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Abstract 

The development of automatic methods for image and video quality assessment that correlate well 
with the perception of human observers is a very challenging open problem in vision science, with 
numerous practical applications in disciplines such as image processing and computer vision, as well 
as in the media industry. In the past two decades, the goal of image quality research has been to 
improve upon classical metrics by developing models that emulate some aspects of the visual system, 
and while the progress has been considerable, state-of-the-art quality assessment methods still share a 
number of shortcomings, like their performance dropping considerably when they are tested on a 
database that is quite different from the one used to train them, or their significant limitations in 
predicting observer scores for high framerate videos. In this work we propose a novel objective 
method for image and video quality assessment that is based on the recently introduced Intrinsically 
Non-linear Receptive Field (INRF) formulation, a neural summation model that has been shown to 
be better at predicting neural activity and visual perception phenomena than the classical linear 
receptive field. Here we start by optimizing, on a classic image quality database, the four parameters 
of a very simple INRF-based metric, and proceed to test this metric on three other databases, showing 
that its performance equals or surpasses that of the state-of-the-art methods, some of them having 
millions of parameters. Next, we extend to the temporal domain this INRF image quality metric, and 
test it on several popular video quality datasets; again, the results of our proposed INRF-based video 
quality metric are shown to be very competitive.  

 

1. INTRODUCTION 

Image quality evaluation is of crucial importance in the media industry, where it has numerous 
practical applications, but also in applied disciplines such as image processing and computer vision, 
where it plays an important role in the development, optimization, and testing of algorithms. 
Subjective evaluation, consisting in measuring image quality by human beings, is costly and time-
consuming. Therefore, the goal of objective quality assessment is to develop automatic methods that 
produce quantitative measures that are consistent with the perception of human observers. But this is 
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a very challenging open problem in vision science, given the limitations of current visual perception 
models and the way they are exacerbated by emerging image display technologies of ever-increasing 
resolution, contrast, color gamut and framerate (Bertalmío, 2019). 

Image quality methods can be divided into three categories: full-reference methods, which compare 
an original image with a distorted version of it; reduced-reference methods, that compare some 
characteristics of the distorted and reference image since the complete reference image is not 
available; and no-reference methods (also called blind models),  operating solely on the distorted 
image. 

In this article we will focus on full-reference methods, which constitute the vast majority of image 
quality approaches. A simple solution, and possibly the most widely used metric to estimate image 
quality, is the peak signal-to-noise ratio (PSNR), which is a nonlinear transform of the mean square 
error (MSE) between the reference and the distorted images, another very popular metric. These 
metrics are simple to calculate, and they have a clear physical meaning; however, they are not very 
well correlated with perceived visual quality (Wang et al., 2004). 

Therefore, in the last two decades, the goal of image quality assessment (IQA) research has been to 
improve these metrics by developing more sophisticated methods that mimic some aspects of the 
visual system. For instance, the Normalized Laplacian Pyramid Distance (NLPD) (Laparra et al., 
2016) is based on transformations present in the early visual system: local luminance subtraction and 
local gain control, obtained from a decomposition of images using a Laplacian pyramid; the 
Structural Similarity Index (SSIM) (Wang et al., 2004) is based on the hypothesis that the human 
visual system is highly adapted for extracting structural information from the viewing field; the 
Feature Similarity Index (FSIM) (Zhang et al., 2011) is based on the assumption that the human 
visual system understands an image according to its low-level features, such as the phase 
congruency, which measures the significance of a local structure, and the image gradient magnitude, 
which encodes contrast information; the Visual Signal-to-Noise Ratio (VSNR) (Chandler & Hemami, 
2007) analyses visual perception distortions in the wavelet domain; the Noise Quality Measure 
(NQM) (Damera-Venkata, Kite, Geisler, Evans & Bovik, 2000) is based on the contrast pyramid by 
Peli (1990); and the Visual Information Fidelity Measure (VIF) (Sheik & Bovik, 2006) is based on 
natural scene statistics and models of the image degradation process and the human visual system. 
There are also learning-based methods that learn a metric from a set of training images and their 
corresponding perceptual scores. For instance, the Learned Perceptual Image Patch Similarity 
(LPIPS) metric (Zhang et al., 2018) is based on the hypothesis that perceptual similarity is a 
consequence of visual representations, as the authors found that internal activations of networks 
trained on high-level image classification tasks correspond well to human perceptual judgments; 
another example is the Deep Image Structure and Texture Similarity (DISTS) Metric (Ding et al., 
2020), which uses a variant of the VGG convolutional neural network to construct a function that 
combines structure and texture similarity measurements between corresponding feature maps of the 
reference and distorted images; and PerceptNet (Hepburn et al., 2020), which is a convolutional 
neural network where the architecture reflects the structure and various stages in the human visual 
system: a cascade of canonical linear filters and divisive normalization layers simulate the retina-
LGN-cortex pathway. 

