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Abstract  19 

 20 

Microorganisms are a key component of the marine food webs through the microbial 21 

loop. In previous work, we have shown that some bacteria, including Candidatus 22 

Pelagibacter spp (SAR11)—the most abundant bacterium in the ocean—can evade filtration 23 

by benthic and planktonic tunicates. Here we tested whether differential removal of microbial 24 

taxa by benthic filter-feeders can be observed in the distribution and abundance of microbial 25 

taxa from hard-bottom subtidal communities, a common coastal habitat in the Eastern 26 

Mediterranean Sea towards the open sea. The abundance of microbial groups along cross-27 

shore transects was measured based on combined flow cytometry and SSU rRNA gene 28 

metabarcoding. Our results show that most groups were depleted (up to 50%) over the hard-29 

bottom compared to the open sea, but unexpectedly we did not observe a clear differential 30 

removal of different taxa, SAR 11 notably. This study indicates a strong top-down control of 31 

the abundance of pelagic microorganisms over shallow hard-bottom where suspension 32 

feeders are common. 33 

  34 
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Introduction 35 

 36 

Marine microbial communities form the basis of the ocean food web and mediate 37 

most of the energy and material fluxes in the ocean (Glöckner et al. 2012). Microorganisms 38 

constitute a large fraction of the living biomass in the sea (Pomeroy et al. 2007), and the 39 

structure and function of their populations are shaped by a delicate balance between growth 40 

and mortality (Pernthaler 2005). Grazing and virus-driven lysis constitute the main sources of 41 

mortality (Sánchez et al. 2020), countered by the capabilities of microorganisms to avoid 42 

grazing (Matz and Kjelleberg 2005), survive digestion or resist viral lysis. Grazing or 43 

predation on microorganisms by either planktonic or benthic organisms is an important 44 

mortality factor in many habitats (e.g., Verity 1991; Gili and Coma 1998; Gorsky et al. 1999; 45 

Riisgard and Larsen 2001; Pernthaler 2005; Patten et al. 2011a). In the pelagic realm, protists 46 

commonly dominate the guild of grazers of bacteria (Calbet and Landry 2004; Matz and 47 

Kjelleberg 2005). However, in some habitats and seasons, grazing by metazoan and lysis by 48 

phages may dominate mortality (Hahn and Höfle 2001).  49 

Bacteria form some 65-86% of the biomass of microorganisms in the upper ocean 50 

(Morris et al. 2002). However, only a small number of bacterial groups dominate that guild 51 

(Teeling et al. 2012). In the oligotrophic eastern Mediterranean, pico-cyanobacteria 52 

(Synechococcus and Prochlorococcus) and a few members of Candidatus Pelagibacter 53 

ubique (SAR11) clade dominate microbial communities, accounting for >70% of the total 54 

bacterial biomass ( Partensky et al. 1999, Dadon-Pilosof et al. 2017). SAR11 is a clade of 55 

heterotrophic bacteria, which constitutes 15–60% of total bacteria in the upper ocean (Morris 56 

et al. 2002,2012; Rappé et al. 2002; Eiler et al. 2009; Giovannoni 2017). It is one of the 57 

smallest free-living bacteria in the sea and is thought to be the most abundant group in the 58 

world ocean. Within that group, some ecotypes thrive in oligotrophic environments while 59 

others in more productive waters (Morris et al. 2002, Salter et al 2015). Members of the 60 
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SAR11 clade also have the lowest nucleic acid content (LNA) among all non-photosynthetic 61 

bacteria (Mary et al. 2006). Dadon-Pilosof et al. (2017) reported that some bacteria, 62 

especially members of the SAR11 clade, can effectively evade grazing from both pelagic and 63 

benthic tunicates and this lack of grazing pressure on SAR11 could partially explain its 64 

abundance and ubiquity.  65 

A diverse guild of benthic invertebrate suspension feeders, including sponges, 66 

bivalves, cirripedians cnidarians, bryozoans, and tunicates, often dominates subtidal hard 67 

substrates (Topçu et al. 2010). Their diet ranges from consumption of dissolved organic 68 

matter (DOM) through grazing on microorganisms such as phytoplankton, virioplankton, 69 

archaea and bacteria, as well as feeding on zooplankton and detritus (Gili and Coma 1998; 70 

Topçu et al. 2010). Hard-bottom subtidal communities along the Mediterranean Sea are 71 

diverse and are undergoing dramatic changes in the recent decades due to the combined effect 72 

of global warming, overfishing, and the introduction of invasive species ( Rilov et al. 2019). 73 

Within these communities, retention of small particles is an adaptive advantage since 74 

picoplankton often dominate the planktonic community biomass (Topçu et al 2010).  75 

