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Abstract

Combining a basic set of building blocks into

more complex forms is a universal design princi-

ple. Most protein designs have proceeded from a

manual bottom-up approach using parts created

by nature, but top-down design of proteins is fun-

damentally hard due to biological complexity. We

demonstrate how the modularity and programma-

bility long sought for protein design can be re-

alized through generative artificial intelligence.

Advanced protein language models demonstrate

emergent learning of atomic resolution structure

and protein design principles. We leverage these

developments to enable the programmable design

of de novo protein sequences and structures of

high complexity. First, we describe a high-level

programming language based on modular build-

ing blocks that allows a designer to easily com-

pose a set of desired properties. We then develop

an energy-based generative model, built on atomic

resolution structure prediction with a language

model, that realizes all-atom structure designs that

have the programmed properties. Designing a di-

verse set of specifications, including constraints

on atomic coordinates, secondary structure, sym-

metry, and multimerization, demonstrates the gen-

erality and controllability of the approach. Enu-

merating constraints at increasing levels of hier-

archical complexity shows that the approach can

access a combinatorially large design space.

Introduction

Protein design would benefit from the regularity, simplicity,

and programmability provided by a basic set of abstractions

(1–4) like those used in the engineering of buildings, ma-
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chines, circuits, and computer software. But unlike these

artificial creations, proteins cannot be decomposed into eas-

ily recombinable parts because the local structure of the

sequence is entangled in its global context (5, 6). Classical

de novo protein design has attempted to determine a funda-

mental set of structural building blocks, which could then be

assembled into higher-order structures (7–11). Likewise, tra-

ditional protein engineering often recombines segments or

domains of natural protein sequences into hybrid chimeras

(12–14). However, existing approaches have not been able

to achieve the high combinatorial complexity that is neces-

sary for true programmability.

We show modern generative models realize these classical

goals of modularity and programmability at a new level of

combinatorial complexity. Our idea is to place the modu-

larity and programmability at a higher level of abstraction,

where a generative model bridges the gap between human

intuition and the production of specific sequences and struc-

tures. In this setting, the protein designer needs only to

recombine high-level directives, while the task of obtain-

ing a protein that fulfills those directives is placed on the

generative model.

We propose a programming language for generative protein

design, which allows a designer to specify intuitive, mod-

ular, and hierarchical programs. We show that high-level

programs can be translated into low-level sequences and

structures by a generative model. Our approach leverages

advances in protein language models, which learn structural

information (15, 16) and the design principles of proteins

(see accompanying paper by Verkuil et al.).

In this study, our specific implementation is based on an

energy-based generative model. First, a protein designer

specifies a high-level program consisting of a set of hier-

archically organized constraints (Figure 1A). Then, this

program compiles to an energy function that evaluates com-

patibility with the constraints, which can be arbitrary and

non-differentiable (Figure 1B). We apply constraints on

structure by incorporating atomic-level structure predictions,

enabled by a language model, into the energy function. This

approach enables the generation of a wide set of complex

designs (Figure 1C).

The use of a high-level language allows the protein designer
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Figure 1. Overview of the high-level programming language and the optimization algorithm. (A) We propose a high-level programming

language in which each program consists of (1) a syntax tree (corresponding to a set of nonterminal and terminal production rules) that

enables modular and hierarchical organization of protein subunits and (2) a set of constraint functions that can be defined at each node

of the syntax tree, where a given constraint is applied to the entire subtree rooted at the corresponding node. (B) This program is then

compiled to a single energy function, which in our study is a simple linear combination of the specified constraint functions. The energy

function is used to guide an optimization procedure based on simulated annealing, of which a key component is the use of an accurate and

efficient structure predictor to evaluate the energy function at each step of the optimization. The same energy function can guide multiple

optimization trajectories. (C) Each of these trajectories produces a protein sequence design and an associated predicted structure. These

sequences and predicted structures can then be evaluated downstream using in silico and experimental metrics.

to systematically reason about the design space and spec-

ify very general, modular, and composable programs. To

demonstrate this, we generate proteins that realize a variety

of constraints that include secondary structure, symmetry,

multimerization, and atomic-level coordination in the pre-

dicted structures.We apply these constraints in complex,

hierarchical settings, where we can enumerate a space of

highly idealized forms that have low similarity to natural

structures. As de novo design progresses to more complex

proteins and protein assemblies, high-level abstractions such

as the programming language described in this study should

facilitate the systematic exploration and design of complex

artificial proteins.

A generative programming language for

protein design

We introduce a high-level programming language for gener-

ative protein design. This language first requires a syntax

tree (Figure 1A) consisting of terminal symbols (i.e., the

leaves of the tree) that each corresponds to a unique protein

sequence (which is potentially repeated within the protein)

and nonterminal symbols (i.e., the internal nodes of the tree)

that enable hierarchical organization. Second, the language

requires a set of constraints: at each node in the tree, a pro-

tein designer can specify any number of constraints, which

are applied to the entire subtree. The syntax tree and its con-

straints fully specify a program in our high-level language.

We provide a more extended description of this language in

the Methods section.

Each program is compiled into an energy function that spec-

ifies a generative model for that program in the form of a

distribution

pθ(x) =
exp(−Eθ(x))

Z(θ)

over protein sequences x conforming to the program. The

constraints are encoded as weighted terms that are additively

combined into the total energy. Since the partition function

Z, which is a function of the parameters θ, is intractable,

low temperature samples can be taken with MCMC and

simulated annealing (Figure 1B). The generative capacity

of this approach is built on recent developments in deep

learning for protein biology. Specifically, each step in the

optimization loop has access to a fast and accurate atomic-

level structure prediction enabled by the ESM-2 protein

language model.

Given a single program, the generative model can create

potentially diverse designs that fulfill the user-specified con-

straints (Figure 1C). These constraints can be arbitary and

nondifferentiable, and can span multiple scales of biological

complexity, from atomic-level coordinates to abstract plans

of the protein including the overall topology and symmetry.

