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ABSTRACT 

Retention time (RT) alignment is one of the crucial steps in liquid 

chromatography mass spectrometry (LC-MS)-based proteomic and metabolomic 

experiments, especially for large cohort studies. And it can be achieved using 

computational methods; the most popular methods are the warping function method 

and the direct matching method. However, the existing tools can hardly handle 

monotonic and non-monotonic RT shifts simultaneously. To overcome this, we 

developed a deep learning-based RT alignment tool, named DeepRTAlign, for large 

cohort LC-MS data analysis. It firstly performs a coarse alignment by calculating the 

average time shift between any two samples and then uses RT and intensity as the 

main features to train its deep learning-based model. We demonstrate that 

DeepRTAlign has improved performances on several proteomic and metabolomic 

datasets especially when handling complex samples by benchmarking it against 

current state-of-the-art approaches. Ultimately, we show that DeepRTAlign can 

improve the identification sensitivity of MS data without compromising the 

quantitative precision compared to MaxQuant, FragPipe and DIA-NN with match 

between runs. In a single-cell data-independent acquisition MS dataset, DeepRTAlign 

can align 298 (42.7%) more peptides on average than the existing popular tool DIA-

NN in each cell. 
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Introduction 

Liquid chromatography (LC) is usually coupled with mass spectrometry (MS) in 

proteomics experiments to separate the complex samples. The retention time (RT) of 

each analyte in MS data usually more or less have shifts due to multiple reasons 

including matrix effects and instrument performances1. Thus, in any experiment 

involving multiple samples, corresponding analytes must be mapped before 

quantitative, comparative, or statistical analysis. This process is called 

correspondence2. In other words, this problem can be defined as finding the “same 

compound” in multiple samples. Generally, in proteomics, correspondence can be 

done based on peptide identifications. However, taken the test data in this study as an 

example, only 10%-15% precursors have the corresponding identifications due to the 

data-dependent ion selection process in data-dependent acquisition (DDA) mode. 

Even for the data-independent acquisition (DIA) data, there remains a number of 

precursors (potential peptides) unidentified, which are not able to be considered in the 

subsequent analysis due to the complex MS/MS spectra3. Most existing tools for DDA 

and DIA data analysis, such as MaxQuant4, PANDA5, FragPipe6,7 and DIA-NN8, 

perform RT alignment using the match between runs (MBR) function (also called 

cross-align function) to transfer the identified sequences to the unidentified precursors 

between any two LC-MS runs. Although, MBR can increase the total number of 

identifications to some extent, it is integrated in specific software tools and relies on 

the identified peptides, which limits its further application in clinical proteomics 

research to explore new biomarkers from unidentified precursors. In metabolomics, 

feature alignment is a prerequisite for identification and quantification. In theory, the 

accuracy of feature alignment depends on the m/z and RT information in MS data. 

Currently, high-resolution mass spectrometers can limit the m/z shift to less than 10 

ppm. Thus, RT alignment is especially important for accurate analysis of large-scale 

data in proteomics and metabolomics research. 

There are two types of computational methods for RT alignment. One is called 

the warping method. Warping models first correct the RT shifts of analytes between 
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runs by a linear or non-linear warping function2,9. There were several existing popular 

alignment tools based on this method, such as XCMS10, MZmine 211 and OpenMS12. 

However, this warping method is not able to correct the non-monotonic shift because 

the warping function is monotonic9. Another kind of method is the direct matching 

method, which attempts to perform correspondence only based on the similarity 

between specific signals from run to run, without warping function. The 

representative tools include RTAlign13, MassUntangler14 and Peakmatch15. The 

performances of the existing direct matching tools are reported inferior to the tools 

using warping functions due to the uncertainty of MS signals2. Either way, these tools 

mentioned above can hardly handle both monotonic and non-monotonic RT shifts. 

Thus, machine learning or deep learning techniques are applied to solve this issue. Li 

et al. applied Siamese network for accurate peak alignment in gas chromatography-

mass spectrometry data from complex metabolomic samples16. But we found the 

Siamese network could not perform well without MS/MS information 

(Supplementary Notes), limiting its application to the precursors without the 

corresponding identifications, which usually do not have MS/MS spectra or only have 

low-quality MS/MS spectra.  