Grazing by benthic suspension feeders on microorganisms is also an important 76 

component of the benthic-pelagic coupling in coral reefs (Yahel et al. 1998; Genin et al. 77 

2002, 2009; Patten et al. 2011). This grazing pressure on the microbial community is not 78 

necessarily uniform as it depends on the spatial heterogeneity of the distribution of different 79 

suspension feeders and their respective diets (Yahel et al. 2006, 2009; Hanson et al. 2009; 80 

Dadon-Pilosof et al. 2017). Differential capture of particles from the ambient water based on 81 

their size, concentration or morphological features is therefore expected to be reflected in the 82 

prey distribution (Gili and Coma 1998). 83 

The goal of the current study was to indirectly evaluate the effect of the whole benthic 84 

community removal on the distribution of microorganisms across a shallow, subtropical 85 
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rocky coast. Following the study of Yahel et al. (1998) across a coral reef, a study that 86 

preceded the demonstration of the role of phytoplankton grazing in the trophic dynamics of 87 

coral reefs (Genin et al. 2009; Monismith et al. 2010), we sought to test the hypothesis that 88 

differential removal on microbes is also reflected in the cross-shore distribution of bacteria 89 

and other picoplankton.  90 

Methods  91 

Study site 92 

Sampling was conducted off Michmoret, Israel (32° 24′N, 34° 52′E) in the Eastern 93 

Mediterranean Sea. The oligotrophic Israeli shoreline is characterized by extremely low 94 

nutrient levels (Nitrate 0.5-1 µM, Phosphate 0.05-0.1 µM, Krom and Suari 2015), high 95 

salinity (38.3 to 40.0 PSU) and relatively warm waters (16.5 to 30.8°C) (Suari et al. 2019) 96 

that is dominated in terms of numbers and biomass by pico- and nanoplankton sized 97 

organisms (Herut et al. 2000, Raveh et al. 2015). Water stratification appears usually in 98 

spring following a deep winter mixing that is enhanced by the high salinity of surface waters.  99 

Eight transects were performed between December 2015 and April 2017 (Table S1). 100 

Each transect encompassed eight stations spanning from 1.5 m depth at the hard-bottom 101 

subtidal towards the “open-sea” (~ 0.9 km off-shore, water depth >12 m, Fig. 1). During the 102 

sampling periods the average temperature (±SD) was 19.7±0.7 ˚C, salinity was high 103 

(39.25±0.2 PSU), and the water column was fully oxygenated (dissolved oxygen 104 

concentration 216±6 µM). Due to the need to work very close to the bottom at the rocky 105 

shoreline, sampling dates were dictated by sea conditions and were limited to days of calm 106 

sea (wave height < 30 cm) and weak winds (<6m s-1). To get a larger scale context within the 107 

eastern Mediterranean shelf offshore of the high-resolution cross-shore transects, six cross-108 

shelf transects were sampled during March 2018, spanning from one km offshore, equivalent 109 
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to the farthest station in the small scale transects, to 42 km west to the shelf edge at 750 m 110 

bottom depth (Fig S1).  111 

 112 

The shallowest sampling station in each transect was located ~150 m offshore at 1.6-113 

1.8 m depth where Niskin bottle was placed just above the rocky bottom (c.a. 10 cm) to 114 

collect a sample. The 1.5 m sampling depth was retained along the transect as the water 115 

deepened down to 12 m at the furthest offshore station, ~0.9 km offshore. The four 116 

shallowest stations (hereafter Stations 1-4) were located above hard bottom (rocky area), the 117 

5th station was located at the boundary between rocks and sand, while stations 6 to 8 were 118 

above sandy bottom.  119 

Sampling methods 120 

Prior to sampling, each station was marked with a moored surface buoy and profiles 121 

of temperature, salinity, fluorescence, and oxygen were measured using a Seabird 122 

Figure 1: The location of the transect line in the Eastern Mediterranean (a) transects location along 

the Israeli shore (b) transect showing the bottom (yellow), sampling stations (white numbered lines), 

dotted white line (1.5 m depth) representing sampling depth. 
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SBE19plusV2 CTD equipped with an in vivo chlorophyll fluorimeter (Cyclop7, Turner 123 

Designs) and a dissolved oxygen sensor (SBE43, Seabird). The CTD was lowered in a 124 

horizontal position at a slow pace (about a meter per minute) so that the water column was 125 

adequately profiled even in the shallow-most stations. Due to the need to work close to the 126 

bottom at the rocky shoreline, sampling was conducted from either a kayak or a small 127 

inflatable skiff.  128 

Seawater was collected simultaneously with CTD profiles, using a 5 L Niskin bottle. 129 

