proteins (Fig. 2, Fig. 4F and 4G, Fig.
S6, Fig S8).

A.5.4. MOTIF ANALYSIS

Hydrogen-bond network motifs were assessed for their similarity to
(aligned) positions in natural proteins retrieved by both sequence-
and structure- search. To test whether the language model is copy-
ing motifs from similar sequences in its training, designs were
searched against UniRef90, again with -n 1 --seed 0. To
test whether the language model is copying motifs from simi-
lar structures, designs were searched using Foldseek3 (36), an
open-source tool for large-scale search of structures against struc-
ture databases. Version 7d0c07f89a was used, with non-default
flags --alignment-type 1 and the AlphaFold/UniProt (Al-
phaFold DB) Foldseek structure database. In both the sequence-
and structure- search cases, the MSAs returned by each tool were
sorted according to edit distance at motif positions only. MSAs
were subject to minimal filtering, to focus edit distance calculations
on significant or structurally similar hits. Specifically, jackhmmer
results were filtered for best-domain E-value < 10, and Foldseek
results were filtered for TM-score > 0.7. Predicted structures of
hits are aligned to that of the design via TM-align.

Results of the comparison of designed motifs to minimum edit

distance neighbors are shown in MSA-form (for motif positions,
only) and graphically in Fig. 3D, 3E and Fig. S7.

A.6. Selection of designs for experimental evaluation

A.6.1. OVERVIEW

In total, 276 unique proteins were validated experimentally: 228
designs from the language model, 40 designs from the “no-LM”
baseline, and 8 ground truth sequences corresponding to the de
novo targets used in fixed backbone design. Designs are referred
to by the scheme “FXXX” or “GXXX” for fixed backbone designs
and generations, respectively, where XXX is an index in the range
[0, 267], spanning all sequences tested, excluding the ground truths.

Experimental evaluation rounds:
Two total rounds of experimental evaluation were performed, using
a consistent protocol:

1. Round 1 = 44 Fixed backbone designs, 48 free generations, 4
ground truths

2. Round 2 = 95 Fixed backbone designs, 81 free generations, 4
ground truths

A.6.2. FIXED BACKBONE DESIGN

Design pools:
Two pools of candidate designs were considered for selection:

1. 200 designs using different random initializations and random
seeds, for each de novo target.

2. An expanded set of designs - 9,060 additional designs were
created roughly evenly split among the following targets:
1QYS (1990x), 6MRS (1500x), 6D0T (1604x), 6W3W
(1968x).

Oracle Quality Filters:
The following oracle metrics were used for several (but not all)
pools of experimentally tested designs:

1. Oracle (AlphaFold) RMSD < 2.5
2. Oracle (AlphaFold) pTM > 0.7
3. SAP score < 0.35

Round 1 (48x):
Goal: Select the most promising designs from the language model
using information from the LM, the Oracle, Rosetta, and manual
inspection.
Targets: 4 targets, selected for having x-ray crystal structures span-
ning a range of canonical topologies (especially those having high
beta-sheet content, like 6CZJ) and sequence lengths.

• 1QYS (Top-7)
• 6W3W (NTF2)
• 6CZJ (Beta-barrel)
• 6WVS (TIM-barrel)

Source: 200 seeds run for each target (Design pool 1)
Filter (per-target):
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1. Optimization objective≤ 75th percentile, across the 200 seeds
2. 〈 Oracle Quality Filters 〉
3. (6CZJ only) Manual filter for beta barrels that aren’t fully

closed according to the structure oracle.

Selection, post-filtration (per-target):

1. Top-5 by minimum whiten(Oracle RMSD) + whiten(SAP /
len)

• where the operation whiten(x) = (x -
np.mean(x))/np.std(x) for an array of values x.

2. Top-1 by minimum Optimization Objective
3. Top-5 by minimum of (max sequence identity among Blastp

hits with E − value < 1, per design)
• BLAST was run against ESM2’s exact train set, with all

default settings.
4. 1 ground truth

Outcomes: (Evaluated / Soluble / Successful / +Monodisperse)

Oracle RMSD
and SAP

Optimization
Objective

Blastp
Seq-id

Ground
Truth

1QYS 5 / 5 / 5 / 3 1 / 1 / 1 / 1 5 / 5 / 5 / 3 1 / 1 / 0 / 0
6CZJ 5 / 5 / 5 / 3 1 / 1 / 1 / 1 5 / 5 / 5 / 3 1 / 1 / 1 / 1
6W3W 5 / 5 / 2 / 0 1 / 1 / 1 / 0 5 / 5 / 5 / 3 1 / 0 / 0 / 0
6WVS 5 / 5 / 1 / 0 1 / 1 / 0 / 0 5 / 4 / 0 / 0 1 / 1 / 1 / 1

Round 2 (LM vs. no-LM) (64x):
Goal: Compare designs produced with an LM vs. a strong structure
predictor (AlphaFold) without an LM, in a matched comparison.
An n-gram prior was ablated for the no-LM method. Critically, no
filtering was performed for this comparison, meaning that only the
optimization objective used for design was considered for selecting
top designs. It is interesting that this setting where the least filtering
was performed is the one in which language model designs have
the highest success rate (19/20). To achieve a clean, unbiased
comparison, a new set of targets was chosen for this experiment,
differing from those tested in Round 1.
Models: 4 targets * 5 backbones = 20 designs, each

• (20x) p(y|x) = LM Structure Projection, p(x) = LM + n-gram
• (20x) p(y|x) = AlphaFold Distogram, p(x) = Uniform
• (20x) p(y|x) = AlphaFold Distogram, p(x) = n-gram

Targets: 4 targets with crystal structure, different from those tested
in Round 1, selected for having diverse structure and secondary
structure content.

