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Abstract 
The	role	of	oxytocin	(OT)	in	social	behavior	and	social	brain	networks	has	been	widely	documented.	

However,	the	effect	of	OT	on	the	association	between	social	behavior	and	brain	functional	connectivity	
(FC)	 is	 yet	 to	be	 comprehensively	explored.	 In	 this	 study,	using	a	 face-perception	 task	and	multiple	
connectome-based	predictive	(CPM)	models,	we	aimed	to:	1)	determine	whether	OT	could	enhance	the	
association	 between	 task	 behavioral	 performance,	 resting-state	 functional	 connectivity	 (rsFC),	 and	
task-state	 functional	 connectivity	 (tsFC),	 and	 2)	 if	 so,	 determine	 the	 role	 of	 OT	 in	 enhancing	 this	
triangular	association.		We	found	that	both	rsFC	and	tsFC	could	independently	and	significantly	predict	
task	 performance	 in	 the	OT	 group,	 but	 not	 in	 the	 placebo	(PL)	 	 group.	 In	 addition,	 the	 correlation	
coefficient	between	rsFC	and	tsFC	was	substantially	higher	in	the	OT	group	than	in	the	PL	group.	The	
strength	of	these	associations	could	be	partly	explained	by	OT	altering	the	brain’s	FCs	related	to	social	
cognition	and	face-perception	in	both	resting	and	task	states,	mainly	in	brain	regions	such	as	the	limbic	
system,	 prefrontal	 cortex	 (PFC),	 temporal	 poles	 (TP),	 and	 temporoparietal	 junction	 (TPJ).	 Together,	
these	 results	 suggest	 that	 neuropeptides	 can	 increase	 the	 consistency	 of	 individual	 differences	 in	
different	modalities	(e.g.,	behavioral	and	brain	level	data)	.	

1 Introduction 
Oxytocin	(OT)	is	a	neuropeptide	associated	with	various	social	functions	[1,	2,	3].	It	has	been	proven	to	
be	closely	linked	to	social	adaptation	and	prosocial	behaviors	[4,	5,	6],	and		social	cognition	[7,	8,	9].	For	
instance,	early	evidence	has	shown	that	OT	may	increase	attention	to	the	eye	region	of	human	faces	[10]	
and	improve	the	ability	to	infer	the	mental	state	of	others	from	social	cues	of	the	eye	region	[11].	Further	
studies	observed	a	more	general	enhancement	effect	of	OT	on	motivation	or	sensitivity	to	social	cues	[12,	
13,	 14],	 which	may	manifest	 in	 face-	 or	 emotion-related	 tasks.	 OT	 can	 also	modulate	 self-	 and	 face-
perception,	hallmarks	of	human	social	cognition	[15].	Since	OT	can	increase	sensitivity	to	social	stimuli	
[16,	17],	it	is	reasonable	that	OT	influences	facial	processing	at	both	the	behavioral	and	neural	levels	[18,	
19].	

OT	has	widely	demonstrated	its	modulation	effect	in	the	social	brain	[20,	21],	including	the	amygdala,	
anterior	 cingulate	 cortex	 (ACC),	 prefrontal	 cortex	 (PFC),	 and	 insula	 [22,	 23].	 However,	 its	 effects	 on	
specific	 brain	 areas	 or	 functional	 connectivities	 are	 mostly	 task-dependent	 and	 inconsistent	 across	
studies	[24,	25,	26].	For	instance,	several	studies	have	shown	that	OT	increases	amygdala	responses	to	
emotional	faces	or	aversive	stimuli	[27,	28],	while	others	have	observed	an	attenuation	effect	in	this	area	
[29,	30].	Additional	studies	have	shown	that	OT	changes	functional	connectivity	(FC)	in	brain	regions	that	
belong	to	the	social	network	[25,	31,	32].	For	example,	OT	increases	the	effective	flow	from	the	midline	
default	network,	including	the	posterior	cingulate	cortex	(PCC)	and	precuneus,	to	the	salience	network,	
including	 the	ACC	and	 insula,	 [32]	 and	brain	 connectivity	within	 the	 frontal	 network	 [33]	during	 the	
resting-state.	 OT	 has	 also	 been	 found	 to	 alter	 brain	 connectivity	 strength	 during	 different	 tasks.	 For	
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instance,	OT	could	enhance	the	FC	between	the	left	amygdala,	left	anterior	insula,	and	left	inferior	frontal	
gyrus	in	emotional	perception	and	memory	tasks	[34].	Therefore,	the	specific	modulatory	effects	of	OT	
on	connectivity	among	social	subnetworks	have	been	well-documented.	

In	addition,	OT	effects	also	exhibit	individual	differences	[2,	35],	which	exist	not	only	at	the	behavioral	
level,	but	also	at	the	brain	level	[3,	36].	OT	could	increase	correlation	between	the	brain	networks	in	the	
resting	and	task	states	at	individual	level	[37].	However,	the	specific	modulatory	effects	of	OT	on	the	link	
between	individual	differences	in	different	modalities	(e.g.,	behavioral	and	brain	levels)	remain	largely	
unknown.	The	connectome-based	predictive	model	(CPM),	which	predicts	a	behavior	index	based	on	FCs,	
has	been	widely	used	to	examine	brain-behavior	associations	[38,	39].	It	predicts	individual	variability	in	
behavior	or	psychiatric	symptoms	by	extracting	and	summarizing	 the	most	relevant	 features	 from	FC	
using	full	cross-validation	[40].	Many	prior	studies	have	demonstrated	the	robustness	of	CPM	[41,	42]	in	
predicting	 individual	 differences	 in	 fluid	 intelligence	 [43],	 attention	 [44],	 creative	 ability	 [45],	 and	
cheating	 behavior	 [46].	 Most	 previous	 relevant	 studies	 used	 resting	 state	 FC	 to	 predict	 behavioral	
symptoms.	In	contrast,	several	recent	studies	have	shown	that	FC	during	narrative	movie	watching	[47]	
or	specific	tasks	[48,	49,	50]	provides	additional	information	for	CPM	prediction.	

However,	whether	and	how	OT	modulates	the	brain-behavior	association	is	largely	unknown.	Based	
on	previous	progresses	on	OT	effect	on	behavior	and	FC,	and	its	individual	variability,	in	the	present	study,	
we	systematically	explored	the	relationship	between	social	behavior,	rsFC,	and	tsFC,	as	well	as	the	effect	
of	OT	administration	on	this	triangular	association.	We	assessed	the	following	questions:	1)	whether	the	
association	between	behavioral	performance	and	rsFC	could	be	enhanced	by	OT	administration	(Sec.	3.2);	
2)	whether	the	association	between	behavioral	performance	and	tsFC	could	be	enhanced	by	OT	(Sec.	3.3);	
and	3)	whether	OT	could	enhance	the	similarity	between	rsFC	and	tsFC	at	the	whole-brain	level	(Sec.	3.4).	
For	Questions	1-3,	we	hypothesized	that	OT	could	enhance	the	triangular	association	between	behavioral	
performance,	rsFC,	and	tsFC.	If	this	hypothesis	holds,	we	then	assessed	Question	4):	how	does	OT	enhance	
this	triangular	association	(Sec.	3.5	and	Sec.	3.6)?	Since	we	revealed	that	OT	did	not	change	participants’	
behavioral	performance	in	our	previous	study	[51],	we	then	hypothesized	that	OT	enhances	the	triangular	
association	by	altering	rsFC	or	tsFC.	