At each station, samples were collected directly from the Niskin bottle for all the required 130 

analyses: flow cytometry, DNA extraction and Chl-a measurements. Water samples were 131 

kept on ice in the dark for further processing in the laboratory within 2-3 hours. Samples for 132 

DNA were collected only during three of the eight sampling times. 133 

Sample analysis 134 

Flow cytometry 135 

Flow cytometry was used to quantify the concentrations and the cell characteristics of 136 

non-photosynthetic microorganisms (hereafter referred to as non-photosynthetic bacteria), 137 

and the following four dominant autotrophic groups: Prochlorococcus (Pro), Synechococcus 138 

(Syn), pico-eukaryotic algae (PicoEuk), and nano-eukaryotic algae (NanoEuk). We used an 139 

Attune® Acoustic Focusing Flow Cytometer (Applied Biosystems) equipped with a syringe-140 

based fluidic system that allows a precise adjustment of the injected sample volume and 141 

hence high precision of the measurements of cell concentrations (±5%). The instrument’s 142 

optical unit contained violet and blue lasers (405 and 488 nm, respectively) and was further 143 

adapted for the analysis of marine ultra-plankton samples as described below.  144 

Aliquots of 1.8 mL were collected from each water sample and transferred into 2 mL 145 

cryotubes (Corning cat No. 430659). Samples were first incubated for 15 min at room 146 

temperature with Glutaraldehyde 50% (electron microscopy grade, Sigma-Aldrich, cat No. 147 
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340855) at 0.1% (final concentration). Samples were frozen in liquid nitrogen (at least 60 148 

min) and then stored at -80 ˚C until analysis (within a few days). 149 

Each sample was analyzed twice. First, 600 µl of the sample water was analyzed at a 150 

high flow rate (100 µL min-1) for the determination of ultra-phytoplankton with a dual 151 

threshold (trigger) on the red fluorescence channels of the violet and blue lasers. A second 152 

run was used to analyze cells with no autofluorescence, i.e., non-photosynthetic microbes. To 153 

visualize these cells, a 300 µL aliquot of the sampled water was incubated with the nucleic 154 

acid stain SYBR Green I (20-120 min dark incubation at room temperature, 1:104 of the 155 

SYBR Green commercial stock). For this run, we used a low flow rate of 25 µL min-1 and the 156 

instrument was set to high sensitivity mode. Seventy-five µL of the sample water was 157 

analyzed with a dual threshold (trigger) on green fluorescence channels of the violet and blue 158 

lasers. The taxonomic identification was based on orange fluorescence (Bl2, 574±13 nm) of 159 

phycoerythrin and red fluorescence (Bl3, 690±20 nm and VL3, 685±20 nm) of chlorophylls; 160 

side-scatter (SSC), provided a proxy of cell surface complexity and cell volume (Marie et al. 161 

1999), and forward-scatter (FSC) was a proxy of cell size (Cunningham and Buonnacorsi 162 

1992; Simon et al. 1994). 163 

Where possible, the non-photosynthetic bacteria were further divided based on their 164 

green fluorescence (proxy for nucleic acid content) and forward scatter (proxy for size) into 165 

three groups:  LNA, low nucleic acid non-photosynthetic bacteria; HNA-Ls, high nucleic acid 166 

low-scatter non-photosynthetic bacteria; HNA-Hs, high nucleic acid high-scatter non-167 

photosynthetic bacteria (Zubkov et al. 2004). Similarly, the eukaryotic algae were separated 168 

to pico- and nano-phytoplankton (Simon et al. 1994). The size of Synechococcus is still 169 

somewhat controversial, indicating a range of 0.3 to 1.2 µm (e.g., Uysal 2001; Garcia et al. 170 

2016). For pico-eukaryotic algae, we followed Worden and Not (2008), who suggested a size 171 

range of up to 3.0 µm. Larger cells were termed nano-eukaryotic algae (2.0-20 µm). As a 172 
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rough proxy of cell size, we used the ratio of the median forward scatter of each cell 173 

population to that of the median forward scatter of reference beads (Polysciences™, cat# 174 

23517, Flow Check High-Intensity Green Alignment 1.0 µm) that were used as an internal 175 

standard in each sample. See Dadon-Pilosof et al. (2019) for a further discussion of the 176 

accuracy of size estimates. 177 

Chlorophyll measurements 178 

Water samples (~300 mL) were collected directly from the Niskin bottles at each 179 

station into dark volumetric BOD glass bottles (Wheaton 227667) and maintained on ice in 180 

dark cool box. In the lab, samples were prefiltered through a 100 μm mesh (to remove large 181 

zooplankton and/or aggregates and suspended pieces of benthic algae) and filtered using low 182 

vacuum onto a 25 mm Whatman GF/F filter. Filters were kept frozen at -20°C in 20 mL 183 

scintillation vials until further processing. To ensure complete chlorophyll a extraction of 184 

coastal phytoplankton, we used a hot dimethyl sulfoxide (DMSO) extraction method 185 

