

'
'

Figure S1: Rescue of T2 Binding using Designed Epitope Features.
!"#'Sequence alignments of T2 and T3 venom-toxin targets. Note the first two residues of T2 are
truncated to denote equivalent positions more easily. Differing residues are highlighted and
colored by type. !$# Each scatter plot shows a yeast surface display experiment analyzed with
fluorescence assisted cell sorting (FACS). FACS gates are shown in red and annotated with the
binding population percentage. The three plots in the top row correspond to a negative control,
T2, and T3. Display signal is plotted on the x-axis and binding signal on the y-axis. The sculptor-
designed 3D model of the enriched binder is shown on the right. The binder is shown in blue and
target structure shown in white. Regions of interest are highlighted different colors. The dotted
insert depicts a comparison of the difference in C-terminal tail structure between T2 and T3.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521698doi: bioRxiv preprint

Table S2: Three-Finger Toxin Sequences.

Table S3: Mutated Toxin Sequences.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521698doi: bioRxiv preprint

https://doi.org/10.1101/2022.12.22.521698

Supplemental Methods

Sculptor Algorithm

We define the following parameters:

S : Candidate set of interacting residues on the generated binder.

R : Full-atom coordinates of a target structure.

F : Interaction field.

Tm : Metropolis Starting Temperature.

γ : Temperature Annealing Factor.

αz : Latent vector learning rate.

αϕ : Transformation parameter learning rate.

rin, rout : Inner/Outer radius of initial position.

ϵrefine : Fit cutoff for inclusion in the final sculpting loop.

ϵfinal : Fit cutoff for including field residue identities for design.

ninterf : Number of interface residues to optimize for.

mfield : Number of outer-loop iterations to reassign the interface residues.

msculpt : Number of inner-loop iterations to fit the target field residues.

c : Clipping value for SculptLoss (Described Below).

We use the following notation for variables:

z : Latent vector.

ϕ : 3D homogenous transformation parameters.

x : Cartesian coordinates.

s : Subset of binder residue positions in C.

t : Subset of interacting residues in F.

ℓ : Loss.

We define the following core functions:

G(z) : Generative model with coordinate outputs.

T (ϕ) : 3D homogenous transformation operation.

The pseudo-code of the Sculptor optimization loop of Sculptor is provided below:

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521698doi: bioRxiv preprint

https://doi.org/10.1101/2022.12.22.521698

Algorithm: Sculptor Optimization Loop.

1 Initialize z ∼ N(0, I)
2 Initialize ϕ ∼UniformRandomSphere(rin, rout)
3 Initialize s ∼UniformRandom(S, ninterf)
// Field Search and Interface Assignment Loop.

4 while i ≤ mfield do
5 x = T (ϕ)G(z) // Generate and Position the Structure.
6 if i ̸= mfield then
7 s = Expand(s, ninterf, S, F)
8 t = LinearSumAssign(s, x, F, ninterf)

9 else
10 s, t = Threshold(s, t, x, F, ϵrefine)
11 msculpt = 2msculpt

// Structure Optimization Loop.
12 while j ≤ msculpt do
13 z = LatentResample(z)
14 z = MetropolisPerturb(z, ϕ, s, t, Tm)
15 Tm = γTm

16 x = T (ϕ)G(z)
17 ℓ = SculptLoss(x, s, t, c, R)
18 z = z − αz∇zℓ
19 ϕ = ϕ− αϕ∇ϕℓ

20 x = T (ϕ)G(z)
21 s = FinalThreshold(s, t, x, F, ϵfinal)
22 return x, s // Final Coordinates and Field-Proposed Residue Identities.

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521698doi: bioRxiv preprint

https://doi.org/10.1101/2022.12.22.521698

Descriptions of the functions used are provided below:

The Expand function is a stochastic sampler used to expand the number of residues in s to
some number ≥ ninterf and ≤ |S|. In this study we expand to a size of 2ninterf. The sampling
distribution can be uniform random, or weighted based on the pre-computed ddG of a field
interaction if available.

