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Blindness affects millions of people around the world, and is ex-
pected to become increasingly prevalent in the years to come.
For some blind individuals, a promising solution to restore a
form of vision are cortical visual prostheses, which convert cam-
era input to electrical stimulation of the cortex to bypass part of
the impaired visual system. Due to the constrained number of
electrodes that can be implanted, the artificially induced visual
percept (a pattern of localized light flashes, or ’phosphenes’)
is of limited resolution, and a great portion of the field’s re-
search attention is devoted to optimizing the efficacy, efficiency,
and practical usefulness of the encoding of visual information.
A commonly exploited method is the non-invasive functional
evaluation in sighted subjects or with computational models by
making use of simulated prosthetic vision (SPV) pipelines. Al-
though the SPV literature has provided us with some fundamen-
tal insights, an important drawback that researchers and clini-
cians may encounter is the lack of realism in the simulation of
cortical prosthetic vision, which limits the validity for real-life
applications. Moreover, none of the existing simulators address
the specific practical requirements for the electrical stimulation
parameters. In this study, we developed a PyTorch-based, fast
and fully differentiable phosphene simulator. Our simulator
transforms specific electrode stimulation patterns into biologi-
cally plausible representations of the artificial visual percepts
that the prosthesis wearer is expected to see. The simulator in-
tegrates a wide range of both classical and recent clinical results
with neurophysiological evidence in humans and non-human
primates. The implemented pipeline includes a model of the
retinotopic organisation and cortical magnification of the visual
cortex. Moreover, the quantitative effect of stimulation strength,
duration, and frequency on phosphene size and brightness as
well as the temporal characteristics of phosphenes are incorpo-
rated in the simulator. Our results demonstrate the suitabil-
ity of the simulator for both computational applications such as
end-to-end deep learning-based prosthetic vision optimization
as well as behavioural experiments. The modular approach of
our work makes it ideal for further integrating new insights in
artificial vision as well as for hypothesis testing. In summary, we
present an open-source, fully differentiable, biologically plau-
sible phosphene simulator as a tool for computational, clinical
and behavioural neuroscientists working on visual neuropros-
thetics.
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Introduction

Globally, as per 2020, an estimated 43.3 million people were
blind (1). For some cases of blindness, visual prosthetics
may provide a promising solution. These devices aim to re-
store a rudimentary form of vision by interacting with the
visual system using electrical stimulation (2–4). In particu-
lar, our work concerns prosthetic devices that target the pri-
mary visual cortex (V1). Despite recent advances in the field,
more research is required before cortical prosthesis will be-
come clinically available. Besides research into the improve-
ment of the safety and durability of cortical implants (5, 6),
a great portion of the research attention is devoted to opti-
mizing the efficacy, efficiency, and practical usefulness of the
prosthetic percepts. The artificially induced visual percepts
consist of patterns of localized light flashes (‘phosphenes’)
with a limited resolution. To achieve a functional level of
vision, scene-processing is required to condense complex vi-
sual information from the surroundings in an intelligible pat-
tern of phosphenes (7–13). Many studies employ a simulated
prosthetic vision (SPV) paradigm to non-invasively evaluate
the functional quality of the prosthetic vision with the help
of sighted subjects (9, 14–16) or through ‘end-to-end’ ap-
proaches, using in silico models (7, 12, 17). Although the
aforementioned SPV literature has provided us with some
fundamental insights, an important drawback is the lack of
realism and biological plausibility of the simulations. At this
stage of the development, given the steadily expanding em-
pirical literature on cortically-induced phosphene vision, it
is both feasible and desirable to have a more phenomeno-
logically accurate model of cortical prosthetic vision. Such
an accurate simulator has already been developed for reti-
nal prostheses (15), which has formed an inspiration for our
work on simulation of cortical prosthetic vision. Thus, in this
current work, we propose a realistic, biophysically-grounded
computational model for the simulation of cortical prosthetic
vision. Our simulator integrates empirical findings and quan-
titative models from the literature on cortical stimulation in
V1. The elements that are modeled in our simulator in-
clude cortical magnification, current-dependent spread of ac-
tivation and charge-dependent activation thresholds. Further-
more, our simulator models the effects of specific stimulation
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parameters, accounting for temporal dynamics. A schematic
overview of the pipeline and some example outputs are dis-
played in Figure 1. Our simulator runs in real-time, is open-
source, and makes use of fully differentiable functions which
allow for gradient-based optimization of phosphene encoding
models. This design enables both simulations with sighted
participants, as well as end-to-end optimization in machine-
learning frameworks, thus fitting the needs of fundamental,
clinical and computational scientists working on neuropros-
thetic vision.

A. Background and related work.

A.1. Cortical prostheses.
Early attempts by Brindley and Lewin, and Dobelle success-
fully reported to reliably induce the perception of phosphenes
(described as localized round flashes of light) via electrical
stimulation of the cortical surface (18, 19). More recent pre-
clinical studies demonstrate promising results concerning the
safety and efficacy of long-term stimulation in the primary
visual cortex, either via surface electrodes (20, 21) or with
intracortical electrodes (6, 22, 23). Other studies that per-
formed V1 stimulation in sighted subjects (24, 25) and non-
human primates (5, 26) have shown similar success. Some
milestones include the implantation of over 1000 electrodes
in a monkey’s visual cortex (5), and the testing of a prelimi-
nary artificial vision system that presents visual information
from the surroundings to a blind subject using a penetrating
multi-electrode array in the visual cortex (6). Taken together,
the previous literature provides strong evidence for the clini-
cal potential of cortical prostheses for the blind.