• 5L33 (NTF2)
• 6D0T (Beta Barrel)
• 6MRS (Foldit, Peak6)
• 6NUK (Foldit, Ferredog-Diesel)

Source: 200 seeds run for each target (Design pool 1)
Filter: None (in order to assess designs exclusively according to
the preference of the models used to produce them)
Selection, after filtering (per-target):

• Top-5 by minimum Optimization objective
• 1 ground truth

Outcomes: (Evaluated / Soluble / Successful / +Monodisperse)

LM
Designs

AlphaFold
Designs

AF + n-gram
Designs

Ground
Truth

5L33 5 / 5 / 5 / 0 5 / 2 / 1 / 0 5 / 0 / 0 / 0 1 / 1 / 1 / 1
6D0T 5 / 5 / 4 / 0 5 / 0 / 0 / 0 5 / 2 / 0 / 0 1 / 1 / 0 / 0
6MRS 5 / 5 / 5 / 4 5 / 0 / 0 / 0 5 / 1 / 0 / 0 1 / 1 / 0 / 0
6NUK 5 / 5 / 5 / 5 5 / 0 / 0 / 0 5 / 2 / 0 / 0 1 / 1 / 1 / 1

Round 2 (Distant sequences) (24x):
Goal: Test language model designs that are distant from natural
proteins.
Source: Expanded set of designs (Design pool 2)
Targets:

• 1QYS (Top-7)
• 6CZJ (Beta-barrel)
• 6D0T (Beta Barrel)
• 6MRS (Foldit, Peak6)

Filter (per-target):

1. 〈 Oracle Quality Filters 〉
2. BlastP Non-redundant minimum E value > 1

• As a fast test of distance from natural proteins, designed
sequences were searched against the BLAST (73) v5
non-redundant database downloaded Sept 12, 2022, with
all default settings.

3. Jackhmmer top-hit (by best-domain E-value) TM-score < 0.5

Selection, after filtering: None
Outcomes: (Evaluated / Soluble / Successful / +Monodisperse)

Outcomes

1QYS 8 / 8 / 7 / 4
6CZJ 6 / 6 / 6 / 4
6D0T 2 / 2 / 1 / 0
6MRS 8 / 7 / 7 / 4

Round 2 (Motifs) (11x):
Goal: Highlight interesting design motifs generated by the lan-
guage model during fixed backbone design. Source: Expanded set
of designs (Design pool 2)
Targets:

• 1QYS (Top-7)
• 6CZJ (Beta Barrel)
• 6D0T (Beta Barrel)

Filter: 〈 Oracle Quality Filters 〉
Selection, after filtering:

1. Detection of buried polars residues. A heuristic function
was coded to roughly assess the number of polar amino acids
not on the surface of the protein. Per-protein “depth” and
solvent-accessible surface area (SASA) were calculated with
the ShakeRupley and ResidueDepth classes from the BioPy-
thon (74) library respectively. The number of polar (IUPAC
codes D,E,R,H,K) amino acids whose SASA percentile < 0.4
or depth percentile < 0.6 (across all amino acids in the de-
signed sequence) were summed. All designs with a sum > 12
were selected for experimental evaluation.

2. Detection of hydrogen-bond networks. HB-
NetScore (Boyken et al. 2016) from
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pyrosetta.rosetta.protocols.hbnet was
used to detect hydrogen bond networks in designs. An HB-
NetScore score term was added to the beta nov16 Rosetta
energy function (32) with weight 1, and that component score
was calculated for each design. All designs with a score
< −100 were selected for experimental evaluation.

Outcomes: (Evaluated / Soluble / Successful / +Monodisperse)

Buried Polars HBnets

1QYS 1 / 1 / 1 / 1 0 / 0 / 0 / 0
6CZJ 1 / 1 / 1 / 0 5 / 5 / 5 / 1
6D0T 2 / 2 / 2 / 0 1 / 1 / 1 / 0
6W3W 1 / 1 / 0 / 0 0 / 0 / 0 / 0

A.6.3. FREE GENERATION

Design pools:
Two pools of free generations, using the same protocol, were
considered for selection:

1. 10k generations, produced before Round 1 of experimental
evaluation.

2. An additional set of 15k generations was produced, allowing
selection of 25k total generations for Round 2 of experimental
evaluation.

AlphaFold and Rosetta Quality Filters:
We use the structure oracle (AlphaFold) confidence predictions
pLDDT and pTM, and select proteins where both pTM > 0.7 and
pLDDT > 70. We then apply all three remaining categories of
filters introduced in Appendix A.4 to select the promising free
generation designs for experimental evaluation. From the 25k free
generations, 20.1% (N = 5, 198) pass these filters.

Round 1 (48x):
Source: 10k generations
Filtering:

• 〈 AlphaFold and Rosetta Quality Filters 〉

Selection:

1. 12 sequences with TM-score to nearest neighbor in PDB
< 0.64

2. 36 sequences without significant BLAST hits; subsampled of
the top 2 per structural cluster.

3. Structural cluster defined by agglomerative clustering based
on pairwise structural similarity at a TM-score threshold of
0.75 across all in silico filtered generations.

