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Abstract 

 

HIV infection remains incurable due to the persistence of a viral reservoir during 

antiretroviral therapy. Cannabis (CB) use is prevalent amongst people with HIV 

(PWH), but the impact of CB on the latent HIV reservoir has not been 

investigated.  Peripheral CD4 and CD8 T cells from a cohort of CB-using PWH 

and a matched cohort of non-users on antiretroviral therapy were evaluated for 

expression of maturation/activation markers, HIV-specific T cell responses, and 

the frequency of intact proviral DNA. CB use was associated with increased 

abundance of naïve T cells, reduced effector T cells, and reduced expression of 

activation markers.  CB users also exhibited reduced levels of exhausted and 

senescent T cells compared to non-using controls. HIV-specific CD8 T cell 

responses were unaffected by CB use.  While the abundance of intact 

proviruses was not significantly affected by CB use across the whole cohort, 

we observed that, for participants with high frequency of NKG2A or CD16 

expression in NK cells, CB use was associated with a smaller intact HIV 

reservoir.  This analysis is consistent with the hypothesis that CB use reduces 

activation, exhaustion and senescence in the T cells of PWH and may influence 

the size of the HIV reservoir.  

 

Introduction 

40 million people worldwide are living with human immunodeficiency virus (HIV) 

infection (1).  Although infection can be effectively treated with antiretroviral therapy 

(ART), the persistence of latently infected reservoir cells requires lifelong ART and 

prevents an HIV cure (2–4).   The overall size of this reservoir declines slowly over 
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time, but at a rate that precludes natural elimination of the reservoir within a human 

lifetime (5, 6). The reservoir is also highly dynamic, with temporal waxing and waning 

of individual proviruses within T cell clones during ART among other phenomena  (7, 

8).   

 

Untreated HIV infection is associated with greatly elevated immune activation and 

progressive depletion of CD4 T cells, along with exhaustion of cytotoxic lymphocytes 

(CTLs) (9, 10). This immune activation is a strong predictor of disease progression 

(11), but the mechanisms that contribute to it are not fully understood (12).  ART helps 

to mitigate this immune activation and prevents the development of Acquired Immune 

Deficiency Syndrome (AIDS), but even on therapy, people with HIV (PWH) experience 

elevated levels of immune activation and inflammation (13).  In particular, ART-

suppressed PWH exhibit a number of alterations to the abundance and phenotype of 

immune subsets, including an increased proportion of effector cells, elevated 

expression of activation markers, and elevated concentrations of pro-inflammatory 

cytokines (14, 15).  These perturbations lead to an overall state of elevated immune 

exhaustion and senescence in ART-suppressed PWH.  This chronic immune 

activation is likely to contribute to increased morbidity amongst ART-treated PWH 

compared to uninfected people, including lung, kidney, liver and cardiovascular 

disease (16). The driving mechanisms of this elevated inflammation and immune 

disfunction during ART are unclear but may involve stimulation of the innate immune 

system by residual proviral DNA/RNA, antigen-specific responses to cells that contain 

translation-competent proviruses, or long-lasting immune system alterations induced 

during acute or untreated chronic infection, such as damage to intestinal permeability 

and microbial translocation (17). 
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Cannabis (CB) use is prevalent among PWH, with up to 49% percent of PWH reporting 

some use (18–20).  Despite its high medicinal and recreational use and increasing 

legality, little is known about its effect on the immune system. Δ ! 9-

tetrahydrocannabinol (THC), the major psychoactive cannabinoid constituent, exerts 

its effects via two G-protein coupled receptors CB1 and CB2. CB1 is largely present in 

brain and neurons and mediates the psychoactive properties of cannabis. CB2, by 

contrast, is abundantly expressed in immune cells, including CD4 T cells (21–24). At 

the molecular level, activation of cannabinoid receptors leads to complex pleotropic 

cell-type and context-dependent cellular signaling effects. Prominent among these 

effects are modulation of the MAPK, JNK, and PI3K/AKT pathways (25–27). 

Transcriptomic analyses of human immune cells have revealed that cannabis induces 

numerous transcriptomic pathway alterations in CD4 T cells (28). Currently, 

cannabinoids are canonically thought of as immunosuppressive, reducing TNF-α 

production, T cell proliferation and IL-2 expression after TCR-mediated activation (25, 

29). Other data suggest THC can inhibit T-cell dependent antigen immune responses 

and skew CD4 T cells towards a Th2 phenotype (30).  

 

Even less is known regarding the virological effects of cannabis use within the context 

of HIV infection. In vitro studies have shown inhibition of HIV replication in cultured 

cells by synthetic cannabinoids (31), and some clinical studies suggest reduced viral 

loads in PWH using cannabis (32). The impact of cannabis use on the immune system 

of PWH has been somewhat controversial. In some studies, cannabis has been 

reported to lower inflammation markers and immune activation in ART-suppressed 

PWH (33–37), while other studies have found either no major impact of CB use on the 
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immune system of PWH or an increase in inflammatory markers (38–40).  Animal 

studies of CB administration and HIV infection have also yielded contradictory findings: 

THC dosing of HIV-infected huPBL-SCID mice increased viral loads, while dosing of 

SIV-infected Rhesus Macaques exhibited decreased mortality and viral loads (41, 42).  

 

Therefore, further investigation is needed to fully assess the impact of cannabis use 

on viral dynamics and on the HIV reservoir.  However, quantification of the fraction of 

the reservoir capable of re-establishing infection upon ART cessation is complicated 

by a predominance of defective proviruses with inactivating deletions or hypermutation 

that renders the virus unable to replicate (43, 44). To address this, the intact proviral 

DNA assay (IPDA) was developed to more accurately quantify HIV DNA that is likely 

to be replication-competent (45).  

 

In this study, we performed simultaneous high dimensional immunophenotyping and 

HIV reservoir quantification using IPDA on a CB-using cohort of PWH on suppressive 

ART to examine the impact of chronic cannabis use on cellular activation, immune 

response, and viral reservoir size.  We observed clear alterations of key immune cell 

subsets and changes in T cell activation and senescence in CB users.  Furthermore, 

we observed a trend towards a smaller HIV reservoir size in subgroups of CB users, 

suggesting that the formation and/or maintenance of the HIV reservoir may be 

impacted by CB use. 

 

Results 

Cannabis using PWH cohort. 
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To study the impact of cannabis (CB) use on immune cell phenotype/function and on 

the HIV reservoir, we recruited a cohort of 33 CB-using people with HIV (PWH) and 

42 non-using PWH as controls.  All participants had been HIV infected for more than 

2 years (median 12 years, range 2-34 years) and were ART-suppressed (<50 RNA 

copies/mL) for at least 12 months (median 10 years, range 2-28 years). Cannabis 

users were defined by greater than 12 days of self-reported CB use within the last 90 

days and a positive urine test, while non-users were defined as having no reported CB 

or other illicit drug use in the last 12 months and a negative urine test.  Individuals with 

recent or previous regular use of drugs other than cannabis, as well as individuals with 

alcohol use disorder, were excluded.  Relevant clinical and demographic information 

for the cohorts is shown in Table 1.  Overall, the two groups had similar characteristics 

in terms of age, sex, race, years of infection and therapy, and CD4 nadir. 

 

CB use causes alterations to T cell subset abundance in PWH. 