This approach allows the model to propose diverse solutions

where many potential designs may satisfy the program. By

leveraging an expressive model of structure in a generative

capacity, the resulting designs respect the various constraints

individually and are also globally coherent.
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Figure 2. Programming full-protein or partial constraints. (A) A graphical representation of a program for protein “free hallucination”

(left) along with three example designed structures (right). (B) The distribution of ESMFold pLDDT values over 200 free-hallucinated

structures. Of these, 100% have good confidence (ESMFold pLDDT > 0.7). (C) The distribution of single-sequence AlphaFold2 (ssAF2)

over the same 200 structures; note that ssAF2 was not used in the design procedure. Of these, 22% have good confidence (ssAF2 pLDDT

> 0.7). (D) A graphical representation of a program for fixed backbone design (left) along with example designs for six de novo target

backbones. The experimental backbone is colored gray; the designed backbone is colored by ESMFold pLDDT. (E) For each target

backbone, the distribution of the ESMFold pLDDT values of the final designs from 50 or more fixed backbone design seeds is plotted

as a boxplot (for all boxplots in this figure, the box extends from first to third quartile, black line indicates the median, and whiskers

indicate 2.5 times the interquartile range) with each seed also plotted as a black circle. A horizontal red line indicates pLDDT = 0.7.

(F) For each target backbone, the distribution of RMSD values between the target and design backbone atoms from 50 or more fixed

backbone design seeds is plotted as a boxplot with each seed also plotted as a black circle. A horizontal red line indicates RMSD = 2.5 Å.

(G) A graphical representation of a program for designing a protein with mixed secondary structure (top) along with example designs in

which secondary structure was explicitly specified (bottom). (H) Top-left: A graphical representation of a program for functional site

scaffolding. Top-right: For each scaffolded binding site, the distribution of RMSD between the native and designed binding site atoms

(including side chains) from 2,000 seeds is plotted as a boxplot. A horizontal red line indicates RMSD = 2 Å. Bottom: Example designs

that achieve sub-angstrom atomic coordination in the scaffolded binding site atoms, high model confidence in the associated scaffold, and

low similarity (quantified by TM-score) to the natural protein.
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Results

Full-protein constraints

We first demonstrate that our approach can design proteins

where the constraints are simply applied to the entire se-

quence and structure without any hierarchical organization.

An especially valuable constraint, which we apply gener-

ally across all our design efforts, steers the optimization

toward predicted structures with higher model confidence,

i.e., high pTM and mean pLDDT. For proteins that we de-

sire to have soluble, monomeric expression, we also steer

the optimization to minimize hydrophobic residues that are

solvent-exposed (Methods). Using only these constraints on

structural confidence and hydrophobic residue placement,

our model is able to generate or “freely hallucinate” (17)

high-confidence structures (Figures 2A and 2B); across 200

seeds, all optimization loops produced predicted structures

with an ESMFold mean pLDDT greater than 0.7 (Figure

2B). Of these, a large portion (44, or 22%) also had high

predicted confidence (pLDDT > 0.7) by single-sequence

AlphaFold2 (18) (Figure 2C), a separate structure prediction

model that was not used in our optimization procedure.

Our objective function also enables other full-protein con-

straints, such as specifying the positions of the backbone

atoms while allowing the algorithm to design the corre-

sponding sequence, a design task referred to as fixed back-

bone design (19). To achieve this, we can add a term to

the energy function that minimizes the root-mean-square

deviation (RMSD) between the corresponding designed and

target backbone atoms (Methods). Our simulated annealing

procedure successfully produces high-confidence designs

with low RMSD (< 1.6 Å) across diverse de novo back-

bones (Figures 2D and 2E), and can do so reproducibly over

different optimization runs (Figure 2F).

Partial constraints

We next sought to increase the complexity of our designable

space by varying the constraints enforced on different parts

of a protein. For example, a simple mixed-constraint setting

is to specify a two-domain protein with different combina-

tions of secondary structure composition (Figures 2G and

S1A–S1C). In our programs, we can represent this setting

by a syntax tree containing two or more subtrees, where

different constraints are only applied within the discrete

subtrees.

A more complex mixed-constraint setting is to design func-

tional proteins by constraining one region of the protein de-

sign to have the same all-atom positions (including protein

side chains) as a functional site from nature, while allowing

the design procedure to freely generate the remainder of

the protein; this design setting is sometimes referred to as

functional site “scaffolding” (20). Importantly, in contrast to

fixed backbone design, in which constraints are only placed

on backbone atomic coordinates, functional site scaffolding

requires constraints on side-chain atoms as well, since these

are critical to achieving function. Because our optimization

procedure produces an all-atom structure prediction at each

step of the optimization, we can readily incorporate this

constraint as part of the energy function by minimizing the

all-atom RMSD between the natural and designed atomic

coordinates of the functional site (Methods).

Across functional sites involving sequence-contiguous or

-discontiguous residues from a variety of natural proteins,

our algorithm is able to produce designs that scaffold the

site with sub-angstrom RMSD between the experimental

and predicted structure in three out of five functional sites

attempted (Figures 2H and S1D). Moreover, the algorithm

produces designed scaffolds that depart from the native pro-

tein (Figure 2H). The ability to move natural functional sites

onto designed backbones has many practical applications,

including the design of functional proteins that are smaller

or stabler than their natural counterparts.

Symmetric and multimeric group constraints

Beyond proteins containing partial constraints, we next in-

crease the complexity of our protein designs by generating

structures that contain constraints over multiple subunits. A

foundational design task for the generation of idealized, de

novo proteins is to constrain structural symmetry (7, 22).

To generate symmetric proteins, we first enforce the notion

of a repeated unit that is repeated K times when design-

ing a K-fold symmetry (where we can control the value of

K). To guide the optimization toward symmetric structures,

we add various constraints on the distances among the cen-

troids of each repeated unit as part of the energy function

(Methods). In our high-level language, a symmetric pro-

tein would be encoded by repeating the same non-terminal

symbol K times (corresponding to the repeated unit); the

symmetry constraint is then placed at the level of the syntax

tree containing these repeated non-terminals (Figure 3A).