Here, we present a deep learning-based RT alignment tool, named DeepRTAlign, 

for large cohort LC-MS data analysis. Combining a coarse alignment (pseudo warping 

function) and a deep learning-based model (direct matching), DeepRTAlign can deal 

with non-monotonic shifts as well as monotonic shifts. We have demonstrated its high 

accuracy and sensitivity in several proteomic and metabolomic datasets compared 

with existing popular tools. Further, DeepRTAlign allows us to apply MS features 

directly and accurately to downstream biological analysis, such as biomarker 

discovery or prognosis prediction, which can be considered as a complement to the 

traditional protein-centric methods (Supplementary Notes). 
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Methods and Materials 

Datasets 

As shown in Table S1, all the datasets used in training and testing the deep 

learning model in DeepRTAlign (i.e., one training set and seven test sets) were 

collected from the following papers: (1) The training set HCC-T is from the tumor 

samples of 101 early-stage hepatocellular carcinoma (HCC) patients in Jiang et al.’s 

paper17. The corresponding non-tumor dataset (HCC-N) was considered as a test set 

in this study. (2) Dataset HCC-R was from the tumor samples of 11 HCC patients 

with liver transplantation in the paper of Bhat et al.18. (3) Datasets UPS2-M and 

UPS2-Y were from the paper of Chang et al.19, which were constructed by spiking 48 

UPS2 standard proteins (Proteomics Dynamic Range Standard, Sigma-Aldrich) into 

mouse cell digestion mixture (UPS2-M) and yeast digestion mixture (UPS2-Y), 

respectively. (4) Dataset EC-H was from the paper of Shen et al.20, which was 

constructed by spiking Escherichia coli cell digestion mixture into human cell 

digestion mixture. (5) Dataset AT was about the Arabidopsis thaliana seeds (AT) from 

the paper of Ginsawaeng et al.21. (6) Dataset SC was a single-cell (SC) proteomic 

dataset including 18 HT22  cells without the treatment of nocodazole from the paper 

of Li et al.22. 

Further, we tested the generalizability boundary of DeepRTAlign on the seven 

test sets and seven other datasets (five metabolomic datasets and two proteomic 

datasets). The five metabolomic datasets include (1) Dataset NCC19, a large-scale 

plasma analysis about SARS-CoV-2 from the paper of Barberis et al.23; (2) Dataset 

SM1100, standard mixtures consisting of 1100 compounds, from the paper of Li et 

al.24; (3) Dataset MM, which was from the Mus musculus samples in the paper of 

Wase et al.25; (4) Dataset SO, which was from soil samples in the paper of Swenson et 

al.26; (5) Dataset GUS, which was about global untargeted serum metabolomic 

samples from the paper of Gibson et al.27. The two proteomic datasets are (1) Dataset 

MI, which was about mouse intestinal proteomes from the paper of Lichtman et al.28; 

(2) Dataset CD, which was obtained from the gut microbiota of patients with Crohn’s 
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disease in the paper of Mottawea et al.29. 

Workflow of DeepRTAlign 

<Figure 1> 

The whole workflow of DeepRTAlign is shown in Figure 1, which can be 

divided into two parts, i.e., the training part and the application part. The training part 

contains the following steps. 

(1) Precursor detection and feature extraction. Taking raw MS files as input, 

precursor detection and its feature extraction were performed using an in-house 

developed tool XICFinder, which is a MS feature extraction tool similar to Dinosaur30. 

The algorithm of XICFinder is based on our quantitative tool PANDA5. Using the 

Component Object Model (COM) of MSFileReader, it can handle Thermo raw files 

directly. XICFinder first detects isotope pattern in each spectrum. Then, the isotope 

patterns detected in several subsequent spectra are merged to a feature. A mass 

tolerance of 10 ppm was used in this step. The precursor ions with more than one 

MS/MS spectrum were stored in each MS file for subsequent analysis. 