Outcomes: (Evaluated / Soluble / Successful / +Monodisperse)

Outcomes

Generations 48 / 46 / 22 / 11

Round 2 (Manual selection) (24x):
Source: 10k generations
Filter: 〈 AlphaFold and Rosetta Quality Filters 〉
Selection: Manual selection of a structurally interesting and diverse
subset of in silico validated proteins.
Outcomes: (Evaluated / Soluble / Successful / +Monodisperse)

Outcomes

Generations 24 / 22 / 14 / 8

Round 2 (Distant generations) (57x):
Source: 25k generations
Filter: 〈 AlphaFold and Rosetta Quality Filters 〉
Selection:

1. From the filtered set of proteins, we select a small subset
of designs for experimental evaluation that are distant from
natural proteins. For the sequence novelty of proteins, instead
of following the approach stated at Appendix A.5 we used a
separate tool (BLAST) to assess sequence novelty, so more
diverse proteins are selected across the graph of Fig. 4D.

2. Sequences with no significant matches by BLAST (min E-
value > 1) against UniRef90 are selected.

3. Out of the above, sequences with TM-score < 0.5 of top hit
by Jackhmmer are selected.

Outcomes: (Evaluated / Soluble / Successful / +Monodisperse)

Outcomes

Generations 57 / 56 / 35 / 21

A.7. Experimental evaluation

A.7.1. PLASMID CONSTRUCTION

Plasmids for expressing proteins were constructed from synthetic
DNA according to the following procedure, as in (75): Linear
DNA fragments (Integrated DNA Technologies, IDT eblocks)
encoding design sequences and including overhangs suitable
for a BsaI restriction digest were cloned into custom target
vectors using Golden Gate Assembly. All subcloning reactions
resulted in C-terminally HIS-tagged constructs:MSG-design-
GSGSHHWGSTHHHHHH (entry vector LM627), where the
underlined sequence is the SNAC-tag (68) used for cleaving the
HIS-tag (cleaving not used in this work), ot also contains a TRP
residue to ensure proteins have measurable absorbance at 280 nm.

The entry vectors for Golden Gate cloning are modified pET29b+
vectors that contain a lethal ccdb gene between the BsaI
restriction sites that is both under control of a constitutive
promoter and in the T7 reading frame. The lethal gene reduces
background by ensuring that plasmids that do not contain an
insert (and therefore still carry the lethal gene) kill transfor-
mants. The vectors were propagated in ccdb resistant NEB
Stable cells (New England biolabs C3040H, always grown from
fresh transformants). LM627 is available via addgene (ID: 191551)

Golden Gate reactions (1 uL per well) were set up on a 96 well
PCR plate using an ECHO acoustic liquid handler (Labcyte ECHO
525, Beckmann Coulter):

• 10x T4 Buffer 0.5 uL 10x T4 Buffer (New England Biolabs
B0202S)

• Vector 3 fmol Vector ( LM627)
• BsaI-HFv2 3U 0.0.06 uL BsaI-HFv2 (New England Biolabs
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R3733L)
• T4 Ligase 100U 0.1uL T4 Ligase (New England Biolabs

M0202L)
• (6 fmol) linear DNA fragment, at typically of 4 ng/uL stock
• Complete with nuclease-free water to 5 uL total reaction

volume.

The reactions were incubated at 37 °C for 20 minutes, followed by
5 min at 60 °C (IKA Dry Block Heater 3).

A.7.2. SMALL-SCALE PROTEIN SOLUBILITY SCREEN

For experimental screens, Golden Gate reaction mixtures were
transformed into BL21(DE3) (New England Biolabs) as follows:
1 uL of reaction mixture was incubated with 6 uL of competent
cells on ice in a 96 well PCR plate. The mixture was incubated on
ice for 30 minutes, then heat-shocked for 10 s at 42 °C in a block
heater (IKA Dry Block Heater 3), then rested on ice for 2 minutes.
Subsequently, 100 uL of room temperature SOC media (New
England Biolabs) was added to the cells, followed by incubation at
37 °C with shaking at 1000 rpm on a Heidolph Titramax1000 /
Incubator 1000.

The transformations were then grown in a 96 well deep-well plate
(2 mL total well volume) in autoclaved LB media supplemented
with 50 µg mL-1 Kanamycin at 37 °C and 1000 rpm. In the
following protocols all growth plates were covered with breathable
film (Breathe Easier, Diversified Biotech) during incubation.

The following day, glycerol stocks were made from the overnight
cultures (100 uL of 50% [v/v] Glycerol in water mixed with 100
uL bacterial culture, frozen and kept at -80 °C. Subsequently,
two 96 deep well plates were prepared with 900 uL per well of
autoclaved Terrific Broth II (MP biomedicals) supplemented with
50 µg mL-1 Kanamycin, and 100 uL of the overnight culture
were added and grown for 1.5 h at 37 °C, 1200 rpm (Heidolph
Titramax1000 / Incubator 1000). The cultures were then induced
with IPTG by adding 10 uL of 100 mM (final concentration
approximately 1 mM) per well with an electric repeater pipette
(Eppendorf, E4x series), and grown for another 4 h at 37 °C, 1200
rpm. Cultures were combined into a single 96 well plate for a total
culture volume of 2 mL and harvested by centrifugation at 4000 x
g for 5 min. Growth media was discarded by rapidly inverting the
plate, and harvested cell pellets were either processed directly, or
frozen at -80 °C.