To determine the impact of CB use on the immune cells of a PWH population, we 

performed high dimensional flow cytometry immunophenotyping designed to 

differentiate T cell subsets, natural killer (NK), and NK T cells (NKT) (Figure 1A).  T 

cells, NK cells and NKT were identified based on CD3 and CD56 expression: T cells 

defined by CD3+/CD56-, NK cells defined by CD3-/CD56+, and NKT cells defined by 

CD3+/CD56+.  T cells were then further subclassified as CD4 T or CD8 T based on 

CD4 or CD8 expression respectively.  Markers of cellular senescence (KLRG1), 

exhaustion (PD-1), and cellular activation (HLA-DR, CD38) were assessed on T cell, 

NK, and NKT sub-populations. Comparing the CB-using cohort to the non-user 

controls, we observed no significant differences for overall abundance of CD4 T cells, 

CD8T cells, NK cells, or NKT cells between the cohorts (Figure 1B, 1C).    Within the 
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CD4 and CD8 T cell compartments, we then examined the abundance of T cells within 

broad developmental subtypes.  We used CCR7 and CD45RA expression to assign 

cells as naïve (Tn - CD45RA+/CCR7+), central memory (Tcm - CD45RA-/CCR7+), 

effector memory (Tem - CD45RA-/CCR7-) or terminally differentiated effector cells 

(Teff - CD45RA+/CCR7-) (Figure 1A). We then compared the relative frequencies of 

these subsets between the CB using and non-using cohorts (Figure 2A, 2B).  For 

CD4 T cells, we observed a trend towards a larger naïve compartment in CB users 

compared to non-users (median 36.3% vs. 27.0%, p = 0.056 Mann Whitney U test) 

and no significant change to the fraction of Tcm, Tem and Teff cells.  For CD8 T cells, 

we observed a significantly increased fraction of naïve cells for CB users (median 38.6% 

vs 26.2%, p = 0.004, Mann-Whitney U test), no change to Tcm and Tem populations, 

and a significantly smaller fraction of Teff cells for CB users (median 27.6% vs 33.2, p 

= 0.013, Mann-Whitney U test). Overall, these data demonstrate that CB use causes 

significant alterations to the fraction of CD4 and CD8 T cells within specific memory 

and effector subsets for PWH on suppressive ART. 

 

CB use is associated with reduced expression of T cell activation markers. 

CD38 and HLA-DR, two of the most studied markers of immune activation, are of 

prognostic importance in HIV infection (46, 47). Previous reports have indicated that 

CB use can reduce T cell activation and inflammation in PWH (48–50). To examine 

this possibility, we examined the impact of CB use on the proportion of T cells that 

express activation and exhaustion markers. We first compared expression of three 

markers (HLA-DR, CD38 and PD-1) in total CD4 T cells, as well as within individual 

CD4 T cell memory subtypes (Figure 3). Cannabis users exhibited significantly 

reduced surface expression of PD-1 in total CD4 T cells (median 45.0% vs 55.4%, p 
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= 0.007, Mann-Whitney U test), with significantly lower expression in central and 

effector memory subsets (p = 0.047 and 0.015, respectively).  We observed little 

difference in CD4 T cell HLA-DR expression between CB users and non-users.  

However, there was differential expression of CD38 within CD4 T cell memory subsets. 

Specifically, CB use was associated with reduced CD38 expression CD4 Tn, Tcm and 

Teff cells.  These data indicate that CB use can have differential effects on CD4 T cells 

depending on the subpopulation and highlight the importance of considering individual 

memory subtypes in analysis.  Overall, we conclude that CB use modulates 

expression of activation markers in multiple types of CD4 T cells. 

 

We also examined the expression of CD38, HLA-DR and PD-1 within total CD8 T cells 

across the cohorts (Figure 4).  In addition to representing an activation marker, PD-1 

is also expressed in a subset of exhausted CD8 T cells that accumulate during HIV 

infection (51).  Although we observed no difference in PD-1 expression on total CD8 

T cells between groups, we observed decreased expression of PD-1 in CB users 

within CD8 Tn and Tcm cells.  Unlike CD4 T cells, CD38 expression was not 

significantly impacted by CB use in any CD8 T cell subset. Altogether, these data 

demonstrate a significant effect of CB use on the activation level for multiple CD4 and 

CD8 T cell subtypes that may influence the overall health of PWH and the immune 

response to HIV. 

 

CB use is associated with reduced immune senescence in the CD8 T cells of PWH 

HIV infection promotes accelerated immune senescence, indicated by elevated 

expression of markers of immune senescence and exhaustion, even in individuals 

undergoing suppressive ART (9, 52, 53).  A key marker of cellular exhaustion and 
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senescence for HIV infection is killer cell lectin-like receptor subfamily G member 1 

(KLRG1) (54, 55).  Previous data have shown that, under conditions of chronic antigen 

stimulation, CD8 T cells become increasingly dysfunctional and upregulate expression 

of KLRG1 (56). Human T cells expressing KLRG1 exhibit significantly attenuated 

proliferation potential (57) and KLRG1 blockade can restore function to HIV-specific 

CD8 T cells (58).  Therefore, in order to assess the impact of CB-use on immune 

senescence, KLRG1 expression levels between the CB-using and non-using cohorts 

across different T cell subtypes were compared.  While there was no difference in 

KLRG1 expression on total CD4 T cells (Figure 5A), we observed decreased 

expression in total CD8 T cells for CB users compared to non-users (Figure 5B, 

median 48.9% versus 68.3% respectively, p < 0.001, Mann-Whitney U test).  We then 

looked further into the impact of CB use on KLRG1 expression in individual CD4 and 

CD8 T cell subsets.  As expected, naïve CD4 and CD8 T cells expressed the lowest 

levels of KLRG1, followed by Tcm.  By contrast, Tem and Teff exhibited higher levels 

of KLRG1 expression. CB use had no significant impact on KLRG1 expression levels 

in any of the major CD4 T cell maturation subtypes (Tn, Tcm, Tem, Teff).  By contrast, 

all CD8 T cells subsets except Tcm exhibited a significant reduction in KLRG1 levels 

in CB users compared to non-users.  These data indicate that CB use is associated 

with reduced CD8 T cell exhaustion and senescence in the context of treated HIV 

infection, but that CB use has a more limited impact on CD4 T cells.   

 

HIV-specific T cell responses are intact in CB users. 

CBs have immunosuppressive and anti-inflammatory effects on the human immune 

system (59). To further examine the potential impact of CB use on HIV-specific 

functional T cell responses, we stimulated PBMCs from each study participant with a 
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pool of HIV-derived peptides for 6 h, followed by staining for intracellular cytokines 

(IFN-g, TNF-a and IL-2) as well as for the degranulation marker CD107.  We then 

quantified the fraction of cells that were single positive for each cytokine/marker as 

well as the frequency of polyfunctional T cells (percent IL-2+/TNFa+/IFNg+ cells within 

the CD4 or CD8 T cell subsets) (Figure 6).  Within CD4 T cells from non-users, HIV 

peptide stimulation caused a significant increase in the fraction of positive cells for 

each of the cytokines as well as for CD107, indicating a robust HIV-specific T cell 

response. Furthermore, the percentage of polyfunctional CD4 T cells dramatically 

increased from median 2.8% to 38.3% after peptide stimulation.  Notably, in CB using 

PWH, these responses were largely intact, with IL-2 and CD107 also being induced 

significantly by HIV-derived peptides (median 3.0% to median 33.2%).  Unlike non-

users, TNFa and IFNg expression levels in CB users were not significantly higher in 

stimulated cells compared to unstimulated control, but the magnitude of increase after 

peptide stimulation was similar: for example, for IFNg expression there was a median 

difference (pre versus post peptide stimulation) of 0.016% for users vs. 0.024% for 

non-users.   