(2) Coarse alignment. First, the RT in all the samples will be linearly scaled to a 

certain range (e.g., 80 min in this study, as the RT range of training dataset HCC-T is 

80 min). Second, for each m/z, the feature with the highest intensity is selected to 

build a new list for each sample. Then, all the samples except an anchor sample (we 

considered the first sample as the anchor in this study) will be divided into pieces by 

user-defined RT window (we used 1 minute in this study). All the features in each 

piece are compared with the features in the anchor sample (mass tolerance: 0.01 Da). 

If the same feature does not exist in the anchor sample, this feature is ignored. Then, 

the RT shift is calculated for each feature pair. For all the features in each piece, the 

average RT shift is calculated. Each piece is aligned with the anchor sample by adding 

its average RT shift. 

(3) Input vector construction. Only the RT and intensity values of each feature 

are considered when constructing the input vector. As shown in Figure 1a, we 

consider two adjacent features (according to RT) before and after the target feature 

corresponding to a peptide. Part 1 and part 4 are the original values of RT and 
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intensity. Part 2 and part 3 are the difference values between two samples. Thus, each 

feature-feature pair will be transferred to a 5×8 vector as the input of the deep neural 

network (Figure S1).  

(4) Deep neural network (DNN). The DNN model in DeepRTAlign contains 

three hidden layers (each has 5000 neurons), which is used as a classifier that 

distinguishes between two types of feature-feature pairs (i.e., the two features should 

be or not be aligned). Finally, a total of 200,000 feature-feature pairs were collected 

from the HCC-T dataset based on the Mascot identification results (mass tolerance: ± 

10 ppm, RT tolerance: ± 5 min). 100,000 of them are collected from the same peptides, 

which should be aligned (labeled as positive). The other 100,000 are collected from 

different peptides, which should not be aligned (labeled as negative). These 200,000 

feature-feature pairs were used to train the DNN model. It should be noted that it is 

not necessary to know the peptide sequences corresponding to the features when 

performing feature alignment. The identification results of several popular search 

engines (such as Mascot, MaxQuant and FragPipe) are only used as ground truths 

when benchmarking DeepRTAlign. 

(5) The hyperparameters in DNN. BCELoss function in Pytorch is used as the 

loss function. Batch size is 1000, and the number of epochs is 400. The initial learning 

rate is set to 0.001, and is multiplied by 0.1 every 100 epochs. All other parameters 

are kept by default in Pytorch. 

(6) Parameter evaluation. Network parameters used were examined on the 

training set (HCC-T) by 10-fold cross validation and the best parameters were 

selected based on the cross-validation results (Table S2 and Table S3). And the 

trained model was evaluated on several independent test sets (Table S4). These results 

demonstrated that there is no overfitting in the DNN model. 

In the application part (Figure 1b), DeepRTAlign directly supports the results of 

four MS feature extraction tools, i.e., Dinosaur30, MaxQuant, OpenMS and XICFinder 

as input. Feature lists from other tools (such as MZmine 2) can be used after format 

conversion refer to the formats of the four tools mentioned above. In this part, feature 

lists will first go through the coarse alignment step and the input vector construction 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 25, 2022. ; https://doi.org/10.1101/2022.12.24.521877doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.24.521877
http://creativecommons.org/licenses/by-nc-nd/4.0/


step as same as those in the training part. Then, the constructed input vectors will be 

fed into the trained DNN model. According to the classification results of the DNN 

model, DeepRTAlign will output an aligned feature list for further analysis.  

Machine learning models for evaluation 

To make a systematical evaluation of our DNN model’s performance, we 

compared it with several popular machine learning methods, i.e., random forests (RF), 

k-nearest neighbors (KNN), support vector machine (SVM) and logistic regression 

(LR). The parameters for each machine learning methods were set after optimization. 

The parameters of the RF model are max feature number 0.2, number of estimators 

100, max depth 20 and the tree number in the forest 10. For KNN, the k is set to 3.  

For SVM, the kernel function is set to non-linear kernel. For LR, the penalty is L2. All 

the other parameters are default values in scikit-learn. In total, we trained four 

machine learning models (named as RF, KNN, SVM and LR) as references in this 

study. 

