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Abstract 
Visuospatial attention is not a monolithic process and can be divided into different 
functional systems. In this framework, exogenous attention reflects the involuntary 
orienting of attention resources following a salient event, whereas endogenous attention 
corresponds to voluntary orienting based on the goals and intentions of individuals. 
Previous work shows that these attention processes map onto distinct functional systems, 
yet evidence suggests that they are not fully independent. In the current work, we 
investigated the differential and overlapping effects of exogenous and endogenous on 
visual processing of sensory events. Specifically, we combined spatial cueing of 
visuospatial attention, electroencephalography (EEG), and multivariate pattern analysis 
(MVPA) to examine where and when the effects of exogenous and endogenous attention 
were maximally different and maximally similar. Critically, MVPA provided new insights 
by examining whether classifiers trained to decode the cueing effect for one attention 
process (e.g., exogenous attention) can successfully decode the cueing effect for the 
other attention process (e.g., endogenous attention), and vice versa. These analyses 
revealed differential effects between exogenous and endogenous early after target onset 
(<200ms post-target). In turn, both shared similar processing later (~300ms post-target). 
We combined principal component analyses, single-trial event-related potentials, and 
mediation analysis to determine whether these effects contribute to the facilitation effects 
observed at the behavioral level after exogenous and endogenous spatial cueing. We 
uncovered that three EEG components (i.e., a posterior ipsilateral component, a posterior 
contralateral one, and a central one) shape the cueing effects of exogenous and 
endogenous attention at various times after target onset. Altogether, our study combines 
the strengths of MVPA, single-trial analysis, and meditation modelling to provide a 
comprehensive account about overlapping and differential processes of endogenous and 
exogenous, and how these dynamics relate to perceptual facilitation in the context of 
visuospatial attention.      
 
 
Significance Statement 
Top-down and bottom-up attention represent separate functional systems in the brain. 
Previous research suggests, however, that they are not fully independent, and can 
interfere with each other. In the present study, the authors use machine learning 
techniques and recordings of brain activity to investigate differences and similarities 
between top-down and bottom-up attention during the visual processing of stimuli. This 
approach allowed them to explore how top-down and bottom-up attention processes 
facilitate perception. Their results show that top-down and bottom-up attention operate 
differently as early as 100ms after the onset of a target. In contrast, they operate similarly 
200ms after the target onset y. Most importantly, these effects are directly related to the 
participants' perceptual behavior. In sum, our study shows that top-down and bottom-up 
attention support the perception of stimuli through overlapping and distinct spatio-
temporal brain patterns.  
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Introduction 

Prevailing views differentiate top-down and bottom-up attention processes 
(Knudsen, 2007). In this framework, exogenous attention (i.e., bottom-up  attention) 
reflects involuntary and stimulus-driven orienting of attention resources based on the 
features of a stimulus (e.g., your phone’s alarm going off).  On the other hand, 
endogenous attention (i.e., top-down attention) corresponds to the voluntary control of 
attention resources based on the goals and intentions of individuals (e.g., reading a book 
(Carrasco, 2011). Several lines of research emphasize that exogenous and endogenous 
map onto distinct brain processes, which supports the theory that both attention systems 
operate through independent and distinct processes (Chica, Bartolomeo, & Lupiáñez, 
2013).  

 
A significant part of research on these attention processes follows from the spatial 

cueing paradigm – an experimental approach designed to orient attention to a spatial 
location using a cue (Chica, Martín-Arévalo, Botta, & Lupiánez, 2014). A target stimulus 
occurs at different spatial locations, while participants are asked to report on (i.e., detect, 
locate, discriminate, or identify) said target stimulus. Here, the effects of attention are 
typically evaluated by comparing trials where the target event occurs at a cued location 
versus trials where the target event occurs at an uncued location. Hence, the comparison 
of cued and uncued trials reveal the perceptual benefits of visuospatial attention – i.e., 
the spatial cueing effect – wherein participants are quicker and more accurate to respond 
for target stimuli occurring at the attended locations versus unattended locations.  In this 
experimental approach, exogenous attention is often engaged via a task-irrelevant 
peripheral salient cue that prompts a stimulus-driven response (Posner, 1980), whereas 
endogenous is engaged via a task-relevant central cue indicating to participants where to 
voluntary orient their attention (Jonides, 1981).  

 
Research in neurophysiology shows that visuospatial attention hardly reduces to 

a singular neural process, but instead comprises several stages of processing (Malkinson 
et al., 2022; Martín-Arévalo, Chica, & Lupiáñez, 2016). In this regard, an important body 
of work highlights the benefits of exogenous and endogenous attention 100ms after the 
target onset. Both attention systems alter the P1 and N1 event-related potentials (ERP) 
at the contralateral occipital region (for review,  see Luck, Woodman, & Vogel, 2000; also,  
Mangun, 1995). These early effects of attention along the visual stream are thoughts to 
reflect sensory gains, which results in perceptual facilitation (Dosher & Lu, 2000; Hillyard, 
Vogel, & Luck, 1998; Itthipuripat, Ester, Deering, & Serences, 2014). However, while both 
exogenous and endogenous attention modulate early sensory processes, mounting 
evidence suggests that they may do so differently. Using a double cueing approach where 
both exogenous and endogenous attention are concurrently engaged, Hopfinger and 
West (2006) uncovered an interaction between both attention systems over the N1 
component. This interaction implies differential visual processing effects of exogenous 
and endogenous attention. This outcome is consistent with results from brain imaging 
(e.g., Dugué, Merriam, Heeger, & Carrasco, 2020). Our recent EEG work aligns with 
these findings and showed that exogenous and endogenous attention interfere with each 
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other early during visual processing (Landry, Silva Castanheira, Baillet, Sackur, & Raz, 
2022).  

 
Endogenous and exogenous attention also both modulate later stages of visual 

processing, like the P2 (e.g., McDonald, Ward, & Kiehl, 1999), N2 (e.g., Mangun, Hillyard, 
& Luck, 1993) and P3 (e.g., Chica & Lupiáñez, 2009) ERPs components. These effects 
are often thought to indicate target-related processing such as feature selection, the 
filtering of task-irrelevant events, and the accumulation of perceptual evidence for target 
discrimination (Akyürek & Schubö, 2013; Luck & Hillyard, 1994; Nunez, Vandekerckhove, 
& Srinivasan, 2017).  Neurophysiological findings similarly suggest differential effects 
between exogenous and endogenous attention for these later stages of target processing. 
Previous work showed that endogenous attention increases the amplitude of the N2 and 
P3 components, while researchers observed no such effect for exogenous attention 
(Hopfinger & West, 2006; Wang, Wu, Fu, & Luo, 2010).  