A.2. Perceptual reports on cortical prosthetic vision.
In our simulator, we integrate empirical findings and quan-
titative models from existing literature on electrical stimula-
tion in the visual cortex. Stimulation in V1 with intracortical
electrodes is estimated to activate tens to thousands of neu-
rons (27), resulting in the perception of often ‘featureless’
white dots of light with a circular shape (6, 18, 20, 22, 23).
Due to the cortical magnification (the foveal information is
represented by a relatively large surface area in visual cor-
tex), the size of the phosphene is strongly correlated with its
eccentricity (24, 25). Furthermore, phosphene size, stimu-
lation threshold (defined as the minimum current to reliably
produce a visible phosphene) and brightness are reported to
be dependent on stimulation parameters such as the pulse
width, train length, amplitude and frequency of stimulation
(6, 20, 22–25). To account for these effects, we integrated
and adapted previously proposed quantitative models that es-
timate the charge-dependent activation level of cortical tissue
(24, 25, 28–31). Furthermore, our simulator includes a model
of the temporal dynamics, observed by (23), accounting for
response-attenuation after prolonged or repeated stimulation,
as well as the delayed ‘offset’ of phosphene perception.

A.3. Simulated prosthetic vision.
A wide range of previous studies has employed SPV with
sighted subjects to non-invasively investigate the usefulness

of prosthetic vision in everyday tasks, such as mobility
(13, 14, 16, 32, 33), hand-eye coordination (34), reading
(16, 35) or face recognition (36, 37). Several studies have
examined the effect of the number of phosphenes, spacing
between phosphenes and the visual angle over which the
phosphenes are spread (e.g., (14, 34, 38–40)). The results
of these studies vary widely, which could be explained by the
difference in the implemented tasks, or, more importantly,
by the differences in the simulation of phosphene vision.
Most of the aforementioned studies used highly simplified
phosphene simulations, with equally-sized phosphenes that
were uniformly distributed over the visual field (informally
referred to as the ‘scoreboard model’). Furthermore, most
studies assumed either full control over phosphene brightness
or used quantized levels of brightness (e.g. “on” / ”off”), but
did not provide a description of the associated electrical stim-
ulation parameters. Even studies that have explicitly made
steps towards more realistic phosphene simulations, by tak-
ing into account cortical magnification or using visuotopic
maps (34, 41, 42), did not model temporal dynamics or pro-
vide a description of the parameters used for electrical stimu-
lation. Some recent studies developed descriptive models of
the phosphene size or brightness as a function of the stim-
ulation parameters (24, 25). Another very recent study has
developed a deep-learning based model for predicting a real-
istic phosphene percept for single stimulating electrodes (43).
While these studies have made important contributions to im-
prove our understanding of the effects of different stimulation
parameters, they do not provide a full simulation model that
can be used for the functional evaluation of cortical visual
prosthetic systems. This is what we aim to achieve in the cur-
rent study. Meanwhile, a realistic and biologically-plausible
simulator has already been developed for retinal prosthetic
vision (Pulse2Percept, (15)), which takes into account the
axonal spread of activation along ganglion cells and tempo-
ral nonlinearities to construct plausible simulations of stim-
ulation patterns. Even though scientists increasingly realize
that more realistic models of phosphene vision are required
to narrow the gap between simulations and reality (13, 44), a
biophysically-grounded simulation model for the functional
evaluation of cortical prosthetic vision remains to be devel-
oped. Realistic SPV can aid technological developments by
allowing neuroscientists, clinicians and engineers to test the
perceptual effects of changes in stimulation protocols, and
subsequently select stimulation parameters that yield the de-
sired phosphene percepts without the need for extensive test-
ing in blind volunteers. A realistic simulator could also be
used as support in the rehabilitation process, assisting clini-
cians and caregivers in identifying potential problematic sit-
uations and adapt preprocessing or stimulation protocols ac-
cordingly (44).

A.4. Deep learning-based optimization of prosthetic vision.
SPV is often employed to develop, optimize and test en-
coding strategies for capturing our complex visual surround-
ings in an informative phosphene representation. Numerous
scene-processing methods have been proposed in the litera-
ture, ranging from basic edge detection or contour-detection
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Fig. 1. Left: schematic illustration of our simulator pipeline. Our simulator is initialized with electrode locations on a visuotopic map of the visual cortex. Each frame, the
simulator takes a set of stimulation parameters that for each electrode specify the amplitude, pulse width, and frequency of electrical stimulation. Based on the electrode
locations on the cortical map and the stimulation parameters, the phosphene characteristics are estimated and for each phosphene the effects are rendered on a map of the
visual field. Finally, the phosphene renderings are summed to obtain the resulting simulated prosthetic percept. Right: Example renderings after initializing the simulator with
four 10 × 10 electrode arrays (size: 5 × 5 millimetres) placed in the left hemisphere. The output is visualized for 166ms pulse trains with stimulation amplitudes of 40, 80,
and 120µA, a pulse width of 170µs, and a frequency of 300Hz. In these example frames, we can observe the effects of cortical magnification, thresholds for activation,
current-dependent spread (size) and proportion (brightness) of cortical tissue activation.

algorithms (45–47) to more intelligent deep learning-based
approaches, which can be tailored to meet task-specific de-
mands (7, 8, 10, 13, 36, 48, 49). The advantage of deep
learning-based methods is clear: more intelligent and flexi-
ble extraction of useful information in camera input leads to
less noise or unimportant information in the low-resolution
phosphene representation, allowing for more successful com-
pletion of tasks. Some recent studies demonstrated that the
simulation of prosthetic vision can even be incorporated di-
rectly into the deep learning-based optimization pipeline for
end-to-end optimization (7, 12, 17). With end-to-end opti-
mization, the image processing can be tailored to an indi-
vidual user or specific tasks. Here, the usefulness of the
prosthetic vision is evaluated by a computational agent, or
decoder model, which assists in the direct optimization of
the stimulation parameters required to optimally encode the
present image. Note that one requirement of the optimiza-
tion pipeline is that the simulator makes use of fully differen-
tiable operations to convert the stimulation parameters to an
image of phosphenes. In the current study, we have adapted
and improved upon the framework of (7) to demonstrate the
compatibility of our realistic simulator for end-to-end opti-
mization. The currently proposed simulator can handle tem-
poral sequences and can be compared to the aforementioned
work; our experiments explore a more biologically grounded
simulation of phosphene size and locations. Furthermore,
instead of a more abstract or qualitative description of the
required stimulation (’on’ / ’off’), we included a biophysi-
cal model for predicting the perceptual effects of different
stimulation parameters such as the current amplitude, the du-
ration, the pulse width and the frequency. This opens new
doors for optimization of the stimulation parameters in realis-
tic ranges: although technological developments advance the
state-of-the-art hardware capabilities rapidly, cortical pros-
thesis devices will be operating under energy constraints, due
to both hardware limitations as well as safety limits regard-
ing neurostimulation (50, 51). Deep learning methods trained
in tandem with a biologically plausible phosphene simulator
can be leveraged to produce constrained optimal stimulation
paradigms that take into account these limitations, allowing