Tools for alignment comparison 

As shown in Table S5, all the alignment tools can be classified into three types 

based on the input information required. The representative tools in each type were 

compared with DeepRTAlign in this study. 

First, two existing popular alignment tools (MZmine 2 and OpenMS) were used 

for alignment comparison because the two tools showed the best precision and recall 

in assessments of Lange et al.’s paper31 and Pluskal et al.’s paper11. The recommended 

parameters in the official user manuals of MZmine 2 and OpenMS were used. When 

comparing with MZmine 2 or OpenMS, we considered the Mascot identification 

results corresponding to MZmine 2 or OpenMS features (mass tolerance: ± 10 ppm, 

RT tolerance: ± 5 min) as the ground truth, respectively.  

The precision formula is: 

Precision =
1

𝑁
∑

𝐴𝑘 ∩ 𝐺𝑘
𝐴𝑘

𝑁

𝑘=1

 

The recall formula is: 
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Recall =
1

𝑁
∑

𝐴𝑘 ∩ 𝐺𝑘
𝐺𝑘

𝑁

𝑘=1

 

N is the sample pair number. 𝐴𝑘 is the aligned feature number in the kth sample 

pair. 𝐺𝑘 is the ground truth of the kth sample pair. 

Second, Quandenser32, as an alignment method that requires MS/MS information, 

was also compared with DeepRTAlign on UPS2-M and UPS2-Y datasets. The peptide 

identification results (Mascot) after quality control (false discovery rate < 1% at both 

peptide and protein levels) were considered as our ground truth. PepDistiller33 was 

used to perform quality control for Mascot identification results. 

Third, we compared DeepRTAlign with MaxQuant, FragPipe and DIA-NN for 

DDA and DIA data analysis, respectively. For DDA data (UPS2-M, UPS2-Y and EC-

H), the peptide identification results (Mascot, MaxQuant or FragPipe) after quality 

control (false discovery rate < 1% at both peptide and protein levels) were considered 

as the ground truth. For DIA data, we used a single-cell proteomic dataset obtained 

from 18 HT22 cells without nocodazole treated in Li et al.’s paper22. All the 

parameters are kept the same as described in Li et al.’s paper. We used Dinosaur to 

extract MS features in each cell and DeepRTAlign to align the features in all the 18 

cells, compared with the aligned results of DIA-NN with and without MBR function. 

Dataset simulation for generalizability evaluation 

We further generated multiple simulated datasets with different RT shifts 

(considered as noise) for each real-world dataset. Here is the dataset simulation 

procedure. (1) All the features are extracted in each dataset using OpenMS to form an 

original feature list. Features with charges 2-6 are considered for proteomic data and 

features with charges 1-6 are considered for metabolomic data. (2) A RT shift based 

on a normal distribution with increasing standard deviations (σ = 0, 0.1, 0.3, 0.5, 0.7, 

1, 3, 5) for each mean value (μ = 0, 5 and 10 minutes) are added in each feature to 

form a new feature list by modifying the featureXML file generated by OpenMS. (3) 

The new feature list with artificial RT shifts is aligned to the original feature list by 

DeepRTAlign and OpenMS. In theory, each feature with a RT shift in the new feature 
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list should be aligned to the same feature in the original list. (4) The precision and 

recall values were calculated to evaluate the generalizability boundary of 

DeepRTAlign. 

Data availability 

Datasets HCC-T and HCC-N can be downloaded from the iProX database34 

under accession number IPX0000937000 or PXD006512. Datasets UPS2-M and 

UPS2-Y can be downloaded from the iProX database under the accession number 

IPX00075500 or PXD008428. Datasets HCC-R, EC-H, AT, SC, MI and CD can be 

downloaded from the PRIDE database35 under the accession numbers PXD022881, 

PXD003881, PXD027546, PXD025634, PXD002838 and PXD002882, respectively. 

Datasets NCC19, SM1100, MM, SO and GUS can be downloaded from the 

MetaboLights database36 under the accession numbers MTBLS1866, MTBLS733, 

MTBLS5430, MTBLS492 and MTBLS650, respectively. 