 
Although previous EEG work highlights distinct and shared processes between 

endogenous and exogenous attention along the visual stream, it remains uncertain how 
these effects contribute to behavior. The goals of the present study were threefold. First, 
we aimed to corroborate previous findings suggesting the differential effects of exogenous 
and endogenous on target processing. We trained multivariate pattern analysis (MVPA) 
to classify the effects of exogenous and endogenous attention and extracted when and 
where the attention systems were maximally different. Second, we aimed to investigate 
overlapping neural processes between exogenous and endogenous attention. For this 
second goal, we examined whether classifiers trained to decode the cueing effect for one 
form of attention processing generalizes to the other form of attention processing (e.g., 
test the performance of classifiers trained to decode exogenous cue validity in the context 
of endogenous cue validity). Based on previous work, we hypothesized that exogenous 
and endogenous attention would differ early during the processing of sensory events, 
around the P1-N1 complex, and would be similar further down the visual stream. Our third 
and last objective was to relate neurophysiological processes of endogenous and 
exogenous attention to behaviour. We aimed to determine whether distinct and shared 
processes of attention contribute to the exogenous and endogenous cueing effects. We 
relied on single-trial ERPs to breakdown visuospatial attention into neurophysiological 
components and used a mediation analysis to test whether these components contribute 
to the facilitation attention effects observed at the behavioral level. Altogether, our findings 
highlight where and when the brain processes of exogenous and endogenous attention 
were different and similar, and whether these differences and similarities contribute to the 
observed behavioral facilitation effects of attention.       

 
Results 
 We collected data from thirty-two participants who completed three tasks while 
recorded EEG: An endogenous cueing task, an exogenous cueing task, and a no cueing 
task. Across all tasks, participants were asked to discriminate the orientation of a Gabor 
target (clockwise versus counterclockwise). The target event occurred at a cued or 
uncued location during spatial cueing (Figure 1).  
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Behavior. Discrimination performance was near the ceiling (~93% average accuracy rate 
overall). We therefore focused our behavioral analysis on accurate response times (RTs). 
We first confirmed that the exogenous and endogenous cues yielded facilitation effects. 
We used hierarchical regression models with cue validity (cue valid vs. cue invalid) as a 
fixed factor and participants as a random one. This analysis shows that participants were 
~41ms faster for accurately discriminating the orientation of Gabor target for cued trials 
for exogenous cueing (exogenous cue validity: β=-41.28, SE=2.82, 95% CI [-46.83, -
35.74]; Figure 1A and supplementary Table 1). Participants were likewise ~36ms faster 
to discriminate Gabor targets for cued trials for endogenous attention (endogenous cue 
validity effect; β=-36.49, SE=3.24, 95% CI [-42.84, -30.13]; Figure 1B and Supplementary 
Table 2).  

 

 
 
Figure 1. A. For the exogenous spatial cueing task, each trial began with a fixation screen, followed by the 
onset of the exogenous cue (i.e., a target placeholder would briefly flash) after a random interval. The cue 
would be offset after 200ms. Lastly, a Gabor stimulus was shown at the left or right target location until the 
participant's discrimination response. The exogenous cue was non-predictive of the target’s location. B. 
For the endogenous spatial cueing task, each trial began with a fixation screen followed by the onset of the 
endogenous cue (i.e., half of the black fixation circle would become white) after a random interval. The cue 
stayed on the screen until the end of the trial. The endogenous cue was task-relevant and predicted the 
target’s location. In both cueing tasks the onsets of the endogenous cue, the exogenous cue, and the target 
stimulus were time jittered. The plots show average (black dots) and participants (color dots) accurate RTs 
across conditions. Error bars represent bootstrapped 95% C.I. Bottom graphs indicate hierarchical 
regression model coefficients and corresponding 95% C.I for evaluating cue validity.  
 
 Having confirmed perceptual facilitation across both spatial cueing tasks, we 
tested whether exogenous and endogenous cue validity effects differed. Again, we used 
hierarchical regression modelling where we included cue validity (cue valid vs. cue 
invalid), task (exogenous cueing task vs. endogenous cueing task), and their interaction 
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as fixed factors and participant as a random factor. The interaction between cue validity 
and task examined whether cue validity differed between exogenous and endogenous 
cueing tasks. We added predictors in a stepwise fashion. The best fitting regression 
model revealed main effects of cue validity (β=-38.87, SE=2.17, 95% CI [-43.13, -34.61]) 
and task (β=21.13, SE=2.14, 95% CI [16.93, 25.33]). Hence, participants were on 
average ~38ms faster for cued versus uncued trials across both tasks, while the main 
effect of task revealed that they were overall ~21ms slower during the endogenous cueing 
task compared to exogenous task. Critically, when we tested the interaction between cue 
validity and task, we confirmed that the cue validity effect did not differ between 
exogenous and endogenous attention (β=5.07, SE=4.36, 95% CI [-3.46, -13.61]). 
Evidence strongly weighted against the likelihood of the interaction between cue validity 
and task variables (BF01 = 76.55).   
 
Electrophysiology: Decoding differential effects of exogenous and endogenous attention. 
Using a MVPA approach adapted from Bae and Luck (2018), we tested where and when 
exogenous and endogenous cue validity effects differed along the target-locked EEG time 
series. We trained linear support vector machine (SVM) classifiers for each timepoint and 
subject, independently. We randomly split trials into three equally sized bins and 
averaged the time series of EEG potentials within each bin, yielding an ERP for each bin 
(see Figure 2A). We did this separately for cue valid trials and cue invalid trials, and then 
subtracted the ERP of cue valid trials from the ERP of cue invalid trials across 
corresponding bins. We applied this procedure separately for exogenous and 
endogenous attention. This process produced 6 separate time series: 3 distinct time-
series reflecting the exogenous attention cue validity effect and 3 time-series reflecting 
the endogenous attention cue validity effect. We used a three-fold cross-validation 
strategy to train classifiers to decode which attention process is engaged (i.e., 
endogenous vs exogenous attention). Here, two of the three cue validity time-series for 
each attention system (i.e., four in total) were used to train classifiers, and the remaining 
two (i.e., one per attention system) were used to test the classifiers’ performance. We 
iterated across all possible combinations such that each time series was used twice for 
training and once for testing. The respective decoding accuracies of the classifiers were 
determined from their correct classification performance on the left-out time-series (i.e., 
the test data set). We repeated the above random binning procedure 50 times per 
participant (see Methods and Figure 2A). We averaged decoding accuracies across all 
iterations and used pairwise mass t-statistics across the time series to evaluate accuracy 
rates against chance-level.      
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Figure 2. Decoding pipeline A. For each participant, across all channels, we randomly separated epoched 
EEG time series into three bins for cue valid trials and cue invalid trials separately, then averaged EEG to 
produce an ERP per bin, and lastly subtracted cue invalid ERP from cue valid ERP for each corresponding 
bins. We perform these procedures in parallel for exogenous and endogenous attention. We used SVM to 
decode exogenous from endogenous attention. For each time point, we trained the classifier using two data 
points for each form of attention, and then tested it on the remaining one. We iterated this process three 
times so that each averaged epoch was used twice for training and once for testing. We repeated this 
process 50 times per participant. B. Using a similar approach, we trained classifiers to decode cue validity 
for each attention process separately (e.g., exogenous cue valid ERP vs. exogenous cue invalid ERP) and 
then tested whether the trained SVM model for each time point generalizes to the other attention process 
(e.g., whether SVM models trained to decode exogenous cue validity generalize to endogenous cue 
validity).    
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This analysis supported our primary hypothesis about differential effects. We 
observed that classification performance for differentiating exogenous and endogenous 
cue validity was better than chance-level early after target onset – i.e., 20ms post-target 
stimulus (Figure 3A). Decoding accuracy for separating exogenous and endogenous cue 
validity effects was above chance level between 20ms until 800ms. The average maximal 
decoding performance across participants occurred at 172ms (95% CI, [143ms 201ms]) 
after target onset (Figure 3B). We observed a contralateral posterior fluctuation of SVM 
weights (i.e., the coefficients of the classifiers) at 172ms (Figure 3C). Altogether, these 
results highlight that exogenous and endogenous attention produce different cue validity 
effects early during sensory processing (i.e., starting at ~20ms).  