 

We next examined HIV peptide-induced responses in CD8 T cells. In contrast with 

CD4 T cells, peptide stimulation did not induce significantly elevated IL-2 expression 

for either CB users or non-users. Nevertheless, IFNg, TNFa and CD107 were all 

upregulated in stimulated CD8 T cells for both CB users and non-users, with no 

marked difference in the magnitude of induction across groups.  After stimulation, both 

CB users and non-users exhibited a similar increase in the percentage of 

polyfunctional (IL-2+/TNFa+/IFNg+) cells.   Overall, these data indicate that HIV-specific 
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CD4 and CD8 T cell responses remain intact in CB users and are not attenuated by 

the anti-inflammatory or immunosuppressive impact of CB use. 

 

Analysis of intact HIV proviral reservoir size in CB users vs non-users. 

We next evaluated the hypothesis that CB use impacts the frequency of the latent HIV 

reservoir in ART-suppressed PWH. Given their purported immunosuppressive and 

hypometabolic effects (42, 59–62), CBs could potentially impact reservoir size by 

affecting viral replication via modulation of inflammatory gene pathways that regulate 

HIV replication in CD4 T cells.  Alternatively, CB use could affect reservoir stability 

during ART through modulation of immune activation and T cell maturation pathways.   

 

Measuring the abundance of latently infected cells in CD4 T cells from ART-

suppressed PWH is complicated by the presence of numerous defective proviral 

sequences that greatly outnumber full-length intact proviruses.  We thus employed the 

Intact Proviral DNA Assay (IPDA) which quantifies intact HIV proviruses through a 

droplet digital PCR approach in which specific 5’- and 3’-proviral regions that are 

preserved in intact proviruses are amplified from the same vDNA molecule within a 

droplet, allowing intact viruses to be detected as droplets which are 5’ and 3’ double 

positive.  This approach also enables quantitation of the frequency of 5’-defective and 

3’-defective proviruses, and total HIV DNA (sum of intact, 5’-defective, and 3’-defective 

proviruses). To examine the impact of CB use on the frequency of the intact HIV 

reservoir, we performed IPDA analysis of isolated total CD4 T cells from each cohort 

participant.   The total level of viral DNA per million CD4 T cells was not significantly 

different between the two cohorts, with a median frequency of 1327/106 CD4 T cells 

for non-users and 1009/106 CD4 T cells for CB users (p  =  0.48, Mann-Whitney U test) 
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(Figure 7A). The median level of intact (5’ and 3’ double positive) proviruses per 

million cells across all study participants was 50/106 CD4 T cells, with a range from 5 

to 1742/106 CD4 T cells.  Similar to total HIV DNA, median frequencies of intact 

proviruses were numerically less for users (48/106 CD4 T cells) compared to non-

users (56/106 CD4 T cells), and not statistically different (p = 0.208, Mann-Whitney U 

test) (Figure 7B).  No clear differences in the percentage of intact proviruses were 

observed across CB users versus non-users (Figure 7C).  These data suggest that 

across the whole cohort, CB use has little apparent impact on the size of the intact 

HIV reservoir.  

 

We next conducted a hypothesis-generating exploratory analysis using the expression 

levels of various immune markers derived from our flow cytometry data to stratify 

cohort participants into different sub-groups and to examine whether CB use impacted 

the intact reservoir size within any of these groups.  We focused on groups with 

relatively balanced numbers of participants from both the CB user and non-user 

cohorts. For each immune marker or demographic characteristic, we considered all 

possible thresholds values that lead to cannabis user and non-user groups size of at 

least 15 samples (note that for these experiments our cohort size is 66 rather than 75 

due to nine samples failing to produce an IPDA value). Among these thresholds for 

each marker, we chose one that maximized the median difference between cannabis 

user and non-user cohorts.  From this approach, we identified four subgroups of PWH 

within which CB users exhibited a statistically significantly smaller (p < 0.05) intact 

reservoir size (Figure 8, Table 2).  Interestingly, three of these groups were identified 

based on the expression of surface markers in NK cells. These groups were: 1) 

participants with a low frequency of CCR7+/IFNg-/IL-2-/TNFa+ CD4 T cells (Figure 8A), 
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2) participants with a low frequency of NKG2A-/CD16+ cells in the NK cell subset 

(Figure 8B), 3) participants with a high frequency of NKG2A+/CD16+ cells in the NK 

cell subset (Figure 8C), and 4) participants with a high frequency of NKG2A+ cells in 

the NK cell subset (Figure 8D).   Overall, these data indicate that, although the impact 

of CB use on reservoir size was not statistically significant across the entire cohort, 

there were sub-groups of CB users for whom CB use may be associated with reduced 

intact provirus reservoir size. One intriguing hypothesis based on this exploratory 

analysis is that the NK cell compartment may play a role in regulating the impact of 

CB on the size of the HIV reservoir. This hypothesis will require further investigation 

and validation in additional cohorts. 

 

Data visualization and machine learning analysis of immune marker expression and 

reservoir size for CB users. 

Next, we used data visualization and machine learning tools to analyze the overall 

patterns of surface marker expression and IPDA data to determine whether this data 

could be used to separate CB users as distinct from non-users.  We reasoned that 

such an approach might provide important insights into differences between the 

cohorts that may not be apparent from more traditional analyses.   For the visualization, 

our data consists of 230 total features, among which 216 features are derived from 

the flow cytometry data, 13 from demographic data, and 1 from IPDA intact provirus 

data.  Categorical features, such as race were converted to binary variables. 

 

First, the abilities of individual surface markers to classify individuals as being CB 

users or non-users were evaluated using Receiver Operating Characteristic (ROC) 

curves and the Area Under the Curves (AUC) metric.  To create ROC curves, we 
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plotted the true positive rate (TPR) against the false positive rate (FPR) at different 

possible threshold settings for each individual surface marker frequency of expression. 

TPR (or sensitivity) measures the proportion of positive samples that are correctly 

identified, while FPR measures the proportion of negative samples that are incorrectly 

identified as positive.  A perfect model is represented by a plot that begins vertically 

then moves to the right at the top of the plot, meaning that there are no false negatives 

and no false positives, while a random guessing model corresponds to a diagonal line 

on the ROC curve.  We also computed Area Under the Curve (AUC), which is the 

probability that a model will be able to distinguish between a randomly chosen positive 

sample and a randomly chosen negative sample.   AUC is a summary statistic of ROC 

curves, and a perfect model has an AUC of 1, while a random guess (diagonal line) 

has an AUC of 0.5.  For our experiments, we plotted ROC curves for each feature 

(frequency of expression for given surface marker or combination of markers in a 

population of cells) in our data separately (Figure 9A). We consider a feature to be 

able to discriminate between cannabis and non-cannabis users if its AUC value is 

greater or equal to 0.6. In total, we found 46 features among 230 that had an AUC 

value greater or equal to 0.6 (Figure 9A, Table 3).  We show four features with the 

highest AUC value in color in Figure 9A.  Overall, KLRG1, and PD-1 expression were 

prominently represented among the sets of features that best distinguished cannabis 

users from non-users, highlighting the impact of cannabis use on T cell exhaustion 

and senescence.  The top two features were both derived from CD8 T cells and were 

1) percent KLRG1-/PD-1- cells within CD8 T cells (AUC = 0.723), and 2) percent PD-

1-/CCR7+ cells within CD8 T cells (AUC = 0.722). These findings indicate that these 

methods can be used to identify host features that best distinguish different cohorts, 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521628doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521628


 15 

and that KLRG1, PD-1 and CCR7 expression are key features that differentiate CB 

users from non-users. 

 

As an additional analysis, we employed a decision tree method to visualize the data 

cohort and observe differences between CB users and non-users with simple rules. 