For video quality assessment (VQA), a simple option is to apply image quality metrics on a frame-
by-frame basis, but this type of approach often provides a limited performance, especially in the case 
of high framerate (HFR) videos (Madhusudana et al., 2021). Therefore, the state-of-the-art in VQA 
are algorithms specifically developed for video, including the Spatio-temporal Reduced Reference 
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Entropic Differences (ST-RRED) (Soundararajan & Bovik, 2012) or the Spatial Efficient Entropic 
Differencing for Quality Assessment (SpEED) (Bampis et al., 2017), both measuring quality 
deviations by computing spatial and temporal entropic differences in the band-pass domain; Frame 
Rate dependent Quality Metric (FRQM) (Zhang et al., 2017), which outputs quality measurements by 
calculating absolute differences between sequences that have been temporally filtered by a wavelet; 
Video Multi-method Assessment Fusion (VMAF) (Li et al., 2016), which, using a Support Vector 
Regressor, fuses a frame-difference feature with a detail feature and with features obtained from a 
Visual Information Fidelity (VIF) measure (Sheikh & Bovik, 2006); Deep Video Quality Assessor 
(deepVQA) (Kim et al., 2018), which combines a CNN model with a Convolutional Neural 
Aggregation Network (CNAN) used for temporal pooling; the Visual Quality Metric (VQM) (Pinson 
& Wolf, 2004), which uses reduced-reference technology (ITU-T, 2005) to provide estimates of 
video quality; the perceptual spatio-temporal frequency-domain based MOtion-based Video Integrity 
Evaluation (MOVIE) index (Seshadrinathan & Bovik, 2009), which monitors distortions that are 
perceptually relevant along motion trajectories; or the more recent Generalized Spatio-Temporal 
Index (GSTI) (Madhusudana et al., 2020), which calculates entropic differences between responses 
that have been temporally band-pass filtered.  

Despite the notable advances in the field, it is important to point out that state-of-the-art quality 
assessment methods still share a number of shortcomings, like their performance dropping 
considerably when they are tested on a database that is quite different from the one used to train them 
(Ding et al., 2021), or their significant difficulties in predicting observer scores for HFR videos 
(Madhusudana et al., 2021). In this study we aim to overcome these limitations by estimating 
perceived image and video quality using a model for neural summation introduced recently, called 
the Intrinsically Non-linear Receptive Field (INRF) (Bertalmío et al., 2020) formulation; the INRF 
model successfully explains experimental data that linear receptive field models are unable to explain 
or do not explain accurately (Bertalmío et al., 2020), and it has been shown to be very promising as a 
tool to develop IQA methods given its ability to model complicated perceptual phenomena. 

The main contributions of this work are as follows. Firstly, we start by optimizing, on a classic image 
quality database, the four parameters of a very simple INRF-based metric, and proceed to test this 
metric on three other databases, showing that its performance equals or surpasses that of the state-of-
the-art IQA methods, some of them having millions of parameters. Secondly, we extend to the 
temporal domain this INRF image quality metric, and test it on several popular video quality 
databases; our results show that the proposed INRF-based VQA is very competitive, ranking best in 
several challenging scenarios like those provided by a very recent dataset for high frame rate videos. 
Finally, and to the best of our knowledge, the approach of using a neural summation model to create 
IQA and VQA methods is completely novel, and given its success it might pave the way for other 
neuroscience models to inform the design of new image quality assessment algorithms. 

The structure of this manuscript is as follows. Section 2 explains the INRF model and how it is used 
for IQA and VQA. Section 3 provides details on how the INRF parameters are optimized for IQA 
and VQA usage, describes the different datasets on which performance is tested and explains further 
points on how the assessment of INRF for IQA and VQA models is performed. Section 4 shows the 
performance of INRF, employed for IQA and VQA, on different datasets, and results are compared 
with performance of other state-of-the-art IQA and VQA algorithms on those same datasets. Finally, 
in Section 5, results and their implications are discussed. 
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2. PROPOSED METHODS FOR IQA AND VQA 

2.1. Overview of the INRF neural summation model 

In vision science, the receptive field (RF) of a neuron is the extent of the visual field where light 
influences the neuron’s response. In the “standard model” of vision, the first stage is a filtering 
operation consisting of multiplying the intensities at each local region of an image stimulus by the 
values of a filter (the weights of the RF), and summing the resulting intensities (Carandini et al., 
2005); this weighted sum may then be normalized by the responses of neighboring neurons and 
passed through a point-wise nonlinearity. Many scientists have come to accept this linear-plus-
nonlinear (L+NL) formulation as a working model of the visual system (Olshausen & Field, 2005), 
both in visual neuroscience and in visual perception, and while there have been considerable 
improvements on, and extensions to, the standard model, the linear RF remains as the foundation of 
most vision models. But there are a number of problems that are inherent to considering the RF as 
having a linear form, of which we will highlight three: 