To	investigate	these	questions	and	test	our	hypotheses,	we	first	designed	a	face-perception	paradigm	
with	a	between-subject	design	for	task	fMRI,	judging	whether	the	morphed	face	we	present	is	similar	to	
their	own	face	(see	Figure	1	A).	In	this	experiment,	we	recorded	the	behavioral	performance	index,	resting	
state	 fMRI	 signals,	 and	 task-state	 fMRI	 signals.	 Then,	 to	 answer	 Questions	 1	 and	 2,	we	 used	 CPM	 to	
examine	whether	FC	could	predict	their	corresponding	behavioral	performance	and	whether	OT	could	
enhance	the	CPM	prediction	accuracy	of	FC	on	behavioral	performance.	In	this	question,	CPM	was	used	
to	 determine	 whether	 there	 was	 a	 significant	 association	 between	 FC	 and	 behavior	 (Sec.	 2.6	 CPM	
predictor).	For	Question	3,	we	used	a	correlation	analysis	to	repeat	our	previous	study	[37]	at	the	whole-
brain	level.	For	Question	4,	we	used	the	CPM	to	separate	the	FCs	in	the	OT	group	from	those	in	the	placebo	
(PL)	group	and	 found	which	FC	 features	 contributed	more	 to	group	differentiation.	CPM	was	used	 to	
examine	whether	there	were	significant	differences	between	the	FCs	in	the	OT	and	PL	groups	(Sec.	2.8	
CPM	classifier).	We	then	examined	whether	these	important	features	also	showed	different	associations	
with	behavioral	performance	in	the	OT	and	PL	groups.	

2 Methods 
2.1	 Participants	
Fifty-nine	healthy	male	participants	(age:	mean	± SD	=	20.9	± 2.32	years	old)	were	recruited	by	online	
advertisement.	 All	 participants	 were	 right-handed,	 with	 normal	 or	 corrected-to-normal	 vision.	 All	
participants	signed	an	informed	consent	form	before	the	formal	experiment.	Patients	were	only	included	
if	they	were	confirmed	that	they	were	not	suffering	from	any	significant	medical	or	psychiatric	illness,	not	
currently	 using	 the	medication,	 and	were	 not	 consuming	 alcohol	 or	 smoking	 daily.	 The	 experimental	
protocol	was	approved	by	the	local	ethics	committee	of	the	Beijing	Normal	University.	
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2.2	 Drug	administration	
We	used	 a	double-blind	placebo-controlled	 group	design	 to	 investigate	 the	 effects	 of	 a	 single	dose	of	
intranasal	OT	(24	IU)	[52]	on	functional	connectivity	(FC)	and	corresponding	behavioral	performance	in	
a	face-perception	task.	The	participants	(all	males)	were	randomly	assigned	to	the	OT	group	(n	=	30)	or	
PL	group	(n	=	29).	More	details	regarding	the	treatment	can	be	found	in	our	previous	studies	[37,	33,	51].	

2.3	 Experimental	paradigm	
The	experimental	paradigm	was	a	face-perception	task	with	a	morphed	face,	following	previous	studies	
[53]	(Figure	1	A).	Specifically,	we	used	a	face-perception	task	with	face	stimuli	that	morphed	the	photos	
of	an	adult	or	child	onto	the	participant	or	another	stranger	[51].	For	each	trial,	the	target-morphed	face	
was	presented	for	1.5	s.	Participants	were	then	asked	to	judge	whether	the	face	resembled	their	own	faces	
in	the	following	response	window	within	0.5–2.5	s.	There	were	a	total	of	12	blocks:	six	were	morphed	
children’s	faces	blocks	and	six	were	morphed	adult	faces	blocks.	Each	block	contained	10	trials,	five	of	
which	presented	a	self-resembling	face,	and	five	of	which	presented	other-resembling	faces.	Thus,	there	
were	four	types	of	facial	stimuli.	The	self-resembling	faces	were	created	by	morphing	the	participant’s	
face	with	a	face	of	a	23-year-old	adult	(self-adult)	or	a	face	of	a	1.5-year-old	child	(self-child).	The	other-
resembling	faces	were	created	by	morphing	a	stranger’s	face	with	the	face	of	a	23-year-old	adult	(other-
adult)	or	a	1.5-year-old	child	(other-child).	All	facial	expressions	were	neutral.	

2.4	 MRI	acquisition	
All	MRI	data	were	acquired	using	a	3.0	T	Siemens	Tim	Trio	scanner	equipped	with	a	12-channel	head	coil.	
First,	high-resolution	T1-weighted	images	were	acquired	for	each	participant	(TR	=	1.9	s,	TE	=	2.15	ms,	
flip	=	9°,	FOV	=	256	mm,	176	sagittal	slices,	slice	thickness	=	1	mm).	We	collected	resting	state	and	task-
state	fMRI	data	successively.	All	fMRI	data	were	collected	using	an	echo-planar	imaging	sequence	(TR	=	2	
s,	TE	=	40	ms,	 flip	=	90°,	FOV	=	210	mm;	128	×	128	matrix,	25	contiguous	5	mm	slices	parallel	 to	 the	
hippocampus	and	interleaved).	

2.5	 fMRI	preprocessing	
fMRI	 data	 preprocessing	 was	 performed	 using	 SPM12	 (Statistical	 Parametric	 Mapping;	 https: 
//www.fil.ion.ucl.ac.uk/spm/software/spm12).	 The	 functional	 image	 time	 series	 were	 preprocessed	 to	
compensate	for	motion	correction,	slice-timing	correction,	and	linear	detrending;	thereafter,	they	were	
co-registered	to	the	T1-weighted	anatomical	image,	normalized	to	Montreal	Neurological	Institute	space,	
and	smoothed	with	an	isotropic	Gaussian	kernel	of	6	mm	full	width	at	half	maximum.	Finally,	the	fMRI	
data	were	high-pass	filtered	with	a	cutoff	of	0.01	Hz.	White	matter,	cerebrospinal	fluid	(CSF),	global,	and	
six	 head	 motion	 parameters,	 as	 well	 as	 their	 squares,	 derivatives,	 and	 squares	 of	 derivatives,	 were	
regressed	[54].	The	resulting	residuals	were	then	low-pass	filtered	with	a	cutoff	of	0.1	Hz.	

2.6	 CPM	predictor	
The	main	analysis	utilized	CPM	models	to	predict	behavioral	indices	or	participant	groups	based	on	rsFC	
or	tsFC.	The	CPM	predictor	model	built	a	bridge	between	FC	and	behavior	for	each	group.	The	workflow	
of	 the	 CPM	 predictor	model	 is	 shown	 in	 Fig.	 2.	 First,	 we	 extracted	 the	 averaged	 blood-oxygen-level-
dependent	(BOLD)	time	series	of	the	90	brain	regions	based	on	the	AAL	atlas	[55]	as	ROIs.	A	90	×	90	FC	
matrix	was	obtained	by	Pearson’s	correlation	between	the	averaged	BOLD	time	series	of	each	pair	of	ROIs.	
To	remove	diagonal	and	repetitive	features,	we	retained	only	the	lower-triangle	matrix	(4005	FC	features)	
for	 further	 analysis.	The	Nilearn	 toolbox	 (https://nilearn.github.io/)	 [56]	was	used	 to	 construct	 the	FC	
matrix.	