Specifically, we used Generalized and Scalable Optimal Sparse Decision Trees 

(GOSDT) (63) to identify a tree that could optimally classify CB users versus non-

users using the demographics and flow cytometry data from each subject.  GOSDT 

produces an optimal decision tree over all possible trees given the user-defined 

parameters, such as regularization that controls sparsity or decision tree depth 

(Figure 9B).  This approach generated a tree that correctly described approximately 

90% of the dataset, with only 8 out of 75 samples misclassified.  This algorithm created 

five “leaves”, meaning that it places the data into five groups, classifying members of 

each group the same way.  We use two criteria for hyperparameter tuning: high 

percentage of correctly described samples and absence of leaves with one or two 

samples in them.  The resulting tree has a maximum of three splits and has leaf 

support (number of samples in each leaf) higher than 5% of the overall cohort.  Notably, 

these decision splits were determined by a specific set of flow cytometry markers – in 

particular, PD-1/CCR7 expression in CD8 T cells and PD-1/CD38/HLA-DR expression 

in central memory CD4 T cells played prominent roles in the decision tree visualization 

(Figure 9B).  

 

Finally, we examined the ability of combinations of features to distinguish CB users 

with dimension reduction tools.  Dimension reduction techniques have been used to 

visualize data for many real-world datasets.  In our analyses, we performed well-
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known dimension reduction techniques such as t-SNE (64), UMAP (65), and PaCMAP 

(66).  Among all of these, we found that PaCMAP visualization produced the most 

distinct clusters, since this algorithm was built to preserve both global and local 

structure of the dataset (Figure 9C, left panel, Figure S1).  CB users and non-users 

exhibited spatially distinct areas of the plots, indicating differences between the 

cohorts, although some overlap was also visible. We also examined whether 

visualizing binary combinations of features from the dataset with high AUC values 

could allow visual separation of the cohorts on a scatter plot (Figures 9C, middle and 

right panels).  We observed that visualization of the following combinations of 

features demonstrated separation of CB users and non-users:  1) percent KLRG1-/PD-

1- cells within CD8 T vs percent CD38-/HLA-DR- within CD4 Tn cells, and 2) percent 

KLRG1+ within CD8 T cells vs percent CD38-/HLA-DR+ within CD4 Tcm cells allowed 

us to observe separate clusters of CB users and non-users. 

 

In conclusion, using data science approaches, such as ROC curves and AUC, 

decision trees, and dimension reduction techniques for visualization, we were able to 

find ways to visualize and highlight key markers that distinguish CB users from non-

users. More specifically, we found that the frequency of specific subsets of cells (CD8 

T KLRG1-/PD-1-, CD8 T PD-1-/CCR7+, CD4 Tn CD38-/HLA-DR-, CD4 Tcm CD38-

/HLA-DR+, CD8 T KLRG1+) can be used to discriminate CB users from non-users. 

Methods we used here may be generally useful to understand the complex 

immunological outcomes of a given drug exposure.  

 

Discussion 
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Despite the effectiveness of antiretroviral therapy, a reservoir of latently infected cells 

persists in treated individuals and precludes HIV cure (67).  Furthermore, ART-treated 

PWH maintain persistently high levels of chronic inflammation, immune activation and 

exhaustion that likely contribute to accelerated immune aging, increased morbidity and 

reduced life expectancy in these individuals (10, 58, 68).  The driving forces behind 

this residual immunological dysfunction remain unresolved but could be at least 

partially driven by residual viral transcription and protein expression promoting 

activation of innate, or adaptive immune signaling pathways. If this hypothesis is 

correct, the latent reservoir itself could be a key driver of persistent immune activation 

in PWH.  Additionally, increased immune activation may drive clonal expansion of 

latently infected cells, thereby promoting maintenance of the reservoir. The bi-

directional viral/immune dynamics of the HIV reservoir will need to be fully clarified by 

additional studies. However, it is possible that strategies to limit residual immune 

activation could limit maintenance of the reservoir through clonal expansion, or 

conversely, that elimination of the viral reservoir could mitigate immune activation. 

 

Despite the high prevalence of cannabis use in PWH, there are only a handful of 

studies to date that have examined the impact of cannabis use on the immune system 

or on the viral reservoir in PWH (20, 35, 38, 40, 48, 50, 69, 70).  Several of these prior 

studies have indicated that CB impacts the immune systems of PWH.  For instance, 

PWH who use CB have a lower frequency of CD16+ inflammatory monocytes  and 

plasma IP10 compared to non-users (48).  Manuzak et al. examined the expression 

of activation markers in total CD4 and CD8 T cells, and observed that heavy CB users, 

but not moderate users, exhibited a reduced frequency of activated (HLA-DR+/CD38+) 

cells for both CD8 and CD4 T cells (35).  This study also observed reduced abundance 
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of CD11c+/CD123- classical dendritic cells (cDCs) in moderate and heavy users, as 

well as lower cytokine (IL-23, IL-6, IL-10 TNFa) production in antigen-presenting cells 

(APCs) (CD3-/CD20-/HLA-DR+) in heavy users, but no change to CD123+ 

plasmacytoid DCs (pDCs).  Animal studies have also indicated a possible role of CBs 

in reducing inflammation during infection – THC administration has been shown to 

reduce intestinal inflammation in SIV infected macaques (49). However, some studies 

have contradicted these findings and have observed either no impact of CB use on 

inflammation in PWH, or increased levels of some inflammatory markers (39, 71). 

 

Our findings here are broadly consistent with the notion that CB use is associated with 

reduced immune activation in CB using PWH and also provide additional important 

insights.  Consistent with previous reports, we observed no change in the proportion 

of total CD4 and CD8 T cells in peripheral blood (40).  However, we observed an 

elevated proportion of naïve CD8 T cells and reduced effector CD8 T cells in CB users. 

Furthermore, there was significantly reduced expression of the T cell senescence 

marker KLRG1 in total CD8 T cells, and in most CD8 T cell memory subsets of CB 

users compared to non-users.  Overall, these data strongly support the notion that CB 

use is associated with reduced T cell immune activation and senescence in ART-

suppressed PWH.  Cannabinoids may thus provide some immunological benefit to 

PWH and could potentially help to prevent non-AIDS comorbidities. Cannabinoids 

should be further explored as a potential therapeutic for PWH.  

 

In addition to high dimensional immunophenotyping, this study also provides a novel 

assessment of the impact of CB use on HIV-specific T cell responses.  We assessed 

HIV antigen-induced ex vivo expression of TNFa, IL-2, IFNg, as well as surface levels 
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of the degranulation marker CD107.  Overall, we observed that these responses are 

preserved in the CB-users relative to non-users in our study.  It remains possible that 

CB use could cause transient reduction in adaptive responses to HIV during CB use 

in vivo, or impact adaptive responses in a manner that is not captured using ex vivo 

assays.  This observation suggests that T cells from PWH who use cannabis may still 

retain functionality for potential killing and clearance of residual infected cells that 

express antigen.  

 

The mechanism by which CB use reduces T cell activation and exhaustion in PWH is 

unclear.  Some in vitro studies show that CBs can limit T cell activation and 

proliferation, indicating a potential direct effect on T cells (30, 59, 72).  The cannabinoid 

receptor CB2 is expressed by T cells and is associated with modulation of several 

signaling pathways related to activation of cellular proliferation and metabolism (73). 