• adaptation makes the linear RF change with the input and, in fact, the linear RF has been 
observed to have different sizes, orientations, preferred directions or even different polarity 
(ON/OFF) for different stimuli (Cavanaugh et al., 2002; Coen-Cagli et al., 2012; Jansen et al., 
2018); 

• a linear RF depends on the choice of basis functions used to estimate it (Vilankar & Field, 
2017); 

• the linear RF is not supported by more recent neuroscience, and a growing number of 
neuroscience studies show that in general individual neurons cannot be modeled as a linear 
RF followed by an output nonlinearity (Poirazi et al., 2003; Polsky et al., 2004; London and 
Häuser, 2005; Silver, 2010; Rodrigues et al., 2021). 

In contrast, the INRF formulation is a physiologically-plausible single-neuron summation model 
which, unlike the linear RF: 

• embodies the efficient representation principle and can remain constant in situations where 
the linear RF must change with the input; 

• is a generalization of the linear RF that is much more powerful in representing nonlinear 
functions; 

• is consistent with more recent studies on dendritic computations. 

The INRF equation for the response of a single neuron at location � is: 

������� �	
�
�

����� � 
	��
�

������� �	�
�

��� � �������� �1� 
where 
�  stands for a 2D kernel 
��, ���, locations ��  are neighbors of �, 
 is a scalar, �� stands for 
a 2D kernel ���, ���, � represents a non-linearity, and � is also a 2D kernel. 
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The model is based on knowledge about dendritic activity: some dendritic branches act as non-linear 
units, a single non-linearity is not enough to model dendritic computations, and there is feedback 
from the neuron soma to the dendrites. In the INRF model, some dendrites are linear and their 
contributions are summed with weights 
� , and some other dendrites are nonlinear and their 
contributions are summed with weights ��. The feedback from the soma is reflected in the shifting 
nature of the nonlinearity �, expressed by the term ∑ �� ��� � �������, which has the effect of 
making the nonlinearity change for each contributing location �� . 
Using a single, fixed INRF module where the kernels 
,�, � have Gaussian form and the 
nonlinearity is a power-law sigmoid, and applying it to grayscale images, where � and ��  now denote 
pixel locations and ���� are pixel values, the model response ������� emulates the perceived image 
and can explain several visual perception phenomena that challenge the standard model: 

• The “crispening” effect. Brightness perception curves show “crispening” (slope increase) at 
the surround luminance level when the background is uniform, but the phenomenon 
disappears for salt and pepper background (Kane & Bertalmío, 2019). The INRF response 
qualitatively replicates both cases with a fixed set of parameters, which is not possible with a 
linear RF formulation. 

• White’s illusion under noise. The INRF output qualitatively predicts the observers’ response 
to White’s illusion when bandpass noise is added, while in Betz et al. (2015) none of the 
vision models that were tried, based on linear RFs, were able to replicate this behavior. 

• Light/dark asymmetry (the “irradiation illusion”). This phenomenon can be reproduced with 
a fixed INRF formulation, while a L+NL model needs to change with the stimulus (Kremkow 
et al., 2014). 

In short, we could say that the INRF formulation, a non-linear transform of light intensity values, is a 
good estimator of brightness perception. This is a very valuable property when creating an image 
quality assessment method, as we discuss next. 

 

2.2. IQA with the INRF model 

Given that applying the INRF model to a grayscale image produces a result that appears to closely 
resemble how the image is perceived, Bertalmío et al. (2020) proposed a very simple image quality 
metric: given an image �, and its distorted version ��, the INRF transformation is applied to both of 
the images, obtaining � and ��, and then the root mean square error (RMSE) between the processed 
images is computed. The underlying idea here was that the INRF model performs a sort of 
“perceptual linearization”, a nonlinear transform that brings light-intensity images (whose direct 
comparison, with metrics like RMSE or PSNR, does not correlate well with perception), to the space 
corresponding to perceptual images (which can now be compared with a simple Euclidean metric 
like RMSE). This metric had only five parameters that were optimized for the “crispening” 
brightness perception experiment mentioned above (with � a power-law sigmoid and � a delta 
function) on a handful of synthetic images, and despite this fact and the simplicity of the metric, 
when tested on the natural image database TID2013 (Ponomarenko et al., 2015) it was shown to have 
a performance very similar to that of the state-of-the-art deep learning perceptual metric LPIPS 
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(Zhang et al., 2018), with over 24 million parameters and close to 500K human judgements for 
labeling pair-comparison preferences on the 160,000+ natural images it used for training. 