(Burnison 1980). Briefly, 2 mL of DMSO were added into each vial containing the frozen 186 

filter. Vials were then incubated for 20 min at 65⁰C, then cooled in a dark box to room 187 

temperature (approximately 1 hr). Four mL of buffered Acetone (90% Acetone, 10% 188 

saturated MgCO3) were added to the vial and thoroughly mixed. Vials were then left to settle 189 

for few minutes and 3 mL sample was drown form the vial to a fluorometer cuvette. 190 

Fluorescence was measured with a calibrated Trilogy fluorometer (Turner Designs) using   191 

the non-acidification method (Welschmeyer and Naughton 1994).  192 

DNA extraction 193 

The relative abundance of prominent microbial taxa (phylotypes) in the seawater was 194 

estimated using next-generation sequencing (NGS) of SSU rRNA genes to evaluate any 195 

differential removal by suspension feeders benthic community. Ten mL of seawater collected 196 

from each station and filtered on a 25 mm, 0.2 μm polycarbonate membrane (GE Healthcare 197 
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Biosciences, cat. No. 110606) under low vacuum and frozen in 1.5 mL micro-tubes at -20˚C 198 

until analysis. DNA from each filter was extracted using the DNeasy ‘blood & tissue kit’ 199 

(QIAGEN, Cat. No. 69504) with the following modifications to the manufacturer’s protocol: 200 

ATL buffer (180 μL) and 20 μL of proteinase K were added and samples were incubated at 201 

56°C for 1 hr. Then 200 μL of AL Buffer and 200 μL of 95-100% ethanol was added to the 202 

sample and the mixture was pipetted into spin columns and placed in a 2 mL collection tube. 203 

Tubes were centrifuged at 6000 RCF for 1 min. The flow-through was discarded and 500 μL 204 

of AW1 buffer was added to the column, centrifuged at 6000 RCF for 1 min, and the flow-205 

through again discarded. This step was repeated for the third time, with 500 μL Buffer AW2 206 

and a spin of 18,000 RCF for 1 min to dry the membrane before elution. For the elution step, 207 

the spin column was placed on a new collection tube. Two hundred µL of buffer AE 208 

preheated to 56°C was pipetted at three steps (50 µL, 50 µL, and 100 µL) into the column and 209 

each step was followed by 6000 RCF centrifugation for 1 min. The sample was then 210 

incubated at room temperature for at least a minute and stored at -20°C. 211 

Next-generation sequencing 212 

Samples were sequenced by Research and Testing Laboratories (Lubbock TX).  The 213 

SSU rRNA genes were amplified for sequencing using a forward and reverse fusion primers 214 

(515F-Y - 926R (Parada et al. 2016). The forward primer was constructed with (5’-3’) the 215 

Illumina i5 adapter (AATGATACGGCGACCACCGAGATCTACAC), an 8-10bp barcode, a 216 

primer pad, and the 5’– GAGTTTGATCNTGGCTCAG –3’ primer. The reverse fusion 217 

primer was constructed with (5’-3’) the Illumina i7 adapter 218 

(CAAGCAGAAGACGGCATACGAGAT), an 8-10bp barcode, a primer pad, and the 5’–219 

GTNTTACNGCGGCKGCTG –3’ primer. Primer pads were designed to ensure the primer 220 

pad/primer combination had a melting temperature of 63˚C-66˚C, according to methods 221 

developed by Patrick Schloss' laboratory (http://www.mothur.org/w/images/0/0c/Wet-222 
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lab_MiSeq_SOP.pdf). Amplifications were performed in 25 μL reactions with Qiagen 223 

HotStar Taq master mix (Qiagen Inc, Valencia, California), 1μL of each 5 μM primers, and 1 224 

μL of the template. Reactions were performed on ABI Veriti thermocyclers (Applied 225 

Biosystems, Carlsbad, California) under the following cycle conditions: 95˚C for 5 min, then 226 

35 cycles of 94˚C for 30 sec, 54˚C for 40 sec, 72˚C for 1 min, followed by one cycle of 72˚C 227 

for 10 min and a final 4˚C hold. 228 

Amplification products were visualized with eGels (Life Technologies, Grand Island, 229 

New York). Products were then pooled equimolarly and each pool was size-selected in two 230 

rounds using Agencourt AMPure XP (BeckmanCoulter, Indianapolis, Indiana) in a 0.7 ratio 231 

for both rounds. Size-selected pools were then quantified using a Qubit 2.0 fluorometer (Life 232 