 

 
Figure 3. A. Group averages of decoding accuracy from target-locked EEG traces for exogenous cue 
validity versus endogenous cue validity. We used one sample t-tests and random cluster permutation to 
test for significant differences in classification performances against chance-level (50%). Horizontal purple 
lines indicate the temporal segments of significant differences in decoding accuracy. Shaded areas 
represent the 95% C.I. B. Averaged maximal time point for decoding accuracy across the time series and 
participants. Error bar represents bootstrapped 95% C.I. C. Variations of SVM weights across the time 
series that correspond to the classifiers that were trained to decode exogenous versus endogenous cue 
validity. Topography indicates weights at the time point where we observed SVM peak values for ipsilateral 
and contralateral electrodes relative to the location of target onset.  
  
Electrophysiology: Decoding similar effects of exogenous and endogenous attention. We 
trained classifiers on one form of visuospatial attention and then tested their ability to 
generalize to the other form of visuospatial attention (Figure 2B). In this way, we wanted 
to verify if classifiers trained on exogenous attention generalized to endogenous attention, 
and vise-versa.  
 

We first trained and validated linear SVM classifiers to decode exogenous cue 
validity (i.e., exogenous cue valid versus exogenous cue invalid), and then tested their 
performance to decode endogenous cue validity (i.e., endogenous cue valid versus 
endogenous cue invalid). This analysis revealed that the decoding of exogenous cue 
validity was above chance level at target onset (i.e., 0ms) and lasted for the entire epoch 
(Figure 4A). During pre-processing of the EEG data, we relied on regression modelling 
based on the non-cueing condition to control for the sensory effects of the exogenous 
and endogenous cues and better isolate the effects of the target event. This result 
demonstrates that the classifiers were still able to capture ongoing sensory effects of the 
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exogenous cue occurring shortly before the target event, despite correction (see Methods 
for details). The averaged peak decoding accuracy across participants for exogenous 
attention occurred at 223ms (95% CI, [123ms 323ms]) after target onset (Figure 4B). We 
examined the weights of the SVM and observed two peaks of SVM weights – a first one 
occurring before 200ms that corresponds to variations of electrodes on the contralateral 
side, and then a second one occurring after 200ms based on centroparietal and temporal 
fluctuations (Figure 4C). Importantly, we tested the generalization of these classifiers 
trained to decode the cue validity effects of exogenous attention on their ability to decode 
the cue validity effects of endogenous attention. We observed two significant clusters, a 
first one from 200 to 472ms, and a second from 564 to 612ms (Figure 4A). Furthermore, 
the averaged peak decoding accuracy for endogenous cue validity was 289ms (95% CI, 
[249ms 330ms]) after target onset (Figure 4B). These results corroborate the hypothesis 
that there are shared brain processes between exogenous and endogenous attention.  
 

We used the same approach to evaluate whether SVM classifiers trained to 
decode endogenous cue validity (endogenous cue valid versus endogenous cue invalid) 
generalize to exogenous cue validity (exogenous cue valid versus exogenous cue invalid; 
Figure 2B). When we evaluated the performance of these classifiers for decoding 
endogenous cue validity against chance level, we observed four significant clusters. A 
first one ranging from 128 to 444ms, the second one from 476 to 520ms, the third one 
ranging from 544 to 620ms, and lastly from 916 to 976ms (Figure 4D). Per our 
expectations, the effects of endogenous cue validity therefore emerged early after target 
onset. Here, the averaged time point for the maximal decoding accuracy across 
participants was 229ms (95% CI, [66ms 392ms]) after target onset (Figure 4E). The 
corresponding SVM weights comprised ipsilateral fluctuations at the posterior site before 
the 200ms mark relative to target onset followed by a more centro-frontal of weights 
fluctuations occurring beyond the 200ms mark post target-stimulus (Figure 4F). 
Importantly, we found two significant clusters when we applied this model to decode 
exogenous attention cue validity (exogenous cue valid versus exogenous cue invalid).           
A first one emerged from 232 and 328ms, and then a second one from 344 to 404ms 
(Figure 4D). The averaged time point of maximal decoding accuracy across participants 
for exogenous attention was 282ms (95% CI, [234ms 331ms]) post target stimulus (Figure 
4E). Altogether, these results for models that are trained on endogenous attention and 
then tested on exogenous attention are consistent with the previous ones where we 
reported the outcome of SVM models that were trained on exogenous attention and then 
tested on endogenous attention. In both instances, the trained model generalized to other 
form of attention processing beyond 200ms post-stimulus.      
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Figure 4. Group averages of accuracy from target-locked EEG traces for classifiers that were trained to 
decode exogenous cue validity (A; exogenous cue valid versus exogenous cue invalid) or endogenous cue 
validity (D; endogenous cue valid versus endogenous cue invalid) then evaluated on exogenous cue validity 
(green) and endogenous cue validity (blue). We used one sample t-tests and random cluster permutation 
to test for significant differences in classification performances against chance-level (50%) for both attention 
conditions. Horizontal lines indicate the temporal segments of significant differences in decoding accuracy 
for exogenous attention (green line) and endogenous attention (blue line). Shaded areas represent the 95% 
C.I. Averaged time point for maximal decoding accuracy across the time series and participants for 
classifiers that were trained for decoding exogenous cue validity (B) and endogenous cue validity (E), and 
then evaluated on exogenous cue validity (green bar graph) and endogenous cue validity (blue bar graph). 
Error bars represent bootstrapped 95% C.I. Variations of SVM weights across the time series that 
correspond to the classifiers that were trained to decode exogenous cue validity (C; exogenous cue valid 
versus exogenous cue invalid) and endogenous cue validity (F; endogenous cue valid versus endogenous 
cue invalid). Topography indicates weights at the time point where we observed SVM peak values for 
ipsilateral and contralateral sides relative to the location of target onset.  
 