Proteins were purified by HIS tag-based Immobilized metal affinity
chromatography (IMAC). Bacterial pellets were resuspended and
lysed in 100 uL per 1 mL of culture volume B-PER chemical lysis
buffer (Thermo Fisher Scientific) supplemented with 0.1 mg mL-1
Lysozyme (from a 100 mg mL-1 stock in 50% [v/v] Glycerol,
kept at -20 °C, Millipore Sigma), 50 Units of Benzonase per mL
(Merck/Millipore Sigma, stored at - 20 °C), and 1 mM PMSF
(Roche Diagnostics, from a 100 mM stock kept in Propan-2-ol,
stored at room temperature). The plate was sealed with an

aluminum foil cover and vortexed for several minutes until the
bacterial pellet was completely resuspended (on a Vortex Genie
II, Scientific Industries). The lysate was incubated, shaking for 5
minutes, before being spun down at 4000 x g for 15 minutes. In
the meantime, 50 uL of Nickel-NTA resin bed volume (Thermo
Scientific, resin was regenerated before each run and stored in 20%
[v/v] Ethanol) was added to each well of a 96 well fritted plate
(25 µm frit, Agilent 200953-100). To increase wash step speed,
the resin was equilibrated on a plate vacuum manifold (Supelco,
Sigma) by drawing 3 x 500 uL of Wash buffer (20 mM Tris, 300
mM NaCl, 25 mM Imidazole, pH 8.0) over the resin using the
vacuum manifold at its lowest pressure setting.

The supernatant of the lysate was extracted after the spin down
and applied to the equilibrated resin and allowed to slowly drip
through over 5 minutes. Subsequently the resin was washed on the
vacuum manifold with 3 x 500 uL per well of Wash buffer. Lastly
the fritted plate spouts were blotted on paper towels to drain excess
Wash buffer. Then 200 uL of Elution buffer (20 mM Tris, 300 mM
NaCl, 500 mM Imidazole, pH 8.0) was applied to each well and
incubated for 5 minutes before eluting the protein by centrifugation
at 1500 x g for 5 minutes into a 96 well collection plate. Eluate
was stored at 4 °C.

A.7.3. SIZE EXCLUSION CHROMATOGRAPHY

Designs were subject to a solubility screen and size exclusion chro-
matography (SEC), in the laboratory, using an S75 5/150 column
(Cytiva) at 0.45 mL / min run speed in 20 mM Phosphate, 100
mM NaCl at pH 7.4 on an Akta pure (Cytiva) with an autosampler
module. Absorbance was monitored at 280 nm. All designs and
buffers were sterile filtered through 0.2 micrometer filters before
being run on the instruments.

A.7.4. CLASSIFICATION OF EXPERIMENTAL OUTCOMES

Designs are labeled as soluble if the total soluble yield (in mg)
from the 4x1mL prep is ≤ 0.05 mg. Designs are labeled as
successful if they are soluble and if rightmost peak returned
by scipy.signal.find peaks(SEC trace y vals,
height=0.1, prominence=0.01) (where
SEC trace y vals is normalized to the range [0,1]), is
within one standard deviation of a calibration curve relating elution
volume to hydrodynamic radius, described above. All ground-truth
controls eluted at their expected retention volume or slightly after,
thus confirming their monomeric states (except for 1QYS, which
is known from the literature to form a homodimer (76). Designs
are additionally considered monodisperse if the find peaks()
call returns a single peak at the expected elution volume for
the given molecular weight as assessed by the calibration curve.
The calibration curve was recorded with the Lower Molecular
Weight calibration kit (LMW kit, Cytiva) on the S75 5/150
column (Cytiva) in the same running buffer as used for the designs.
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B. Supplementary Figures
Overview of Supplementary Figures:

• Fig. S1: Overview of the De Novo Target Set.

• Fig. S2: The language model understands de novo proteins.

• Fig. S3: Language model understanding of experimentally
tested de novo targets.

• Fig. S4: Fixed backbone designs succeed on all backbones
tested experimentally.

• Fig. S5: Analysis of fixed backbone designs across methods.

• Fig. S6: Fixed backbone designs, comparison to natural pro-
teins.

• Fig. S7: Detailed Analysis of Motifs.

• Fig. S8: Free Generation: Experimental Successes

• Fig. S9: Free Generations, comparison to natural proteins

• Fig. S10: Top structure-based matches in PDB for free gener-
ations

• Fig. S11: Overview of Experimental Evaluations for all tested
designs.
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Figure S1. Overview of the De Novo Target Set. Crystal/NMR structures for all proteins in the de novo target set (N = 39). Targets are sorted by increasing
sequence length (range [67, 184]). Residues are rainbow-colored from N- to C- terminus. Targets were hand-selected for being de novo designed,
possessing a high quality experimental structure, and for being structurally diverse: targets possess a wide variety of folds (e.g. alpha-bundle, Rossman,
NTF2, Beta-barrel, Ferredoxin, TIM-barrel) and secondary structure content.
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Figure S2. The language model understands de novo proteins. (A) Contact- and sequence- prediction statistics across ESM2 650k pretrain checkpoints.
X-axis shows pseudo-perplexity of sequences under ESM2. Y-axis shows precision of top-L predicted long-range (≥ 24 separation) contacts by the
structure projection as a fraction of the maximum achievable value, where L is sequence length. (B) Histograms of contact- and sequence- prediction
statistics (normalized by dataset size) for natural (blue) and de novo (orange) proteins, according to the final ESM2 650k model checkpoint, which is
used throughout this study. Despite only being trained on natural sequences, the structure projection from the language model achieves similar structural
scores for the considered sets of natural and de novo proteins (top). (Bottom) Pseudo-perplexity is better (lower) for natural sequences, but both natural
and de novo sequences are well understood compared to 30% scrambled de novo sequences, 100% scrambled de novo sequences, and a unigram model of
amino acid frequencies in UniRef50 2018 03, as baselines. (C) Calibration plot for predictions of masked amino acids in de novo sequences, by the
language model. Perfect calibration is a diagonal line from (0, 0) to (1, 1), indicated in dashed red. Due to the low number of sequences in the de novo
target set (N = 39), true positive counts for binned probabilities with < 5 samples were omitted. (C) Masked amino acid prediction correctly places
hydrophobic residues in the cores of de novo protein structures. Boxplot shows total probability mass for hydrophobic (pink) and hydrophilic (light gray)
amino acids during mask-1-out prediction, on de novo sequences. Core and surface labels are determined by the number of C-alpha neighbors within
10Åof each C-alpha atom (core: ≥ 24 neighbors; surface: < 16 neighbors).
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Figure S3: Language model understanding of de novo targets whose designs were tested experimentally.