Technologies) and loaded on an Illumina MiSeq (Illumina, Inc. San Diego, California) 2x300 233 

flow cell at 10 pM. 234 

Sequence data analysis 235 

SSU rRNA sequences were treated using a qiime2 (v. 2018-8) and biom-format (v. 236 

2.1.6) deployed through a bash scripts (Suppl. File). Briefly demultiplexed forward and 237 

reverse reads were imported into qiime2 artifacts and ASV tables were generated using qiime 238 

dada2 using options "--p-trim-left-f 19 --p-trim-left-r 20 --p-trunc-len-f 300 --p-trunc-len-r 239 

250" The resulting ASVs were identified using qiime feature-classifier using an in house 240 

version of the Silva132 (arb-silva.de) including only the region flanked by the primers, and a 241 

taxonomy files extracted from this database (see data availability below for details). 242 

Since the primers we used amplify both 16S rRNA from prokaryotes and chloroplasts 243 

as well as 18S rRNA from eukaryotes, the ASV table and sequence files were filtered using 244 

qiime taxa to generate three sets of table/sequences, one with 16S rRNA, one with 245 

chloroplasts and one with eukaryotic sequences. ASV tables were modified to include 246 
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taxonomy using sed and gawk and biom-format and exported in ".tsv" format for further 247 

analyses. Here we describe only results concerning 2388 prokaryotic ASVs. 248 

Data analysis 249 

Due to temporal changes in microbial communities, and assuming the entire transect 250 

represented a single water mass the concentrations along each transect were normalized to the 251 

seaward-most station and presented as “% of open sea”. The significance level of cross-shore 252 

trends was tested using the “Page test” for ordered alternatives (Page 1963). This non-253 

parametric test is a modified version of the Kruskal-Wallis one-way ANOVA for ranked data. 254 

Nearshore depletion of microbial taxa was tested (each taxon per season) with H1 as an 255 

ordered decrease in concentrations from the “open water” toward the shore. Due to missing 256 

sampling points, only 3 complete transects toward the hard-bottom were used for the test in 257 

each season.  258 

Data collected with the CTD was converted, aligned, and binned (at 0.1 m) with the 259 

SBE DataProcessing software (Version 7.2). Since salinity differences along the transects 260 

were negligible (<0.01 PSU), density differences were driven solely by temperature. The 261 

vertical and horizontal change in temperature and in-vivo chlorophyll fluorescence along the 262 

cross-shore transects (hereafter ‘anomaly’) was calculated within each transect as anomalies 263 

(the difference of each data point from the average temperature or fluorescence along the 264 

transect). All seasonal anomalies were plotted together using Ocean Data View (Version 5). 265 

Interpolation was made with the Weighted-average gridding function of Ocean Data View 266 

using a seeking distance of 0.25 m along the vertical axis and 100 m along the horizontal 267 

axis.  Due to the low (N=4), data are presented as a seasonal average ± standard error (SE) 268 

unless otherwise indicated. 269 

Removal of specific ASVs toward the shore was calculated by multiplying the relative 270 

abundance of each ASV and the total bacterial cell counts obtained by flow cytometry and 271 
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then calculation as a percentage of the open sea station. Normalized removal was calculated 272 

by normalizing measured removal to the ASV with the highest removal within the same 273 

transect.  Implementation of this approach provides a powerful tool to indirectly evaluate the 274 

effect of benthic removal of microbial prey at the ASV level. Hereafter, the use of the terms 275 

“selectivity” and “preference” are limited to their technical definition (Chesson 1978, 1983), 276 

i.e., the removal of a prey type in higher proportion than its proportional presence in the 277 

environment, relative to other food types present. 278 

Data availability 279 

Raw sequencing reads are available through the NCBI SRA under accession number  280 

PRJNA912166. The analysis pipeline and associated files including scripts, mapping files, 281 

taxonomic identification databases and ASV tables are available through a github repository 282 

(github.com/suzumar/transect_ms). 283 

Results 284 

During winter, a temperature gradient was found along the transects with colder water 285 

at the shallow stations above the hard-bottom (stations 1-5, 19.4±0.03°C, Fig 2a) in 286 

comparison to the "open sea" (stations 6-8, 20.1±0.03°C, Fig 2a). During spring, no such 287 

temperature gradient was observed along the transects but the beginning of stratification was 288 

noticeable, with a half-degree Celsius warmer surface layer (0-3 m, 20.1°C±0.07, Fig 2b) 289 

than the deeper water (3-12m, 19.6°C±0.02, Fig 2b). The warmer, nearshore surface layer 290 