Results and Discussions 
Model evaluation on the training set and the test sets 

To optimize the network parameters in the DNN model, the 10-fold cross 

validation results on the training set (HCC-T) were examined and the best parameters 

were selected based on the cross-validation results (Table S2 and Table S3). Then, to 

benchmark the DNN model, we additionally trained four models using several 

popular machine learning methods (RF, KNN, SVM and LR) on the same training set 

(HCC-T). The test results of our DNN model and all the other machine learning 

models were shown in Table S4. We can find that our DNN model owned the highest 

AUC compared with other models. Although the DNN model is trained on the HCC-T 

dataset, it achieved a good generalizability and can be applied to other datasets with 

different sample types or species. RF shows a slightly higher AUC than DNN on 

UPS2-Y datasets. We think this is because the RT shift density distribution of UPS2-Y 

is similar to HCC-T (Figure S2). In general, DNN has a better generalization 

performance and RF can be an alternative solution when computing resources are 

limited. 
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Ablation analysis 

We performed the ablation analysis to evaluate the DNN model in DeepRTAlign 

on different test sets (HCC-N, HCC-R, UPS2-M, UPS2-Y, EC-H, AT and SC). For the 

coarse alignment step, we have shown that there are no obvious differences when 

using different samples as the anchor sample (Table S6). We also tested the 

performance of DeepRTAlign with or without coarse alignment step (Table S7). We 

can find that our DNN model with the coarse alignment step owned a higher AUC 

compared with the same DNN model without coarse alignment. 

Then, we evaluated the importance of each feature used in the DNN model of 

DeepRTAlign by replacing them with random values. As shown in Table S8, 

replacing RT (the “RT” column in Table S8) with random values obtained a smaller 

AUC than replacing intensity (the “Intensity” column in Table S8), indicating that RT 

is a more important feature than intensity. Moreover, we found the differences of RT 

and intensity in the samples to be aligned (the “Difference” column in Table S8) are 

more important than the original RT and intensity values (“Original” column in Table 

S8). These results show that the designs of our input vector (Figure S1) and DNN 

model are reasonable. 

Comparison with existing alignment tools  

According to the information required, all the alignment tools can be divided into 

three types (Table S5). DeepRTAlign, MZmine 2 and OpenMS only need MS 

information. Quandenser requires both MS and MS/MS information. In addition, 

MaxQuant, FragPipe and DIA-NN with MBR functions require identification results 

for alignment. 

Comparison with MZmine 2, OpenMS 

First, DeepRTAlign was compared with two other popular MS-based only 

alignment tools MZmine 2 and OpenMS on proteomic datasets. As shown in Figure 2, 

we can find that DeepRTAlign combining with the feature extraction methods in 

OpenMS and MZmine 2 showed a further improvement in both precision and recall. 

Although MZmine 2 showed a slightly higher precision than DeepRTAlign on the EC-

H dataset, we think this is due to the fewer features extracted by MZmine 2 (Table 
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S9). The noise threshold in MZmine 2 is the key parameter associated with the 

number of extracted features. But it is difficult for users to choose. Lowering the noise 

threshold will further make its extraction time to be intolerable. The focus of this 

work is not to compare the pros and cons of different feature extraction tools, so we 

chose relatively high noise thresholds (1.0E6 on proteomic data, 1.0E5 on 

metabolomic data) to ensure the feature quality and control the running time. 

<Figure 2> 

Then, we also compared DeepRTAlign with MZmine 2 and OpenMS on a public 

real-world metabolomic dataset SM110024. This dataset was generated from standard 

mixtures consisting of 1100 compounds with specified concentration ratios. It 

contains two groups (SA, and SB) and each group has 5 replicates. We used 

DeepRTAlign (combined with 3 different feature extraction tools: MZmine 2, 

OpenMS and Dinosaur), MZmine 2 and OpenMS to align features across runs. Thus, 

it resulted five different algorithm combinations (Table S10). Here, to demonstrate 

the capacity of DeepRTAlign to deal with metabolomic data, every adjacent sample 

pair in each group (i.e., SA1-SA2, SA2-SA3, SA3-SA4, SA4-SA5 and SB1-SB2, 

SB2-SB3, SB3-SB4, and SB4-SB5) was aligned using the five algorithm 

combinations. 