for safe and viable stimulation protocols to be developed.

Methods
Our simulator is implemented in Python, using the PyTorch
deep learning library (52). The simulator makes use of differ-
entiable functions which, given the entire set of phosphenes
and their modelled properties, calculate the brightness of
each pixel in the output image in parallel. This architecture
makes our model memory intensive, but allows for fast com-
putations that can be executed on a GPU. Each frame, the
simulator maps electrical stimulation parameters (stimulation
current, pulse width and frequency) to a predicted phosphene
perception, taking into account the stimulation history. In the
sections below, we discuss the different components of the
simulator model, followed by a description of some show-
case experiments. Our simulator can be imported as a python
package and the source code is available on GitHub 1.

B. Visuotopic mapping.
Our simulator can be flexibly initialized with different modes
for the phosphene topological mapping. In the most basic
mode, a custom list of phosphene locations within the visual
field can be provided by the user, expressed in polar coordi-
nates. Alternatively, the phosphene locations can be calcu-
lated from a list of electrode locations on a flattened cortical
map of V1. For mapping phosphene locations from the cor-
tical electrode locations to the neuroprosthesis user’s visual
field, our simulator uses the reverse wedge-dipole visuotopic
model of V1, proposed by (53). This model maps a complex
polar coordinate z = reiθ in the visual field, to a cortical lo-
cation w in one hemisphere of V1, following the visuotopic
relationship

w = k(log(reiαθ +a)− log(reiαθ + b)). (1)

Here r and −π2 ≤ θ ≤
π
2 are the eccentricity and azimuth of

the point in the visual field, the parameter α controls the shear

1The source code of our simulator can be retrieved from Github:
https://github.com/neuralcodinglab/dynaphos. The latest stable release can
be installed using pip: $ pip install dynaphos
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of the ‘wedge map’, k is a scaling factor that scales the map-
ping to realistic proportions in cortical distance (millimeters),
and a and b are parameters that control the singularities of the
dipole model. For the mapping from cortical coordinates to
phosphene location, we use the inverse of equation 1, which
is given by

z = Λ−1

(
ab(ewk −1)
b−ae

w
k

)
(2)

for the inverse shearing operation

Λ−1(reiθ) = rei
θ
α . (3)

The visuotopic model also provides us with the cortical mag-
nification M , which defines the relative amount of cortical
tissue that is involved in processing of visual information,
depending on the eccentricity in the visual field. The cortical
magnification is given by the derivative of equation 1 along
the horizontal meridian:

M = k(b−a)
(r+a)(r+ b) . (4)

Here, M is given in millimetres of cortical surface per de-
gree of visual angle. The parameters of the models are con-
figurable. The default values are specified in section G. Note
that in our simulation software, we provide the option of sub-
stituting equations 1-4, with other estimates described such
as the mono- or dipole model in (53, 54).

C. Phosphene size.
Based on a model by (28), the phosphene size (in degrees),

P = D

M
(5)

is obtained via an estimation of the current spread from the
stimulating electrodes, where

D = 2
√

I

K
(6)

is the diameter of the activated cortical tissue (in mm), for
stimulation current I (in µA) and excitability constant K (in
µA/mm2). Note that the cortical magnification factor M is
obtained in equation 4. The default value for K is specified
in section G. In our simulation software, we provide the op-
tion to substitute equation 6 with an estimate by (25). Based
on verbal descriptions (6, 22, 23), phosphenes are shown as
Gaussian blobs with two standard deviations set equal to the
phosphene size P , such that 95% of the Gaussian falls within
the predicted phosphene size.

D. Phosphene brightness.
In our simulator, the brightness and detection threshold of
each phosphene are based on a model of the intracortical
tissue activation in response to electrical stimulation with
biphasic square pulse trains. Our model assumes brightness
and detection thresholds of phosphene perception to be pri-
marily correlated with the deposited charge, and accounts

for the relative inefficiency of higher stimulation frequencies,
longer pulse-widths, and longer train durations, as found in
(6, 20, 24). Our simulator models the combined effects of
these stimulation parameters as follows: First, we subtract
from the stimulation amplitude Istim a leak current I0, which
represents the ineffective component of the stimulation in-
put, and a memory trace Q (further explained in section F)
that accounts for the decreased neural excitability after prior
stimulation. I0 is set equal to the rheobase current (the abso-
lute threshold for continuous stimulation at infinite duration),
following prior literature on the strength-duration relation-
ship of neural tissue activation for isolated single-pulse trials
(29). To calculate the effective stimulation current of trains
of pulses, the remaining current amplitude is multiplied with
the duty cycle of the stimulation signal (Pw · f , the fraction
of one period in which the signal is active), such that

Ieff = max
(

0, (Istim− I0−Q) ·Pw ·f
)

(7)

for pulse width Pw and frequency f . Then, the cortical tis-
sue activation is estimated by integrating the effective input
current over multiple frames, using a leaky integrator model.
For each frame with duration ∆t, the estimated cortical acti-
vation is updated as

At =At−∆t+ ∆A (8)

with

∆A=
(
−At−∆t

τact
+ Ieff ·d

)
·∆t. (9)

Here, τact is the time constant of the activation decay in sec-
onds and d ∈ (0,1] is a parameter that scales the duration of
the stimulation relative to the frame duration. By default,
d is set to 1 to simulate a stimulation duration equal to the
frame duration, where the total pulse train duration is con-
trolled with the number of successive frames in which stim-
ulation is provided to the simulator. Finally, if the cortical
activation reaches the detection threshold (explained in sec-
tion E), the phosphene is activated with a brightness equal to
the sigmoidal activation

1
1 +e−λ(A−A50) , (10)

where λ is the slope of the sigmoidal curve and A50 is the
value of A for which the phosphene reaches half the maxi-
mum brightness.