(10-25 m depth, Fig S1) showed typical coastal enrichment, with higher chlorophyll 291 

concentrations (Fig S1) and cell counts (Fig S2) than the open sea. Salinity was similar along 292 

the transect (1.5m depth) and with depth (0-12m) during winter and spring (39.26-39.31 PSU 293 

and 39.35-39.28 PSU, respectively, during winter and, 39.29-39.23 PSU and 39.06-39.21 294 

PSU, respectively, during spring).  295 
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In the cross-shore transects, the concentration of all microbial populations decreased 296 

toward shore in a highly significant gradient (Page test, p<0.01, Fig. 3a-d). In most cases, and 297 

for most of the microbial populations, cell concentrations were similar along the ~700 m 298 

sandy section of the transects, between the open sea and the outer boundary of the rocky area 299 

(Stations 6 to 8). Sometimes even an increase was observed along that section (Table S1, S2). 300 

Most of the depletion occurred above the rocky habitat (Stations 1 to 5). The depletion of the 301 

microbial populations over the rocky section range between 25-50% of their percentage of 302 

the open sea (Fig 3a-d). In vivo chlorophyll fluorescence (Fig S3) and the concentration of 303 

extracted chlorophyll a also showed a strong depletion above the hard-bottom area compared 304 

to the open sea (Fig 3e).   305 

b - Spring 

a - Winter 

Sand Hard-bottom 

Hard-bottom Sand 

Figure 2: Temperature anomaly along the cross-shore transects. (a) Winters of 2015-2016, n=4. (b) Springs 

of 2016-2017, n=4. Sampling stations are shown as vertical black lines. Grey shading approximates the 

bottom depths based on the bottom depth of each cast. In most cases, the CTD was lower all the way to the 

bottom (~0.2 mab). 
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Differential changes in relative abundances between ASVs and even within the same 342 

ASV in different transects were observed (Fig 4a-c). For example, ASVs belonging to 343 

                        

                

 
  
  
 
  
 
 
 
  
 
 

  

   

    

    

    
      

      

      

   

   

                        

                

 
  
  
 
  
 
 
 
  
 
 

  

   

    

    

    

   

   

      

      

      

                        

                

 
  
  
 
  
 
 
 
  
 
 

  

   

    

    

    
      

      

      

  

  

                        

                

 
  
  
 
  
 
 
 
  
 
 

  

   

    

    

    
      

      

      

   

   

                        

                

 
 
  
 
  
 
 
  
  
 
  
 
  
  

 

    

    

    

    

    
                     

 

 Figure 3:  Cross-shore transects showing the percent 

change in the concentrations of several microbial cell 

populations (counted by flow cytometry) from their 

“open sea” concentration ~900 m offshore. (a) Bact, 

non-photosynthetic bacteria, (b) Euk, eukaryotic algae, 

(c) Syn, Synechococcus sp. (d) PLP, Prochlorococcus- 

like particles, (e) Extracted chlorophyll a concentration 

along 3 transects. Blue, n=4, transects performed during 

winter. Orange, n=4, transects performed during spring. 

The significance of the Page test for a gradient of 
decreasing concentrations toward the shore is 
denoted as **<0.01, ***<0.001  

a  b  

c d 

e 
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cyanobacteria group were on average 8%, 35% and 3% of their percentage at the open sea 344 

(Fig 4a-c accordingly).  345 

  346 
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Within the SAR11 clade, the percentage of four ASVs decreased along the transects, 347 

in similar trends (Fig 5). Transects showed 83% ±7% (Mean ±SD, Fig 6a-c) normalized 348 

removal for the 20 most abundant ASVs. Abundant ASVs including Synechococcus CC9901 349 

(27% relative abundance, transect during January 2016) and SAR11-Ia (25%, transect during 350 

April 2016) were removed at similar percentages (95% and 84% accordingly) compared to 351 

less abundant ASVs (e.g. SAR11-Ib 1.3% relative abundance and 87% removal, SAR86 352 

2.3% relative abundance and 86% removal) (Fig 6). 353 

  354 
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 359 

 360 

 361 

 362 

 363 

 364 
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 366 

 367 

Figure 6: Normalized removal of the 20 most abundant ASVs from the open sea toward the shore. (a-c) transects above rocky hard bottom (January 2016, March 2016 and, April 

2016). Pink indicates members of SAR11 clade, green indicates autotrophs, and blue indicates other non-photosynthetic bacteria. Dashed vertical line represents the expected 

retention assuming equal retention probability for all cells. Size of circles represents relative abundance in the open water (Station 8) during sampling., with the two white circles 

plotted for scaling. 
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 Discussion 368 