Early ERP components relate to perceptual facilitation. Our previous results uncovered 
early (<200ms post-target onset) differential and later overlapping effects between 
exogenous and endogenous cue validity. Here, we aimed to explore whether these 
effects contribute to perceptual facilitation (i.e., faster response times for cued trials 
relative to uncued ones). We relied on single-trial ERPs and mediation analyses to test 
this hypothesis. Our approach was similar to previous techniques in single-trial ERPs 
analysis (e.g., Nunez et al., 2017). To obtain single-trial waveforms, we first applied 
principal component analysis (PCA) on the target-locked averaged waveforms of the non-
cueing condition across the entire scalp (see Methods). This allowed us to uncover 
components pertaining to visual processing in the absence of explicit orientation of 
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attention. From this analysis we retained three components that explained 90.92% of the 
total variance (i.e., 41.98% for the first component, 36.69% for the second component 
and 12.25% for the third and last one; see supplementary Figure 1A). The loading 
coefficients of the first component revealed a pattern that encompassed the posterior 
region that was skewed towards the ipsilateral side, the second component also showed 
a posterior topographical pattern, albeit on the contralateral side, and the third one 
exhibited a more centroparietal topographical pattern (Figure 5A; supplementary Figure 
1A). Next, we used the PCA weights obtained from the non-cueing condition to project 
the single-trial target-locked EEG data from the exogenous and endogenous spatial 
cueing conditions (supplementary Figure 1B). This resulted in 3 sets of single-trial 
loadings for each attention condition. Averaged waveforms for exogenous and 
endogenous attention (i.e., cue valid and cue invalid trials) across these different 
components are presented in the supplementary Figure 2. See the Method section for 
details.   
 
 We applied mediation analyses separately across the 3 components. Here, we 
evaluated whether single-trial ERPs mediate the relationship between cue validity and 
response times based on hierarchical regression analyses. Meditation coefficients were 
evaluated across the time series and corrected for multiple comparisons using cluster-
based permutation tests. See supplementary material for coefficients of the a, b, c’ paths. 
For exogenous attention, a significant cluster emerged between 132 and 148ms post-
target for the first component (Figure 5A) that indicated a partial mediation effect 
(supplementary Figure 3C shows path c’ coefficients). This effect was related to increased 
amplitude of the P1 for exogenous cued trials versus uncued ones (the coefficients for 
the a path are presented in supplementary Figure 3A). For the second component, we 
observed two significant clusters – a first one between 132 and 184ms that corresponded 
to decreased amplitude of the N1 for cued trials versus uncued ones, and a second one 
from 356 to 452ms which reflected decreased amplitude of the P3 (Figure 5B). Both 
clusters indicated a partial mediation (supplementary Figure 3F for c’ path coefficients). 
Lastly, we observed a significant cluster indicating a partial mediation for the third 
component from 236 to 324ms (Figure 5C), which matched decreased amplitude of the 
N2. 
 
 In our last analysis, we applied the same mediation procedure for endogenous 
attention. We found a significant cluster from 536 to 604ms that indicated a partial 
mediation, which corresponded to increased amplitude for the P3 (Figure 5D; we present 
a and c’ paths coefficients in supplementary Figures 4A and 4C). Moreover, for the 
second component, we observed two early significant clusters from 140 to 184ms that 
matched an increased N1 and a much smaller one from 216 to 224ms that corresponded 
to an increased P2 (Figure 5E; a path coefficients in supplementary Figure 4D); and a 
later cluster that corresponded to an increased P3 amplitude between 300 and 392ms 
after target onset (Figure 4D). Lastly, we observed four significant clusters for the third 
component. A first cluster that corresponded to decreased amplitude for the N1 from 132 
to 156ms post-target onset, a second one that corresponded to decreased amplitude of 
the N2 from 228 to 380ms post-target onset, and then two clusters (i.e., from 456 to 
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480ms and from 456 to 652ms post-target onset) that reflected a lasting difference in 
amplitude between endogenous cued and uncued trials.                       

 

 
 
Figure 5. Single-trial ERPs mediation effects for exogenous (green) and endogenous (blue) across the 
three components we isolated applying PCA to the non-cueing condition.  Coefficients show parameter 
estimates for mediation effects involving the ERPs across all three PCA components. Green and blue bars 
represent significant effects for cluster-level alpha < .05. Shaded areas represent 95% C.I. Topographies 
for the first, second, and third component for target-related contra- and ipsilateral are shown at the top.        
 
Discussion 

In the present work, we investigated how exogenous and endogenous attention 
achieve perceptual facilitation through distinct and similar neural processes. We relied on 
an easy target discrimination task where the magnitude of cueing benefits for exogenous 
and endogenous attention was comparable across both systems, as evidenced by Bayes 
factor analyses (Figure 1). We then leveraged MVPA over target-locked ERPs to 
investigate when and where exogenous and endogenous attention neural processes are 
different and similar (Figure 2). Overall our results indicate that exogenous and 
endogenous attention differ early on (<200ms post-target onset) in terms of their neural 
processes. In contrast, both attention systems share similar neural processes later 
(~300ms after target onset). Lastly, we linked the observed differential and overlapping 
effects between attention systems to their perceptual facilitation using a single-trial ERPs 
meditation analysis. Altogether, our findings demonstrate how endogenous and 
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exogenous facilitation effects are governed by overlapping and differential processes, 
further supporting the multifaceted view of visuospatial attention. 

 
Our findings show that exogenous and endogenous attention differed along the 

entire time series. This difference was maximal around 170ms (Figure 3A and 3B). In 
accordance with our hypothesis, differential effects between exogenous and endogenous 
attention therefore occurred early after target onset. These findings dovetail previous 
work that highlights early (between 100 and 200ms after target onset) differences 
between exogenous and endogenous attention (Hopfinger & West, 2006). We similarly 
observed that the maximal difference between exogenous and endogenous attention was 
most prominent on the contralateral topographical posterior site relative to the stimulus’ 
location (Figure 3C). These attention processes, therefore, operate on separate stages 
of visual processing on the contralateral side.  