E. Stimulation threshold.
Our simulator uses a thresholding model based on psychome-
tric data from (6). Phosphenes are only generated when the
cortical tissue activation (explained in section D) reaches the
activation threshold Athr, which is obtained for each elec-
trode separately upon initialization of the simulator. To in-
troduce a degree of variability between electrodes, Athr is
sampled from the normal distribution

N (Th50,σ
2). (11)
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The default values of the 50% probability threshold Th50,
and the standard deviation σ are fit on data from (6) and can
be found in section G. Note that, by default, the detection
thresholds remain constant after initialization. However, in
accordance to the user requirements, the values can be flexi-
bly adjusted or re-initialized manually.

F. Temporal dynamics.
Using a memory trace of the stimulation history, our simu-
lator accounts for basic accommodation effects of brightness
for prolonged or repeated stimulation, as described in prior
work (23). Each frame, the memory trace is dynamically up-
dated as follows:

Qt =Qt−∆t+ ∆Q (12)

with

∆Q=
(
−Qt−∆t
τtrace

+ Ieff ·κ
)

∆t. (13)

Here, τtrace is the time constant of the trace decay in seconds,
and the parameter κ controls the input effect. Note that the
memory trace is used for the phosphene brightness and not
the phosphene size. As there is little experimental data on
the temporal dynamics of phosphene size in relation to the
accumulated charge, only the instantaneous current is used in
the calculation of the phosphene size.

G. Parameter estimates.
By default, our model uses the parameters specified below.
Unless stated otherwise, these parameter estimates were ob-
tained by fitting our model to experimental data using the
SciPy Python package, version 1.9.0 (55). More details on
the comparison between the models’ predictions and the ex-
perimental data can be found in the next section. Note that
the parameter settings may strongly depend on the specific
experimental conditions (such as the type of electrodes).

• In equations 1, 2, 3, 4 we use a = 0.75, k = 17.3, b =
120, and α= 0.95, based on a fit by (53) on data of the
human V1 from (56).

• In equation 6, the parameter K is set to 675µA/mm2,
following an estimate by (57), who measured the re-
sponses to intracortical stimulation in V1 at different
current levels.

• In equation 7, we use a rheobase current I0 = 23.9µA
based on a fit on data from (6). Here, we used the
strength-duration curve for tissue-excitability Qthr =
I0(c+ t), with minimal input charge Qthr, chronaxie
parameter c and total stimulation duration t as de-
scribed in (29).

• In equation 9, the parameter d is set equal to 1. The pa-
rameter τact is set equal to 0.111s to reflect qualitative
descriptions found in (23). Note: this parameter is not
obtained by fitting to experimental data.

• In equation 10, we use a slope λ= 19.2 ·107 and offset
A50 = 1.06 ·10−6 for the brightness curve, based on a
fit of our model on data by (6).

• The descriptive parameters of the distribution 11, are
set to Th50 = 9.14 · 10−8 and σ = 6.72 · 10−8, based
on a fit on psychometric data by (6).

• In equations 12 and 13, we use τtrace = 1.97∗103s and
κ= 14.0. These values are based on a fit of our model
to data from (23).

Experiments and Results
In this section we present computational experiments and
comparisons with the literature to validate the performance,
biological realism, and practical usability of our simulator.

H. Performance.
We tested the computational efficiency of our simulator, by
converting a pre-processed example video2 (1504 frames)
into simulated phosphene images, for different numbers of
phosphenes, and at varying image resolutions. The simula-
tor was run on a CUDA-enabled graphics card (NVIDIA©
A30) and each setting was run five times. The results are dis-
played in Figure 2. The lowest measured frame rate (10.000
phosphenes at a resolution of 256×256) was 28.7 frames per
second. Note that the missing combinations in Figure 2 indi-
cate that the required memory exceeded the capacity of our
GPU, as the simulation of large numbers of phosphenes at
high resolutions can be memory intensive.

Fig. 2. Performance as a function of resolution and number of phosphenes. The
data is based on 5 runs of 1540 frames per condition, with batch size equal to 1
frame. Simulation was run with an NVIDIA© A30 GPU. Crosses indicate missing
conditions.

I. Biological plausibility.
Here, we report on experimental data obtained from the lit-
erature, and evaluate the capacity of our simulator of fitting
these empirical data. Using equations 7-10, our simulator
accurately reproduces the relative phosphene brightness that
was reported in the previous study for different stimulation
amplitudes (R2 = 0.950, Figure 3). Figure 4 visualizes the
effect of changing the stimulation parameters on the proba-
bility of phosphene perception, as estimated by our model.
We compare our estimates with data reported by (6). As can
be observed, our model accurately fits the reported effect of
pulse width, frequency and train duration on the probability
of phosphenes perception (R2 = 0.868).