Fixed-backbone designs were produced for all targets in the de novo set, but 8 backbones in particular had designs tested experimentally.  
Each of the rows in the two columns above showcases the target and some facet of language model understanding of that target. The 
leftmost column in each row shows the ground-truth crystal structure, rainbow-colored from N- to C- terminus. Second column from the left 
overlays the same structure (in gray) with the structure derived from constrained folding of the language model’s structure projection 
distogram, folded with Rosetta2’s folding script.  Some RMSDs are quite off, but most are <= 3Å. Second column from the right shows 
per-position entropy of language model predictions for masked residues. Final column on the right shows total probability mass of 
hydrophobicity (magenta) vs. hydrophilicity (white) of language model predictions for masked residues.  Sidechains on the surface of de 
novo structures are generally predicted as hydrophilic, compared with those in the core.

Figure S3. Language model understanding of experimentally tested de novo targets. This figure showcases understanding of targets, given their
(ground-truth) sequences. Fixed backbone designs were produced for all targets in the de novo set, but 8 targets in particular had their designs tested
experimentally. Each of the rows in the two overall columns above showcases understanding of a single target. The leftmost column in each row shows
the target (backbone, x-ray crystal) structure, rainbow-colored from N- to C- terminus. Second and third columns show structural understanding of the
target structure by the language model’s structure projection, given only the held-out (Appendix A.1.2) de novo sequence. The second column compares
predicted and true binned inter-residue distances, the structure projection’s native output. The third column compares the target backbone (gray) with the
backbone derived from constrained folding of the language model’s structure projection distogram (blue), folded with trRosetta2’s folding script (69).
RMSDs in this column range from 1.8Åto 3.9Å. The fourth column shows total probability mass of hydrophobic (magenta) vs. hydrophilic (white)
amino acid predictions from the language model, after sequentially masking each position in the ground truth sequence. Side chains on the surface of de
novo structures are generally predicted to be more hydrophilic than those in the core.
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Figure S4: Fixed-backbone designs succeed on all backbones tested experimentally.

All target backbones (N = 8) whose designs were tested experimentally have at least one successful design. Targets span 
a range of lengths (L = [77, 182]) and folds (beta-barrel, NTF2, alpha-beta-mix, TIM-barrel). Each row is for a single 
design. The first column in each row shows the oracle prediction of the design’s structure, rainbow-colored from N- to C- 
terminus overlayed on the target crystal structure, in gray. The second column shows placement of hydrophobic residues, 
with the predicted backbone in gray and hydrophobic side chains colored orange. The third column shows the 
chromatographic trace from SEC, with the expected elution volume and a one standard deviation confidence interval in 
dashed gray and light blue, respectively.  All designs have a peak at the expected elution volume under SEC, indicative of 
a properly folded monomeric state.  Two designs, F093 (6NUK) and F100 (6W3W) are additionally monodisperse - the 
only peak detected is the one at the expected elution volume.

19/20
Experimental 
Successes

23/23
Experimental 
Successes

8/12
Experimental 
Successes

1/11
Experimental 
Successes

5/5
Experimental 
Successes

8/10
Experimental 
Successes

12/13
Experimental 
Successes

5/5
Experimental 
Successes

Figure S4. Fixed backbone designs succeed on all backbones tested experimentally. This figure showcases designs for the targets in Fig. S3. All target
backbones whose designs were tested experimentally have at least one successful design. Targets span a range of lengths (L = [77, 182]) and folds
(beta-barrel, NTF2, alpha-beta-mix, TIM-barrel). Each row shows the successful design with minimum RMSD to the target, according to the structure
oracle, with overall fixed backbone design experimental outcomes for that target in the margin. The first column in each row shows the oracle prediction
of the design’s structure, rainbow-colored from N- to C- terminus overlayed on the target crystal structure, in gray. The second column shows placement
of hydrophobic residues, with the predicted backbone in gray and hydrophobic side chains colored orange. The third column shows the chromatographic
trace from SEC, with the expected elution volume and a one standard deviation confidence interval in dashed gray and light blue, respectively. All
designs have a peak within the expected range of elution volume under SEC, indicative of a properly folded monomeric species. Two designs, F093
(6NUK) and F100 (6W3W) are monodisperse - the only peak detected is the one at the expected elution volume.
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Figure S5. Analysis of fixed backbone designs across methods. Evaluation metrics of the sequences designed by Language Model vs designed by
AlphaFold without LM, vs designed by AlphaFold with n-gram term. We present results for the best 5 designs for each of the four targets selected for
direct comparison (PDB target IDs: 5L33, 6D0T, 6MRS, 6NUK). AlphaFold RMSD is lower (better) for the designs by AlphaFold. The Rosetta Energies
are negative (good) for both sets and are not able to discriminate experimental outcomes, even though the Rosetta Energy function was developed
for protein modeling and design (we use the beta nov16 Rosetta energy function, length-normalized). LM pseudo-perplexity identifies the sequences
designed without strong LM as improbable (low pseudo-perplexity), and is predictive of experimental success in this comparison. The in silico quality
metrics (Appendix A.4) indicate that the AlphaFold designs without LM are not easily distinguished based on packing or shape complementarity, but
tend to have more surface hydrophobics and higher (worse) SAP score. Adding the n-gram LM term to the AlphaFold fixed backbone optimization
objective (Appendix A.3) improves the n-gram (or k-mer) statistics as intended, and slightly improves the SAP score, but has a 100% failure rate (vs 95%
failure without n-gram). The aggregate statistics of this comparison are also reported in Table S2.
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Figure S6: Fixed backbone designs, comparison to natural proteins.