Based on this very promising result, here we propose a full-reference INRF-based IQA method in the 
following way: 

1 Given a grayscale image �, the INRF transformation applied to it produces an image � whose 
value at each pixel location � is computed as: 

���� � ������� � 
 � ���� � 
	��
�

������� � � � ������2� 
  where the kernels 
,�, � are 2D Gaussians of standard deviations ��, �� , �� respectively, 
 

is a scalar, � is a sigmoid that has the form of an atan function (not a power-law sigmoid as in 
the original work by Bertalmío et al. (2020)), and the symbol � denotes the 2D convolution. 

2 The INRF-IQA value comparing image � and its distorted version �� is computed as: 

����‐�����, ��� �  !�"��, ��� � #!�"��������, ����������3� 
  where the INRF transform of an image is computed as in Eq. 2. 

3 The values for the four parameters of the metric, namely �� , �� , �� and 
, are chosen so as to 
maximize the correlation between the INRF-IQA perceptual distance of Eq. 3 and the mean 
opinion scores (MOS) of human observers over the large-scale natural image database 
TID2008 (Ponomarenko et al., 2009) (see Methods). On the contrary, in Bertalmio et al. 
(2020), parameters are optimized for a specific brightness perception experiment. 

 

2.3. VQA with the INRF model 

We propose as a full-reference INRF-based VQA metric a straightforward combination of the INRF-
IQA metric of Eq. 3 with a simple temporal pooling strategy: the image metric is applied frame-by-
frame, and then the results are averaged. That is, given a reference video % and a distorted version %�, the output of our proposed INRF-VQA metric is: ����‐%���%, %�� � 
&'()����‐������� , ����*�4� 
where ��  and ��� are, respectively, the i-th frame of % and %�, and the IQA metric ����‐���� has 
the same form as in Eq. 3 and the same value of 3 for the parameter 
, but the spatial kernel sizes ��, �� , �� are scaled by a factor , that denotes the ratio between the size of the frames in the video % 
and the size of the images in TID2008 (that were used to optimize ��, �� , ��). For instance, if % is a 
2K video of resolution 1920�1080, and given that images in TID2008 are of size 512�384, the 

scaling factor is , � �	
�
��
 � 3.75. 
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3. METHODS 

3.1. Optimization details 

The parameter values of INRF-IQA (Eq. 3) are found through optimization on the TID2008 dataset 
(Ponomarenko et al., 2009) to maximize the Pearson correlation coefficient (PLCC) between the 
observers’ scores for the images in TID2008 and the corresponding INRF-IQA scores. In particular, a 
grid search optimization method is used to optimize the INRF-IQA parameter values ��, �� , �� and 
, and the optimal parameters found are:  �� � 1.74, �� � 25, �� � 1 and 
 � 3. 

3.2. IQA datasets 

We use the LIVE (Sheikh et al., 2006), CSIQ and TID2013 (Ponomarenko et al., 2015) datasets to 
test the performance of our INRF-IQA metric on images; each dataset also containing subjective 
image quality scores from observers for those same images. The LIVE dataset consists of 779 
images. It has a total of 29 reference images whose distorted versions are achieved by applying 5 
different types of distortion (Gaussian blur, additive white Gaussian noise, JPEG compression, JP2K 
compression and a simulated fast fading Rayleigh channel) with different distortion levels. The CSIQ 
dataset has 866 images, with 30 being reference ones. Their distorted versions are obtained through 
Gaussian blur, Gaussian pink noise, Gaussian white noise, JPEG compression, JP2K compression 
and contrast change. The TID2013 dataset extends the previous TID2008 one (Ponomarenko et al., 
2009). It is composed of 3000 images, out of which 25 are reference ones. These are distorted to 
achieve the rest of the images by applying 24 distortion types (7 new types of distortions with respect 
to TID2008) each with 5 distortion levels. Distortion types are rich, spanning from Gaussian noise, 
Gaussian blur, lossy compression of noisy images, and distortions such as JPEG to more uncommon 
distortions like non-eccentricity pattern noise. 

3.3. VQA datasets 

We test the performance of our INRF-VQA model on four popular video quality databases, all 
publicly available and containing observers’ scores for a number of common spatial and temporal 
distortions: LIVE-YT-HFR, LIVE-MOBILE, LIVE-VQA and VQEG-HD3. 

The very recent LIVE-YT-HFR dataset (Madhusudana et al., 2021) spans 16 different video 
categories, each showing a different progressively scanned natural scene.  Out of those 16 contents, 
11 have 2K spatial resolution and 5 have 4K resolution. Within each of the video contents, videos 
with different frame rates exist, out of which we use those of 120 fps, 60 fps and 30 fps. Each video 
content with a given frame rate has 5 possible compression levels (FFmpeg VP9 compression 
[Mukherjee et al., 2015], and single-pass encoding varying the Constant Rate Factor [CRF]). For 
instance, a given content and its videos with a given frame rate sum a total of 5 videos: 1 video with 
lossless compression (CRF=0) plus 4 videos with compression levels ranging from CRF=4 to 
CRF=63. Finally, for each video content, the 120 fps video with lossless compression (CRF=0) is 
referred to as the reference sequence. All the remaining videos within a content (that is, 120 fps 
videos with CRF values larger than 0, and 60 fps and 30 fps videos), are the distorted sequences. 