The relationship between the canonical CB-receptor driven proliferative cellular 

signaling and data suggesting that CBs limit immune activation and T cell proliferation 

deserves further study.  CB2 is also abundantly expressed in numerous other immune 

cell types which may influence HIV specific T cells indirectly.  For example, CB use 

has been shown to impact the abundance of monocyte and DC subsets as well as 

cytokine secretion by antigen presenting cells in PWH (35, 48). THC can also inhibit 

activation of T cells through suppression of innate antiviral cytokines such as type 1 

interferon (74, 75). 

 

Interestingly, a previous study that examined longitudinal abundance of HIV vDNA in 

PWH observed a significantly more rapid viral DNA (vDNA) decay in CB users after 

ART initiation (70).  This trend was not observed when considering PWH that use 
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additional drugs of abuse (DOA), suggesting that positive benefits of CB use could be 

counteracted by other DOA.  Consistent with this notion, tobacco exposure seems to 

reverse anti-inflammatory effects of CB use (50).  These observations suggest that 

additional DOA use could be a significant confounder for understanding the impact of 

CB use. 

 

Our study also demonstrates a potential impact of CB use on the frequency of the 

intact latent HIV reservoir. Specifically, CB-users had numerically lower frequencies 

of total and intact HIV DNA in CD4 T cells, although these differences were not 

statistically significant.  In an exploratory hypothesis-generating analysis, we found 

that CB use may have a more significant impact on specific subsets of PWH.  In 

particular, there was a more significant association of CB use with lower intact HIV 

DNA frequencies in when only study participants with a high frequency of NKG2A+ NK 

cells were examined (p = 0.006).  

 

Additional studies in larger cohorts will be needed to confirm whether CB use has an 

impact on the size of the intact latent HIV reservoir.  One possible way in which CB 

use could limit the size of the HIV reservoir is by inhibiting HIV replication before ART, 

leading to fewer total infected cells.  Consistent with this hypothesis, some evidence 

indicates that high CB use is associated with reduced HIV RNA levels in in newly 

infected people (69).  Additionally, THC dosing of SIV-infected macaques leads to 

lower viral loads and better survival, although this effect was only observed for male 

animals (41).  Also, HIV replication in macrophages can be directly inhibited by CB2 

agonists (31).  CB could also impact the HIV reservoir size post-ART through 

immunological mechanisms.  For example, CB could limit activation of inflammatory 
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pathways that drive clonal expansion of latently infected cells.  Alternatively, by limiting 

immune exhaustion and senescence, CB could promote increased HIV-specific 

immune functionality, leading to more rapid immune-dependent elimination of infected 

cells from the reservoir.   Our observation that study subjects with high frequency of 

expression of NKG2A in the NK cell compartment exhibits a large magnitude of impact 

of CB on HIV reservoir size is intriguing.  NK cells are known to be able to kill HIV 

infected cells (76, 77), and these cells are also affected by exposure to cannabinoids 

(78).  Additional work will be needed to clarify the relationship between NK cells, CB 

use and the HIV reservoir. 

 

Our study should also be considered in the context of some limitations.  The size of 

our CB-using and control cohorts may be too small to observe more subtle effects on 

immune populations and on the HIV reservoir. Furthermore, our study does not 

distinguish between heavy CB users versus moderate users, which could obscure 

more significant effects observed in heavy users.  Nevertheless, our study provides 

evidence that CB can have a significant impact on the immune status of PWH and 

may be associated with reduced size of latent HIV reservoir in some PWH, although 

further study is needed.  An important open question regarding the impact of CB on 

the HIV reservoir and on the immune system of PWH is the identification of specific 

CB constituents that mediate these outcomes.  Cannabis contains several CBs, 

including– THC (the main psychoactive ingredient), cannabidiol (CBD), and minor 

cannabinoids such as cannabigerolic acid (CBGA).  Animal model experiments will 

likely be necessary to establish which CBs could provide the most immune benefit to 

PWH, and to more fully assess the benefits and risks of CB use on non-immune 

tissues and physiological and psychological processes. 
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Methods. 

Study Approval 

This study was reviewed and approved by the IRBs from both Duke University and 

UNC (00107328). 

 

Peptide Stimulation 

Peripheral whole blood was obtained from IRB-approved donors using ACD 

vacutainer tubes (BD Biosciences), and peripheral blood mononuclear cells (PBMCs) 

were isolated using Ficoll density centrifugation (GE HealthCare).  PBMCs were 

counted and viably cryopreserved in liquid nitrogen vapor (10% DMSO, 90% heat-

inactivated FBS).  Thawed PBMCs were rested for 6 h prior to stimulation in R10, 

which is RPMI-1640 media containing 10% heat-inactivated (HI)-FBS (Gibco) and 1x 

penicillin-streptomycin-glutamine (Gibco), at 37°C and 5% CO2.  Cells were stimulated 

with HIV Gag, Pol, and Env PepMixes (JPT Laboratories) at 0.2 ug/mL final 

concentration of each in R10 at a cell concentration of 2 x 107 cells/mL for 6 h.  The 

final concentration of DMSO was less than 0.2%. Cells were stimulated in the 

presence of brefeldin A (BFA) and monensin per manufacturer protocol (BD 

Bioscience).  CD107a-PE (H4A3 clone, BL) was included during stimulation. 

 

Flow Cytometry 

Cell preparation and staining followed methods previously described (79). All 

monoclonal antibodies were titrated to optimal signal-to-noise ratio on PBMCs prior to 

use, assuming a 50µL staining volume. Cell viability was determined using Zombie-

NIR Fixable Viability Dye (0.4 μL per 50 μL staining volume; Biolegend). Antibodies 
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used for surface staining were as follows: KLRG1-BV421 (SA231A2 clone, Biolegend, 

CD45RA-PacBlue (H100 clone, BL), CD8-BV570 (RPA-T8 clone, Biolegend), CD127-

BV605 (A019D5 clone, Biolegend), CD56-BV650 (5.1H11 clone, Biolegend), CCR7-

BV711 (G043H7 clone, Biolegend), CD27-BV750 (O323 clone, Biolegend), PD1-

VioBright515 (REA165 clone, Miltenyi), NKG2A-PE-Vio615 (REA110 clone, Miltenyi), 

CD16-PerCP-Cy5.5 (33G8 clone, Biolegend), CD38-PCPeF710HB7 clone, TF), 

CD14-SparkNIR685 (63D3 clone, Biolegend), CD19-SparkNIR685 (HIB19 clone, 

Biolegend), HLA-DR-APC-F750 (L243 clone, Biolegend).  Antibodies used for 

intracellular staining were as follows: CD3-BV480 (UCHT1 clone, BD), CD4-PerCP 

(L200 clone, BD), IFN-g-PE-Cy7 (4S.B3 clone, Biolegend), IL-2-APC (MQ1-17H12 

clone, Biolegend), TNFa-AF700 (Mab11 clone, Biolegend). Sample acquisition was 

performed on a Cytek Aurora spectral flow cytometer. Flow cytometry analysis was 

performed in FlowJo v10.8 software.  

 

Intact Proviral DNA analysis (IPDA)  

Cryopreserved samples of PBMCs from each study participant were viably thawed. A 

portion was dedicated to immunophenotyping and functional assays described above, 

and the remainder were subjected to total CD4 T cell negative selection with the 

StemCell Technologies EasySep™ Human CD4+ T Cell Enrichment Kit (Cat# 19052). 