This study was designed to evaluate whether the effect of differential removal of 369 

microorganisms by benthic suspension feeders can be detected at the community level. Most 370 

of the microbial populations were depleted above the hard-bottom area compared to the open 371 

sea. Differential removal was observed at low extent (between and within species). A similar 372 

trend was also observed for chlorophyll a concentration, suggesting the formation of a 373 

depleted boundary layer over the hard-bottom. The hard-bottom community at the study site 374 

included a diverse assemblage of suspension feeders, including sponges, bivalves, ascidians, 375 

polychaetes, hydrozoans, and bryozoans (Rilov et al. 2018). Suspensions feeders on the hard-376 

bottom occur in different densities, and hence the competition for available prey is between 377 

species, within species and even between different taxa.  Niche speciation is expected in such 378 

diverse and dense community where different taxa utilize different filtration mechanisms and 379 

presumably, different organic carbon sources in their diet. If the depletion of microbial cells 380 

is the outcome of grazing by benthic suspension feeders, near-bottom depletion should 381 

generate a shore-wise depletion above the hard-bottom section of the transects compared to 382 

the sandy section of the transect (e.g., Genin et al. 2009; Jones et al. 2009). In case other 383 

processes determine the cross-shore trend (e.g., runoff, eutrophication, and coastal pollution), 384 

the depleted zone is expected to extend throughout the water column and no difference is 385 

expected along the transects. Differential grazing of phytoplankton by dense populations of 386 

benthic suspension feeders was also reported in San-Francisco bay where it was attributed to 387 

different sinking rates of the microalgae (Lucas et al. 2016). Such a phenomenon is very 388 

unlikely in the east Mediterranean where the planktonic community is dominated by very 389 

small cells (<10 μm) with negligible sinking rates (Siokou-Frangou et al. 2010). This body of 390 

prior work supports the assumption that the depletion reported here is due to benthic 391 

suspension grazing although it was not measured directly. 392 
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Physical and biological processes are the major factors controlling changes in particle 393 

concentrations throughout the ocean, and advective processes could be responsible for the 394 

pico and nanoplanktom depletion we observed. Monismith et al. (2006) showed that shallow 395 

regions nearshore experience larger temperature changes than deeper regions offshore. When 396 

the water warms during the daytime (e.g., in the spring), the shallow near-shore water body 397 

tends to warm faster than the nearby open sea. The warmer water expands and flows 398 

offshore, causing deeper and cooler water to flow onshore at depth to replace it. This ‘thermal 399 

flow’ (Fig 7) leads to an upwelling of deeper water and material to the nearshore region (Fig 400 

7). The opposite process occurs during winter or cold nights, when a faster cooling of the 401 

shallow, near-shore waterbody initiates near-shore downwelling of cold surface water that 402 

reverses the direction of the “thermal flow” cycle and induces onshore flow of surface water 403 

(Fig 7). In the Eastern Mediterranean Sea, the water column is usually stably stratified, and 404 

the numbers and biomass of surface water plankton is lower than subsurface layers (Suari et 405 

al 2019). Onshore transport of surface water from the offshore during the cold phase of the 406 

thermal flow cycle and the nearshore downwelling of "plankton poor" seawater is expected to 407 

yield a benthic zone of depleted of plankton close to shore (Labiosa et al. 2003). However, 408 

this physical mechanism would not be expected to change the relative abundance of different 409 

microbial groups along the transects, nor should it differentially affect rocky and sandy 410 

sections of the transects. Moreover, during the warm phase of the thermal flow cycle (in 411 

spring for example), local upwelling is expected to bring plankton-rich water onshore, 412 

countering removal, and the benthic zone should be as rich if not richer nearshore. Our results 413 

showed that nearshore depletion occurred during both the cold and hot ‘phase’ of the thermal 414 

flow, suggesting that a biological process such as filtration is probably the mechanism 415 

responsible for the depletion above the hard-bottom section in the transects rather than 416 

advection of planktonic poor water. A similar conclusion was reached by Patten et al. (2011), 417 
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who showed depleted levels (~40% on average) of microbial cells over a reef with negligible 418 

removal over a sandy bottom. 419 

Our previous work showed partial grazing resistance of members SAR11 clade to 420 

grazing by pelagic and benthic tunicates (Dadon-Pilosof et al. 2017), and in general, lower 421 

retention efficiencies on LNA bacteria than other prey types. Selective grazing and 422 

specifically low retention on LNA compare to both HNA bacteria and Synechococcus was 423 

also observed in sponges (Hanson et al. 2009; Jiménez 2011) and preferential retention of 424 