 
In line with the MPVA results, our mediation modelling approach indicates that 

these effects occurred over the P1-N1 complex, which is consistent with previous work in 
the field (Hopfinger & Mangun, 1998, 2001; Hopfinger & West, 2006). For this 
contralateral component, exogenous attention increased the amplitude of the P1 and 
decreased that of the N1, as evidenced by the coefficients of the a path along the time 
series (Supplementary Figures 1E and 2D), whereas endogenous attention did not alter 
the amplitude of the P1 and increased the amplitude of the N1 (Supplementary Figures 
1F and 3D). These outcomes exhibit different patterns between them. Prevailing views 
relate modulations of these early ERPs to sensory gain for attended events relative to 
unattended ones (Hillyard et al., 1998; Itthipuripat et al., 2022; M. M. Müller et al., 2006). 
Accordingly, our results imply that exogenous and endogenous attention boost the 
sensory signal through different means: Exogenous attention appears to influence 
sensory processing earlier than endogenous attention. This outcome is consistent with 
findings from functional magnetic resonance imaging that show differential effects for 
exogenous and endogenous attention at the level of the visual areas (Dugué et al., 2020; 
N. G. Müller & Ebeling, 2008).  

 
Importantly, our mediation modelling approach shows that early differential effects 

between attention processes relate to perceptual facilitation (Figure 5). Here, we found 
that exogenous and endogenous attention partly mediated perceptual facilitation by 
modulating differently the components we isolated using PCA. For our first component, 
which exhibited an ipsilateral topographical pattern at the visual level, we observed 
increased amplitude of the P1 following exogenous attention partly mediated the 
relationship between the exogenous attention cue and perceptual facilitation (Figure 5A). 
In contrast, we did not observe any such effect for early ERP following endogenous 
attention. Instead, endogenous attention contributed to facilitation via modulations of the 
P3 (Figure 5D), which aligns with previous work showing a dominance of endogenous 
attention at later stages (Hopfinger & West, 2006). In this way, we observed a distinct 
pattern for the first component: An early mediation effect for exogenous attention and late 
one for endogenous attention, which means that differences between exogenous and 
endogenous attention also occur later during processing.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.23.521777doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521777
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

Differential effects also emerged for the contralateral EEG component of our PCA 
(i.e., our second component) where both exogenous and endogenous produced partial 
mediation effects through opposite patterns. Whereas the mediation of exogenous 
attention involved decreased amplitude of the N1, meditation of endogenous attention 
occurred through increased amplitude of the N1. This pattern further underscores how 
differential effects contribute to perceptual facilitation. Note that modulation of exogenous 
attention on the amplitude of the contralateral P1 did not contribute to this mediation 
effect. Accordingly, the influence of exogenous attention over the P1, a 
neurophysiological marker of exogenous attention (Martín-Arévalo et al., 2016), partially 
mediated perceptual facilitation for the ipsilateral topographical component only, not the 
contralateral one. While the maximal difference between exogenous and endogenous 
attention occurred at the contralateral site early after target onset, our results show that 
exogenous attention facilitates perception through a more ipsilateral component, not the 
contralateral one. Lastly, we also observed a partial mediation effect related to decreased 
amplitude of the N1 following endogenous attention for the third and last EEG component 
(Figure 3F). Therefore, endogenous attention partly facilitates perception by boosting the 
N1 at the contralateral site and decreasing the amplitude of the N1 at centroparietal level. 
Altogether, these findings emphasize that facilitation effects for exogenous and 
endogenous attention emerge through different stages of visual processing (i.e., boosting 
the ipsilateral P1 for exogenous attention and the ipsilateral P3 as well as the contralateral 
N1 for endogenous attention). Modulations of the P1, an early ERP component, for 
exogenous attention likely reflect the stimulus-driven nature of this attention process, 
whereby the salient features of the peripheral cue trigger early bottom-up visual 
processes that enhance the processing of upcoming event at the same location (Chica et 
al., 2013). In turn, modulations of the N1, a later component, following endogenous 
attention likely reflect the top-down nature of this attention process, which encompass 
feedback reentrant loops from the frontoparietal circuits that enhance neural activity in 
the sensory areas in a goal-driven manner (Carrasco, 2011).          

 
Our findings also emphasize similarities between exogenous and endogenous 

during visual processing.  We observed shared neural processes beyond the period of 
the P1-N1 complex (Figure 4A, 4B, 4D and 4E). For both exogenous and endogenous 
attention. The time point of maximal similarities between attention systems corresponded 
to a more central topography (Figure 4C and 4F). These results denote that beyond early 
differential effects, exogenous and endogenous impact sensory processing in a similar 
fashion. These results support growing literature suggesting that these attention 
processes share neural processes at the sensory level (Landry et al., 2022). Likewise, 
our mediation analysis also shows analogous effects for the second  and third component 
(which corresponded to a contralateral component and a more centroparietal 
topographical pattern, respectively; Supplementary Figure 1E, 1F, 1H, 1I).  
Specifically, looking at the coefficients of the a path, both exogenous and endogenous 
attention yielded smaller amplitudes of the P3 over the contralateral component and of 
the N2 for the centroparietal one. These results add to a body of mixed evidence that 
reports similar  (Martín-Arévalo et al., 2016) and differential effects of exogenous and 
endogenous attention on the P3 (Hopfinger & West, 2006). Such heterogeneity in the 
literature brings about the possibility that this may reflect task-specific effects. Still, few 
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studies directly compare exogenous and endogenous in the same experimental context. 
Our findings therefore advance the field by showing analogous effects between both 
exogenous and endogenous attention for later stages of visual processing (>200ms post-
target) in the same experimental context. Our results, similarly, nuances the idea that 
later stages of visual processing are dominated by one form of attention, and instead 
highlight how both systems impact these later stages in an analogous fashion.    

 
In addition to early differential effects, perceptual facilitation also involves 

overlapping modulations for later stages of visual processing  (>200ms post-target onset; 
Figure 5B, 5C, 5E and 5F). This analogous effect, however, is driven by the processing 
during uncued target events. Indeed, we observed greater amplitude for later ERPs 
during invalid trials for both exogenous and endogenous attention, while these effects 
partly mediated perceptual facilitation. It is possible that similarities between exogenous 
and endogenous attention follows from the re-orientation of attention resources towards 
uncued target events (Corbetta, Patel, & Shulman, 2008), which would ultimately 
modulate the later stages of sensory processing in a similar fashion. This interpretation 
entails that changes in the amplitude of the N2 and the P3 relates to the processing of 
unexpected events (e.g., Bocquillon et al., 2014; Debener, Makeig, Delorme, & Engel, 
2005). Both the exogenous and the endogenous cues, therefore, may have generated 
expectations about the target’s location, even if the exogenous cue was non-predictive of 
the target’s location and participants were made aware of this fact. In sum, the advent of 
the target event at the uncued location could therefore represent an unexpected event 
that recruits later stages of target-related processing following the re-orientation of 
attention resources. On the other hand, these effects could also reflect the recruitment of 
greater resources for target-related processing to recover from the cost of having to re-
orient perceptual resources. In our study, both the N2 and the P3 were predictors of 
response times regardless of attention and cueing effects. Modulations of these ERPS, 
therefore, reflect performance during target discrimination. In short, the re-orientation of 
attention resources encompasses greater recruitment of these target-related resources. 