Before	the	actual	CPM,	we	selected	the	features	that	had	a	significant	Pearson	correlation	between	FC	
and	the	behavioral	index	(see	Figure	2	A),	which	was	used	to	select	the	features	with	potential	information	
for	prediction	and	was	consistent	with	previous	studies	[40,	46,	45].	Only	FCs	whose	P-value	of	Pearson’s	
correlation	was	lower	than	the	threshold	were	maintained.	By	changing	the	threshold	value,	different	FC	
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quantities	can	be	retained.	We	controlled	the	quantity	of	FC	within	a	reasonable	range	(10-100),	neither	
too	little,	resulting	in	insufficient	 information,	nor	too	much,	resulting	in	over-fitting	of	the	regression	
analysis	later.	Herein,	we	used	two	different	thresholds:	p	=0.05	and	p	=0.01.	

	

Figure	 1:	 The	 experimental	 paradigm,	 main	 framework,	 and	 behavioral	 results.	 (A)	 The	
experimental	paradigm.	Participants	need	 to	 judge	whether	 the	morphed	 face	 is	similar	 to	 their	own.	
There	are	four	conditions	of	faces:	Self-Child	condition	was	the	face	morphed	using	the	participant’s	own	
face	 and	 a	 stranger	 child’s	 face;	 faces	 of	 the	 Other-Child	 conditions	 were	 morphed	 using	 an	 adult	
stranger’s	 face	 and	 a	 stranger	 child’s	 face;	 faces	 in	 the	 Self-Adult	 condition	were	morphed	 using	 the	
participant’s	own	face	and	a	stranger	adult’s	face;	faces	in	the	Other-Adult	condition	were	morphed	using	
two	adult	strangers’	faces.	(B)	The	main	structure	of	the	present	study.	(C)	The	behavioral	results	of	the	
PL	and	OT	groups.	From	top	to	bottom,	we	present	the	behavioral	results	of	averaged	accuracy	(Acc	mean)	
and	 average	 reaction	 time	 (RT	mean).	 There	were	 no	 significant	 behavioral	 differences	 between	 the	
groups.	
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Figure	 2:	 The	 workflow	 of	 the	 CPM	 predictor	 analysis	 for	 the	 present	 study.	 (A)	 FC	 matrix	
construction	 and	 feature	 selection.	 (B)	 Model	 validation	 with	 LOOCV.	 (C)	 Model	 performance	
measurement	by	Spearman	correlation	and	statistics	calculated	by	Permutation	test.	

We	 then	 implemented	 a	 support	 vector	machine	 (SVM)	 regressor	with	 a	 linear	 kernel	 to	 predict	
participants’	 behavioral	 index	 based	 on	 their	 FC	 and	 validated	 it	with	 leave-one-out	 cross-validation	
(LOOCV)	(Figure	2	B)	[45,	57,	38].	For	each	validation,	the	prediction	model	was	fitted	based	on	n−1	(n	is	
the	number	of	participants	in	each	group)	participants’	selected	FCs	and	their	corresponding	behavioral	
index.	The	model	was	then	tested	on	the	leave-out	participants’	data	to	obtain	a	predicted	behavior	value.	
Thus,	 LOOCV	 resulted	 in	 n	 behavior	 index	 predictions	 for	 n	 participants.	 We	 used	 the	 Spearman’s	
correlation	between	 the	predicted	 and	actual	 behavioral	 values	 as	 the	model	 accuracy	measurement.	
Additional	details	of	CPM	predictor	parameters	are	provided	in	Table	S1.	

After	obtaining	accuracy	by	LOOCV,	we	examined	whether	the	model	performance	was	significantly	
higher	 than	 chance.	 We	 used	 a	 permutation	 test	 to	 evaluate	 the	 statistical	 significance	 of	 the	 CPM	
prediction.	We	randomly	shuffled	the	behavioral	index	values	10,000	times	and	used	LOOCV	to	obtain	the	
corresponding	 accuracy	 for	 each	 shuffle	 (Figure	 2	 C).	 Finally,	 we	 sorted	 the	 accuracy	 from	 10,000	
permutations	and	counted	the	position	of	the	true	model	accuracy	to	obtain	the	p-value.	

2.7	FC	similarity	analysis	
Since	the	similarity	between	individuals’	rsFC	and	tsFC	could	be	enhanced	by	OT	has	been	strictly	proven	
[37],	we	used	a	simple	method	to	replicate	the	effect	of	OT	on	the	association	between	rsFC	and	tsFC.	We	
performed	the	same	correlation	analysis	for	both	groups	(OT/PL).	First,	we	extracted	the	lower-triangle	
FC	matrix	for	each	state	(resting/task)	and	group.	For	each	group,	we	calculated	the	Pearson	correlation	
coefficient	 between	 the	 resting	 and	 task	 states	 for	 each	 FC	 edge.	We	 then	 obtained	 pairs	 of	 FC	 edge	
correlation	coefficients	representing	the	similarity	between	rsFCs	and	tsFCs	for	each	group.	Finally,	we	
used	 pairwise	 comparison	 statistics	 (paired	 t-test)	 to	 investigate	 whether	 there	 was	 a	 significant	
difference	in	the	resting-task	FC	similarity	between	the	OT	and	PL	groups.	

2.8	 CPM	classifier	
The	 CPM	 classifier	 was	 used	 to	 classify	 OT/PL	 groups	 based	 on	 FC	 patterns	 and	 identify	 FCs	 with	
significant	differences	between	the	OT	and	PL	groups.	The	CPM	classifier	followed	a	workflow	similar	to	
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that	of	the	CPM	predictor,	but	with	one	classifier	across	both	groups	(Figure	S2).	The	same	FC	extraction	
approach	 was	 used	 to	 obtain	 a	 lower-triangle	 FC	 matrix	 between	 the	 AAL	 ROIs	 based	 on	 Pearson	
correlation.	Feature	selection	was	slightly	different	from	that	in	the	predictor	workflow.	For	each	FC	in	
the	lower-triangle	matrix,	we	conducted	logistic	regressions	between	each	FC	value	and	their	group	label	
(OT/PL)	to	obtain	the	regression	coefficient.	Only	the	FCs	whose	P-value	of	the	regression	coefficient	was	
lower	than	the	threshold	were	retained.	By	changing	the	threshold	value,	different	FC	quantities	can	be	
retained.	In	the	present	study,	we	used	three	different	thresholds,	namely	p	=0.05,	p	=0.02,	and	p	=0.01.	