Details are shown for the comparison of select successful fixed backbone designs 
to natural proteins. Each plot shows sequence- and structural- match statistics of 
the top-10 most significant Jackhmmer hits (blue dots), when querying with the 
designed sequence against UniRef90 (Methods; Comparison). We showcase a 
subset of 31 successful designs from the union of two sets: the 17 designs with no 
significant sequence hits, and the 19 designs with maximum TM-score < 0.6 to the 
predicted structures of their top-10 sequence neighbors. X-axes show the 
(sequence-based) significance of matches, according to log10(E-value) of the best 
domain. Hits to the left of the dashed vertical line at E-value = 1 are considered 
significant. Across all hits shown in the figure, only 18 are significant (E-value < 
1) and only 3, for design {F094,F122} have E-value < 0.1. Hits are also labeled 
with their sequence-identity to the designed sequence. Significant hits have a 
median sequence-identity of 26%, and 14/17 are < 30%. Y-axes compare the 
design and its top hits structurally, via TM-score between AlphaFold-predicted 
structures (Methods; Comparison). Plots are sorted in order of increasing 
maximum TM-score. Designs at the bottom of the figure may be using homology 
beyond our significance threshold, but many of the designs have no strong 
structural matches to their (most insignificant hits). Structures for designs 
{F044,F135,F003,F066} and their top-significance hit are featured in Fig. 2G.

*

*

*

*

*
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0.5 TM-score threshold.
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1 E-value threshold.
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Shown in Figure 2G

Figure S6. Fixed backbone designs, comparison to natural proteins. Details are shown for the comparison of select successful fixed backbone designs to
natural proteins. Each plot shows sequence- and structural- match statistics of the top-10 most significant Jackhmmer hits (blue dots), when querying
with the designed sequence against UniRef90 (Appendix A.5.3). We showcase a subset of 31 successful designs from the union of two sets: the 17
designs with no significant sequence hits, and the 19 designs with maximum TM-score < 0.6 to the neighbors’ predicted structures. X-axes show the
(sequence-based) significance of matches, according to log10(E-value) of the best domain. Hits to the left of the dashed vertical line at E-value = 1 are
considered significant. Across all hits shown in the figure, only 18 are significant (E-value < 1) and only 3, for design {F094,F122} have E-value < 0.1.
Hits are also labeled with their sequence-identity to the designed sequence. Significant hits have a median sequence-identity of 26%, and 14/17 are ¡ 30%.
Y-axes compare the design and its top hits structurally, via TM-score between AlphaFold-predicted structures (Methods; Comparison). Plots are sorted in
order of increasing maximum TM-score. Designs at the bottom of the figure may be using homology beyond our significance threshold, but many of the
designs have no strong structural matches to their top hits. Structures for designs {F044,F135,F003,F066} and their top-significance hit are featured in
Fig. 2G.
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B

Figure S7. Detailed Analysis of Motifs. (A) Comparisons of hydrogen-bond network motifs in designs to aligned positions in natural neighbors. Compared
with the views in Fig. 3D,3E, 2 additional designs are shown (F026, F025) and the top-3, rather than top-1, aligned sequence and structure search
neighbors are shown. Otherwise, views are the same as in Fig. 3D,3E. The design is shown with side chains enabled for the motif, and bond networks
drawn as dashed lines. Neighbors from Jackhmmer search of natural sequences in Uniref90 and Foldseek search of natural structures in AlphaFold DB
are performed. The full, MSAs from both of these searches are sorted by edit distance at the positions aligned to that of the motif in the design. Minimum
edit distance neighbors are shown with side chains shown at aligned positions. Sidechains are colored gray where matched amino acids in neighbors are
not in the designed motif. (B) Size exclusion chromatography (SEC) traces are shown at the bottom of the figure. In all cases, there is a peak detected
near the expected elution volume indicative of a properly folded monomeric species, according to a calibration curve (Appendix A.7). In 4/5 cases, the
peak at expected elution volume is dominant, higher than any other peak. F129 is monodisperse - the only peak detected is the one at the expected elution
volume.
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Figure S8. Free Generation: Experimental Successes Overview of predicted structure for all 71 free generations (except for G230, ommitted randomly
due to space constraints) that were experimentally successful. Designed structures from the in silico structure oracle (AlphaFold) are shown, colored
by pLDDT, a measure of local prediction confidence. Statistics (sequence identity, TM-score, and significance) of each design’s most significant
sequence-search hit in AlphaFold DB shown. The first 31 designs shown are those from the bottom-left, de novo quadrant of Fig. 4D, meaning they were
found distant from natural sequences, after searching them against AlphaFold DB (Appendix A.5.2).
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Figure S9: Free Generations, comparison to natural proteins