2The example video with the simulated phosphene output can be down-
loaded via this link.
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Fig. 3. Estimate of the relative phosphene brightness for different stimulation am-
plitudes. The simulator was provided with a stimulation train of 166ms with a
pulse width of 170µs at a frequency of 300Hz (see equations 7-10). Left: the
predicted peak brightness levels reproduced by our model (red) and psychometric
data reported by (6) (light blue). Note that for stimulation amplitudes of 20.0µA
and lower, the simulator generated no phosphenes as the threshold for activation
was not reached. Right: the modeled tissue activation and brightness response
over time. Values below the 50% threshold for the tissue activation and the corre-
sponding brightness values are displayed with dashed lines.

Fig. 4. (a-c) Psychometric curves (solid lines) overlaid on experimental data
(dashed lines) (ref. 6, Fig. 2a, b). The predicted probability of phosphene per-
ception is visualized as a function of charge per phase for (a) different pulse widths,
(b) different frequencies, and (c) different train durations. Note that rather than the
total charge per trial, we report the charge per phase to facilitate easy comparison
with aforementioned experimental data. In panel (d) the probabilities of phosphene
perception reproduced with our model are compared to the detection probabilities
reported in (ref. 6, Fig. 2a, b). Colors conform to the conditions in panels a, b and c

Figure 5 displays the results of exploring our simulator’s ca-
pacity of modeling temporal dynamics found in a previous
published study by (23). For repeated stimulation at differ-
ent timescales (intervals of 2 seconds, and intervals of 4 min-
utes), the measured brightness of a single phosphene is evalu-
ated after fitting the memory trace parameters. The observed
accommodation effects in our simulator are compared with
the data from (23).

J. Usability in a deep learning SPV pipeline.
To validate that the simulator can conveniently be incorpo-
rated in a machine learning pipeline, we used our simula-
tor in an existing SPV pipeline by (7) and performed several
phosphene encoding optimization experiments, described be-

Fig. 5. Relative brightness of a phosphene in response to repeated stimulation,
overlaid on experimental results by (23). The stimulation sequence consisted of 50
pulse trains at a four-second stimulation interval, followed by five pulse trains at an
interval of four minutes to test recovery. Please notice the split x-axis with variable
scaling.

low. In this pipeline, a convolutional neural network encoder
is trained to process images or video frames and generate ade-
quate electrode stimulation parameters. To train the encoder,
a simulation of the prosthetic percept is generated by our
differentiable phosphene simulator. This simulated percept
is evaluated by a second convolutional neural network, the
decoder, which decodes the simulated percept into a recon-
struction of the original input image (Figure 6). The quality
of the phosphene encoding is optimized by iteratively updat-
ing the network parameters of the encoder and decoder (si-
multaneously) using backpropagation of the reconstruction
error. In addition to the reconstruction error, which measures
similarity between the reconstruction and the input, we used
a regularization term that measures similarity between the
phosphenes and the input. For a more detailed description
of the end-to-end optimization pipeline, see (7).

Fig. 6. Schematic illustration of the end-to-end machine-learning pipeline adapted
from (7). A convolutional neural network encoder is trained to convert input images
or video frames into a suitable electrical stimulation protocol. In the training proce-
dure, our simulator generates a simulation of the expected prosthetic percept, which
is evaluated by a second convolutional neural network that decodes a reconstruction
of the input image. The quality of the encoding is iteratively optimized by updating
the network parameters using back-propagation. Different loss terms can be used
to constrain the phosphene encoding, such as the reconstruction error between the
reconstruction and the input, a regularization loss between the phosphenes and the
input, or a supervised loss term between the reconstructions and some ground-truth
labeled data (not depicted here). Note that the internal parameters of the simulator
(e.g. the estimated tissue activation) can also be used as loss terms.

J.1. Dynamic end-to-end encoding of videos.
In a further experiment, we explored the potential of using
our simulator in a dynamic end-to-end encoding pipeline.
We extended the previously published pipeline with 3D-
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convolutions (as an additional temporal dimension) to enable
encoding of subsequent video frames. The model was trained
on a basic video dataset with moving white digits on a black
background (Moving MNIST Dataset, (58)). We used video
sequences of five frames. The framerate of the simulation
was set at five frames per second. We used a combination of
two even-weighted mean squared error (MSE) loss functions:
the MSE loss between reconstruction and input, and the MSE
loss between the simulated phosphene representation and the
input. Figure 7 displays several frames after training for 45
epochs (for a total of 810,000 training examples). We can
observe that the model has successfully learned to represent
the original input frames in phosphene vision over time, and
the decoder is able to approximately reconstruct the original
input.

Fig. 7. Results of training the end-to-end pipeline on video sequences from the
moving MNIST dataset (58). Columns indicate different frames. Top row: the input
frames; middle row: the simulated phosphene; bottom row: the decoded recon-
struction of the input. This figure is best viewed in digital format.

J.2. Constrained stimulation and naturalistic scenes.
In a second experiment, we trained the end-to-end model with
a more challenging dataset containing complex images of
naturalistic scenes (the ADE20K dataset (59)). In this exper-
iment, we implemented the original pipeline described in (7)
(experiment 4). The images were normalized and converted
to grayscale, and we applied a circular mask such that the cor-
ners (outside the field covered by phosphenes) are ignored in
the reconstruction task. The experiment consisted of three
training runs, in which we tested different conditions: a free
optimization condition, a constrained optimization condition,
and a supervised boundary reconstruction condition. In the
free optimization condition, the model was trained using an
equally weighted combination of a MSE reconstruction loss
between input and reconstruction, and a MSE regularization
loss between the phosphenes and input images. After six
epochs the model has learned to successfully find an opti-
mal encoding strategy that can accurately represent the scene
and allows the decoder to accurately reconstruct pixel inten-
sities while qualitatively maintaining the image structure (see
Figure 8). Importantly, note that the encoder has learned to
encode brighter areas of the input picture by using large stim-
ulation amplitudes (over 2000µA). The encoding strategy
found in such an unconstrained optimization scheme is not
feasible for real-life applications. In practice, the electrical
stimulation protocol will need to satisfy safety bounds and
it will need to comply with technical requirements and limi-