For feature extraction, the default parameters in OpenMS and Dinosaur were 

used. In MZmine 2, the parameter “Noise Level” was set to 1.0E5 to make the 

extracted feature number similar to those of OpenMS and Dinosaur. Then, the 

extracted features in each sample were annotated according to the 1100 standard 

compounds with strict standards (mass tolerance: ± 5 ppm, RT tolerance: ± 0.5 min as 

suggested in the paper of Li et al.24). Based on the annotation results, the precision 

and recall values for each combination were calculated and shown in Table S10. We 

can see that all the five combinations performed well due to the simpler composition 

of this metabolic standard dataset (compared with the proteomic datasets). 

Comparison with Quandenser 

DeepRTAlign was then compared with another popular tool Quandenser32, which 

uses both MS and MS/MS information. Quandenser applies unsupervised clustering 
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on both MS1 and MS2 levels to summarize all analytes of interest without assigning 

identities. Using Dinosaur as the feature extraction method, we compared 

DeepRTAlign with Quandenser on the UPS2-M and UPS2-Y datasets. The UPS2 

peptides in UPS2-M and UPS2-Y datasets are divided into four groups (A-D) with 

decreasing loading amounts (1 μg, 0.2 μg, 0.04 μg and 0.008 μg) (Figure S3). We 

mapped all the extracted features to the identification results, and only considered the 

UPS2 peptides without missing values in all the replicates. On the two datasets, we 

calculated the intensity CVs of these UPS2 peptides among the three replicates. As 

shown in Figure 3, although Quandenser can align more UPS2 features, the CV 

values of DeepRTAlign in all the group are 47.6% smaller in UPS2-M and 58.3% 

smaller in UPS2-Y datasets than Quandenser. Similar results can be found on all the 

extracted features (no matter if there were corresponding identification results) 

(Figure S4). 

<Figure 3> 

Comparison with MaxQuant, FragPipe and DIA-NN with or without MBR 

We compared DeepRTAlign with the alignment methods based on the 

indentification results, which is currently the most used alignment strategy. MBR is an 

updated version of these kinds of alignment methods, which can transfer identification 

results to the un-identification features37. We further compared DeepRTAlign with 

MaxQuant’s MBR and FragPipe’s MBR on the UPS2-M, UPS2-Y and EC-H datasets 

(Figure 4). MaxQuant or FragPipe was run twice with and without the MBR function 

keeping the other parameters unchanged. 

As shown in Figure 4, DeepRTAlign, MaxQuant’s MBR and FragPipe’s MBR 

can increase the number of identified peptides without missing values in all the 

replicates compared to the original identification results without RT alignment. And 

DeepRTAlign increased the most (16% on UPS2-M, 25% on UPS2-Y and 70% on 

EC-H for DeepRTAlign (M) in Figure 4; 16% on UPS2-M, 26% on UPS2-Y and 65% 

on EC-H for DeepRTAlign (MF) in Figure 4), compared with MaxQuant’s MBR (16% 

on UPS2-M, 21% on UPS2-Y and 42% on EC-H for MBR (M) in Figure 4) and 

FragPipe’s MBR (6% on UPS2-M, 3% on UPS2-Y and 46% on EC-H for MBR (F) in 
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Figure 4), respectively. Furthermore, we find that DeepRTAlign (MM) showed a 

largest increase in identified peptide number (31% on UPS2-M, 45% on UPS2-Y and 

76% on EC-H). Please note that since FragPipe did not provide its extracted feature 

list, we used the features extracted by MaxQuant for a fair comparison (DeepRTAlign 

(MF)). Although DeepRTAlign had the largest number of aligned peptides, the peptide 

intensity CVs did not increase significantly compared with peptides without using 

DeepRTAlign, indicating that the alignment of DeepRTAlign is accurate. These results 

demonstrated DeepRTAlign has a better performance for alignment than MBR-

applied MaxQuant and FragPipe. 