Using these symmetric constraints, we show that we can pro-

gram the level of symmetry within a protein design. When

directed to design 3- to 8-fold symmetry, the generative

model produces a diverse set of high-confidence structures

(Figures 3B, S2A, and S2B), including folds that have com-

mon analogs in nature (including coiled-coils, beta pro-

pellers, beta sandwiches, beta barrels, and TIM barrels) as

well as highly-idealized designs that are different from nat-

ural structures, including a pentagonal star-shaped protein

(with a TM-score of 0.48 to the nearest PDB structure 3S38;

row 1 and column 3 in Figure 3B) and a cube-shape protein

(nearest-PDB TM-score of 0.51 to PDB 7DEG; row 2 and

column 2 in Figure 3B). The highlighted symmetric proteins

in Figure 3B have nearest-PDB TM-scores ranging from
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Figure 3. Programming symmetry and homo-oligomerization. (A) A graphical representation of a program for designing a single protein

chain with 3-fold symmetry based on a repeated subsequence. (B) Example designs varying fold symmetry from 3- to 8-fold. (C) 1000

randomly sampled symmetric protein designs were “roundtripped” by sampling ten sequences via ESM-IF1 inverse folding (21) of their

backbones followed by ESMFold structure prediction. The ESMFold pLDDT of the starting backbone is indicated on the horizontal axis.

The lowest of the 10 RMSDs comparing the starting and roundtripped backbone atoms is indicated on the vertical axis. Blue lines indicate

density contours and hexagonal bins are darker with greater density. We observed that a more confident design is associated with roundtrip

success. (D) 1,000 randomly sampled inverse folding samples are plotted according to their ESM-IF1 perplexity on the horizontal axis

and their roundtrip RMSD on the vertical axis. We observed that a lower perplexity sequence is associated with roundtrip success. (E)

Example homo-oligomers with increasing numbers of individual protomers. The tetrameric, hexameric, and octameric oligomers depicted

here form globular polyhedral shapes rather than the rotational symmetry of designs in (B).
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Figure 4. Programming two levels of symmetry. (A) A graphical representation of a program for designing two levels of symmetry

in which a homo-oligomeric symmetric dimer represents the top level of symmetry and each unit within the dimer also has two-fold

symmetry. (B) Example oligomers with two levels of symmetry, in which we procedurally enumerate across a grid in which we vary the

top-level symmetry across the rows and the bottom-level symmetry across the columns. Discrete chains are indicated by different colors.

(C) 1,000 randomly sampled two-level symmetric protein oligomer designs were “roundtripped” by sampling ten sequences via ESM-IF1

inverse folding (21) of their backbones followed by ESMFold structure prediction (Methods). The ESMFold pLDDT of the starting

backbone is indicated on the horizontal axis. The lowest of the 10 RMSDs comparing the starting and roundtripped backbone atoms is

indicated on the vertical axis. Blue lines indicate density contours and hexagonal bins are darker with greater density. We observed that a

more confident design is associated with roundtrip success. (D) 1,000 randomly sampled inverse folding samples are plotted according

to their ESM-IF1 perplexity on the horizontal axis and their roundtrip RMSD on the vertical axis. We observed that a lower perplexity

sequence is associated with roundtrip success.
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0.47 to 0.86, with a median TM-score of 0.64; TM-scores

for all seeds are plotted in Figure S2C.

To increase our confidence that these idealized structures

correspond to valid and designable backbones, we observe

that sampling sequences via inverse folding with the ESM-

IF1 and ProteinMPNN models (21, 23) followed by struc-

ture prediction of the sequence samples can reproducibly

recover the original backbone geometry (Methods), in many

instances with sub-angstrom backbone-atom RMSD. To in-

crease our confidence that a successful “roundtrip” through

inverse folding indicates designable backbones, we observe

that high confidence designs indicates better roundtrip suc-

cess (Figures 3C and S2D) and that the ability to sample

a low perplexity sequence also indicates roundtrip success

(Figure 3D).

Beyond single-chain symmetries, we can also design multi-

meric proteins similarly. We enforce the notion of single or

multiple chains in our programming language with a “single

chain” constraint that dictates that all terminal elements in

a subtree belong to the same chain (Methods); to design

multimeric proteins, we need only remove this constraint.

Example multimeric symmetric proteins involving 4- to

8-mers are provided in Figure 3E.

Hierarchical constraints

Formalizing our constraints into a syntax tree naturally en-

ables the specification of hierarchical constraints, which

enables more complex protein designs. As an initial demon-

stration, guided by our high-level language’s formalization,

we design different levels of symmetry at two levels of

hierarchy, where the lower level of symmetry is specified

within a chain and the upper level of symmetry is specified

among protomers in a homo-oligomer (Figure 4A). We pro-

cedurally enumerate over examples that range from a dimer

of units with 2-fold symmetry to a tetramer of units with

4-fold symmetry (Figures 4B, S3A, and S3B). As in the

single-chain symmetric design setting, we observe success-

ful structure prediction roundtrips through inverse folding,

and that both high-confidence predicted structures and low

inverse folding perplexity indicate roundtrip success (Fig-

ures 4C and 4D). Many of the designs with two levels of

symmetry have low overall similarity to structures in the

PDB; for example, a dimer of 2-fold symmetry in which

opposing beta sheets form a regular checkerboard pattern

(nearest-PDB TM-score of 0.49 to PDB 3W38; row 1 and

column 1 in Figure 4B). The highlighted homo-oligomers

of two-level symmetry in Figure 4B have nearest-PDB TM-

scores ranging from 0.25 to 0.52, with a median TM-score

of 0.48; TM-scores for all seeds are plotted in Figure S3C.