As in fig. S6, we show verbose sequence search statistics from the comparison of 
successful, distant free generations to natural proteins. Each panel represents one of 
the 31/49 experimentally successful proteins in the lower left quadrant of Fig. 4D, 
which was distant from its top sequence hit in UniProt 2021_04 / AlphaFold DB. For 
these 31 successful free generations, we did a more thorough analysis: comparing to 
UniRef90, which fully contains the language model’s training set, and considering 
more than just the top hit (Methods; Comparison). Plot are formatted identically to 
those in fig. S6: each plot is for one free generation, the top-10 Jackhmmer hits from 
searching UniRef90 are shown as blue dots, x-axes shows sequence match strength 
(E-value < 1 considered significant), y-axes shows TM-score comparison of 
predicted structure (TM-score > 0.5 considered structurally similar), and sequence 
identity is annotated for each dot (Methods; Comparison). Plots are sorted in order 
of ascending maximum TM-score. In general, there is strong agreement between the 
results of this UniRef90 search, and their classification as distant from searching 
AlphaFold DB. 16/31 successes have no significant (E-value < 1) hits, and no hits 
with E-value < 0.1 are detected among all 31. Comparison of predicted structures 
further confirms the dissimilarity of each generation from its top natural sequence 
hits. 12/31 designs have all top-10 sequence hits likely to possess a different fold 
(max TM-score < 0.5). Those few hits with high TM-score (> 0.7) generally possess 
E-values in the 3 to 10 range. Structures for designs {G216,G228,G231,G189,G144} 
and their top-significance hit are featured in Fig. 4F.

*

*

*

*

*

Figure S9. Free Generations, comparison to natural proteins As in Fig. S6, we show verbose sequence search statistics from the comparison of successful,
distant free generations to natural proteins. Each panel represents one of the 31/49 experimentally successful proteins in the lower left quadrant of Fig. 4D,
which was distant from its top sequence hit in UniProt 2021 04 / AlphaFold DB. For these 31 successful free generations, we did a more thorough
analysis: comparing to UniRef90, which fully contains the language model’s training set, and considering more than just the top hit (Appendix A.5.3).
Plots are formatted identically to those in fig. S6: each plot is for one free generation, the top-10 Jackhmmer hits from searching UniRef90 are shown as
blue dots, x-axes shows sequence match strength, y-axes shows TM-score comparison of predicted structure, and sequence identity is annotated for each
dot. Plots are sorted in order of ascending maximum TM-score. In general, there is strong agreement between the results of this UniRef90 search, and
their classification as distant from searching AlphaFold DB. 16/31 successes have no significant (E-value < 1) hits, and no hits with E-value < 0.1 are
detected among all 31. Comparison of predicted structures further confirms the dissimilarity of each generation from its top natural sequence hits. 12/31
designs have all top-10 sequence hits likely to possess a different fold (max TM-score < 0.5). Those few hits with high TM-score (> 0.7) generally
possess E-values in the 3 to 10 range. Structures for designs {G216,G228,G231,G189,G144} and their top-significance hit are featured in Fig. 4F.
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Figure S10. Top structure-based matches in PDB for free generations We show the distribution of the similarity to the nearest match amongst all known
protein structures in the Protein Data Bank (PDB), for each free (unconstrained) generation. The nearest neighbor is defined by a structure-based search
using foldseek, and similarity is TM-score from TMalign (between 0 and 1, where 0.5 is typically seen as a threshold for belonging to another fold). We
believe that the designs’ structural matches may be explained by the relatively short length (L=100) of free generations, which makes them likely to
partially match a larger structure. Even though structural matches were found for the generated proteins, for many of the designs none of the matches
could be found based on homology sequence search (Fig. 4D).
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Figure S11. Overview of Experimental Evaluations for all tested designs. In total, 268 designed proteins were tested experimentally for their solubility
and for having expected hydrodynamic radius via size-exclusion chromatography (SEC). Shown here are all SEC traces for those 268 evaluated proteins,
grouped according to the categories described in (Appendix A.6). Designs for the comparison of LM vs. ”no-LM” are split on the middle row, according
to the model used for designs. Plots show chromatographic absorbance at 280 nm (y-axis) vs. retention volume (x-axis). Particles with larger radius flow
faster through a porous column, and elute at lower volumes (to the left). Monomeric species are the smallest particles and give a peak most to the right.
Expected elution volume is different for each sequence, but as a visual guide, we annotate the average expected elution volume (1.9 mL) for a length 100
sequence, in dashed black. Traces are colored according to the definition of experimental success: green for success, red for failure (Appendix A.7.4).
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C. Supplementary Tables
Overview of Supplementary Tables:

• Table S1: Comparison of sequence and structure understand-
ing of ESM2 and baselines.

• Table S2: Comparisons for fixed backbone designs.

• Table S3: Line sweep of n-gram LM loss coefficient for
AlphaFold + n-gram LM.

• Table S4: Analysis of fixed backbone designs across methods.

• Table S5: Comparison of different approaches of free genera-
tion using the Language Model.

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521521doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521521
http://creativecommons.org/licenses/by-nc-nd/4.0/


Language models generalize beyond natural proteins

Precision@L Long-Range Pseudo-Perplexity

De Novo Natural De Novo Natural

Best Achievable 0.82 0.94 1.00 1.00
Prior 0.05 0.04 17.17 18.72

ESM2 untrained 0.05 0.04 17.59 19.42
ESM2 trained (≈500k updates) 0.49 0.57 7.73 6.66

Table S1. Comparison of sequence and structure understanding of ESM2 and baselines. Comparison of structural and sequence understanding of ESM2
and baselines. Predictors on rows, metrics and datasets on columns. (Columns) The first major column characterizes structural understanding of the
language model with minimal structure projection introduced in Appendix A.2.2. The metric shown is precision of the top-L predicted long-range
(separation ≥ 24 backbone positions) contacts, where L is sequence length. The second major column characterizes sequence understanding. The
metric shown is sequence perplexity, or pseudo-perplexity in the case of ESM2. (Rows) The “Best Achievable” row oracle shows the best achievable
score for each metric. The “Prior” row for structure shows the score of a per-sequence-length background model of structure, defined as the averaged
predicted distograms of 500 randomly selected natural sequences of length L, as predicted by the trained structure projection used in this paper. The
“Prior” row for sequence shows the perplexity of the unigram model trained on amino acid frequencies in UniRef50 (2018 03) Appendix A.2.3. The final
two rows of the table show the performance of untrained and fully-trained ESM2, in that order.