A median of 4.4 million CD4 T cells (Q1 3.5 million, Q3 5.1 million) were isolated for 

each participant with a median lymphocyte purity of 96.5% (Q1 95%, Q3 98%) 

measured with a Sysmex hematology analyzer.   CD4 T cell DNA was extracted using 

the QIAamp DNA Mini Kit and quantified on a NanoDrop 1000 (Thermo Fisher 

Scientific). IPDA was performed as originally described (45), with a validated PCR 

annealing temperature modification to increase signal to noise ratio (80).  A detailed 
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protocol for the assay is described in detail elsewhere (45, 80).  Gating for positive 

droplets was set using negative (DNA elution buffer and HIV-seronegative CD4 T-cell 

DNA), and positive (Integrated DNA Technologies gblock amplicon) positive control 

wells processed in parallel.  DNA shearing index values were similar to those reported 

previously (median, 0.33; interquartile range [IQR], 0.31–0.34).  A median of 1.1 × 106 

(IQR, 9.4 × 105–1.2 × 106) CD4 T-cell equivalents (2 RPP30 copies = 1 CD4 T cell 

equivalent) were evaluated per sample.  Samples for which either the PS, RRE, or 

both probes failed to amplify were excluded from analysis (9 of 75 participants 

evaluated, or 12%).  Proviral frequencies less than 5 copies/million CD4 T cells were 

left-censored as previously described (80).  

 

Statistical analysis and machine learning  

The two cohorts consisted of 33 CB-using and 42 non-using people with HIV (PWH). 

Statistical comparisons between the cohorts for flow cytometry and IPDA analysis 

were carried out using a Mann-Whitney U test with the threshold of significance as p 

< 0.05. The primary endpoint for the IPDA analysis was the frequency of intact 

proviruses across the cohorts, with a secondary exploratory analysis of selected 

subgroups based on different thresholds of frequency for immune cell populations. 

Given that the secondary analysis was exploratory and hypothesis-generating, no 

correction for multiple comparisons was performed. 

 

ROC curves for each cytometry marker and demographics feature were created by 

plotting true positive rate (TPR) versus false positive rate (FPR) for every threshold 

value (frequency of expression).  We further computed AUC using the trapezoidal rule 

given TPR and FPR arrays.  For Decision Tree visualization we used the GOSDT 
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algorithm to construct a tree that could identify patterns in dataset and visualize 

cannabis using subjects versus non-users (63).  In the GOSDT setting, we set the 

regularization parameter to 0.0134, the depth budget to 4, and time limit to 5000.  The 

hyperparameters were chosen to ensure that the resulting tree describes the data with 

high accuracy and each leave has at least three samples.  Lastly, we utilized 

dimension reduction tools such as t-SNE (64), UMAP (65), and PaCMAP (66) to 

visualize the dataset.  We standardized the data before dimension reduction, set the 

random state to sixteen for reproducibility, and used PCA for initialization of lower 

dimensions.  We set the number of neighbors to six for PaCMAP, early exaggeration 

to eight and perplexity to 40 for t-SNE, number of neighbors to four and minimal 

distance to 0.2 for UMAP. 

 

Figure legends 

Figure 1. Impact of cannabis use on T cell, NK and NKT cell populations in people with 

HIV. 

A. Representative flow cytometry gating for NK cells, NKT cells, CD4 T and CD8 T 

cells. N=naïve, CM=central memory, EM=effector memory, E=terminally differentiated 

effector cells.  B. NK (CD56+, CD3-) and NKT cells (CD56+, CD3+) are expressed as 

a fraction of the total live lymphocyte population. C. CD4 and CD8 T cells are 

expressed as a fraction of the T cell (CD3+, CD56-) population.  Each dot represents 

an individual participant. Statistical significance determined using a Mann-Whitney U 

test.  ns = not significant (p < 0.05).  Median and IQR are displayed. 

 

Figure 2: Impact of cannabis use on T cell subset proportions in people with HIV. 
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Proportional abundance of T cells in naïve (Tn), central memory (Tcm), effector 

memory (Tem) and effector (Teff) subsets for CD4 T cells (A) and CD8 T cells (B).  

Cell subsets assigned by expression of the surface markers CD45RA and CCR7 – 

Tn:CD45RA+/CCR7+, Tcm:CD45RA-/CCR7+, Tem:CD45RA-/CCR7-, 

Teff:CD45RA+/CCR7-. Each dot represents an individual participant. Statistical 

significance determined using a Mann-Whitney test. P values for comparisons where 

CB users were significantly different (p < 0.05) to non-user controls are displayed. ns 

= not significant (p > 0.05). Median and IQR are displayed for each dataset. 

 

Figure 3. Impact of CB use on expression of activation markers for CD4 T cell subsets. 

Expression levels (percent positive) for three different immune activation markers 

(HLA-DR, CD38 and PD-1) are shown for total CD4 T cells and for specific subsets 

(Tn, Tcm, Tem, Teff). Each dot represents an individual participant. Statistical 

significance determined using a Mann-Whitney test.  P values for comparisons where 

CB users were significantly different (p < 0.05) to non-user controls are displayed. ns 

= not significant (p > 0.05). Median and IQR are displayed for each dataset. 

 

Figure 4. Impact of CB use on expression of activation markers for CD8 T cell subsets. 

Expression levels (percent positive) for three different immune activation markers 

(HLA-DR, CD38 and PD-1) are shown for total CD8 T cells and for specific subsets 

(Tn, Tcm, Tem, Teff). Each dot represents an individual participant. Statistical 

significance determined using a Mann-Whitney test.  P values for comparisons where 

CB users were significantly different (p < 0.05) to non-user controls are displayed. ns 

= not significant (p > 0.05). Median and IQR are displayed for each dataset. 
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Figure 5. Impact of CB use on expression of the exhaustion/senescence marker 

KLRG1 in CD4 and CD8 T cell subsets. 

Expression level (percent positive) for KLRG1 is shown for total and specific subsets 

(Tn, Tcm, Tem, Teff) of CD4 T cells (A) and CD8 T cells (B).  Each dot represents an 

individual participant. Statistical significance determined using a Mann-Whitney test. 

P values for comparisons where CB users were significantly different (p < 0.05) to non-

user controls are displayed. ns = not significant (p > 0.05). Median and IQR are 

displayed for each dataset. 

 

Figure 6. HIV-specific cytokine and effector responses in CB users are intact. 

PBMCs from each study participant were stimulated with a pool of HIV peptides for 6 

h, then permeabilized and stained for IFNg, TNFa, IL-2 and CD107 expression in 

addition to CD3, CD4 and CD8.  Values represent the fraction of expressing (positive) 

cells within the total CD4 (A) and CD8 (B) T cell gates.  Zero values or values less 

than 0.001 were censored at 0.001 to facilitate display on a log y axis.  Polyfunctional 

cells are counted as the percentage of IL-2+/IFNg+/TNFa+ cells within CD4 (A) or CD8 

(B) T cells.  Each dot represents an individual participant.  Statistical significance 

determined using a Mann-Whitney test. P values for comparisons where CB users 

were significantly different (p < 0.05) to non-user controls are displayed as follows: *= 

p < 0.05, **= p < 0.005, ****= p <0.00005. ns = not significant (p > 0.05). Median and 

IQR are displayed for each dataset.  

 

Figure 7. Analysis of intact HIV proviral reservoir size in CB users vs non-users. 

Intact Proviral DNA Assay was carried out on purified CD4 T cells from each subject 

to quantify (A) total viral DNA per million CD4 T cells (total HIV DNA/106 CD4 T cells), 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521628doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521628


 28 

(B) intact proviruses per million CD4 T cells (intact HIV DNA/106 CD4 T cells), and (C) 

percent intact proviruses of total proviruses detected by IPDA for each study 

participant (intact DNA % of total).  Each dot represents an individual participant. 

Statistical significance determined using a Mann-Whitney test. P values for 

comparisons where CB users were significantly different (p < 0.05) to non-user 

controls are displayed. ns = not significant (p > 0.05).  Median and IQR are displayed 

for each dataset. 