Then,	we	 implemented	 a	 linear	 kernel	 SVM	 classifier	 based	on	 the	maintained	FCs	 to	 classify	 the	
corresponding	groups	(OT/PL)	using	LOOCV	[45,	57,	38].	More	specifically,	the	model	was	fitted	based	on	
n−1	(n	is	the	total	number	of	participants	in	the	two	groups)	participants’	FC	matrixes	and	corresponding	
group	labels.	The	fitted	model	was	tested	on	one	left-out	participant.	After	n	cycles,	each	participant	was	
tested	once	and	eventually	achieved	accuracy,	which	was	used	to	quantify	the	performance	of	the	model.	
Finally,	we	used	the	same	permutation	procedure	but	shuffled	the	group	labels	rather	than	the	behavior	
indices.	

To	quantify	the	contribution	of	each	FC	in	the	CPM	classifier	model,	we	developed	a	similar	lesion-
based	approach	[46,	58]	to	explore	which	FC	contributes	the	most	to	classification	accuracy.	Specifically,	
we	removed	each	FC	and	retained	the	remaining	FCs.	We	used	the	remaining	FCs	to	train	and	test	the	
model	using	the	same	LOOCV	process,	and	obtained	the	corresponding	accuracy	of	the	model	that	lost	
this	FC.	Feature	importance	was	then	calculated	as	the	difference	in	accuracy	between	the	full	model	(no	
FC’s	removed)	and	the	model	without	the	corresponding	FC.	Consequently,	the	higher	the	difference,	the	
more	important	the	FC.	

2.9	 Regression	analysis	
After	 finding	 the	 important	 FCs	 in	 the	 classification,	 we	 speculated	 whether	 these	 FCs	 may	 only	 be	
significantly	associated	with	behavioral	performance	in	the	OT	group.	To	achieve	this	goal,	we	performed	
linear	regression	analysis	on	the	OT	group	and	the	PL	group,	respectively.	The	behavioral	performance	
index	was	linearly	regressed	onto	functional	connectivity	(Eq.	1).	

 Behavior	=	β0	+	β1FC	+	ϵ	 (1)	

Where	FC	denotes	the	selected	and	important	functional	connectivity.	β0	as	the	regression	intercept.	
β1	denotes	the	regression	slope.	Behavior	denotes	behavioral	performance	value.	The	model	parameters	
were	estimated	using	ordinary	least	squares.	After	each	regression	process,	we	obtained	the	regression	
slope	coefficient	and	corresponding	p-value	coefficient.	

The	corresponding	codes	for	all	analyses	in	the	present	study	will	be	available	online	at	http://github. 
com/andlab-um/OT-cpm.	

3 Results 
3.1	 Behavioral	results	
We	 used	 a	 face-perception	 task	 in	 our	 study.	 The	 participants	 were	 required	 to	 judge	 whether	 the	
morphed	face	was	similar	to	their	own.	In	the	face-perception	task,	we	calculated	two	indices	for	each	
participant:	mean	accuracy	(Acc	mean)	and	average	RT	mean.	Figure	1	C	presents	 the	two	behavioral	
response	 indices	 from	 the	 OT	 and	 PL	 groups	 in	 the	 face-perception	 task.	 We	 performed	 pairwise	
comparison	statistics	(t-test)	between	the	OT	and	PL	groups	for	these	behavioral	indices	and	found	no	
significant	difference	between	the	two	groups.	
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Figure	3:	Results	of	using	the	CPM	predictor	to	predict	task	performance	by	resting	state	FC.	We	
present	the	Spearman	correlation	between	the	actual	behavioral	value	and	predicted	behavioral	value	
alongside	the	permutation	result	of	the	correlation	coefficient.	(A)	The	result	of	using	the	CPM	predictor	
to	predict	Acc	mean	in	the	PL	(left)	and	OT	(right)	groups.	(B)	The	result	of	using	the	CPM	predictor	to	
predict	RT	mean	in	the	PL	(left)	and	OT	(right)	groups.	

3.2	 OT	enhances	the	prediction	effect	from	rsFC	to	behavior	
First,	we	assessed	whether	OT-enhanced	 the	 association	between	 rsFC	and	behavior.	We	used	a	CPM	
predictor	model	to	predict	the	behavioral	index	based	on	rsFCs	for	the	OT	and	PL	groups	and	examined	
whether	the	prediction	performance	of	the	CPM	predictor	in	the	OT	and	PL	groups	differed.	We	trained	
two	models	with	the	same	hyperparameters	for	each	behavioral	index	to	compare	the	predictive	abilities	
of	the	two	groups.	Because	there	were	two	groups	(OT/PL)	and	two	behavioral	performance	indices	(Acc	
mean/RT	mean),	we	trained	four	CPM	predictor	models	in	total.	

The	first	part	of	the	CPM	predictor	uses	the	Pearson	correlation	to	select	significant	features	from	all	
FC	features.	To	predict	the	Acc	mean,	we	selected	57	features	in	the	OT	group	and	18	features	in	the	PL	
group	by	setting	the	threshold	to	0.01.	To	predict	the	mean	RT,	35	features	in	the	OT	group	and	80	features	
in	the	PL	group	were	selected	by	setting	the	threshold	to	0.05	(Table	S1).	

Based	on	the	selected	FCs,	we	used	a	linear	SVM	regressor	to	predict	task	performance.	We	also	used	
LOOCV	 and	 Spearman’s	 correlation	 to	 obtain	 predictive	 performance	 and	 used	 permutation	 for	
significance	testing.	The	results	for	the	CPM	predictor	are	plotted	in	Figure	3.	We	found	that	a	significant	
predictive	effect	existed	only	in	the	OT	group.	Figure	3	A	presents	the	results	of	using	the	CPM	model	to	
predict	 the	ACC	mean.	The	prediction	effect	was	 insignificant	 in	 the	PL	group	 (ρ	=	0.101,	p	=	0.347).	
However,	in	the	OT	group,	we	observed	significant	prediction	accuracy	(ρ	=	0.492,	p	=	0.0057**).	Figure	3	
B	presents	the	results	of	using	the	CPM	model	to	predict	mean	RT;	the	prediction	effect	was	not	significant	
in	the	PL	group	(ρ	=	-0.411,	p	=	0.943)	but	significant	in	the	OT	group	(ρ	=	0.677,	p	<	0.001***).	
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3.3	 OT	enhances	the	prediction	effect	from	tsFC	to	behavior	
Next,	we	tested	whether	there	was	a	similar	pattern	between	tsFC	and	behavior.	We	used	the	same	CPM	
prediction	approach	 to	predict	 the	behavior	 index	of	 each	group	based	on	 the	 tsFCs.	The	 first	part	 is	
feature	selection.	To	predict	the	Acc	mean,	we	selected	nine	features	in	the	OT	group	and	146	features	in	
the	PL	group	by	setting	the	threshold	to	0.05.	To	predict	the	mean	RT,	314	features	in	the	OT	group	and	
68	features	in	the	PL	group	were	selected	by	setting	the	threshold	to	0.01	(Table	S1).	