tations of the stimulator hardware. For instance, rather than
continuous stimulation intensities it is likely that the stimula-
tor will allow for stimulation with only a number of (discrete)
amplitudes. To evaluate whether our end-to-end pipeline can
be harnessed to optimize the encoding in a constrained con-
text, we performed a second training run (the constrained
condition) where we reconfigured the encoder to output 10
discrete values between 0 and 128µA. We used straight-
through estimation with a smooth staircase function to es-
timate the gradients during backpropagation. We increased
the training stability by adapting the relative weights of the
reconstruction loss and the regularization loss (to 0.999 and
0.0001, respectively). The results of the safety-constrained
training after six epochs are visualized in Figure 8. Note that
overall, the resulting phosphenes are less bright and smaller
due to the lower stimulation amplitudes. Nevertheless, the
decoder is able to accurately reconstruct the original input.
One limitation is that we did not test the subjective inter-
pretability for human observers. As not all information in the
scene is equally important, it may be informative to further
constrain the phosphene representation to encode specific
task-relevant features. In a third training run (the supervised
boundary condition) we validated whether our simulator can
be used in a supervised machine learning pipeline for the re-
construction of specific target features, such as the bound-
aries between objects. Instead of using the input image as a
reference, now the MSE is used between the reconstruction
and a ground truth target image and between the phosphene
representation and the target image. The ground truth seman-
tic boundary targets were obtained by performing canny edge
detection and subsequent line thickening on the semantic seg-
mentation labels provided with the dataset. The results after
training for 16 epochs are visualized in Figure 8. Note that
the model successfully converged to a sparse phosphene en-
coding that selectively represents the object boundaries.

Discussion

The aim of this study is to present a differentiable and bi-
ologically plausible phosphene simulator, which takes real-
istic ranges of stimulation parameters, and generates a phe-
nomenologically accurate representation of phosphene vi-
sion. In order to achieve this, we have modeled and in-
corporated an extensive body of work regarding the psy-
chophysics of phosphene perception. From the results pre-
sented in section I, we observe that our simulator is able to
produce phosphene percepts that match the descriptions of
phosphene vision that were gathered in basic and clinical vi-
sual neuroprosthetics studies that were conducted over the
past decades. Running on a GPU, the simulator runs in real
time, and as such, it could be used in clinical experiments
with sighted volunteers. Furthermore, our proof-of-principle
computational experiments, presented in section J demon-
strate the suitability of our simulator for machine learning
pipelines, aimed at improving the image processing and stim-
ulation strategies. Here we discuss some implications of our
findings.
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Fig. 8. Results of training our simulator in an end-to-end pipeline on naturalistic images from the ADE20K dataset (59). In the constrained optimization condition and the
supervised boundary reconstruction condition, the encoder was configured to output 10 discrete stimulation amplitudes within the safe range of stimulation (0 to 128µA).
The selected images represent the first three categories in the validation dataset (’Abbey’, ’Access Road’, ’Airbase’). Note that the brightness is enhanced in the phosphene
images of the constrained optimization and the supervised boundary condition by 40%. The figure is best viewed in digital format.

K. Validation experiments.

K.1. Visuotopic mapping.
The results presented in Figure 1 illustrate the value of in-
cluding a visuotopic model based on spread of cortical acti-
vation to realistically estimate phosphene locations and size.
Some previous studies have used a model of cortical mag-
nification (34, 60) or visuotopic mapping (41, 42) in their
phosphene simulations. However, our simulator is the first to
incorporate empirical models of the current spread in corti-
cal tissue (24, 25, 28) to simulate the effects of stimulation
current on the phosphene size. The accurate modelling of
this biophysical relationship can help to increase the validity
of simulation studies and brings fundamental SPV research
closer to addressing questions regarding the practical real-life
requirements of a visual prosthesis. Furthermore, the explicit
link between the modeled area of cortical activation and the
simulated phosphene sizes and locations makes our software
very suitable for including new receptive field modeling re-
sults. Collaborative international projects such as the PRI-
MatE Resource Exchange (PRIME-RE) offer advanced tools
which allow to fit probabilistic retinotopic maps generated
from large samples to any individual NHP brain (61, 62) and
it is currently possible to accurately predict human cortical
receptive field mapping based on anatomical scans (63, 64),
or other retinotopic mapping strategies that do not rely on vi-
sual input (65, 66). This opens new doors for future research
into the functionality of visual prostheses with limited visual
field coverage. Thanks to the machine learning compatibility,
the model can also be used for the pre-operative optimization
of the implant placement and design (67).

K.2. Threshold and brightness.
The results presented in Figures 3 and 4 indicate that our
simulator closely models existing psychophysical data on the
stimulation thresholds and phosphene brightness, for differ-
ent electrical stimulation settings. Note that the effects found
by (6) (that were modeled by us) are consistent with findings

by other studies, which report brighter phosphenes for higher
stimulation strengths (23), and a lower stimulation efficiency
(i.e. higher total charge thresholds) for longer pulse trains
or higher pulse widths and frequencies (20). Moreover, our
results are in line with other computational models for de-
tection thresholds in the somatosensory cortex (68, 69). Our
results indicate how a leaky integrator model and normally-
distributed activation thresholds, provide a suitable approx-
imation of the tissue activation in cortical prostheses. Note
that alternative, more complex, models can possibly predict
the psychometric data more accurately. However, most prob-
ably, this will entail a trade-off with the simplicity and mod-
ularity found in our current simulator. Future research may
further improve our understanding of the neural processing
underlying the conscious perception of phosphenes, possibly
borrowing insights from the domain of natural vision. More
elaborate theories on this matter have been developed and
tested in (70). More specific limitations and suggestions for
future adaptations are discussed in section M.