The LIVE-MOBILE dataset (Moorthy, Choi, Bovik & De Veciana, 2012a; Moorthy, Choi, 
deVeciana & Bovik, 2012b; Moorthy, Choi, deVeciana & Bovik, 2012c) consists of 12 reference 
videos with frame rates of 30 fps and a spatial resolution of 1280x720 pixels over which different 
distortion types are applied to produce distorted videos. The existing distortion types are: H.264 
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compression at four different rates; wireless channel packet-loss distortion; freeze-frames where a 
loss of temporal continuity exists after freeze and where no such loss of temporal continuity takes 
place (not used in the analyses); rate adaptation distortion (i.e. compression rate dynamically varies 
between two compression rates); and temporal dynamics (compression rate is varied between several 
rates with different rate-switching structures). Subjective measurements acquired through viewing the 
different videos on a small mobile screen are available. 

The LIVE-VQA dataset (Seshadrinathan, Soundararajan, Bovik & Cormack, 2010a; Seshadrinathan, 
Soundararajan, Bovik & Cormack, 2010b) consists of 10 reference videos with a frame rate of 25 fps 
or 50 fps and a spatial resolution of 768 3 432 pixels. The existing distortion types are MPEG2 
compression, H.264 compression, simulated transmission through error-prone IP networks and 
simulated transmission through error-prone wireless networks. 

Finally, the VQEG-HD3 dataset (Video Quality Experts Group, 2010) consists of 13 reference videos 
with a frame rate of 30 fps and a spatial resolution of 1920 3 1080 pixels. Distorted videos are 
achieved by applying the distortion levels hrc04, hrc07, hrc16, hrc17, hrc18, hrc19, hrc20 and hrc21.  

 

3.4. Evaluation of INRF-IQA and INRF-VQA models 

Existing subjective image quality and video quality scores in each of the datasets are respectively 
correlated with our INRF-IQA and INRF-VQA metrics. In the case of INRF-IQA, SRCC is 
calculated. For INRF-VQA, SRCC and PLCC are obtained. Before calculating PLCC, predicted 
objective video quality scores are passed through a four-parameter sigmoid function as described in 
Antkowiak et al. (2000): 

�̂��� � 5
 5� � 5
1 6 &
��
��|��| �
�5� 

where � stands for the raw INRF-VQA scores, and5�, 5
, 5� and 5� are its parameters. �̂ 

 

4. RESULTS AND COMPARISONS 

4.1. IQA 

Performance of our INRF-IQA metric is evaluated on images from the LIVE (Sheikh et al., 2006), 
CSIQ and TID2013 (Ponomarenko et al., 2015) datasets, and compared with that of other full-
reference IQA methods; results are shown in Table 1. We can see that the performance of INRF-IQA 
is consistently very good across all datasets, surpassing CNN-based models such as LPIPS (Zhang et 
al., 2018) and DISTS (Ding et al., 2020), as well as other extensively used classical methods like 
NLPD (Laparra et al., 2016). Overall, the best IQA performance is observed for PerceptNet (Hepburn 
et al., 2020), GMSD (Xue et al., 2014) and our INRF-IQA metric. Let us note that PerceptNet was 
trained on TID2008 (as INRF-IQA was), while GMSD needs the tuning of one parameter whose 
value was selected so as to provide maximum performance in the three datasets considered. 
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Table 1. Numbers indicate Spearman rank correlation coefficients (SRCC). The INRF-IQA metric is 
compared against a set of full-reference image quality methods: MS-SSIM (Wang et al., 2003), CW-
SSIM (Wang and Simoncelli, 2005), VIF (Sheikh & Bovik, 2006), NLPD (Laparra et al., 2016), 
GMSD (Xue et al., 2014), MAD (Larson & Chandler, 2010), FSIM (Zhang et al., 2011), VSI (Zhang 
et al., 2014), LPIPS (Zhang et al., 2018), DISTS (Ding et al., 2020), and PerceptNet (Hepburn et al., 
2020). The best three correlation values per column are marked in bold. Adapted table from Ding et 
al. (2021). 