Another hierarchical design setting is to combine the

function-scaffolding and the symmetric design tasks de-

scribed above, as some functions are enhanced by repeti-

tion of a functional site; for example, when improving the

strength of a binding interaction, multiple binding sites on a

protein could synergize such that the overall binding avidity

is greater than the sum of the individual affinities (24). This

task requires two levels of hierarchy: the top level specifies

symmetry while the bottom level specifies the side-chain

atomic coordination constraint (Figure 5A). With this cor-

responding program, we can generate designs in which an

atomic-level constraint is enforced on multiple functional

sites over the protein, the overall protein organization is

constrained to be symmetric, and we can control the level

of designed symmetry (Figures 5B and S4A–S4C).

We lastly show that we can specify protein designs that

have even deeper levels of hierarchy in their constraints

(Figure 5C) by designing protein assemblies that combine

both symmetry and asymmetry. For example, we designed

a protein complex composed of four units in which a pair

of the chains are symmetric to each other (and each unit

internally has two-fold symmetry) and where another pair

of chains are symmetric to each other (and each unit also

internally has two-fold symmetry), but the two pairs are

asymmetric to each other (Figures 5C, 5D, S4D, and S4E).

Our high-level programming language readily enables us to

control the complexity of the generated complexes such that,

for example, one of the pairs consists of chains with three-

fold symmetry (Figure 5E) or that the complex consists of

five chains (a pair of symmetric chains of two-fold symme-

try asymmetrically complexed with a triple of symmetric

chains of two-fold symmetry) (Figure 5F). We find that

our optimization procedure can produce designed structures

consistent with all of these hierarchical specifications.

Related work

This paper is related to classical work that attempts to (i)

classify a set of common sequence or structure motifs (3, 4)

and (ii) manually combine these motifs to generate new

proteins (7–14). More recently, deep-learning-based meth-

ods have increased the complexity of designable structures

(17, 20, 22) and machine-learning-based generative mod-

els have shown increasingly sophisticated design capabili-

ties. These include sequence-based Potts models and autore-

gressive language models for designing sequences (25–27),

Markov Chain Monte Carlo algorithms combined with struc-

ture prediction for jointly designing sequences and struc-

tures (17, 20, 22), inverse folding models that use structural

backbone coordinates to design sequences (21, 23), and

concurrent work using diffusion models for designing pro-

tein backbones (28, 29). A key contribution of this study is

to combine the modularity aspired to by classical methods

with the power of modern generative models, in particular

improvements in the accuracy and efficiency of language-

model-based protein structure prediction (16).
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Figure 5. Programming complex hierarchical constraints. (A) A graphical representation of a program for scaffolding three functional

sites in which those sites have a 3-fold symmetry. (B) Example 3-fold symmetric scaffolds for the IL10 and ACE2 binding sites that

achieve sub-angstrom RMSD averaged across the three sites. (C) A graphical representation of a program that specifies an asymmetric

protein complex consisting of two pairs of chains. Each pair is constrained to have 2-fold symmetry between the constituent chains.

Furthermore, each constituent chain itself has 2-fold symmetry. (D) A generated protein structure as specified by the program depicted

in (C). Discrete chains are indicated by different colors. (E) A generated protein structure as specified by the program depicted in (C)

except where one of the pairs has constituent chains that have three-fold symmetry. Discrete chains are indicated by different colors. (F)

A generated protein structure as specified by the program depicted in (C) except where one of the pairs is replaced with a symmetric

trimer (where each constituent chain in the trimer has two-fold symmetry). Discrete chains are indicated by different colors.
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Discussion

In this study, we show that generative artificial intelligence

enables high-level programmability at a new level of combi-

natorial complexity. We propose a programming language

that can express high-level programs for the design of pro-

teins at diverse biological scales, including atomic-level

coordinates, secondary structure, and high-level symmetries

within single chains and the units of self-assembling multi-

chain complexes. We show that programs written in the

abstract language can be compiled into an energy function

and that the corresponding generative model is capable of

fulfilling complex constraints within an overall coherent

structure.

We demonstrate programs of increasing levels of complexity,

including the design of homo-oligomers with two levels of

symmetry, symmetric functional scaffolds, and asymmetric

complexes of subunits that themselves have two levels of

symmetry. The approach reveals a large space of idealized

protein designs created from top-down design principles.

Especially as the complexity of the constraints increases,

many of the corresponding designs are highly idealized,

analogous to the regularity of artificially created machines

and systems.

Our computational results using two independent inverse

folding methods suggest that the generated structures are

designable, since inverse folding models have demonstrated

high experimental success rates (23). We are also obtaining

data to experimentally validate the designs.

More broadly, the formalization offered by a high-level

programming language enables logical design principles to

be applied to protein design as in other fields of engineering.

This has been especially challenging in biology due to the

way that the amino acid sequence opaquely encodes the

structure and function. As protein design moves toward the

engineering of more complex functions, we anticipate that

such a system will become increasingly useful.
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A. Methods

A.1. High-level programming language and

energy-based optimization

A program in our language is fully specified by (1) a syntax

tree and (2) a set of constraints. This program compiles

to an energy function, which is used to guide black-box

optimization of a protein sequence while also leveraging its

predicted structure.

A.1.1. SYNTAX TREE

The syntax tree consists of nonterminal symbols, which we

denote as xi, as well as terminal symbols, which in our ex-

amples we denote as uppercase alphabetic characters such

as A, B, C, etc. Each terminal symbol defines a unique

protein sequence. The nonterminal symbol x1 is designated

as the special start symbol; all programs must have x1. Ad-

ditional nonterminal symbols are used to define hierarchical

complexity. For example, specifying two levels of hierar-

chy requires a nonterminal production rule in addition to a

terminal production rule, for example,

x1 → x2x2 (nonterminal production) and (1)

x2 → AA (terminal production rule). (2)

In the example above, the x2 nonterminal enables an inter-

mediate level of hierarchy. A nonterminal can produce any

finite-length permutation of higher-numbered nonterminals

(for example, x1 → x2x3 is permitted but not x2 → x1x3

or x2 → x2x3). A nonterminal can also produce any finite-

length permutation of terminals (for example, x1 → AB)

or any finite-length permutation of mixed terminals and

higher-numbered nonterminals (for example, x1 → x2B or

x1 → Bx2).