K.3. Temporal dynamics.
The results presented in Figure 5 reveal that the model ac-
counts for experimental data on the accommodation in re-
sponse to repeated stimulation in time periods up to 200 sec-
onds. However, in contrast to the findings by (23), our sim-
ulator predicts a moderate recovery over the next 1000 sec-
onds. Although we cannot provide an explanation for this dif-
ference, the modelled recovery largely stays within the 95%
confidence interval of the experimental data. Similar to the
other components of our simulator, the memory trace was
chosen as a basic, yet effective, model of neural habituation.
Possibly, a more complex, non-linear, model can more accu-
rately fit the neurophysiological data, as discussed in section
M. However, the presented model has the benefit of simplic-
ity (there are only three parameters). Also, note that there is
still some ambivalence in the clinical data. In contrast to the
findings by (23), some studies have found accommodation
over different time scales and sometimes no accommodation
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at all (6, 19, 22, 71). More research is required for a better
understanding of the neural response after repeated or pro-
longed stimulation.

K.4. Phosphene shape and appearance.
The appearance of phosphenes in our simulation (white,
round, soft dots of light) are largely in line with previous
reports on intracortical stimulation (6, 22, 23). However,
more elongated shapes and more complex shapes have been
reported as well (22, 24, 25). By using separately gener-
ated phosphene renderings, our simulator enables easy ad-
justments of the appearance of individual phosphenes. Ad-
ditionally, we incorporated the possibility to change the de-
fault Gaussian blob appearance into Gabor patches with a
specific frequency and orientation. Regarding the colour of
phosphenes, there is still some ambivalence in reports, in-
cluding descriptions of phospehene color ranging from black
or white to different tones of color (23, 28, 72). Notably, in-
creasing the stimulation amplitudes can lead the appearance
to shift from colored to yellowish or white (23). This ef-
fect may be explained by the increased current spread for
higher stimulation amplitudes, which is predicted to span
multiple cortical columns coding for specific visual char-
acteristics (e.g. orientation or colour), thus giving rise to
phosphenes with amalgamated features (28). Currently, the
limited amount of systematic data render it difficult to enable
more accurate simulations of the variability in phosphene ap-
pearance.

L. End-to-end optimization.

L.1. Dynamic encoding.
The results presented in Figure 7 demonstrate that our pro-
posed realistic phosphene simulator is well-suited for the
dynamic optimization in an end-to-end architecture. Our
proof-of-principle video-encoding experiments are the first
to explicitly optimize the stimulation across the temporal
domain. This provides a basis for the further exploration
of computationally-optimized dynamic stimulation patterns.
Dynamic optimization of the stimulation may be necessary
to counteract unwanted effects such as response fading due
to accommodation after repeated or prolonged stimulation
(23), or delayed phosphene perception after stimulation on-
set. The inclusion of a realistic simulator in the optimiza-
tion pipeline enables researchers to exploit the optimal com-
bination of stimulation parameters to obtain precise control
over the required perception. Moreover, besides acquiring
optimal control over the transfer function from stimulation to
phosphenes, dynamic phosphene encoding could also prove
useful to expand the encoded information along the tempo-
ral domain (21). Although this was not in the scope of the
current study, our software is well-suited for simulation ex-
periments that further investigate dynamic stimulation. Note
that there remain some challenging perceptual considerations
for the design of useful dynamics stimulation patterns (for an
excellent review on asynchronous stimulation in relation to
flicker fusion, form vision and apparent motion perception,
please see (73)).

L.2. Constrained, efficient stimulation for natural stimuli.
Our second optimization experiment addresses a more nat-
ural and realistic context. The results presented in Figure
8 demonstrate that our simulator is well-suited for the opti-
mization of prosthetic vision to natural stimuli and that it can
be configured to comply with constraints regarding the stim-
ulation protocol. Note that the quality of the reconstructions
for the constrained version of the encoder indicate that the
model can still find an efficient information encoding strat-
egy using a limited set of stimulation amplitudes (10 discrete
values between 0 and 128µA). These results are in line with
previous results on constrained end-to-end optimization, in-
dicating that task-relevant information can be maximized un-
der sparsity constraints (7). While in the current experiments
the stimulation amplitude is maximized for the individual
electrodes, future studies could investigate other sparsity con-
straints, such as a maximum total charge delivered per sec-
ond across all electrodes. Ultimately, rather than an accurate
overall portrayal of the visual surroundings, a visual prosthe-
sis may need to prioritize task-relevant information. For this
reason, in recent SPV research with sighted human observers
much attention is devoted to semantic (boundary) segmenta-
tion for discriminating the important information from irrel-
evant background (10, 13, 48). Note that the explored im-
age processing strategies in these behavioral studies are com-
patible with the automated optimization through an end-to-
end machine learning pipeline. Our experiments exemplify
how supervision targets obtained from semantic segmenta-
tion data can be adopted to promote task-relevant informa-
tion in the phosphene representation. Furthermore, in addi-
tion to reconstruction of the input or labelled targets, another
recent study experimented with different decoding tasks, in-
cluding more interactive, goal-driven tasks in virtual game
environments (17). Although these proof-of-principle results
remain to be translated to real-world tasks and environments,
they provide a valuable basis for further exploration. Ul-
timately, the development of task-relevant scene-processing
algorithms will likely benefit both from computational opti-
mization experiments as well as exploratory SPV studies with
human observers.

L.3. Interpretability and perceptual correspondence.
Besides the encoding efficiency (characterized by the com-
putational decodability of task-relevant information), it is im-
portant to consider the subjective interpretablitity of the sim-
ulated phosphene representation. From the results in Figure
8 it can be observed that the model has successfully learned
to preserve correspondence between the phosphene represen-
tation and the input image in all of the training conditions.
However, as a more formal analysis was outside the scope
of this study, we do not further quantify the subjective inter-
pretability. In our model the subjective interpretability was
promoted through the regularization loss between the sim-
ulated phosphenes and the input image. Similarly, a recent
study adapted an auto-encoder architecture designed to di-
rectly maximize the perceptual correspondence between a
target representation and the simulated percept in a retinal
prosthesis, using basic stimuli (12). The preservation of sub-
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jective interpretability in an automated optimization pipeline
remains a non-trivial challenge, especially when using nat-
ural stimuli. This may hold even more for cortical prosthe-
ses, as the distinct punctuate phosphenes are in nature very
dissimilar from natural images, possibly hampering percep-
tual similarity metrics that rely on low-level feature corre-
spondence. Regardless of the implementation, it will always
be important to include human observers in the optimization
cycle to ensure subjective interpretability for the end user
(74, 75).