 
Although we uncovered how distinct and shared processes between exogenous 

and endogenous attention facilitate perception, our findings revealed a partial mediation, 
which entails that additional neural processes contribute to the cueing effect. In this 
regard, one may expect that changes in alpha oscillations would likewise contribute to 
this effect (Peylo, Hilla, & Sauseng, 2021). Moreover, it also remains unclear how distinct 
and shared processes between exogenous and endogenous attention relate to specific 
computations in shaping their effects (e.g., Jigo, Heeger, & Carrasco, 2021). 

 
Combining the strengths of MVPA, single-trial ERPs and mediation modelling, our 

study delivers a comprehensive assessment of the distinct and overlapping neural 
processes of exogenous and endogenous attention. Our findings align with the 
dichotomous account of visuospatial attention by showing that early differential effects 
contribute to shaping perceptual facilitation (Carrasco, 2011; Chica et al., 2013). They 
also align with reports that highlight differences between exogenous and endogenous 
attention at the neural level such as the frontoparietal network (e.g., Bowling, Friston, & 
Hopfinger, 2020), the temporoparietal junction (e.g., Dugué, Merriam, Heeger, & 
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Carrasco, 2018), and the visual areas (e.g., Dugué et al., 2020). Critically, MVPA enabled 
us to highlight how these attention processes also yield similar effects further along the 
visual stream. This result is consistent with the notion of shared neural processes 
between them. In this regard, we found that both differential and overlapping effects 
contributed to shaping perceptual facilitation. In sum, our findings are consistent with the 
idea that exogenous and endogenous attention hardly reduce to a single neural marker 
and involve multiple stages of sensory processing (Martín-Arévalo et al., 2016).  
 
Methods 
Participants. We recruited 42 participants based on convenience sampling. Participants 
received monetary compensation of $10/hour for completing 4 different tasks. Each task 
consisted of 384 trials. Participants performed 10 practice trials before each task. We 
analyzed data from 3 tasks: the non-cueing task, the endogenous cueing task, and the 
double cueing task. Data from all four tasks has been disseminated elsewhere (Landry et 
al., 2022). The experiment was a single testing session and lasted approximately 2 hours. 
All participants had normal or corrected-to-normal vision and provided consent. The 
experimental protocol was approved by the McGill Ethics Board Office. 
 

Seven participants were excluded due to poor EEG data quality. One participant 
did not complete all tasks. We additionally excluded one participant due to below chance 
discrimination accuracy rate (~40% averaged across all conditions) and one participant 
due to a high volume of timeout errors (response times > 1500ms on ~11% of trials 
overall). The final sample included 32 individuals (24 women, Mean age = 21.9 (SD = 
2.6)). Our sample size follows from previous work using the double cueing experimental 
approach: Effect size estimates of task performance suggest that 6 participants are 
required to achieve a power of .8 for the within-individual cueing effects of exogenous 
and endogenous orienting in a target discrimination task for alpha = .05 (Landry, Da Silva 
Castanheira, Sackur, & Raz, 2021). The sample size of the current study is therefore 
adequate to detect the effect of attention at the behavioral level. Moreover, our sample 
size is almost twice that of previous EEG experiments investigating exogenous and 
endogenous orienting together (Hopfinger & West, 2006; Keefe & Störmer, 2021).         
 
Stimuli, Apparatus & Design. Participants viewed stimuli on a 24-in BenQ G2420HD 
monitor sitting approximately 60 cm away. Stimulus presentation was done using 
MATLAB R2015b (Mathworks Inc., Natick, MA, USA) and the third version of the 
Psychophysics toolbox (Brainard & Vision, 1997; Kleiner et al., 2007; Pelli, 1997). The 
screen was set to 75hz. Except for the target, all stimuli were black (i.e., RGB values of 
0, 0, 0; 1.11 cd/m2) and white (i.e., RGB values of 255, 255, 255; 218.8 cd/m2) drawings 
on a grey background (i.e., RGB values of 128, 128, 128; 70.88 cd/m2). The fixation 
marker was an empty circle made from a black line drawing with a radius of 1.2° located 
in the center of the screen. Two target placeholders were located at 8.7° on each side of 
the fixation marker on the left and right side of the screen. These placeholders were made 
from black line drawings of empty circles with a 2.4° radius. We cued exogenous attention 
by briefly changing the line drawing from one of the placeholders to white. To ensure that 
this cue solely engaged exogenous orienting, the cue-target spatial contingency was set 
to 50%, such that the cue was only predictive of the target’s location at chance-level. The 
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exogenous cue was therefore non-informative and occurred at the periphery. This is 
consistent with the standard approach for eliciting exogenous attention in the lab (Chica 
et al., 2014). We cued endogenous attention by coloring the inside of the fixation marker, 
wherein the right or left half of the circle was shaded in black, and the other half in white. 
The side of the fixation marker that turned white indicated where the target was likely to 
occur. For example, if the right side turned white, the target was 66.6% likely to appear in 
the right placeholder. In this way, we avoided using overlearned directional cues, like an 
arrow, to engage endogenous attention (Ristic & Landry, 2015). Participants were aware 
of these contingencies. The targets were sinusoidal black and white gratings combined 
with a Gaussian envelope. Spatial frequency was set to 3 cpd. Target stimuli were tilted 
5° degrees clockwise or counter-clockwise.  
 
Procedure. Participants completed four tasks of 384 trials: A non-cueing task, an 
exogenous cueing task, an endogenous cueing task, and a double cueing task where 
both exogenous and endogenous orienting were engaged. Task order was randomized 
across participants. Note that the current manuscript only includes data from the non-
cueing, the endogenous cueing, and the double cueing tasks. 
 

Participants stared at the center of the screen throughout the experiment, while we 
assessed their eye movements using electro-oculogram. We jittered the latencies 
between fixation and attention cues, between both attention cues, and between the cues 
and the target. We used a uniform distribution of latencies to minimize the effects of 
temporal prediction following spatial cueing. Cue-target latencies were adjusted following 
the temporal profiles of exogenous and endogenous attention so that the benefit of 
attention processing would be optimized for both attention (Chica et al., 2014).  
 

In the non-cueing task, the timing between the fixation circle and target stimulus 
was jittered from 1027 to 1280ms. The target stimulus stayed on the screen until 
participants responded. We used the non-cueing task as a baseline against which we 
regressed the sensory effects of cue stimuli for the target-related analysis (see the 
Electroencephalography section below). We also used the target-locked ERP from the 
non-cueing task to extract EEG components pertaining to visual processing in the 
absence of spatial cueing of exogenous and endogenous attention.  