Figure	4	A	and	B	presents	 the	results	of	using	 the	CPM	model	 to	predict	ACC	mean	and	RT	mean,	
respectively.	Similar	to	the	previous	result	of	rsFC,	a	significant	prediction	effect	only	existed	in	the	OT	
group.	The	prediction	effect	from	tsFC	to	ACC	mean	was	not	significant	in	the	PL	group	(ρ	=	-0.432,	p	=	
0.347)	(Figure	4	A).	Furthermore,	there	is	a	positive	relationship	between	the	actual	behavioral	value	and	
prediction	in	the	OT	group,	although	the	effect	showed	only	marginal	significance	(ρ	=	0.366,	p	=	0.052).	
A	pattern	similar	to	the	rsFC	CPM	was	also	found	in	the	prediction	from	task	FC	to	RT	mean	(Figure	4	B).	
The	prediction	effect	was	not	significant	in	the	PL	group	(ρ	=	-0.049,	p	=	0.331)	but	significant	in	the	OT	
group	(ρ	=	0.335,	p	=	0.024*).	Results	demonstrated	that	OT-enhanced	the	prediction	effect	from	FCs	to	
behavior	indices	in	both	the	resting	and	task-state	fMRI.	

	

Figure	4:	Results	of	using	CPM	predictor	to	predict	task	performance	by	task-state	FC.	The	Spearman	
correlation	between	actual	behavioral	value	and	predicted	behavioral	value	alongside	the	permutation	
result	of	the	correlation	coefficient.	(A)	The	result	of	using	the	CPM	predictor	to	predict	Acc	mean	in	the	
PL	(left)	and	OT	(right)	groups.	(B)	The	result	of	using	the	CPM	predictor	to	predict	RT	mean	in	the	PL	
(left)	and	OT	(right)	groups.	

3.4	 OT	enhances	similarity	between	rsFC	and	tsFC	
Our	 previous	 research	 has	 proven	 that	 the	 similarity	 between	 individuals’	 rsFC	 and	 tsFC	 could	 be	
enhanced	by	OT	[37].	In	the	present	study,	we	used	a	simple	method	to	verify	that	OT	repeatedly	enhances	
resttask	association	at	the	whole-brain	level.	Figure	S3	shows	that	the	correlation	coefficient	between	
rsFC	and	tsFC	in	the	OT	group	was	significantly	higher	than	that	in	the	PL	group	(p	<	0.001),	which	is	
consistent	with	our	previous	work.	
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3.5	 OT	alters	resting	state	functional	connectivity	
After	proving	that	OT	could	enhance	the	association	between	behavioral	performance,	rsFC,	and	tsFC,	we	
were	curious	about	how	OT	enhances	this	triangular	association.	First,	OT	may	alter	one	or	more	vertices	
of	 the	 triangle.	 Since	 behavioral	 performance	was	 not	 significantly	 different	 between	 the	 OT	 and	 PL	
groups	 (Figure	 1	 C)	 we	 hypothesized	 that	 OT	 may	 directly	 alter	 the	 participants’	 FC.	 To	 prove	 this	
conjecture,	we	developed	the	CPM	classifier	to	test	whether	it	could	discriminate	the	FCs	in	the	OT	group	
from	the	PL	group	and	determine	which	FC	features	were	significantly	different	between	the	two	groups.	

The	first	part	uses	logic	regression	to	select	significant	features	from	a	90	×	90	FC	matrix.	After	this	
process,	25	significant	FCs	values	were	retained	by	setting	the	threshold	value	to	p	<0.02.	To	verify	the	
stability	of	the	results,	we	also	used	two	different	thresholds	to	extract	the	FC	features	and	conducted	the	
following	analysis	separately	(Supplementary	Section	1;	Figure	S4).	We	used	an	SVM	classifier	based	on	
the	selected	FCs	to	classify	the	groups	(OT/PL).	We	also	used	LOOCV	to	obtain	accuracy	and	a	permutation	
test	to	obtain	p-values.	We	found	that	the	classification	accuracy	was	significantly	higher	than	the	chance	
level:	the	classification	accuracy	resulted	in	Acc	=	0.678	with	a	significance	level	of	p	=	0.0047**	(Figure	5	
A).	

Next,	we	explored	which	FCs	contribute	the	most	to	classification	accuracy	and	found	that	seven	FC	
features	positively	impact	classification	performance.	We	revealed	that	the	FC	between	the	right	temporal	
pole	middle	 temporal	 gyrus	 (TPOmid.R)	 and	 the	 left	 angular	 gyrus	 (ANG.L)	 is	 crucial	 for	 classifying	
whether	 FC	 belongs	 to	 participants	 treated	 by	 OT	 or	 PL.	 In	 addition,	 connectivity	 between	 the	 right	
caudate	nucleus	(CAU.R)	and	the	right	middle	frontal	gyrus	orbital	part	(ORBmid.R),	the	right	thalamus	
(THA.R)	and	the	left	hippocampus	(HIP.L),	the	right	lenticular	nucleus	putamen	(PUT.R),	the	right	middle	
frontal	gyrus	orbital	part	(ORBmid.R),	the	left	insula	(INS.L)	and	the	left	middle	frontal	gyrus	(MFG.L),	the	
left	temporal	pole	superior	temporal	gyrus	(TPOsup.L),	the	left	angular	gyrus	(ANG.L),	the	right	and	left	
paracentral	 lobule	(PCL.L),	and	the	posterior	cingulate	gyrus	(PCG.R)	were	found	to	be	 important	FCs	
(Figure	5	C).	The	locations	of	all	important	FCs	are	shown	in	Figure	5	B.	

Since	we	proved	that	OT	affects	rsFC	and	found	significantly	different	FCs	between	the	OT	and	PL	
groups,	we	speculated	whether	these	rsFCs	that	OT	significantly	alters	will	show	different	associations	
with	behavioral	performance.	For	each	pair	of	rsFC	and	behavior,	we	performed	a	regression	analysis	
using	 rsFC	 as	 the	 regressor	 and	 task	 behavior	 performance	 as	 the	 data	 to	 be	 regressed.	 Regression	
analysis	 was	 performed	 separately	 for	 the	 OT	 and	 PL	 groups	 to	 obtain	 the	 respective	 regression	
coefficients	in	the	two	groups.	We	only	focused	on	rsFC,	which	showed	significant	differences	between	
OT	and	PL,	so	we	chose	the	first	three	rsFC	features	that	contributed	most	to	the	CPM	model	(TPOmid.R	
-	ANG.L;	CAU.R	-	ORBmid.R;	and	THA.R	-	HIP.L).	

The	PL	group	found	no	significant	association	between	rsFC	features	and	task	behavior.	However,	in	
the	OT	group,	we	found	that	the	first	two	rsFCs	were	associated	with	the	behavioral	index.	The	FC	between	
the	right	temporal	pole	of	the	middle	temporal	gyrus	(TPOmid.R)	and	the	left	angular	gyrus	(ANG.L)	was	
significantly	associated	with	the	mean	Acc	(β	=	0.199,	p	=	0.03*)	in	the	OT	group,	but	not	in	the	PL	group	
(β	=	0.133,	p	=	0.429).	The	FC	between	the	right	caudate	nucleus	(CAU.R)	and	the	orbital	part	of	the	right	
middle	frontal	gyrus	(ORBmid.R)	was	significantly	negatively	associated	with	the	mean	Acc	(β	=	-0.214;	p	
=	0.039*)	in	the	OT	group,	but	not	in	the	PL	group	(β	=	0.133;	p	=	0.553).	We	further	used	a	statistical	
model	to	examine	whether	OT	had	a	moderating	effect	on	the	association	between	rsFC	and	behavior	[59]	
and	found	a	marginally	significant	moderating	effect	(p	=	0.081;	Supplementary	Section	3).	