 

 LIVE CSIQ TID2013 (mean) 

MS-SSIM 0,951 0,886 0,782 (0,873) 

CW-SSIM 0,781 0,738 0,680 (0,733) 

VIF 0,963 0,911 0,676 (0,850) 

NLPD 0,938 0,937 0,800 (0,892) 

GMSD 0,960 0,950 0,804 (0,905) 

MAD 0,960 0,941 0,773 (0,891) 

FSIM 0,963 0,916 0,802 (0,894) 

VSI 0,950 0,923 0,793 (0,889) 

LPIPS 0,932 0,837 0,616 (0,795) 

DISTS 0,942 0,905 0,764 (0,870) 

PerceptNet 0,98 0,96 0,87 (0,93) 

INRF-IQA 0,947 0,952 0,802 (0,900) 

Numerical implementation: code will be publically available at http://www.11111X.com 

 

4.2. VQA 

We start evaluating the performance of our INRF-VQA metric on videos from the very recent (and 
challenging) LIVE-YT-HFR dataset (Madhusudana et al., 2021). This dataset consists of reference 
videos of 120 fps frame rate for which distorted versions are generated by reducing their frame rate 
and applying different compression levels. Subjective measurements of video quality are provided 
for each of the videos. 

It is important to note that our INRF-VQA metric, as well as many other full-reference metrics, needs 
reference and distorted video sequences to have the same number of frames. For this reason, when a 
distorted video has a lower frame rate than the reference video, either the reference video must be 
downsampled to match the number of frames in the distorted video or the distorted video must be 
upsampled to match the reference. Madhusudana et al., 2021 (see their Table 5), who test the 
performance of several VQA algorithms on the LIVE-YT-HFR dataset, use naive temporal 
upsampling by frame duplication of distorted videos. In doing so, they argue that downsampling may 
introduce undesired temporal artifacts in reference videos. VMAF (Li et al., 2016) is a very 
successful, state-of-the-art, full-reference VQA metric proposed and used by Netflix, and its 
performance comparison against our INRF-VQA metric can be seen in Table 2. Performance is 
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shown for different frame rates in the LIVE-YT-HFR dataset: 120 fps, 60 fps and 30 fps; and in the 
case of 60 fps and 30 fps, both an upsampling (results taken from Madhusudana et al., 2021) and a 
downsampling approach are used. Upsampling is achieved by frame duplication of distorted videos 
and downsampling is done through frame dropping of reference videos. This way, reference and 
distorted videos have the same number of frames. Spearman and Pearson correlation coefficients 
(SRCC and PLCC) of the objective VQA metrics with subjective video quality scores are displayed. 

Table 2. Numbers indicate SRCC and PLCC for frame rates of 120 fps, 60 fps and 30 fps in the 
LIVE-YT-HFR dataset. The INRF-VQA metric is compared against VMAF (Li et al., 2016). For 60 
fps and 30 fps, INRF-VQA and VMAF results are shown both using frame duplication of distorted 
videos (INRF-VQAdup and VMAFdup respectively) and frame dropping of reference videos (INRF-
VQAdrop and VMAFdrop). VMAFdup results are taken from Madhusudana et al. (2021), their Table 5. 

 
120 fps 60 fps 30 fps 

SRCC PLCC SRCC PLCC SRCC PLCC 

VMAFdup 
0.7943 0.7844 

0.5408 0.6015 0.2855 0.3740 

VMAFdrop 0.6664 0.8003 0.5981 0.8713 

INRF-VQAdup 

0.8507 0.8261 
0.2983 0.2905 0.1198 0.2324 

INRF-VQAdrop 0.7525 0.8262 0.6331 0.8750 

Numerical implementation: code will be publically available at http://www.11111X.com 

  

For 60 fps and 30 fps, and both for INRF-VQA and VMAF, performance is seen to improve when a 
frame dropping strategy rather than a duplication one is used (for which correlations are low). For 
this reason, we use this approach as our preferred choice to evaluate INRF-VQA for 30 fps and 60 
fps.  

Table 3 shows a performance comparison of our INRF-VQA metric (using frame dropping when 60 
fps and 30 fps videos are evaluated) against other state-of-the-art full-reference VQA metrics. SRCC 
and PLCC results of the objective VQA metrics with subjective video quality scores are shown for 
different frame rates in the LIVE-YT-HFR dataset. 

The results in Table 3 demonstrate that INRF-VQA consistently outperforms all state-of-the-art 
algorithms for all frame rates tested, including the highest frame rate of 120 fps (for a fair 
comparison, results for VMAF for 60 fps and 30 fps were also computed using frame dropping, and 
we do not rule out that other methods could also benefit from carrying out the validation in this 
manner). 
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Table 3. Numbers indicate SRCC and PLCC for frame rates of 120 fps, 60 fps and 30 fps in the 
LIVE-YT-HFR dataset. The INRF-VQA metric is compared against a set of full-reference video 
quality methods: PSNR, SSIM (Wang et al., 2004), MS-SSIM (Wang et al., 2003), FSIM (Zhang et 
al., 2011), ST-RRED (Soundararajan & Bovik, 2012), SpEED (Bampis et al., 2017), FRQM (Zhang 
et al., 2017), VMAF (Li et al., 2016), deepVQA (Kim et al., 2018) and GSTI (Madhusudana et al., 
2020). For 60 fps and 30 fps, results for all VQA algorithms are shown using naive temporal 
upsampling of distorted videos except for INRF-VQA and VMAF, where frame dropping of 
reference videos is used. The best three correlation values per column are marked in bold. Adapted 
from Madhusudana et al. (2021). 