A complete syntax tree is built by fully expanding the non-

terminal x1 into a set of terminals. The production rules

define the connectivity structure of the tree, where the par-

ent node corresponds to the left side of the production rule

and the child node(s) corresponds to the right side of the

production rule. Across the entire syntax tree, each internal

node corresponds to a nonterminal symbol and each leaf

corresponds to a terminal symbol. Example syntax trees are

provided in the main text figures.

A.1.2. CONSTRAINTS

A program in our language also requires a set of constraints,

where a single constraint is defined with respect to a single

node and all of its descendants in the syntax tree. Note

that this includes constraints on the leaves of the tree (cor-

responding to the terminal symbols). More specifically, a

constraint is a function that takes as input the (sub)tree, as

well as its corresponding (sub)sequence and (sub)structure,

and outputs a real number. For example, a constraint defined

with respect to the node corresponding to x1 simply receives

as input the entire syntax tree, the full-length sequence, and

the full protein structure. The same constraint (i.e., the same

function) can be applied to multiple nodes in the tree. We

will use fj(xi) to denote a constraint j defined with respect

to the xi node.

A.1.3. COMPILATION OF CONSTRAINTS INTO AN

ENERGY FUNCTION

We compile a program into an energy function. In our

study, we simply compute a linear combination of all

the constraints in the user-specified set, i.e., E(x) =
∑

i

∑

j fj(xi), where fj(xi) is defined as zero when a con-

straint is not applied to a given node. In practice, we ex-

plicitly keep track of a scalar multiplicative weight on each

constraint, i.e., E(x) =
∑

i

∑

j ajfj(xi). This energy is

used in the simulated annealing optimization procedure de-

scribed below. Specific examples of constraint functions

used in our study are also provided below.

Linear combinations work well for our choice of generative

model, but in principle any combination of the energy terms

could be used here. For example, if we compiled our pro-

gram into an energy function for a generative model that

used a reward function (like a reinforcement learning agent),

we might prefer a multiplicative combination of the inverse

of our current energy terms.

A.1.4. SIMULATED ANNEALING

The energy function is used as part of an iterative black-box

optimization loop, where over multiple iterations, a change

to a given state (in this case, a protein sequence design) is

accepted with some probability. We use a simulated an-

nealing algorithm in which the acceptance probability is

controlled by a temperature value such that the optimization

can tolerate higher energy changes at the beginning of the op-

timization before favoring changes that decrease the energy

toward the end of the optimization. In our study, we begin

by initializing the sequence state (one unique sequence per

terminal symbol) with uniform amino-acid probability to

a given user-specified length; we also compute an initial

structure prediction from this sequence.

Each iteration proposes a mutation to the protein sequence.

To make this proposal, first, one of the terminal symbols

is chosen with uniform probability, and second, one of a

substitution, insertion, or deletion is chosen with some prob-

ability (we default to 60%, 20%, and 20%, respectively). For

substitutions and insertions, the new amino acid is chosen

with some probability (unless otherwise specified, we apply

uniform probability over a reduced amino acid alphabet that

excludes cysteine). We default to uniform probability over
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all possible sequence positions.

The next step in the iteration is to obtain a structure pre-

diction corresponding to the sequence with the proposed

change. This prediction provides the structural informa-

tion that is used to compute the values of the individual

constraint functions. These values are then combined to pro-

duce the value of the energy function, as described above.

This energy function is evaluated on the overall design with

and without the proposed mutation, which we denote E(x∗)
and E

(

x(i)
)

, respectively. The mutation is accepted with

probability

min

(

exp

{

1

Ti
E(x∗)− E

(

x(i)
)

}

, 1

)

where Ti is the temperature parameter at iteration i that

decays geometrically over the optimization. By default, our

optimization leverages user-specified values Tmax and Tmin,

with a decay schedule given as

Ti =

(

Tmin

Tmax

)i/M

where M is the user-specified number of annealing steps.

We report specific values for Tmax and M in the experiment

descriptions below and default to Tmin = 0.0001.

A.1.5. SINGLE CHAIN CONSTRAINT

Our language accommodates both single- and multi-chain

design through the use of a special “single chain” constraint.

By default, without this constraint applied, all terminal sym-

bols are assumed to correspond to separate chains. When

this constraint is applied to a given node, it constrains all

of the terminal symbols to be part of a single chain accord-

ing to the left-to-right order defined in the syntax tree. For

example, consider a syntax subtree with x2 → x3AB and

x3 → CD productions. A single chain constraint applied

to node x2 would create a chain consisting of a contiguous

sequence CDAB. Unlike other constraints, this constraint

is enforced as part of structure prediction, prior to the energy

function compilation.

A.2. Constraint implementation

A.2.1. ESMFOLD STRUCTURE PREDICTION

We obtain all-atom structure predictions using ESMFold

(16), where the prediction is made over the entire protein

sequence and is represented as a set of atomic coordinates

and their corresponding residue identities and indices. This

predicted structure is the basis for the structural information

passed to each of the specific constraint functions. When

a constraint is defined on a subtree, that constraint only

has access to the structural information (atomic coordinates,

etc.) of the sequence encoded by that subtree.

A.2.2. STRUCTURE PREDICTION CONFIDENCE (PTM

AND PLDDT)

ESMFold produces a pTM score, which indicates the

model’s confidence in the overall structure prediction, and

a per-atom pLDDT score, which indicates the model’s con-

fidence in the specific atomic coordinate prediction. The

pTM value and the mean of the backbone pLDDT values

are constraints that are meant to steer the optimization to-

ward structures with higher structure prediction confidence,

which is associated with naturally plausible and designable

structures. We use a linear combination of the quantities

1− pTM and 1− pLDDT (since a higher confidence/lower

energy is desirable), with user-specified weights, as the re-

turned value of the confidence constraint.