Furthermore, DeepRTAlign also showed a better performance than MBR in DIA-

NN on single-cell proteomics DIA data (Figure S5). The average number of features 

at least present in two cells is approximately 35.6 times the average number of 

peptides, providing the possibility to identify different cell types using the aligned MS 

features in the future. 

<Figure 4> 

Generalizability evaluation on simulated datasets 

Based on the 14 real-world datasets (9 proteomic datasets: EC-H, HCC-N, 

UPS2-M, UPS2-Y, HCC-R, AT, MI, SC and CD; 5 metabolomic datasets: NCC19, 

SM1100, MM, SO and GUS), we generated multiple simulated datasets with different 

RT shifts for each real-world dataset to evaluate the generalizability boundary of 

DeepRTAlign. 

As shown in Figure 5 and Figure 6, it can be found that in most cases, 

DeepRTAlign owns higher precision and recall values than OpenMS. And this 

advantage is more obvious when the feature number increases. For example, when the 

feature number of a dataset is small (such as 3688 for SM1100), DeepRTAlign and 

OpenMS show a similar performance (Figure 6 and Supplementary Notes). While, 

when the feature number is large enough (such as 18064 for NCC19), we can find that 

DeepRTAlign has significant advantages in precision and recall. It may be due to the 

coarse alignment step in DeepRTAlign, which requires a certain number of features. 

Meanwhile, we also find the performances of DeepRTAlign and OpenMS become 
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worse when the standard deviation of the RT shift increases (from 0.1 to 5). Thus, we 

recommend that for metabolomic and proteomic studies, the distribution of RT shift 

should be controlled to different levels in practical applications. In most proteomic 

datasets, when the standard deviation of RT shift is larger than 1 min, the precision 

and recall drop significantly (Figure 5). In most metabolic datasets, a similar 

phenomenon occurs when the standard deviation is larger than 0.5 min, especially in 

recall (Figure 6). DeepRTAlign has a higher precision and recall than OpenMS on 

most metabolomic datasets, despite of different chromatography setups. Both 

proteomic and metabolomic datasets are unaffected when changing the mean of RT 

shift. 

<Figure 5> 

<Figure 6> 

Performance evaluation using different feature extraction methods 

DeepRTAlign is directly compatible with four feature extraction methods 

(Dinosaur, MaxQuant, OpenMS and XICFinder). Here, we systematically evaluated 

the performance of DeepRTAlign using these four feature extraction methods on two 

UPS2 datasets (UPS2-Y and UPS2-M). The Mascot identification results were used as 

the ground truth. Compared with the methods not using DeepRTAlign, the number of 

confidently quantified UPS2 peptides have an up to 25% improvement when using 

DeepRTAlign (Figure S6a-b). Moreover, there is no significant difference in the 

peptide CVs of three technical replicates for the methods with or without 

DeepRTAlign, indicating that DeepRTAlign did not affect the quantification precision 

no matter which feature extraction method is used (Figure S6c-d). 

Conclusions 

In summary, we present a deep learning-based tool DeepRTAlign for RT 

alignment in large cohort proteomic and metabolomic data analysis. DeepRTAlign is 

based on the basic information of MS spectra (m/z, RT and intensity), which can be 

applied to all the precursor ions in MS data before identification. We have 

demonstrated that DeepRTAlign outperformed other existing alignment tools by 
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aligning more corresponding features without compromising the quantification 

precision and determined its generalizability boundary on multiple proteomic and 

metabolomic datasets. DeepRTAlign is flexible and robust with different feature 

extraction tools. Finally, we applied DeepRTAlign to HCC early recurrence prediction 

(Supplementary Notes) as a real-world example and the results showed that aligned 

MS features have effective information compared with peptides and proteins. 