3.6	 OT	alters	task-state	functional	connectivity	
Next,	we	performed	the	same	CPM	classification	analysis	for	task-state	FC	and	obtained	a	classification	
accuracy	 significantly	 higher	 than	 chance	 (Acc	 =	 0.661;	 P	 =	 0.0381*;	 Figure	 6	 A).	 Similar	 to	 the	
classification	of	 rsFC,	we	used	 two	different	 thresholds	 to	perform	the	same	analysis	 (Supplementary	
Section	2;	Figure	S5).	The	results	indicated	that	OT-altered	FC	in	both	resting	and	task	states.	Similarly,	
we	identified	four	positively	influential	FC’s	that	contributed	the	most	to	task-state	OT/PL	classification	
(Figure	6	B).	We	showed	FC	between	the	right	temporal	pole	superior	temporal	gyrus	(TPOsup.R)	and	
left	superior	frontal	gyrus	orbital	part	(ORBsup.L),	TPOsup.R,	and	the	left	supramarginal	gyrus	(SMG.L),	
and	the	left	temporal	pole	middle	temporal	gyrus.	
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Figure	5:	Result	of	the	CPM	classifier	in	resting	state	FC	classification.	(A)	The	permutation	result	of	
the	 model	 performance.	 (B)	 The	 location	 of	 the	 top	 seven	 important	 FC	 features.	 (C)	 The	 feature	
importance	of	the	top	seven	FC	features.	(D)	Association	between	Acc	mean	and	TPOmid.R	ANG.L.	The	
brain	 map	 above	 shows	 the	 location	 of	 the	 two	 ROIs	 of	 FC,	 and	 the	 correlogram	 below	 shows	 the	
association	between	FC	and	Acc	mean	in	the	PL	(Green	line)	and	OT	(Orange	line)	groups.	(E)	Association	
between	Acc	mean	and	FC	Cau.R	ORBmid.R.	The	brain	map	above	shows	the	location	of	the	two	ROIs	of	
FC,	and	the	correlogram	below	shows	the	association	between	FC	and	Acc	mean	in	the	PL	(Green	line)	
and	OT	(Orange	line)	groups.	

(TPOmid.L)	and	inferior	frontal	gyrus	orbital	part	(ORBinf.R),	the	right	temporal	pole	middle	temporal	
gyrus	 (TPOmid.R),	 and	 the	 right	 superior	 parietal	 gyrus	 (SPG.R)	 exhibited	 a	 significant	 difference	
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between	the	OT	and	PL	groups	in	the	task-state	(Figure	6	C).	For	rsFC,	we	found	that	only	one	of	the	four	
tsFCs	showed	a	different	association	with	behavioral	performance	between	the	OT	and	PL	groups.	The	FC	
between	the	right	temporal	pole	superior	temporal	gyrus	(TPOsup.R)	and	the	left	supramarginal	gyrus	
(SMG.L)	was	significantly	associated	with	the	mean	RT	(β	=	0.204;	p	=	0.04*)	in	the	OT	group,	but	not	in	
the	PL	group	(β	=	-0.127;	p	=	0.414)	(Figure	S6).	The	modulating	effect	was	marginally	significant	(p	=	
0.064;	Supplementary	Section	3).	

	

Figure	6:	Result	of	the	CPM	classifier	in	task-state	FC	classification.	(A)	The	permutation	result	of	the	model	
performance.	(B)	The	location	of	the	top	four	important	FC	features.	(C)	The	feature	importance	of	all	eight	FC	
features.	

4 Discussion 
In	the	present	study,	we	conducted	a	series	of	whole-brain	level	analyses	to	investigate	the	modulatory	
effects	 of	 OT	 on	 behavioral	 performance,	 rsFC,	 and	 tsFC.	 Using	 CPM-based	 methods,	 our	 findings	
demonstrate,	for	the	first	time,	that	OT	could	enhance	the	association	between	behavioral	performance	
and	FC	in	both	resting-	and	task-state.	OT	was	also	found	to	enhance	the	similarity	between	rsFC	and	tsFC.	
Furthermore,	our	results	showed	that	OT	enhances	this	triangular	association	(Figure	1	B)	by	altering	the	
FC	in	social-related	areas	in	both	the	resting	and	task	states.	Overall,	our	work	validated	the	triangular	
association	 enhancement	 effect	 of	 OT	 and	 provided	 the	 first	 evidence	 that	 OT	 could	 enhance	 the	
association	between	FCs	and	behavior	performance	by	altering	FCs	in	both	resting	and	task	states.	

Utilizing	 CPM	 predictor	models,	 we	 demonstrated	 that	 FCs	 in	 both	 resting	 and	 task	 states	 could	
significantly	predict	Acc	mean	and	RT	mean	in	the	OT	group	but	not	in	the	PL	group	(Questions	1	and	2).	
This	result	indicates	that	OT	can	enhance	the	brain-behavior	association.	Brain-behavior	association	is	
generally	considered	the	association	between	individual	differences	 in	the	brain	activity	and	behavior	
[60].	 Several	 studies	 have	 confirmed	 that	 OT	 modulates	 brain	 activity	 depending	 on	 individual	
characteristics,	such	as	age	[61],	gender	[62],	and	oxytocin	receptor	(OXTR)	genetics	[63].	Therefore,	OT	
may	increase	individual	differences	in	social	brain	activity	related	to	self-referential	or	face	recognition,	
which	resulted	in	a	stronger	brain-behavior	association	in	our	task.	Our	analysis	also	revealed	that	OT	
significantly	increased	the	similarity	between	rsFC	and	tsFC	(Question	3),	which	is	in	line	with	previous	
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studies	showing	robust	coupling	between	resting	state	measures	and	task-induced	brain	activity	[64,	65].	
In	addition	to	enhancing	the	coupling	between	rsFC	and	tsFC,	rsFC	showed	better	prediction	precision	
than	tsFC	for	both	behavioral	indices	in	the	OT	group.	This	may	indicate	that	face	perception	accuracy	and	
reaction	time	represent	some	inherent	attributes	of	individuals,	which	can	be	more	easily	captured	by	
rsFC	[66].	

Further	 analysis	 supported	 our	 hypothesis	 that	 OT	 might	 alter	 FC	 to	 enhance	 the	 triangular	
association	(Question	4).	The	results	of	the	CPM	classifier	demonstrated	that	OT	could	significantly	alter	
FC	in	both	resting	and	task	states.	It	also	revealed	that	OT	has	a	more	significant	influence	on	rsFC	than	
tsFC	because	the	CPM	classifier	of	the	rsFC	shows	higher	classification	accuracy,	stronger	significance,	
and	more	stable	classification	results	(Supplementary	material).	Since	a	previous	study	found	that	rsFC	
contains	more	stable	traits	of	individuals	[66],	our	results	further	indicate			that	OT	mainly	causes	changes	
in	 the	 individuals’	 baseline	 activity	 instead	of	 task-related	 activity[25].	Notably,	 our	 results	 showed	a	
consistent	 relationship	 between	 the	 performance	 of	 behavior	 prediction	 and	 group	 classification	
performance.	More	specifically,	compared	to	tsFC,	OT	had	a	more	significant	impact	on	rsFC,	which	could	
better	 predict	 behavioral	 performance	 after	 OT	 administration.	 This	 result	 may	 also	 prove	 that	 the	
enhancement	of	triangular	association	is	related	to	the	alteration	of	FCs.	