A.2.3. SURFACE-EXPOSED HYDROPHOBICS

The surface exposed hydrophobics constraint aims to re-

duce the hydrophobicity of the protein surface, where high

hydrophobicity leads to protein aggregation and insolubil-

ity. We implement this constraint using the Shrake-Rupley

“rolling probe” algorithm to determine the surface exposed

atoms (30) as implemented in the biotite Python package

version 0.35.0 (31). We then calculate the fraction of atoms

involved in hydrophobic residues that are also surface ex-

posed, and we use this fraction as the output of the constraint

function.

A.2.4. GLOBULARITY

It is sometimes desirable to encourage a protein chain to

pack into a globular structure. Our globularity constraint is

implemented by computing the centroid of a set of atomic

coordinates, where the globularity constraint function re-

turns the variance of the distances from all coordinates to

this centroid. Intuitively, low variance indicates that all co-

ordinates that are largely equidistant to the centroid, which

is more consistent with globular packing.

A.2.5. SECONDARY STRUCTURE

The secondary structure constraint steers the energy toward

user-defined secondary structure. To annotate residue sec-

ondary structure, we use the P-SEA algorithm (32) as imple-

mented by the biotite Python package (31). This constraint

function returns one minus the fraction of residues that be-

long to the desired secondary structure element (since a

higher fraction/lower energy is desirable).

A.2.6. ROTATIONAL SYMMETRY

To design symmetry, we first find it helpful to tie the se-

quence identities across the subsequences corresponding

to the asymmetric units. The first symmetry we consider

is rotational symmetry, which only consider the centroids
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of the immediate children of the constraint’s node; for ex-

ample, rotational symmetry defined on a node x1 where

x1 → x2x3x4 would only consider the centroids of the

individual substructures defined by x2, x3, or x4.

Using the left-to-right order of these children in the produc-

tion rule, the rotational symmetry function first computes

the distances among adjacent centroids, circularly wrapping

to include the distance between the first and last symbols;

for example, rotational symmetry defined on x1 → x2x3x4

would compute the set of distances among pairs (x2, x3),
(x3, x4), and (x4, x2). The final value returned by this con-

straint function is the variance among all adjacent distances;

intuitively, a rotational or ring-like symmetry would have

equal distances among centroids. This rotational symmetry

function is adopted from that used by Wicky et al. (22).

A.2.7. GLOBULAR SYMMETRY

The globular symmetry constraint is defined on the cen-

troids of the immediate children of the constraint’s node; for

example, globular symmetry defined on a node x1 where

x1 → x2x3x4 would only consider the centroids of the

individual substructures defined by x2, x3, or x4 (this is

similar to rotational symmetry described above). The glob-

ularity symmetry function computes all pairwise distances

among centroids and returns the variance of these distances.

In practice, this constraint function is useful for defining

symmetry that is not rotational, for example, the symmetry

observed in polyhedral assemblies.

A.2.8. ALL-ATOM COORDINATION

One approach to designing functional proteins is to constrain

(a portion of) the protein to match the structure of a known

functional site in nature. We accomplish this with an all-

atom coordination constraint. This constraint is first defined

with respect to a list of atoms from a native protein structure

(outside of our designed protein), which we denote ynative.

We then constrain all of the atoms in the corresponding

(sub)tree to match, which we denote ydesign, as closely as

possible, the coordination of the atoms in ynative. We achieve

this with two functions. The first is the constrained root

mean square deviation (cRMSD),

cRMSD(ynative, ydesign) =

min
T

(

1

n

n
∑

i=1

∥ai(ynative)− T (ai(ydesign))∥
2
2

)1/2

(3)

where T is a structural transformation, ai denotes the atomic

coordinates of the ith atom out of n total atoms considered,

and ∥·∥ denotes a vector norm. We implement the structural

alignment using the Kabsch algorithm (33) as implemented

by biotite (31). The second function for constraining atomic

coordination is the distance-matrix RMSD (dRMSD),

dRMSD(ynative, ydesign) =




2

n(n− 1)

n
∑

i=1

n
∑

j=1

(dij(ynative)− dij(ydesign))
2





1/2

(4)

where dij is the Euclidean distance between the ith and jth

atoms. The returned final value is a linear combination of

the cRMSD and dRMSD values with user-specified weights.

In practice, cRMSD is sometimes excluded (i.e., its weight

is set to zero) in conjunction with dRMSD, as cRMSD alone

does not appear sufficiently stable to create a sufficiently

smooth energy landscape.

A.2.9. BACKBONE ATOM COORDINATION

For a class of design tasks called fixed backbone design,

we desire to only constrain the backbone atoms of the pro-

tein structure and have the optimization produce sequences

that match a known backbone. This constraint is largely

equivalent to the all-atom constraint described above, but

rather than constraining all atoms (including side chains),

this constraint is only applied to the carbon, α-carbon, and

nitrogen atoms in the protein backbone.

A.2.10. SURFACE EXPOSURE

In some cases, we desire that a given set of residues be

exposed on the surface of the protein (for example, when

scaffolding a protein binding site). As with the hydropho-

bics constraint, we leverage the Shrake-Rupley algorithm

(30) as implemented by biotite (31). We then calculate the

fraction of surface exposed atoms within the structure corre-

sponding to the constraint’s subtree, and we use one minus

this fraction as the output of the function.

A.2.11. LENGTH

The length constraint requires a user-specified number of

residues. In practice, we can enforce a hard length con-

straint by disallowing insertions and deletions during the

optimization procedure, or through a function that returns

increasingly high values when a sequence length goes be-

yond a user-specified range. In this study, whenever we

apply a length constraint we take the former approach.

A.3. Design tasks and experiments

A.3.1. FREE HALLUCINATION

Free hallucination simply requires applying confidence and

surface-exposed hydrophobic constraints to the whole pro-

tein, where we place equal weight on each term (pTM,

pLDDT, and hydrophobics). In the experiments described

in this study, we ran simulated annealing over 30,000 iter-
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ations with Tmax = 1 across 200 seeds. We also evaluated

single-sequence AlphaFold2 (18) on the final sequences

produced by these 200 optimization runs.