 
120 fps 60 fps 30 fps 

SRCC PLCC SRCC PLCC SRCC PLCC 

PSNR 0.6019 0.5937 0.6202 0.5719 0.4414 0.4179 

SSIM 0.7485 0.6726 0.2123 0.1845 0.1108 0.0816 

MS-SSIM 0.6165 0.5843 0.2516 0.1900 0.1929 0.1112 

FSIM 0.7053 0.6368 0.3450 0.2776 0.2487 0.1786 

ST-RRED 0.6745 0.5906 0.5062 0.4457 0.1188 0.0307 

SpEED 0.6827 0.6097 0.1824 0.1110 0.2278 0.0896 

FRQM - - 0.0947 0.0309 0.0983 0.0854 

VMAF 0.7943 0.7844 0.6664 0.8003 0.5981 0.8713 

deepVQA 0.6865 0.6209 0.2527 0.1652 0.1353 0.1059 

GSTI 0.7390 0.7003 0.6015 0.7566 0.4758 0.6689 

INRF-VQA 0.8507 0.8261 0.7525 0.8262 0.6331 0.8750 

Numerical implementation: code will be publically available at http://www.11111X.com 

 

Next, we evaluate our INRF-VQA metric on a very popular dataset, the LIVE-MOBILE  (Moorthy et 
al., 2012a; Moorthy et al., 2012b; Moorthy et al., 2012c).  Table 4 shows, for several popular metrics 
and for INRF-VQA, the results for the different distortion types as well as the overall performance. 
As we can see, INRF-VQA consistently ranks among the best-performing metrics for all distortions. 
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Table 4. Numbers indicate SRCC and PLCC for the different distortion types in the LIVE-MOBILE 
dataset: Compression, Rate Adaptation, Temporal Dynamics and Wireless; as well as global 
performance. The INRF-VQA metric is compared against a set of full-reference video quality 
methods: PSNR, SSIM (Wang et al., 2004), MS-SSIM (Wang et al., 2003), VSNR (Chandler & 
Hemami, 2007), VIF (Sheikh and Bovik, 2006), UQI (Wang & Bovik, 2002), NQM (Damera-
Venkata et al., 2000), Weighted Signal-to-Noise Ratio (WSNR), Sinal-to-Noise Ratio (SNR), VQM 
(Pinson & Wolf, 2004) and MOVIE (Seshadrinathan & Bovik, 2009). The best three correlation 
values per column are marked in bold. Adapted from Moorthy et al. (2012). 

 Compression Rate Adaptation Temporal Dynamics Wireless All 
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC 

PSNR 0.8185 0.7841 0.5981 0.5364 0.3717 0.4166 0.7925 0.7617 0.6780 0.6909 
SSIM 0.7092 0.7475 0.6303 0.6120 0.3429 0.3924 0.7246 0.7307 0.6498 0.6637 

MS-SSIM 0.8044 0.7664 0.7378 0.7089 0.3974 0.4068 0.8128 0.7706 0.7425 0.7077 
VSNR 0.8739 0.8489 0.6735 0.6581 0.3170 0.4269 0.8559 0.8493 0.7517 0.7592 

VIF 0.8613 0.8826 0.6388 0.6643 0.1242 0.1046 0.8739 0.8979 0.7439 0.7870 
UQI 0.5621 0.5794 0.4299 0.2929 0.0296 0.2546 0.5756 0.7412 0.4894 0.6619 

NQM 0.8499 0.8318 0.6775 0.6772 0.2383 0.3646 0.8985 0.8738 0.7493 0.7622 
WSNR 0.7817 0.7558 0.5598 0.5365 0.0942 0.0451 0.7510 0.7276 0.6267 0.6320 

SNR 0.7073 0.6501 0.5565 0.3988 0.2029 0.0839 0.6959 0.6052 0.5836 0.5189 
VQM 0.7717 0.7816 0.6475 0.5910 0.3860 0.4066 0.7758 0.7909 0.6945 0.7023 

MOVIE 0.7738 0.8103 0.7198 0.6811 0.1578 0.2436 0.6580 0.7266 0.6420 0.7157 
INRF-VQA 0.8891 0.8868 0.7137 0.6149 0.5314 0.5834 0.8840 0.8916 0.7701 0.7684 

Numerical implementation: code will be publically available at http://www.11111X.com 

 