Score RMSD AlphaFold (pLDDT) ESM (pseudo-perplexity)
Ground Truth 0.00 91.11 7.27
AlphaFold 0.58 95.18 13.05
AlphaFold + n-gram 0.80 92.62 10.14
ESM Inverse Folding 0.99 90.76 5.15
ProteinMPNN 1.03 91.13 4.96
ESM2 (ours) 1.90 87.94 2.1

Table S2. Comparisons for fixed backbone designs. We present in silico metrics for additional baseline fixed backbone design methods: using ESM
Inverse Folding (14) and ProteinMPNN (15). The results for each method (all rows but “Ground Truth”) are for 20 sequence designs over four different
de novo backbone targets used for the main comparison results (Figs. 2, S3 and S5). The sequences designed using the two inverse-folding models
are sampled with the default temperature of 0.1. The oracle structure predictions for the inverse folding designs are close to the target backbone, with
RMSD close to 1Å. The sequences were also seen as plausible by the AlphaFold Oracle (confident structure predictions with pLDDT > 90). ESM2
pseudo-perplexity of inverse folding designs is low compared to AlphaFold designs and even ground truth sequences, meaning the sequences are plausible
under ESM. In light of the high experimental success rates demonstrated with ProteinMPNN on other targets, the results support the hypothesis that
ESM2 can understand design patterns to the level where it is indicative of experimental success.

λngram Oracle RMSD Oracle pLDDT Engram
LM Designs (reference) 1 2.1 86 4.5

AlphaFold + n-gram Designs

1 0.82 92 5.23
2 (selected) 0.82 92 5.09

5 1.07 90 4.89
7 1.27 87 4.76

10 1.97 83 4.67
15 2.19 77 4.57
20 3.41 71 4.42
30 6.85 61 4.32
50 8.87 54 4.21

Table S3. Line sweep of n-gram LM loss coefficient for AlphaFold + n-gram LM. A line sweep was performed to determine λngram, the coefficient for
Engram for Alphafold + n-gram designs. Each row below shows the average statistics of 40 total designs, 10 designs for each of 4 target backbones
(5L33, 6D0T, 6MRS, 6NUK). For the top row, statistics are shown randomly selecting from the 200 fixed backbone design produced for each backbone.
For each other row, (4*10 = 40) fresh designs were produced by AlphaFold-based design with a specific n-gram energy function coefficient. The same
oracle (AlphaFold) structure prediction pipeline was applied to all designed sequences. A coefficient 2 was chosen from the line sweep, as it is the
highest value that does not degrade oracle structure accuracy (RMSD) and confidence (pLDDT) metrics. After following our full generation, filtering,
and selection protocol (Appendix A.6.2), final Engram values were roughly matched (4.59 vs. 4.77) for LM and AlphaFold+n-gram designs (Table S4).
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LM Designs AlphaFold Designs AF + n-gram

Experimental Success 0.95 0.05 0.00
Oracle (AlphaFold) RMSD 1.90 0.58 0.80
LM pseudo-perplexity 2.10 13.05 10.14
Rosetta Energy -1.04 -1.57 -1.37
Packing 0.56 0.63 0.58
Shape complementarity 0.68 0.71 0.69
Hydrophobic SASA 3043.98 3299.73 3216.39
SAP score 0.34 0.76 0.57
n-gram loss 4.59 6.61 4.77

Table S4. Analysis of fixed backbone designs across methods. This table shows the aggregate statistics corresponding to the plots in Fig. S5, presenting a
comparison between fixed backbone designs from Language Model vs. AlphaFold (No LM) vs. AlphaFold + n-gram LM on 20 sequences designed over
four different de novo backbone targets. Please refer to the figure caption for more details.

Method N (number of samples) pLDDT pTM Clusters by TM-score
p(x,y) sampling (subset) 400 81.49 0.67 242/400 clusters
p(x) sampling 400 76.22 0.53 372/400 clusters
Distogram KL (11) 400 80.22 0.56 282/400 clusters
p(x,y) sampling (full) 25,000 81.09 0.66 7663/25000 clusters

Method Pairwise sequence identity Rosetta Energy SAP Score helix/sheet/loop ratio
p(x,y) sampling (subset) 0.13 -0.19 0.45 0.51/0.23/0.26
p(x) sampling 0.15 1.93 0.65 0.15/0.36/0.50
Distogram KL (11) 0.13 0.65 0.73 0.40/0.29/0.31
p(x,y) sampling (full) 0.12 -0.21 0.46 0.52/0.21/0.26

Table S5. Comparison of different approaches of free generation using the Language Model. In addition to the Blocked Gibbs sampling method described
in this paper for free generation of proteins, we tested two other procedures to sample protein sequences: p(x) sampling - in which only ESM2 and an
ngram term were used to sample probable amino acid sequences using a Markov Chain, but no structure sampling was used. In addition, we followed the
distogram KL maximization procedure (11) where the sampling objective for the structure step is a KL divergence from the distogram to a background
distribution. Maximizing this KL can be thought of as minimizing the entropy of the distogram, meaning the objective steers towards confident structure
prediction. The table above compares key statistics between the approaches. Notably, we observed that p(x) sampling often produces repeat sequence
patterns. The distogram KL approach, applied with the low-capacity structure prediction head, has disadvantages to the proposed Blocked Gibbs approach.
The distogram KL approach tends to generate structures with almost no mixture of alpha-helix and beta sheets in the same design, and worse pTM,
Rosetta Energy and SAP scores.
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