A.3.2. FIXED BACKBONE DESIGN

For fixed backbone design, we apply a weight of 2 on the

dRMSD constraint, a weight of 1 on the cRMSD, pTM, and

pLDDT constraints, and a weight of 0.5 on the hydropho-

bics constraint. As the target backbones, we used the de

novo structures with PDB IDs 1QYS, 5L33, 6D0T, 6MRS,

6W3W, and 6WVS. In the experiments described in this

study, we ran simulated annealing over 30,000 iterations

with Tmax = 1 across at least 50 seeds for each de novo

backbone.

A.3.3. SECONDARY STRUCTURE DESIGN

We performed protein design with partial constraints on a

protein by constraining the secondary structure correspond-

ing to different segments of the protein sequence. We place

a weight of 10 on the secondary structure constraint and

weights of 1 on pTM, pLDDT and hydrophobics constraints.

Our programs specify the secondary structure correspond-

ing to two discrete subsequences, where we program (1) all

alpha, (2) all beta, and (3) mixed alpha and beta secondary

structure. We ran simulated annealing over 30,000 iterations

Tmax = 1 for 10 seeds for each of these three programs (30

optimization trajectories in total).

A.3.4. SINGLE FUNCTIONAL SITE SCAFFOLDING

To program functional site scaffolding on a de novo back-

bone, we divide a single-chain sequence into three segments:

a sequence in the middle segment (with an all-atom coordi-

nation constraint and a surface exposure constraint) flanked

by two “free” sequences. pTM, pLDDT, and hydrophobics

constraints are also applied to the full protein. We apply

a weight of 2 to the cRMSD and dRMSD constraints, and

a weight of 1 to the pTM, pLDDT, and hydrophobics con-

straints.

We attempted to scaffold five protein binding sites, the first

three of which were successfully scaffolded by Wang et al.

(20):

1. IL10: We used the residue indices 31–40, inclusive, of

chain L in the PDB structure 1Y6K, corresponding to

the IL10 binding site of IL-10R1 (34).

2. ACE2: We used the residue indices 5–23, inclusive,

of chain A in the PDB structure 6M0J, corresponding

to the ACE2 binding site of the SARS-CoV-2 spike

receptor binding domain (RBD) (35).

3. C3d: We used the residue indices 104–126 and 170–

184, inclusive, of chain A in the PDB structure 1GHQ,

corresponding to the C3d binding site of complement

receptor 2 (36).

4. HA2: We used the residue indices 14–21, 33–42, and

45–49, inclusive, of chain B in the PDB structure 5JW3,

corresponding to the influenza HA2 epitope of the

antibody MEDI8825 (37).

5. RBD: We used the residue indices 439–450 and 498–

506, inclusive, of chain C in the PDB structure 7MMO,

corresponding to the SARS-CoV-2 RBD epitope of the

antibody bebtelovimab (38).

We ran simulated annealing over 30,000 iterations with

Tmax = 1 for 1,000 seeds for each of the five binding sites

(5,000 optimization trajectories in total).

A.3.5. SYMMETRIC AND HOMO-OLIGOMER DESIGN

We first program single-chain symmetry using a rotational

symmetry constraint applied to the top-level node. In our

program, we also tie the sequences across the subsequences

corresponding to the asymmetric units such that we only use

a single terminal symbol; an example program for design-

ing 3-fold symmetry is provided in Figure 3A. We place a

weight of 1 on the symmetry constraint, as well as weights

of 1 on pTM, pLDDT, and hydrophobics constraints. We

also place length constraints on the terminal nodes. We spec-

ify programs where we increase the fold-symmetry from 3-

to 8-fold. We also vary the lengths that constrain the termi-

nal symbol such that the full sequence has approximately

200, 300, or 400 residues (for example, a 200-residue pro-

tein with 3-fold symmetry would have length constraints of

66 on its terminal symbols). We ran simulated annealing

over 30,000 iterations with a starting temperature of 1 for

10 seeds for each of the six fold symmetries and each of

the three length constraints (for a total of 180 optimization

trajectories).

We also designed larger homo-oligomers similarly, but re-

moving the single-chain constraint from the top-level node.

We designed trimeric, tetrameric, hexameric, and octameric

homo-oligomers with a globular symmetry constraint ap-

plied to the top level node. We placed a weight of 1 on

the symmetry constraint, as well as weights of 1 on pTM,

pLDDT, and hydrophobics constraints. We also placed a

weight of 0.1 on globularity constraints that are applied to

each terminal symbol. We applied length constraints such

that the full complex contained 720 residues (for example,

the hexamer would consist of length-120 protomers). We ran

simulated annealing over 30,000 iterations with Tmax = 1
for 10 seeds for each of oligomerization levels (for a total

of 40 optimization trajectories).
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A.3.6. TWO-LEVEL SYMMETRY DESIGN

We program two levels of symmetry using the productions

x1 → x2 · · · (top-level) and (5)

x2 → A · · · (bottom-level). (6)

In these programs, we place the single-chain constraint on

x2, so the final designs are protein homo-oligomers. We

place a globularity symmetry constraint on x1; to control the

top-level symmetry, we repeat x2 according to the desired

oligomerization. We place a rotational symmetry constraint

on x2; to control the bottom-level symmetry, we repeat A

according to desired fold symmetry. We also place pTM,

pLDDT, and hydrophobics constraints on the full protein;

we place globularity constraints on x2. We compile con-

straints into an energy function with weights of 1 on all

terms.

We enumerated programs over the grid varying both the top

and bottom levels of symmetry from 2 to 4. We constrained

lengths to 200 residues in total for the dimer of 2-fold;

length-250 for the dimer of 3-fold; length-400 for the dimer

of 4-fold, the trimer of 2-fold, the trimer of 3-fold, and the

tetramer of 2-fold; length-450 for the trimer of 4-fold and

the tetramer of 3-fold; and length-500 for the tetramer of

4-fold. We ran simulated annealing over 30,000 iterations

with Tmax = 1 for 10 seeds for each of these programs (for

a total of 90 optimization trajectories).