OT	 could	 alter	FCs	belonging	 to	 the	 social	 network,	which	has	been	well-documented	 in	previous	
studies	[25,	31,	32].	For	 instance,	previous	studies	have	found	that	OT-altered	FCs	between	the	limbic	
system	(e.g.,	amygdala,	ACC,	hippocampus),	orbitofrontal	cortex,	precuneus,	SMG,	and	middle	temporal	
sulcus	 [67].	Another	study	also	 found	that	brain	connectivity	 in	regions	comprising	 the	 thalamus	and	
superior	temporal	sulcus	might	be	modulated	by	OT	[68].	Relatedly,	for	rsFC,	we	demonstrated	that	the	
FC	of	brain	regions	in	TP	(TPOmid.R;	TPOsup.L),	PFC	(ORBmid.R;	MFG.L),	TPJ	(ANG.L),	insula	(INS.L),	and	
limbic	system	(CAU.R;	THA.R;	HIP.L)	made	significant	contributions	to	the	classification	of	OT	and	PL.	For	
tsFC,	 we	 demonstrated	 that	 the	 FC	 of	 brain	 regions	 in	 the	 TP	 (TPOmid;	 TPOsup.R),	 PFC	 (ORBsup.L;	
ORBinf.R),	and	TPJ	(SMG.L;	SPG.R)	is	important	for	classification.	Our	findings	are	consistent	with	those	
of	previous	studies	[67,	68]	and	further	provide	evidence,	at	the	whole-brain	level,	that	the	FC	between	
these	social	brain	regions	could	be	regulated	by	OT	[25].	

Moreover,	our	regression	analysis	demonstrated	that	OT-enhanced	the	brain-behavior	association	by	
altering	FC.	Several	important	FCs	in	the	classification	were	only	significantly	associated	with	behavioral	
performance	 in	 the	OT	group,	 similar	 to	 the	 result	 in	 the	CPM	predictor.	For	 the	 resting-state,	 the	FC	
between	 the	 TP	 (TPOmid.R)	 and	 TPJ	 (ANG.L)	 and	 the	 FC	 between	 the	 caudate	 (CAU.R)	 and	 vmPFC	
(ORBmid.R)	was	 significantly	associated	with	 the	mean	Acc	after	OT	administration.	Previous	 studies	
have	found	that	the	TPJ	and	vmPFC	are	critical	regions	in	social	cognition	[69]	and	have	recognized	the	
role	of	TP	in	face	recognition	and	social	information	processing	[70].	In	addition,	lesions	in	the	connection	
between	the	caudate	and	vmPFC	result	in	impaired	social	cognition	[71,	72].	Therefore,	these	FCs	may	be	
associated	with	social	perception	and	behavioral	performance.	For	the	task-state,	the	FC	between	the	TP	
(TPOsup.R)	and	TPJ	(SMG.L)	was	significantly	associated	with	the	mean	RT	after	OT	administration.	SMG	
was	 found	 to	 be	 related	 to	 awareness,	 which	 helps	 control	 attention	 and	 reduce	 reaction	 time	 [73].	
Notably,	not	all	important	FCs	in	classification	show	differences	in	brain-behavior	associations	between	
the	OT	and	PL	groups,	indicating	no	complete	causal	relationship	between	OT-altered	brain	FC	and	OT-
enhanced	brain-behavior	association.	Notably,	not	all	important	FCs	in	classification	show	differences	in	
brain-behavior	associations	between	the	OT	and	PL	groups,	indicating	no	complete	causal	relationship	
between	OT-altered	brain	FC	and	OT-enhanced	brain-behavior	association.	Besides,	the	brain-behavior	
association	may	reflect	mapping	from	the	unique	FC	pattern	instead	of	every	single	FC	to	the	behavioral	
performance,	so	only	part	of	FCs	showed	significance	in	regression	analysis.	

Our	research	demonstrates	that	OT	affects	the	similarity	between	different	modalities	rather	than	a	
single	modality	(only	behavior	or	brain	activity).	Although	many	studies	have	explored	the	consistency	
between	individual	differences	in	different	modalities	[38,	45,	49],	including	our	previous	studies	[74,	75,	
76],	 few	 studies	 have	 investigated	 the	 influence	 of	 neuropeptides,	 including	 OT,	 on	 this	 consistency.	
Mental	diseases	are	also	closely	related	to	social	abilities	and	individual	differences	[77].	OT	has	been	
tested	as	a	 treatment	option	for	psychopathologies	related	to	social	dysfunctions	[78],	such	as	autism	
spectrum	disorders,	 anxiety	disorders,	 social	phobia,	 and	 schizophrenia	 [79].	However,	 the	 treatment	
effect	of	OT	shows	substantial	individual	variation	and	may	depend	on	many	other	factors	[80].	To	address	
this	controversy,	our	study	may	provide	a	new	understanding	of	the	individual	differences	caused	by	OT.	
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If	OT	enhances	 the	association	between	different	modalities,	 it	 is	 important	 to	pay	attention	 to	other	
therapies,	such	as	behavioral	or	brain	stimulation	therapy,	while	applying	OT	treatment.	

Our	 study	 had	 limitations	 and	 there	 are	 several	 potential	 avenues	 for	 future	 research.	 First,	 our	
current	sample	was	limited	to	male	participants,	and	we	did	not	test	the	results	by	implementing	other	
behavioral	experimental	 tasks.	Second,	previous	studies	 showed	 that	 tsFC	might	be	more	suitable	 for	
dynamic	FC	calculation	than	the	current	static	FC	calculation,	considering	the	high	time-varying	property	
of	 the	 task-state	BOLD	 signal	 [81].	Dynamic	methods	 have	 been	 demonstrated	 to	 better	 characterize	
BOLD	signals	at	a	higher	temporal	resolution	[82,	83],	which	can	explain	more	behavioral	variance	than	
static	FC	 in	a	global	manner	 [84,	85]	and	may	result	 in	higher	prediction	accuracy.	Third,	 the	current	
results	are	more	similar	to	the	OT	effect	on	brain-behavioral	prediction	in	the	short	term,	since	resting	
fMRI	scanning	immediately	follows	the	task.	Future	work	may	refine	our	findings	by	investigating	other	
social	tasks	with	short-	and	long-term	predictions	in	OT	and	PL	groups.	Because	of	the	constraints	of	fMRI	
research,	future	work	should	combine	fMRI	with	other	approaches,	such	as	EEG	and	MEG,	to	build	a	high	
temporal	resolution	association	between	behavioral	and	neural	dynamics.	Finally,	although	it	helps	reveal	
many	aspects	of	brain-human	behavior	association,	CPM	is	a	data-driven	approach	in	neuroimaging	that	
can	 predict	 rather	 than	 explain.	 Future	 theory-driven	work	 can	 provide	 insights	 into	 the	 association	
between	increased	brain-behavior	and	OT	treatment.	