To further test our INRF-VQA metric, we evaluate its performance on two other popular video 
quality datasets widely used in the VQA literature, LIVE-VQA (Seshadrinathan et al., 2010) and 
VQEG-HD3 (Video Quality Experts Group, 2010). Table 5 shows the correlation values in these 
datasets for INRF-VQA and for several popular metrics (available in the Metrix Mux toolbox 
[Murthy & Karam, 2010]).  As we can see from these results, INRF-VQA performs very well in both 
datasets. 
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Table 5. Numbers indicate SRCC and PLCC results in the LIVE-VQA (Seshadrinathan et al., 2010a; 
Seshadrinathan et al., 2010b) and VQEG-HD3 (Video Quality Experts Group, 2010) datasets. The 
INRF-VQA metric is compared against a set of full-reference video quality methods obtained from 
the Metrix Mux toolbox (Murthy & Karam, 2010): PSNR, SSIM (Wang et al., 2004), MS-SSIM 
(Wang et al., 2003), VSNR (Chandler & Hemami, 2007), VIF (Sheikh and Bovik, 2006), UQI (Wang 
& Bovik, 2002), NQM (Damera-Venkata et al., 2000), Weighted Signal-to-Noise Ratio (WSNR) and 
Signal-to-Noise Ratio (SNR). The best three correlation values per column are marked in bold.  

 LIVE-VQA VQEG-HD3 
 SRCC PLCC SRCC PLCC 

PSNR 0.5233 0.5489 0.7172 0.7212 
SSIM 0.5251 0.4997 0.6841 0.6938 

MS-SSIM 0.7321 0.7387 0.8567 0.8640 
VSNR 0.6725 0.6883 0.7707 0.7763 
VIF 0.5541 0.5682 0.6785 0.6920 
UQI 0.4370 0.4493 0.6218 0.6283 
NQM 0.6448 0.6687 0.6957 0.6932 
WSNR 0.6410 0.6739 0.6862 0.6991 
SNR 0.5580 0.6027 0.6294 0.6374 

INRF-VQA 0.6697 0.6916 0.8870 0.8914 

Numerical implementation: code will be publically available at http://www.11111X.com 

 

As a final note, we would like to remark that our INRF-VQA metric had its parameters optimized on 
an image dataset rather than a video dataset: this is also the approach followed by several of the best-
performing VQA methods, like MS-SSIM, VIF, VSNR or NQM, while other excellent VQA 
algorithms are specifically trained on video quality datasets, like VMAF or GSTI. 

 

5. DISCUSSION 

In this study we have taken a recent neural summation model and used it as a foundation for novel 
metrics for image and video quality assessment. To the best of our knowledge this is a novel 
approach, that might pave the way for other neuroscience models to inform the creation of IQA and 
VQA methods. 

Our validation, on popular datasets of observer scores, shows that our proposed metrics for IQA and 
VQA compare very well with the state-of-the-art and, very importantly, that their performance is 
consistently very good and does not drop substantially for different datasets, unlike what many 
methods are prone to do and is often the case with those based on deep learning techniques. 

For the very recent, and challenging, video quality dataset LIVE-YT-HFR (Madhusudana et al., 
2021), our metric for VQA is shown to outperform all state-of-the-art models, often by a wide 
margin, for all frame rates considered, including a high frame rate of 120fps. Arguably, the 
distortions caused by the changes in frame rate in the LIVE-YT-HFR dataset are much less 
perceptually relevant than the artifacts created by compression: this would explain why the full-
reference metrics not specifically designed to work with different frame rates (such as VMAF and 
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INRF-VQA) correlate well with the observers’ responses even when the information about the 
temporal differences is reduced (i.e. when reference frames are dropped); on the other hand, frame 
dropping may prevent the metrics to fully capture the potential impact of different frame rates on the 
perceived quality. 

It is important to remark that the parameters of our proposed INRF-VQA metric were optimized for 
image data, i.e. INRF-VQA was not trained on any video dataset. INRF-VQA is a straightforward 
extension of the INRF-IQA method, in which metric values are computed on a frame-by-frame basis 
and then averaged over time to produce a single score for the video: the fact that this simple temporal 
extension of an IQA method works so remarkably well for VQA challenges a common assumption in 
the literature, where it is thought that the best VQA metrics must be developed specifically for video 
(Madhusudana et al. (2021)). 

Regarding future work, we want to point out that for INRF-VQA we have resorted to very simple and 
very effective design choices, like mean average for temporal pooling instead of a more optimal 
strategy (e.g. Rimac-Drlje, Vranjes & Zagar, 2009), or the fact that computations on a present frame 
are not influenced by past frames. For this reason, we believe that embedding temporal processing 
into our INRF-VQA model in a way that is more biologically realistic could prove better. We are also 
interested in extending both INRF-IQA and INRF-VQA so that they consider color and can be 
applied to high dynamic range (HDR), wide color gamut (WCG) and 8K imagery. 
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