A.3.7. STRUCTURAL NOVELTY

We quantify a given design for structural novelty by run-

ning an exhaustive search over the PDB version 2022-08

(http://www.rcsb.org/) (39) to find the experimen-

tal structure with the highest TM-score to the designed struc-

ture, normalizing by the designed structure length, using

TM-align version 20210107 (40).

A.3.8. INVERSE FOLDING ROUNDTRIP EXPERIMENTS

We assessed the “designability” of a structure prediction

produced by our optimization procedure by “roundtripping”

the protein through an inverse folding model. More specif-

ically, given a predicted structure from our optimization

loops, we first use ESM-IF1 (21), an independently trained

inverse folding model, to sample 10 sequences with tem-

perature 0.1 from the backbone coordinates. We then run

these sequences through ESMFold and compute the cRMSD

between the starting and the roundtripped backbone atoms

of the predicted structure.

We performed this roundtrip experiment for 1,000 predicted

structures that were obtained by first uniformly sampling

one of the 180 symmetric single-chain optimization trajec-

tories and then uniformly sampling one of the intermediate

structure predictions within a given design loop (i.e., we do

not restrict this analysis to the best pLDDT structure over a

design loop, which are highly biased toward high pLDDTs).

We report the relationship between ESM-IF1 perplexities of

all sample structures and the corresponding cRMSD values.

We also report the relationship between the pLDDT of the

starting structure and the minimum RMSD over the struc-

ture for the 10 inverse-folded sequences. We also repeated

the same experiment for 1,000 predicted structures that were

obtained by first uniformly sampling over the 90 two-level

symmetry optimization trajectories and then uniformly sam-

pling one of the intermediate structure predictions within a

given design loop. We also report the same metrics as in the

single-chain evaluation.

A.3.9. SYMMETRIC FUNCTIONAL SITE SCAFFOLDING

We designed proteins that symmetrically scaffold multiple

functional sites by using the tree described for the single-

site functional scaffold but replicating it according to the

desired fold symmetry and adding a rotational symmetry

constraint to the top-level node; an example program for a 3-

fold functional site scaffold can be found in Figure 5A. We

use weights of 10 on the cRMSD and dRMSD constraints

and weights of 1 on the pTM, pLDDT, rotational symmetry,

binding site surface exposure, and hydrophobics constraints.

We ran simulated annealing over 30,000 iterations with a

starting temperature of 1 over 20 seeds for the design of 3-

fold scaffolds of the IL10 and ACE2 binding sites described

above, as well as 20 seeds for the design of 5-fold scaffolds

of the ACE2 binding site (for a total of 60 optimization

loops).

A.3.10. HIERARCHICAL ASYMMETRIC SYMMETRY

DESIGN

We increased the level of hierarchical complexity in our

programs by designing with three levels of constraints. The

top level specifies two asymmetric subunits. Each asym-

metric subunit itself has two-level symmetry (similar to the

setting described above): we specifically consider the dimer

of 2-fold (2x2), the dimer of 3-fold (2x3), and the trimer

of 2-fold (3x2). We write programs consisting of (1) two

asymmetric 2x2s complexed together, (2) a 2x2 and a 3x2

complexed together, and (3) a 2x2 and a 2x3 completed

together. An example program for the two asymmetric 2x2s

is provided in Figure 5C. We use weights of 1 on all con-

straints (pTM, pLDDT, hydrophobics, rotational/globular

symmetry, and globularity). We ran simulated annealing

over 30,000 iterations with Tmax = 1 over 10 seeds for each

of the three programs described above (for a total of 30

optimization loops).
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Figure S1. Additional plots for secondary structure design and functional site scaffolding. (A) ESMFold pLDDT values for different

secondary structure design specifications (10 seeds per specification). A red line is plotted at pLDDT = 0.7. (B) The fraction of residues

that are part of alpha helices for different secondary structure design specifications (10 seeds per specification). (C) The fraction of

residues that are part of beta sheets for different secondary structure design specifications (10 seeds per specification). (D) ESMFold

pLDDT values for different functional site scaffolding design runs (1,000 seeds per binding site).
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Figure S2. Additional plots for the design of symmetric single chains. (A) ESMFold pLDDT values for different fold symmetry design

specifications (30 seeds per specification). A red line is plotted at pLDDT = 0.7. (B) Ten randomly sampled designs for the design of

5- and 8-fold symmetry. (C) TM-scores for different fold symmetry design specifications (30 seeds per specification); the TM-score is

between the best design and the closest structure in the PDB. A red line is plotted at TM-score = 0.6. (D) Samples obtained by inverse

folding with ProteinMPNN. On the x-axis is the pLDDT of the designed structure prior to the roundtrip and on the y-axis is the roundtrip

RMSD.
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Figure S3. Additional plots for the design of two-level symmetry. (A) ESMFold pLDDT values for different two-level symmetry design

specifications (10 seeds per specification). A red line is plotted at pLDDT = 0.7. (B) All ten of the designs of a dimer of 2-fold and

of a trimer of 2-fold symmetry. (C) TM-scores for different two-level symmetry design specifications (10 seeds per specification); the

TM-score is between the best design and the closest structure in the PDB. A red line is plotted at TM-score = 0.6.
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Figure S4. Additional plots for multi-level hierarchical design (A) ESMFold pLDDT values for different binding site scaffolds with fold

symmetry (20 seeds per specification). A red line is plotted at pLDDT = 0.7. (B) RMSD values for different binding site scaffolds with

fold symmetry (20 seeds per specification). The mean RMSD is reported across either three or five binding sites. A red line is plotted at

pLDDT = 0.7. (C) Ten randomly sampled designs for the design of 3- and 5-fold symmetric ACE2 binding site scaffolds. (D) ESMFold

pLDDT values for different asymmetric-symmetric design specifications (10 seeds per specification). A red line is plotted at pLDDT =

0.7. (E) All ten of the designs of an asymmetric complex of two dimers of 2-fold symmetry.
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