5 Conclusion 
In	 conclusion,	 our	 results	 provide	 the	 novel	 insight	 that	 OT	may	 enhance	 the	 triangular	 association	
between	 face-perception	behavior,	 rsFC,	and	 tsFC.	This	enhancement	could	be	partly	explained	by	OT	
altering	the	FC	between	social	brain	regions	in	both	resting	and	task	states.	This	result	provides	evidence	
that	 neuropeptides	 can	 enhance	 consistency	 between	 individual	 differences	 in	 different	 modalities.	
Future	studies	should	be	conducted	to	validate	this	effect	of	OT	using	different	social	tasks,	neuroimaging	
signals,	or	patients	with	mental	disorders.	
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1 CPM classify result of rsFC with other p-value threshold in 
feature selection 

The	CPM	classifier’s	first	part	uses	logic	regression	to	select	significant	features	from	the	90*90	FC	matrix.	To	
verify	the	stability	of	the	results,	we	used	another	two	different	thresholds	(p	<0.05,	p	<0.02)	to	extract	FC	features	
and	conduct	the	next	analysis	separately.	When	we	set	the	P-value	threshold	of	regression	as	p	<0.05,	131	
significant	FCs	could	be	retained.	When	we	set	the	threshold	value	as	p	<	0.01,	there	are	still	5	significant	FCs	could	
be	maintained.	

We	respectively	perform	the	above	analysis	on	two	group	of	FCs	selected	under	two	different	P-value	thresholds,	
and	 found	 they	both	 showed	 significant	 classification	 accuracy:	 For	 5	 FCs	 selected	by	p	<0.01,	 the	 classification	
accuracy	resulted	in	Acc	=	0.627	with	significant	level	p	=	0.0371*	(see	Figure	S4	A).	For	131	FCs	selected	by	p	<0.05,	
the	classification	accuracy	resulted	in	Acc	=	0.661	with	significant	level	p	=0.0081**	(see	Figure	S4	B).Based	on	the	
highest	accuracy	and	proper	number	of	FC	features,	we	used	the	25	FCs	selected	by	p	<0.02	in	the	following	analysis.	

2 CPM classify result of tsFC with other p-value threshold in 
feature selection 

Same	to	the	classification	analysis	in	rsFC,	we	used	another	two	different	thresholds	(p	<0.05,	p	<0.02)	to	extract	
FC	features	and	conduct	the	next	analysis	separately.	When	we	set	the	P-value	threshold	of	regression	as	p	<0.05,	42	
significant	FCs	could	be	retained.	When	we	set	the	threshold	value	as	p	<	0.01,	there	are	no	significant	FCs	could	be	
maintained.	

We	respectively	perform	the	above	analysis	on	the	42	FCs	selected	by	p	<0.02,	and	found	it	showed	significant	
classification	 accuracy:	 For	 5	 FCs	 selected	 by	 p	 <0.01,	 the	 classification	 accuracy	 resulted	 in	 Acc	 =	 0.627	 with	
significant	level	p	=	0.0371*	(see	Figure	S4	A).	

3 Moderating effect test 
We	 further	examined	 the	moderating	effect	of	OT	 through	statistical	models	 (Figure	S2	D).	More	 specifically,	

whether	the	relation	between	FC	and	behavioral	performance	would	be	significantly	affected	by	OT.	We	use	multiple	
regression	analysis.	We	included	Group	(OT/PL)	as	a	moderator	variable,	the	product	of	FC	and	Group	(FC	*	Group)	
as	 the	 interaction	 term.	 If	 the	 slope	 coefficient	 of	 the	 interaction	 term	 is	 significant,	 it	 indicates	 that	 there	 is	 a	
significant	moderating	effect.	The	regression	model	used	to	test	the	moderating	effect	is	as	follows:	

 Behavior	=	β0	+	β1FC	+	β2Group	+	β3FC	∗	Group	+	ϵ	 (1)	

Where	β0	is	the	regression	intercept.	β1	as	the	regression	slope	of	FC.	β2	as	the	regression	slope	of	Group	(OT/PL).	
β3	as	the	regression	slope	of	interaction	effect	variable	FC	*	Group	and	provides	an	estimate	of	the	moderating	effect.	
If	β3	is	statistically	different	from	zero,	it	would	prove	that	OT	has	a	significant	moderating	effect.	
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For	the	association	between	Acc	mean	and	rsFC	of	TPOmid.R	-	ANG.L,	the	moderating	effect	of	OT	is	insignificant	
(p	=	0.713).	For	the	association	between	Acc	mean	and	rsFC	of	CAU.R	-	ORBmid.R,	the	moderating	effect	of	OT	is	
marginal	 significant	 (p	 =	 0.081·).	 For	 the	 association	 between	 Acc	 mean	 and	 tsFC	 of	 TPOsup.R	 –	 SMG.L,	 the	
moderating	effect	of	OT	is	insignificant	(p	=	0.064·)	

Behavior	
data	

FC	data	 p-value	 OT	F	 PL	F	 Kernal	 Other	SVM	parameter	

ACC	mean	 Rest	 0.01	 57	 18	 Linear	 Default	
RT	mean	 Rest	 0.05	 35	 80	 Linear	 Default	
ACC	mean	 Task	 0.05	 9	 146	 Linear	 Default	
RT	mean	 Task	 0.01	 314	 68	 Linear	 Default	

Table	S1:	Details	of	CPM	predictor	parameters.	p-value	:	P-value	threshold	for	feature	selection;	OT	F	:	features	for	
OT	group;	PL	F	:	features	for	PL	group	

FC	data	 p-value	 Features	 Kernal	 Other	SVM	parameter	
Rest	 0.01	 5	 Linear	 Default	
Rest	 0.02	 25	 Linear	 Default	
Rest	 0.05	 131	 Linear	 Default	
Task	 0.01	 none	 Linear	 Default	
Task	 0.02	 8	 Linear	 Default	
Task	 0.05	 42	 Linear	 Default	

Table	S2:	Details	of	CPM	classify	parameters.	p-value	:	P-value	threshold	for	feature	selection	

4 Tables and Figures  
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Figure	S1:	The	framework	of	present	study	and	corresponding	result.	

	

Figure	S2:	The	workflow	of	the	CPM	predictor	analysis	for	present	study.	(A)	FC	matrix	construction	and	feature	
selection.	(B)	Model	validation	with	LOOCV.	(C)	Test	the	performance	of	the	predictor	model.	(D)	Permutation	test	
for	statistics.	
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Figure	S3:	The	Pearson	correlation	between	each	resting	and	task	state	functional	connectivity	edge	for	both	groups.	
The	correlation	in	OT	group	was	significantly	higher	than	PL	group	(P	<	0.001).	

	

Figure	S4:	The	result	of	rsFC	classification	using	the	different	feature	selected	by	different	p-values.	(A)	5	FC	features	
during	the	feature	selection	with	P	<	0.01.	(B)	131	FC	features	during	the	feature	selection	with	P	<	0.05.	

	

Figure	S5:	The	result	of	tsFC	classification	using	the	different	feature	selected	by	different	p-values	=	0.05.	
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Figure	S6:	The	result	of	SVM	using	the	different	feature	selected	by	p-values	=	0.05.	
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