Synechococcus and eukaryotic algae over other prey types was observed in bivalves (Yahel et 425 

al. 2009). The results (although using indirect measurements) of this study suggested 426 

inversely to what we expected that members of SAR11 were grazed at higher efficiencies 427 

than other available prey (Fig 5,6) somewhat reflecting their overall high abundance. This 428 

work strengthens the niche speciation assumption, hinting that some taxa within the hard-429 

bottom community specialize on grazing SAR11. Besides the obvious members of the 430 

suspension feeding community, we must consider the heterotrophic nanoflagellates attached 431 

to the rocks (Yahel et al. 2006). This cryptic community has a large grazing effect that may 432 

be part of the explanation for prey depletion above the hard-bottom. It is known that 433 

heterotrophic nanoflagellates are important bacterivores in pelagic waters (Tophøj et al. 434 

2018). 435 

The apparent lack of grazing evasion by members of SAR11 could be possibly 436 

explained by a different mode of interaction to other filter feeders compared to tunicates. 437 

Suspension feeders have different filtration organs, using cilia, mucus, or both to capture and 438 

process suspended particles. While some are active suspension feeders and specialize in 439 

filtration of small particles, others are passive feeders and specialize in filtration of large 440 

particles (Gili and Coma 1998). Different grazing strategies of benthic suspension feeders 441 

would potentially increase the opportunities for exploitation of available prey by 442 
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communities of suspension feeders (Gili and Coma 1998). Specialization of different 443 

suspension feeders on different prey would explain the homogeneous decrease of different 444 

available prey. While removal by benthic filter feeders is a likely biological explanation for 445 

the depletion of pico- and nanoplankton we observed, other processes such adsorption to 446 

mucus might also have contributed (Decho 1990) although members of SAR11 clade are 447 

known as free-living and not particle-associated or biofilm forming bacteria (Giovannoni 448 

2017, Haro-Moreno et al. 2020) 449 

Evaluation of evasiveness using “in versus out” experiments such those in Dadon-450 

Pilosof et al. (2017) with other taxa, or the measurement of adsorption of different bacteria 451 

including cultured Candidatus Pelagibacter ubique to transparent exopolymer particles (Long 452 

and Azam 1996) with water from different points in the transect remain as possible future 453 

experiments to further clarify our results. 454 

 455 

  456 

Figure 7: Schematic illustration of a near-shore thermal flow cycle. (a) during winter, when cooling of 

nearshore water drives offshore flow at depth and onshore flow at the surface. (b) during spring, when 

the shallow water near shore warms and water flow offshore at the surface and onshore below. 

Hard-bottom 

  

Sand 

Hard-bottom 

  

Sand 

a - Winter 

b - Spring 
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Measurements of removal rates of microbial plankton by benthic organisms at the 457 

level of the whole community remain challenging despite of decades of studies of this theme 458 

(Sargent and Austin 1949; Odum and Odum 1955; Johannes et al. 1972). More recent studies,  459 

assessed spatial gradients of DOC, bacterioplankton and virioplankton concentrations in reef 460 

ecosystem resulting in depleted microbial community over the reef compare to negligible 461 

removal over sandy bottom nearby (Patten et al. 2011; Nelson et al. 2011). An alternative 462 

approach utilizes a control-volume approach either by physically enclosing the community in 463 

a bell jar for in situ measurements (e.g., (Hopkinson et al. 1991) or by enclosing and 464 

imaginary “box” over the bottom using vertical arrays of samplers and ADCPs to quantify the 465 

fluxes of plankton into and out of the control volume (Genin et al. 2002, 2009). A third 466 

approach integrates individual rate measurements of dominant benthic suspension feeders 467 

with their abundance and size distribution to assess the community flux and its effect on the 468 

planktonic community in the overlying water (e.g., Genin et al. 2009; Lucas et al. 2016 and 469 

references therein).  470 

Further investigation is required to develop and estimate, based on indirect evaluation, 471 

cells removal above hard-bottom suspension feeders. Methodology fine tuning is required for 472 

estimating the cells removal above the hard-bottom compared to open sea and to discriminate 473 

grazing, other biological processes and physical mechanisms. Previous studies showed that 474 

SAR11 evade predation of benthic and pelagic ascidians mucus, but this study showed (albeit 475 

indirectly) that SAR11 was removed efficiently as other prey cells by hard bottom grazers. 476 

Potential grazers might be sponges, bivalves, nanoflagellates attached to the surface of the 477 

rocks which filter their prey by using several different mechanisms. Understanding the 478 

mechanisms and the variance between the grazers' preferences and/or the microbial cells 479 

abilities to evade predation has ramifications on processes affecting the marine food web 480 

such as top-down control and, benthic pelagic coupling. Grazing resistance mechanisms are 481 
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still understudied and should be investigated further to gain knowledge on its effects in the 482 

marine ecosystem.  483 
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