 

Figure 8. Analysis of intact HIV proviral reservoir size in CB users vs non-users within 

specific subgroups. 

Intact Proviral DNA Assay was carried out on purified CD4 T cells from each subject 

to quantify intact proviruses per million CD4 T cells (intact HIV DNA/106 CD4 T cells) 

for each study participant.  Data are shown from specific subsets of study participants 

based on flow cytometry expression patterns described above each plot (A-D). Each 

threshold was selected to generate groups with at least 15 participants from each 

cohort and to maximize the difference in median intact proviruses per million cells. 

Each dot represents an individual participant.  Statistical significance determined using 

a Mann-Whitney test. p values for comparisons where CB users were significantly 

different (p < 0.05) to non-user controls are displayed. ns = not significant (p > 0.05). 

Median and IQR are displayed for each dataset. 

 

Figure 9. Machine learning analysis of IPDA and flow cytometry data to predict 

cannabis use. 

A. ROC curves and corresponding AUC values for 230 features derived from 

demographics, IPDA and flow cytometry analysis of the cohort (frequency of cell 
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subsets based on surface marker expression).  Axes represent the true positive rate 

(TPR) and the false positive rate (FPR) for each feature-derived model for classifying 

study participants as CB users or non-users. Striped black line corresponds to the 

ROC curve of an uninformative model.  In color, we depict ROC curves of features 

with highest AUC values and as well as features used in Decision Tree visualization 

of the dataset. B. Visualization of the dataset using the Decision Tree algorithm 

GOSDT (63). This tree correctly describes 89.33% of the dataset. C. Visualization of 

the dataset based on application of PaCMAP dimension reduction (left panel) and 

scatter plot of two sets features with high AUC values: the frequency of CD38-/HLA-

DR- cells within the CD4 Tn population versus the frequency of KLRG1-/PD-1- cells 

within the total CD8 T cell gate (middle panel), the frequency of CD38-/HLA-DR+ cells 

within the CD4 Tcm population versus the frequency of KLRG1+ cells within the CD8 

T cell population (right panel).  CM= Central memory, N=Naïve. 
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Figure 1: 

 

Figure 1. Impact of cannabis use on T cell, NK and NKT cell populations in people with 
HIV. 
A. Representative flow cytometry gating for NK cells, NKT cells, CD4 T and CD8 T 
cells. N=naïve, CM=central memory, EM=effector memory, E=terminally differentiated 
effector cells.  B. NK (CD56+, CD3-) and NKT cells (CD56+, CD3+) are expressed as 
a fraction of the total live lymphocyte population. C. CD4 and CD8 T cells are 
expressed as a fraction of the T cell (CD3+, CD56-) population.  Each dot represents 
an individual participant. Statistical significance determined using a Mann-Whitney U 
test.  ns = not significant (p < 0.05).  Median and IQR are displayed. 
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Figure 2: 

 

Figure 2: Impact of cannabis use on T cell subset proportions in people with HIV. 
Proportional abundance of T cells in naïve (Tn), central memory (Tcm), effector 
memory (Tem) and effector (Teff) subsets for CD4 T cells (A) and CD8 T cells (B).  
Cell subsets assigned by expression of the surface markers CD45RA and CCR7 – 
Tn:CD45RA+/CCR7+, Tcm:CD45RA-/CCR7+, Tem:CD45RA-/CCR7-, 
Teff:CD45RA+/CCR7-. Each dot represents an individual participant. Statistical 
significance determined using a Mann-Whitney test.  P values for comparisons where 
CB users were significantly different (p < 0.05) to non-user controls are displayed. ns 
= not significant (p > 0.05). Median and IQR are displayed for each dataset. 
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Figure 3: 

 

Figure 3. Impact of CB use on expression of activation markers for CD4 T cell subsets. 
Expression levels (percent positive) for three different immune activation markers 
(HLA-DR, CD38 and PD-1) are shown for total CD4 T cells and for specific subsets 
(Tn, Tcm, Tem, Teff). Each dot represents an individual participant. Statistical 
significance determined using a Mann-Whitney test.  P values for comparisons where 
CB users were significantly different (p < 0.05) to non-user controls are displayed. ns 
= not significant (p > 0.05). Median and IQR are displayed for each dataset. 
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Figure 4: 

 

Figure 4. Impact of CB use on expression of activation markers for CD8 T cell subsets. 
Expression levels (percent positive) for three different immune activation markers 
(HLA-DR, CD38 and PD-1) are shown for total CD8 T cells and for specific subsets 
(Tn, Tcm, Tem, Teff). Each dot represents an individual participant. Statistical 
significance determined using a Mann-Whitney test. P values for comparisons where 
CB users were significantly different (p < 0.05) to non-user controls are displayed. ns 
= not significant (p > 0.05). Median and IQR are displayed for each dataset. 
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Figure 5: 

 

Figure 5. Impact of CB use on expression of the exhaustion/senescence marker 
KLRG1 in CD4 and CD8 T cell subsets. 
Expression level (percent positive) for KLRG1 is shown for total and specific subsets 
(Tn, Tcm, Tem, Teff) of CD4 T cells (A) and CD8 T cells (B). Each dot represents an 
individual participant. Statistical significance determined using a Mann-Whitney test.  
P values for comparisons where CB users were significantly different (p < 0.05) to non-
user controls are displayed. ns = not significant (p > 0.05). Median and IQR are 
displayed for each dataset. 
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Figure 6: 

 

Figure 6. HIV-specific cytokine and effector responses in CB users are intact. 
PBMCs from each study participant were stimulated with a pool of HIV peptides for 6 
h, then permeabilized and stained for IFNg, TNFa, IL-2 and CD107 expression in 
addition to CD3, CD4 and CD8.  Values represent the fraction of expressing (positive) 
cells within the total CD4 (A) and CD8 (B) T cell gates.  Zero values or values less 
than 0.001 were censored at 0.001 to facilitate display on a log y axis.  Polyfunctional 
cells are counted as the percentage of IL-2+/IFNg+/TNFa+ cells within CD4 (A) or CD8 
(B) T cells. Each dot represents an individual participant. Statistical significance 
determined using a Mann-Whitney test. P values for comparisons where CB users 
were significantly different (p < 0.05) to non-user controls are displayed as follows: *= 
p < 0.05, **= p < 0.005, ****= p <0.00005. ns = not significant (p > 0.05). Median and 
IQR are displayed for each dataset.  
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Figure 7: 

 

Figure 7. Analysis of intact HIV proviral reservoir size in CB users vs non-users. 
Intact Proviral DNA Assay was carried out on purified CD4 T cells from each subject 
to quantify (A) total viral DNA per million CD4 T cells (total HIV DNA/106 CD4 T cells), 
(B) intact proviruses per million CD4 T cells (intact HIV DNA/106 CD4 T cells), and (C) 
percent intact proviruses of total proviruses detected by IPDA for each study 
participant (intact DNA % of total).  Each dot represents an individual participant. 
Statistical significance determined using a Mann-Whitney test. P values for 
comparisons where CB users were significantly different (p < 0.05) to non-user 
controls are displayed. ns = not significant (p > 0.05).  Median and IQR are displayed 
for each dataset. 
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Figure 8: 

 

 