The LinearSumAssign function is used to assign pairs of interactions in s to the set of best
fitting partners t ⊂ F without overlap. The loss used is the Frobenius norm between the
CαCβ vectors of the residues in x (specified by s), against those of the field residues. The
function returns an updated s, and t, which are the target field residues for each backbone
residue in s. The outputs s and t are both ordered, and contain ninterf elements. During
the inner optimization loop, the algorithm tries to fit the residues specified by s into their
target positions t. The linear sum assignment implementation can be found in the SciPy
python package[1].

The Threshold function is used to remove any interacting pairs, specified by s and t, that
fit the field worse than the threshold ϵrefine. The function returns the subset of s and t that
satisfy this criterion. By doing this, the final structure optimization loop is used to improve
the fit of well-fit residues, while discarding poor-fitting interactions.

The LatentResample function stochastically resamples elements of the latent vector based
their distance from zero, to ensure that the optimization is restricted to parts of the latent
distribution that are supported. This resampling scheme is based on prior work on latent
vector recovery [2, 3], and the probability of resampling is given by the following function:

presample(z) =
1

1 + e−3|z|−3.5

The MetropolisPerturb function stochastically perturbs the latent vector z by adding some
vector ∼ N(0, ϵI), and accepts or rejects the perturbation based on an increase or decrease
in SculptLoss (described below)[4, 5]. The acceptance probability is determined by the
following criterion:

paccept(∆ℓ, Tm) =

{
1, if ∆ℓ < 0
e−∆ℓ/Tm , otherwise

}

The SculptLoss function is described in the next section.

Sculptor Loss Function

SculptLoss is the primary loss function in the optimization loop, and consists of a repulsive
term and a fitting term that are both fully differentiable and empirically tuned for stability.
The two terms are summed to compute the full loss function:

ℓSculptLoss = ℓfit + ℓrep

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521698doi: bioRxiv preprint

https://doi.org/10.1101/2022.12.22.521698

Repulsive Loss

Let dvdw denote the sum of the van der Waals radii of an atom pair, σ the sigmoid function,
and ReLU the Rectified Linear Unit. The repulsive term is given by:

ℓrep(d) =
All Atom Pairs∑

i,j

ReLU(20 · σ(10(di,j − dvdw,i,j))− 10)

For the sculpted molecule, each residue is treated as an alanine, while the target is treated
as full-atom, including side-chain.

Fitting Loss

The fitting loss term is a L2 loss between the generated and target CαCβ vectors, where
each element is weighted by the inverse of the L2 loss for that residue pair, and clipped
via the parameter c. Let the CαCβ coordinate vectors of the ninterf residues in s and t be
denoted as vs and vt. We compute the fitting loss as follows. First, we compute the squared
L2 loss vector l with each element is given by:

li = Clip

Cα,Cβ∑
j

(vs,i,j − vt,i,j)
2, c


The l vector is then used to compute a normalized weight vector w with the following
elements:

wi =
1∑ninterf

j=1 wj
· 1
li
· ||l||2

The weight vector is then used to re-weight the loss vector, which is summed over all residues
in the interface set:

ℓfit(vs, vt) =

ninterf∑
i=1

wi · li

Notably, the fitting loss and its weighting plays a crucial role in Sculptor, adding an element
of “stickiness” to the algorithm behavior. Specifically, residues that fit field interactions
well are retained and further optimized, while poorly fitting ones are allowed to drift and
are more likely to be reassigned. This tendency significantly improves the quality of field
fitting, as well as interface search efficiency.

References

[1] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey,
İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Meth-
ods, 17:261–272, 2020.

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521698doi: bioRxiv preprint

https://doi.org/10.1101/2022.12.22.521698

[2] Zachary C. Lipton and Subarna Tripathi. Precise Recovery of Latent Vectors from
Generative Adversarial Networks. arXiv:1702.04782 [cs, stat], February 2017. arXiv:
1702.04782.

[3] Nicholas Egan, Jeffrey Zhang, and Kevin Shen. Generalized Latent Variable Recovery
for Generative Adversarial Networks. arXiv:1810.03764 [cs, stat], October 2018. arXiv:
1810.03764.

[4] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[5] Nicholas Metropolis and S. Ulam. The monte carlo method. Journal of the American
Statistical Association, 44(247):335–341, 1949. PMID: 18139350.

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521698doi: bioRxiv preprint

https://doi.org/10.1101/2022.12.22.521698