 
In the exogenous orienting task, again the timing between the fixation circle and 

target stimulus was jittered between 1027 and 1280ms, followed by the onset and offset 
of the exogenous cue. The onset of the exogenous was jittered from 106 to 307ms before 
target onset. The exogenous cue always stayed 106ms onscreen before offsetting. The 
timing between the onset of the endogenous cue and target onset was jittered between 
613ms and 926ms. The target stimulus remained on screen until participants responded 
(Figure 1). In the endogenous orienting task, again the timing between the fixation circle 
and target stimulus was jittered between 1027ms and 1280ms, followed by the 
endogenous cue that remained on the screen until participants responded. The timing 
between the onset of the endogenous cue and target onset was jittered between 613ms 
and 926ms. The target stimulus remained on screen until participants responded (Figure 
1). Participants were instructed to complete a target discrimination task and indicate the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.23.521777doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521777
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

orientation of the Gabor target as quickly and accurately as possible on a QWERTY 
keyboard by pressing the F key for counter-clockwise orientation and the J key for 
clockwise orientation. Inter-trial period was set to 1s. 
 
Data analyses for behavioral performance. Participants’ discrimination performance was 
near ceiling; the average accuracy rate was ~93%. Thus, we examined task performance 
via accurate response times (RTs). We removed trials where participants made 
anticipation (i.e., RTs < 150ms) or timeout (i.e., RTs > 1500ms) errors. This accounted 
for less than 2% of trials overall. We additionally removed wrong key presses, which 
corresponded to less than 1% of trials. We used hierarchical linear regression models 
(Gelman & Hill, 2006) to test the effects of exogenous and endogenous attention on task 
performance, where we included cue validity as a fixed factor and participants as a 
random one:    
 
Response Times ~ 1 + (1|participants) + β1[Cue Validity] + ε  
 
 To compare the cueing effects between exogenous and endogenous attention, we 
included (i.e., valid versus invalid) and task (i.e., exogenous cueing and endogenous 
cueing) as fixed factor, and participants as a random one.  
 
Response Times ~ 1 + (1|participants) + β1[Cue Validity] + β2[Task] + ε  
 
 

Fixed factors were added in stepwise fashion while we used a chi-square 
goodness-of-fit test over the deviance to determine whether they significantly improved 
the fit. We computed the Bayesian information criterion (BIC) to select the most 
parsimonious model. Lastly, we calculated Bayes factors to weight evidence for the 
alternative against the null hypothesis based on the BIC approximation (Wagenmakers, 
2007) :   
 

BF10 = eΔBIC01/2 
 
 
Electroencephalography. We recorded EEG signals using 64 Ag/AgCl active electrodes 
at a sampling rate of 1000 Hz (ActiCap System; Brain Products GmbH; Gilching, 
Germany). We monitored eye blinks and eye movements through additional bipolar 
electrodes placed at the outer canthi, as well as the superior and inferior orbits of the left 
eye. We kept impedances of all electrodes below 10 kΩ, while all electrophysiological 
signals were amplified (ActiChamp System; Brain Products GmbH; Gilching, Germany). 
Electrodes were referenced online to C4. We re-referenced the electrodes offline to the 
average of all channels. Preprocessing and analysis were conducted in BrainVision 
Analyzer (ActiChamp System; Brain Products GmbH Inc.; Gilching, Germany)  and 
MATLAB (R2020a; Mathworks Inc., Natick, MA) using Brainstorm (Tadel, Baillet, Mosher, 
Pantazis, & Leahy, 2011) and custom scripts. We downsampled the data to 250 Hz and 
visually inspected EEG signals to identify activity exceeding ± 200 μV. We applied two 
IIR Butterworth filters: a first High-pass 0.1 Hz filter of 8th order and a 60Hz notch 
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filter.  We interpolated bad channels topographically (1.12% of channels) and then 
identified artifacts related to eye movements and blinks using independent component 
analysis via the BrainVision Analyzer Ocular correction ICA tool.  
 

The close temporal proximity of the cue and target stimuli entails that activity from 
the former may overlap with that of the latter. To remove this overlapping activity, instead 
of using the adjacency response technique (Woldorff, 1993), we removed event-related 
responses from exogenous and endogenous cue stimuli using regression modelling. Here 
we took the residuals of the linear regression model using the non-cueing condition as 
baseline. A hierarchical linear regression was run in MATLAB with cueing condition as a 
dummy coded fixed factor, and subjects as a random factor. ‘Raw’ residuals were 
obtained from all channels and subjects. 
 
Event-related potentials. We analyzed target-related event-related potentials (ERPs). We 
first applied a FIR bandpass-pass filter between 0.5 and 15 Hz and then divided the EEG 
into epochs spanning -200 and 1000ms. All triggers were realigned according to a 
photodiode stimulation linked to the onset of the target event. ERPs were baseline 
corrected from -100 to 0ms.  
 
Multivariate analyses. We leveraged multivariate statistical techniques to evaluate the 
influence of exogenous attention on the cueing effects of endogenous attention based on 
target-locked ERP. Our approach was twofold. Our first goal was to uncover the 
differential effects between exogenous and endogenous attention using MVPA (Figure 
2A). Here, we tested whether SVM classifiers can differentiate exogenous cue validity 
(exogenous cue valid ERP minus exogenous cue invalid ERP) from endogenous cue 
validity (endogenous cue valid ERP minus endogenous cue invalid ERP). Our second 
goal aimed to uncover overlapping effects between them by training classifier to separate 
cue validity for one attention process (e.g., exogenous cue valid ERP versus exogenous 
cue invalid ERP) and then testing them in the context of the other attention process (e.g., 
endogenous cue valid ERP versus endogenous cue invalid ERP), and vice-versa (Figure 
2B).  
 

Our multivariate statistical analyses largely follow from the work of Bae and Luck 
(2018). Here, we performed multivariate classification using linear support vector machine 
(SVM) and MATLAB’s fitcsvm and predict functions. The training, validation and testing 
phases were completed at the participant’s level. As we mentioned previously, our first 
analysis aimed to differentiate exogenous cue validity ERP from endogenous cue validity 
ERP where we used a three-fold cross-validation procedure to train the classifier on 2/3 
of the trials and then validated it on the remaining 1/3. Following this three-fold cross-
validation approach, target-locked EEG from trials were separated into three bins per cue 
validity for each attention cueing tasks separately – i.e., three bins of trials for exogenous 
cue valid and three bins for exogenous cue invalid, as well as three bins of trials for 
endogenous cue valid trials and three bin for endogenous cue invalid trials. We equated 
trials across all bins for all participants and all conditions. There were 28 trials per bin. 
We extracted EEG derivations from each channel as a function of ipsi- and contralateral 
location relative to target location for each trial. We then averaged the trials from each bin 
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and baseline corrected them from -100ms to 0ms, which resulted in three separate target-
locked waveforms for cue valid trials and three separate waveforms for cue invalid trials 
for all 64 EEG channels across both exogenous and endogenous attention cueing tasks. 
Next, for each attention cueing condition and each channel separately, we subtracted the 
waveform of the first bin for cue invalid trials from the waveform of the first bin for cue 
invalid trials, and then the same for the second bin and lastly for the third bin. This 
procedure resulted in three waveforms that corresponded to the exogenous cue validity 
effect, and three waveforms that corresponded to the endogenous cue validity effect.   
Then, we applied SVM for each time point along the time series by including the 64 
channels as features in our model. We trained the classifier using two waveforms from 
each class (i.e., two waveforms for exogenous attention and two for endogenous attention 
and then validated it using the remaining ones (i.e., one waveform for exogenous 
attention and one for endogenous attention). We performed permutations between the 
training and validation phases, whereby each EEG time series was used twice for training 
and once for testing. We repeated this process 50 times per participant while randomly 
shuffling trials across bins for each repetition. Lastly, we averaged classification accuracy 
rates for each participant across both target locations and smoothed these values across 
the time series via a five-sample sliding window -- i.e., a 20ms window (Hong, Bo, 
Meyyappan, Tong, & Ding, 2020). This procedure allowed us to assess the classification 
performance across the time series during single cueing. Figure 2A provides a diagram 
of the overall procedure.  