DeepRTAlign is expected to be useful in finding low abundant biomarkers which 

usually only have low-quality MS/MS spectra and play a key role in proteomics-

driven precision medicine. 
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Figure Legends 

 

Figure 1. The methods of DeepRTAlign. (a) The training procedures of DeepRTAlign. (b) The 

workflow for RT alignment using DeepRTAlign. DeepRTAlign supports four feature extraction 

methods (Dinosaur, MaxQuant, OpenMS and XICFinder), the features extracted will be aligned 

using the trained model shown in (a). Then, the aligned feature list will be output. 
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Figure 2. Performance evaluation of DeepRTAlign compared with MZmine 2 and OpenMS. The 

precision (a) and recall (c) of MZmine 2 and DeepRTAlign on different test sets. The precision (b) 

and recall (d) of OpenMS and DeepRTAlign on different datasets. “FE” means the feature 

extraction method. “A” means the RT alignment method. We took the Mascot identification results 

with FDR<1% as the ground truth in datasets HCC-N, UPS2-M and UPS2-Y and took the 

MaxQuant identification results with FDR<1% as the ground truth in datasets EC-H and AT. In 

dataset EC-H we only considered the E. coli peptides for evaluation. In datasets UPS2-M and 

UPS2-Y, we only considered the UPS2 peptides for evaluation. 
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Figure 3. Performance evaluation of DeepRTAlign compared with Quandenser. (a-b) The Venn 

diagrams of quantified UPS2 peptides in all the three replicates in UPS2-M (a) and UPS2-Y (b) 

datasets, respectively. (c-d) The boxplots of peptide intensity CVs of the UPS2 peptides in the 

three replicates in UPS2-M (c) and UPS2-Y (d). ON_D: DeepRTAlign Only. SH_D: DeepRTAlign 

Shared. ON_Q: Quandenser Only. SH_Q: Quandenser Shared. 
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Figure 4. Performance evaluation of DeepRTAlign compared with MBR-applied MaxQuant and 

FragPipe on UPS2-M dataset (a), UPS2-Y dataset (b) and EC-H dataset (c). The first row is the 

histograms of identified UPS2 peptides (UPS2-M and UPS2-Y datasets) and E. coli peptides (EC-

H dataset). “no-align” means no alignment methods (MBR or DeepRTAlign) were used. “aligned” 

means one alignment method (MBR or DeepRTAlign) was used. The second row is the histograms 

of identified UPS2 peptides (UPS2-M and UPS2-Y datasets) and E. coli peptides (EC-H dataset). 

“no-align unique” means the peptides uniquely identified without alignment. “no-align shared” 

and “aligned shared” mean the peptides commonly identified without and with alignment. 

“aligned unique” means the peptides uniquely identified with alignment. The third row is the 

boxplots of the intensity CVs of UPS2 peptides (UPS2-M and UPS2-Y datasets) or E. coli 

peptides (EC-H dataset). Only the UPS2 peptides and E. coli peptides without missing value 

among replicates are calculated. 

Please note these abbreviations in the figure: 

· MBR (M): Features extracted by MaxQuant, aligned by MaxQuant’s MBR function and 

identified by MaxQuant. 

· DeepRTAlign (M): Features extracted by MaxQuant, aligned by DeepRTAlign and identified 

by MaxQuant. 

· DeepRTAlign (MM): Features extracted by MaxQuant, aligned by DeepRTAlign and 

identified by Mascot. 

· MBR (F): Features extracted by FragPipe, aligned by FragPipe’s MBR function and 

identified by FragPipe. 

· DeepRTAlign (MF): Features extracted by MaxQuant, aligned by DeepRTAlign and 
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identified by FragPipe. 

 

 
Figure 5. Comparison of DeepRTAlign and OpenMS on multiple simulated datasets generated 

from 9 real-world proteomic datasets. The simulated datasets were constructed by adding 

normally distributed RT shifts to the corresponding real-world dataset. (a) μ=0 min. (b) μ=5 min. 

(c) μ=10 min. The normal distribution has an increasing σ, i.e., σ=0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 for 

different μ (0, 5 and 10 minutes), respectively. 

 

 

 
Figure 6. Comparison of DeepRTAlign and OpenMS on multiple simulated datasets generated 

from 5 real-world metabolomic datasets. The simulated datasets were constructed by adding 

normally distributed RT shifts to the corresponding real-world dataset. (a) μ=0 min. (b) μ=5 min. 

(c) μ=10 min. The normal distribution has an increasing σ, i.e., σ=0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 for 

different μ (0, 5 and 10 minutes), respectively. 
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