Figure 8. Analysis of intact HIV proviral reservoir size in CB users vs non-users within 
specific subgroups. 
Intact Proviral DNA Assay was carried out on purified CD4 T cells from each subject 
to quantify intact proviruses per million (intact HIV DNA/106 CD4 T cells) for each study 
participant. Data are shown from specific subsets of study participants based on flow 
cytometry expression patterns described above each plot (A-D). Each threshold was 
selected to generate groups with at least 15 participants from each cohort and to 
maximize the difference in median intact proviruses per million cells. Each dot 
represents an individual participant. Statistical significance determined using a Mann-
Whitney test.  P values for comparisons where CB users were significantly different (p 
< 0.05) to non-user controls are displayed. ns = not significant (p > 0.05). Median and 
IQR are displayed for each dataset. 
 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521628doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521628


 49 

Figure 9: 

 

Figure 9. Machine learning analysis of IPDA and flow cytometry data to predict 
cannabis use. 
A. ROC curves and corresponding AUC values for 230 features derived from 
demographics, IPDA and flow cytometry analysis of the cohort (frequency of cell 
subsets based on surface marker expression).  Axes represent the true positive rate 
(TPR) and the false positive rate (FPR) for each feature-derived model for classifying 
study participants as CB users or non-users. Striped black line corresponds to the 
ROC curve of an uninformative model. In color, we depict ROC curves of features with 
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highest AUC values and as well as features used in Decision Tree visualization of the 
dataset. B. Visualization of the dataset using the Decision Tree algorithm GOSDT (63). 
This tree correctly describes 89.33% of the dataset. C. Visualization of the dataset 
based on application of PaCMAP dimension reduction (left panel) and scatter plot of 
two sets features with high AUC values: the frequency of CD38-/HLA-DR- cells within 
the CD4 Tn population versus the frequency of KLRG1-/PD-1- cells within the total 
CD8 T cell gate (middle panel), the frequency of CD38-/HLA-DR+ cells within the CD4 
Tcm population versus the frequency of KLRG1+ cells within the CD8 T cell population 
(right panel). N=Naïve, CM= Central memory. 
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Figure S1: 

 

The overall dataset is displayed using t-SNE (left panel) and UMAP (right panel).  Each 
dot represents a study participant.  CB users indicated by green dots, non-users by 
red dots. 
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Table 1: Participant demographic and clinical characteristics 
 

  Cannabis users 
(N=33) 

Neither cocaine 
nor Cannabis 

users 
(N=42) 

P-
value 

Age 42 [33, 48.5] 45.5 [37, 53.25] 0.086 

Gender (% male) 87.88% (29) 73.81% (31) 0.156 

Race   0.509 

  African American 66.67% (22) 71.43% (30)  

  Caucasian 30.30% (10) 28.57% (12)  

  Hispanic 0% (0) 0 % (0)  

  Mixed 3.03% (1) 0% (0)  

Years HIV positive 12 [7, 21] 12 [8, 21.5] 0.715 

Years ART 
Treatment 10 [6,17.5] 10 [7,19]  0.501 

CD4 count at study 
entry 815 [626, 1141] 779.5 [658, 

932.3] 0.465 

Nadir CD4 count 285 [133.5, 
431.8] 

245.5 
[102.5,360.8] 0.548 

Current ARV class   0.086 

  Comb 57.58% (19) 47.62% (20)  

  N/NRTI 33.33% (11) 23.81% (10)  

  PI 9.09% (3) 11.9% (5)  

  II 0% (0) 16.67% (7)  
Unless otherwise specified, data are median and we also report [Q1, Q3]. p values 
indicate differences in characteristics between groups.  Mann Whitney test was used 
for continuous variables, Fisher-exact and Chi-square test for categorical variables. 
ART=antiretroviral therapy. CD4 counts reported in cells/mm3; NNRTI=non-
nucleoside reverse transcriptase inhibitor; PI – protease inhibitor; II – integrase 
inhibitor. There are missing values in the data - one missing value in ‘Years HIV 
positive’, eight missing values in ‘Years ART treatment’, and three missing values for 
‘nadir CD4 count’. 
  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521628doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521628


 53 

Table 2: Subgroups of participants with different intact reservoir size for CB users. 

Split 

Number 
of 

samples 

Number of 
non CB 
users 

Number 
of CB 
users 

Non CB users 
median Intact 

vDNA/106 

CB users 
median 
Intact 

vDNA/106 

Absolute 
value of 
median 

difference 

Mann 
Whitney U 

Test 
Statistic 

Mann 
Whitney  
U Test  
p value 

NK NKG2A+ freq > 
28.1% 33 18 15 109 39 70 60.5 0.006 
NK NKG2A-/CD16+ 
freq ≤ 55.9% 32 16 16 100.5 40 60.5 69 0.025 
NK NKG2A+/CD16+ 
freq > 15.4% 32 16 16 93 37.5 55.5 67.5 0.021 
CD4 T CCR7+/IFNg-
/IL2-/TNFa+ freq ≤ 
0.000645% 45 24 21 106.5 41 65.5 161.5 0.039 

 
IPDA data for four subsets of study participants within which CB users exhibit smaller 
intact HIV reservoir size than non-users are shown.  Subsets were selected based on 
the frequency of expression of immune markers within certain immune populations 
(shown in left column). 
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Table 3: Area under the curve values of ROC curves for individual features 

 

ROC curves were used to determine the ability of individual features of the flow 
cytometry dataset to accurately classify CB users vs non-users. AUC=area under the 
ROC curve. N=naïve, CM=central memory, E=effector, polyfxn= polyfunctional (IL-
2+/TNFa+/IFNg+ cells). 

Feature AUC Feature AUC Feature AUC
CD8 T KLRG1-/PD1- freq 0.7229 CD8 T HLA-DR+ freq 0.6616 CD8 T CM CD38-/HLA-DR- freq 0.6230
CD8 T PD1-/CCR7+ freq 0.7215 CD8 T E freq 0.6613 CD4 T  KLRG1+/CD27- freq 0.6212
CD8 T KLRG1+ freq 0.7096 CD4 T CM CD38+/HLA-DR- freq 0.6613 CD8 T EM CD38-/HLA-DR- freq 0.6194
CD8 T KLRG1-/CD27+ freq 0.7085 CD4 T KLRG1-/PD1- freq 0.6522 CD8 T CD38+/HLA-DR+ freq 0.6158
CD8 T CM PD1+ freq 0.6970 CD4 T EM PD1+ freq 0.6497 CD4 T E CD38-/HLA-DR- freq 0.6158
CD8 T KLRG1+/CD27- freq 0.6959 CD8 T KLRG1+/PD1- freq 0.6483 CD4 T EM freq 0.6144
CD4 T N CD38-/HLA-DR+ freq 0.6926 CD8 T N CD38-/HLA-DR- freq 0.6483 CD4 T KLRG1+/PD1+ freq 0.6129
CD4 T CM CD38-/HLA-DR+ freq 0.6919 CD8 T CD38-_/HLA-DR+ freq 0.6403 CD8 T KLRG1+/PD1+ freq 0.6111
CD8 T CD27+ freq 0.6797 CD8 T N PD1+ freq 0.6385 CD8 T polyfxn freq 0.6104
CD4 T N CD38+/HLA-DR- freq 0.6789 CD4 T CD27+ freq 0.6367 CD4 T N freq 0.6093
CD8 T N freq 0.6717 CD4 T PD1+/CCR7- freq 0.6338 CD8 T N CD38+/HLA-DR+ freq 0.6050
CD4 T PD1+ freq 0.6674 CD8 T E CD38-/HLA-DR- freq 0.6320 CD4 T KLRG1-/CD27+ freq 0.6035
CD4 T N CD38-/HLA-DR- freq 0.6656 CD4 T CM PD1+ freq 0.6302
CD4 T PD1-/CCR7+ freq 0.6616 CD8 T PD1-/CCR7- freq 0.6291
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