 
We adopted the same approach to achieve our second objective and explore 

overlapping effects between exogenous and endogenous attention. However, in this 
instance, we wanted to train classifiers to separate cue valid trials and cue invalid trials 
for one attention process and assess whether classification generalizes to the other 
attention process. In this instance, for exogenous attention, we separated target-locked 
EEG derivations from each trial into three bins of trials for cue invalid trials and three bins 
for valid trials. Again, there were 28 trials per bin. This was done for each EEG channel 
separately. We then averaged the time-series in each bin, which resulted in three target-
locked waveforms for exogenous cue valid trials and three waveforms for exogenous cue 
invalid trials. In this process, we also separately binned 28 trials from the endogenous 
cue valid condition and 28 from the endogenous cue invalid condition and averaged the 
EEG time series to obtain target-locked waveforms that were baseline corrected from -
100 to 0ms. SVM classifiers were trained and validated to correctly classify exogenous 
cue valid waveforms and exogenous cue invalid waveforms across the time series. 
Additionally, we tested the models that were trained on exogenous cue valid to correctly 
classify endogenous cue valid waveform and endogenous cue invalid waveform. Lastly, 
we applied the same procedure to train and validate our model on endogenous attention, 
and then testing it on exogenous attention. Figure 2B provides a diagram of the overall 
procedure  
 

We used one sample t-tests across the time series to determine whether 
classification performances were better than the analytical chance-level (i.e., 50%). We 
controlled for family-wise errors via cluster-corrected mass permutation t-tests. The 
cluster forming threshold was set to p < .05. We performed 1000 permutations where we 
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randomly varied the classification labels and then contrasted observed cluster sizes 
based on t-statistics against surrogate distributions. The threshold for statistically 
significant clusters was set to 95%.  
 
Single-trial ERP. We aimed to determine whether differential and overlapping effects 
between exogenous and endogenous attention contribute to perceptual facilitation. To 
investigate this question, we combined single-trials ERP analysis with simple mediation 
modelling. We aimed to determine whether modulations of ERP amplitude mediate the 
relationship between spatial cueing of attention and accurate response times. Here, we 
performed separate analyses for exogenous and endogenous attention.  
 
 To perform single-trial ERP, we first used baseline corrected (-100 to 0ms to target 
onset) target-locked ERP from the non-cueing task to isolate components related to visual 
processing independently from exogenous and endogenous attention processes. We 
calculated averaged waveforms for each channel as a function of target location – i.e., 
ipsi- and contralateral processing. We then applied PCA with EEG channels as features 
and the time series as observations to these waveforms (i.e., applying PCA to time series 
by channels matrix). Our goal was to uncover the linear combination of channels that 
explain the most variance for non-cueing (i.e., neutral) target-locked ERP. To uncover the 
most important components, we performed 1000 permutations where we randomly varied 
channel location and extracted the total variance explained for each iteration. We then 
established the 95% threshold based on this null distribution of explained variance 
(Cohen, 2014). This approach isolated three components. The loading coefficients of the 
first component revealed a posterior ipsilateral topographical pattern (supplementary 
Figure 1A). Projecting the averaged target-locked waveforms onto this first component 
revealed P1 and N1 at 132ms and 240ms post-target onset, respectively, as well as a P2 
at 356ms (supplementary Figure 2A). The loading coefficients of the second component 
showed a posterior contralateral topographical pattern (supplementary Figure 1A). 
Projecting the averaged target-locked waveforms onto this first component revealed P1 
and N1 at 104ms and 164ms post-target onset, as well as a P3 that peaked at 340ms 
(supplementary Figure 2D). The loading coefficients of the third component showed a 
posterior contralateral topographical pattern (supplementary Figure 1A). Projecting the 
averaged target-locked waveforms onto this first component revealed P1 and N1 at 84ms 
and 136ms post-target onset, and the N2 that peaked at 304ms (supplementary Figure 
2G).   
 
 Next, we projected each trial from the exogenous and endogenous cueing tasks 
onto all three latent components to get single-trial ERP, whereby the loading coefficients 
(i.e., vector of loading coefficients) weighted the data of each trial (i.e., time series by 
channels; Supplementary Figure 1B). This approach improved the signal-to-noise ratio 
while we explore the effects of exogenous and endogenous attention across three latent 
variables (Nunez et al., 2017). In this way, we obtained single-trial ERP across all three 
components for each attention process. Supplementary Figure 2 shows the averaged 
waveforms for all trials and participants across all 3 components for exogenous and 
endogenous attention cue validity. 
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Mediation Analysis. Using single-trial ERP, we then tested our hypothesis that early 
differential and late overlapping effects between exogenous and endogenous attention 
contribute to perceptual facilitation using meditation analyses. We relied on hierarchical 
regression models and the Sobel approach to estimate the indirect effect via the product 
of regression coefficients (Sobel, 1982). We used on the following regression models to 
estimate our indirect effect, wherein cue validity and the amplitude of the ERP were used 
as fixed factors, while participants was added as a random factor :   
 
Response Times ~ 1 + (1|participants) + β1[Cue Validity] + β2[Amplitude ERP] + ε  
 
Amplitude ERP ~ 1 + (1|participants) + β3[Cue Validity] + ε   
 
We looked at the mediation coefficients across the entire time series. Here, we calculated 
a z-score and p-value for each time point. This approach allowed us to use cluster-
corrected mass permutation t-tests. Again, the cluster forming threshold was set to p < 
.05. We performed 1000 permutations where we randomly varied the cue validity variable 
and RTs. Lastly, we contrasted observed cluster sizes based on t-statistics against 
surrogate distributions. The threshold for statistically significant clusters was set to 95%. 
We applied this approach across all three components and attention processes 
separately.   
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