M. General limitations and future directions.

M.1. Performance and hardware.
There are some remaining practical limitations and chal-
lenges for future research. We identify three considerations
for future research related to the the performance of our
model and the required hardware for implementation in an
experimental setup. Firstly, although our model runs in real-
time and is faster than state-of-the art simulation for reti-
nal prostheses (15), there is a trade-off between speed and
the memory demand. Therefore, for higher resolutions and
larger number of phosphenes, future experimental research
may need to adapt a simplified version of our model - al-
though most of the simulation conditions can be run easily
with common graphical cards. Secondly, a suggestion for
follow-up research, is to combine our simulator with the lat-
est developments in mixed reality (XR) to enable immersive
simulation in virtual environments. More specifically, a con-
venient direction would be the implementation of our simula-
tor using the Cg shader programming language for graphics
processing, which is used in 3D game engines like Unreal En-
gine, or Unity 3D, as previously demonstrated for epiretinal
simulations by (38). Thirdly, and lastly, future studies could
integrate our simulation software with eye-tracking technol-
ogy. Due to the retinotopic organization of visual cortex,
cortical stimulation leads to phosphenes that are not fixed to
a position in space, but change after every eye movement.
These effects should be taken into account for a faithful sim-
ulation of the experience of a prosthesis user. Furthermore,
as has been demonstrated in previous SPV studies (34, 35),
one could investigate the potential benefits of including an
eye tracker in the prosthetic hardware to allow for sampling
of the visual environment using eye movements. Note that
testing such gaze-assisted processing does not require any
changes to our simulator. It merely involves processing the
gaze-centered image as opposed to the entire camera input.

M.2. Complexity and realism of the simulation.
There are some remaining challenges regarding the realistic
simulation of the effects of neural stimulation. A complicat-
ing factor is that cortical neuroprostheses are still in the early
stages of development. Neurostimulation hardware and stim-
ulation protocols are continuously being improved (21), and
clinical trials with cortical visual neuroprostheses are often
limited to small numbers of blind volunteers (11, 76). There-
fore, it is no surprise that the amount of data that is avail-
able at the present moment is limited, often open for multi-

ple interpretations, and sometimes contains apparent contra-
dictory information. Notably, the trade-off between model
complexity and accurate psychophysical predictions is a re-
current theme in the validation of the components imple-
mented in our simulator. These factors play a role in some
of the potential limitations of our current simulator. Here we
name a few of the important limitations and some interest-
ing directions for future research. Firstly, in our simulator,
phosphenes are only rendered when the activation is above
threshold and vice-versa. This might be an inaccurate de-
piction of the perceptual experience of an implant user, and
in reality the distinction may be less strict. The conscious
perception of phosphenes requires considerable training and
the detection process is influenced by attention (6). Although
our implementation is effective for modeling the psychome-
tric data, alternative implementations could also be consid-
ered. The perceptual effect of different simulated phosphene
threshold implementations for sighted subjects remains to be
evaluated in future SPV work. Secondly, the leaky integrator
and the memory trace that are implemented in our simula-
tor might be an oversimplified model of tissue activation in
the visual cortex. This means that some non-linear dynamics
might be missed. Also, several studies reported that higher
stimulation amplitudes may give rise to double phosphenes
(18, 19, 23, 77), or a reduction of phosphene brightness (23).
Furthermore, interactions between simultaneous stimulation
of multiple electrodes can have an effect on the phosphene
size and sometimes lead to unexpected percepts (6). Further
clinical data could help to improve our understanding of these
non-linear dynamics. A third limitation is that our simula-
tor currently only models responses of V1 stimulation. Fu-
ture studies could explore the possible extension of modeling
micro-stimulation of higher visual areas, such as V2, V3, V4
or inferotemporal cortex. In previous NHP research, reliable
phosphene thresholds could be obtained with the stimulation
of in V1, V2, V3A, MT (78). Furthermore, IT stimulation has
shown to bias face perception (79). Similar effects have been
confirmed in human subjects, and previous work has demon-
strated that electrical stimulation of higher order visual areas
can elicit a range of feature-specific percepts (80–82). Our
simulator could be extended with maps of higher cortical ar-
eas with clear retinotopy, and an interesting direction for fu-
ture research will be the implementation of feature-specific
percepts, including texture, shape and colour.

N. Conclusion.
We present a biologically plausible simulator of phosphene
vision. This simulator models pshychophysical and neuro-
physiological findings in a wide array of experimental re-
sults. Its phenomenologically accurate simulations allow for
the optimisation of visual cortical prosthesis in a manner that
drastically narrows the gap between simulation and reality,
compared to previous studies of simulated phosphene vision.
It can operate in real time, therefore being a viable option for
behavioural experiments with sighted volunteers. Addition-
ally, the PyTorch implementation and its differentiable na-
ture makes it a good choice for machine learning approaches
to study and optimize phosphene vision. The modular de-
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sign of our simulator allows for straightforward adaptation of
novel insights and improved models of cortical activation. In
summary, our open-source, fully differentiable, biologically
plausible phosphene simulator aims to provide an accessible
bedrock software platform that fits the needs of fundamen-
tal, clinical and computational vision scientists working on
cortical neuroprosthetic vision. With this work, we aspire to
contribute to increasing the field’s translational impact.
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