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Understanding pattern formation driven by cell-cell
interactions has been a significant theme in cellu-
lar biology for many years. In particular, due to
their implications within many biological contexts,
lateral-inhibition mechanisms present in the Notch-
Delta signalling pathway led to an extensive discus-
sion between biologists and mathematicians. De-
terministic and stochastic models have been devel-
oped as a consequence of this discussion, some of
which address long-range signalling by considering
cell protrusions reaching non-neighbouring cells.
The dynamics of such signalling systems reveal in-
tricate properties of the coupling terms involved in
these models. In this work, we examine the ben-
efits and limitations of new and existing models of
cell signalling and differentiation in a variety of con-
texts. Using linear and weakly nonlinear stability
analyses, we find that pattern selection relies on
nonlinear effects that are not covered by such an-
alytical methods.
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Introduction
In epithelial tissue, depending on the nature of the con-
tact between neighbouring and non-neighbouring cells,
the Notch-Delta signalling pathway leads to fundamen-
tally different patterns (Cohen, 2003; De Joussineau
et al., 2003; Hamada et al., 2014). In highly packed
epithelial layers, some cells have the ability to create
extensions of themselves, developing protrusions that
reach non-neighbouring cells and yielding a new and
fundamental factor in the signalling dynamics. These
basal actin-based filopodia are elongated and oriented
in different directions, working as a signalling arm that
extends lateral inhibition to second or third neighbour
cells (Hunter et al., 2019; Ramírez-Weber and Korn-
berg, 1999; Gradilla and Guerrero, 2013; Kornberg and
Roy, 2014; Sherer and Mothes, 2008).
In recent years, long-range signalling via filopodia has
been shown to significantly impact the distribution and
sparse patterning of sensory organ precursor (SOP)
cells in the fly notum (Cohen et al., 2010a,b; Hadjivasil-
iou et al., 2016). In other work, spatiotemporal patterns
of spinal neuron differentiation were revealed to be me-
diated by basal protrusions (Hadjivasiliou et al., 2019).
In contrast to the frequently observed salt-and-pepper
patterns caused by short-range signalling, cell protru-
sions result in sparser SOP cell patterning.

The stochastic nature of these biological systems cru-
cially affects patterning. For example, noise arising
from dynamic protrusions has been shown to have a
significant role in pattern refinement when studying the
organisation of bristles on the Drosophila notum (Co-
hen et al., 2010a). A cellular automaton model of cell-
cell signalling revealed that rule-dependent structured
noise also triggers refined and biased patterning (Co-
hen et al., 2010b), hinting at the self-organising nature
of such systems. Intrinsic noise, driven by stochastic
gene expression, has been studied via the Chemical
Langevin Equation (Gillespie, 2000) and shown to di-
rectly affect juxtacrine-based pattern formation (Rudge
and Burrage, 2008).

In addition to constructing realistic long-range signalling
models capable of numerically describing long-range
patterning, it is also important to develop appropriate
analytical tools to understand model behaviour. Lin-
ear stability analysis (LSA) has revealed critical and in-
herent characteristics of lateral inhibition models (Col-
lier et al., 1996; Webb and Owen, 2004; Zakirov et al.,
2021; Turing, 1952). Biased and long-range signalling
was also studied in Vasilopoulos and Painter (2016),
where weight-based coupling functions were consid-
ered for several one-dimensional signalling systems.
We aim to partially extend this work by studying the two-
dimensional hexagonal array under specific signalling
weights.

We define a model of long-range Notch-Delta signalling,
which is a relative weight-based extension of the origi-
nal Collier model (Collier et al., 1996), and name it the
ϵ-Collier model. The main idea behind implementing
filopodia signalling into the original Collier model is the
introduction of a weighting parameter ϵ that relatively
weights juxtacrine and long-range signalling contribu-
tions, creating a complex non-local signalling network.

Under different filopodia behaviour and lifespan as-
sumptions, one can explore the robustness of the ex-
tended Collier model via LSA, providing a general
framework for analysing autonomous systems, as well
as one and two-dimensional arrays of signalling cells,
as detailed in Supplementary Note 1 (SN1). Further-
more, with such a parameterised model, we aim to in-
vestigate the limits on cell coupling sufficient to obtain
long-range patterns. In parallel, we explore the effects
of stochastic filopodia dynamics and intrinsic noise on
patterning. Finally, we expand some of the techniques
from LSA to describe a general framework for weakly
nonlinear stability analysis (WNSA) of coupled and de-
coupled dynamical systems.
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Main methods
Lateral inhibition
We consider a periodic N × M hexagonal lattice
(hexagonal torus), where each cell has 6 neighbour
cells. For a given cell, we assume juxtacrine signalling
occurs with all 6 of its neighbours via the usual Collier
model (Collier et al., 1996). Here, the authors used ex-
perimental data to build an ODE model of the feedback
loop between two adjacent cells induced by Notch sig-
nalling (lateral inhibition). The model consists of a sys-
tem of coupled ODEs per cell. Denoting by ni and di

the levels of Notch and Delta activity in cell i, we have
the following system

d

dt
ni = f(⟨di⟩)−ni (1)

d

dt
di = ν(g(ni)−di), (2)

where f,g : [0,∞) → [0,∞) are continuous increasing
and decreasing functions, often taken to be Hill func-
tions

f(x) = xk

a+xk
(3)

g(x) = 1
1+ bxh

(4)

for x ≥ 0 and h,k ≥ 1. rt ≡ 1/a and b are the trans-
interactions strength and ligand inhibition strength pa-
rameters, respectively1. ν > 0 is the ratio between
Notch and Delta decay rates, determining the strength
of decay. Finally, ⟨di⟩ is the average level of Delta activ-
ity in the cells adjacent to cell i, that is,

⟨di⟩ = 1
|nn(i)|

∑
j∈nn(i)

dj , (5)

where the sum is taken over the nearest neighbours
nn(i) of cell i and |nn(i)| is the total number of neigh-
bours.
In general, depending on the hexagonal lattice orienta-
tion, either N or M must be even to ensure periodicity.
From the previous equations, one can see that the rate
of production of Notch activity is an increasing function
of the level of Delta activity in neighbouring cells. In
contrast, the rate of production of Delta activity is a de-
creasing function of the level of activated Notch within
the same cell. In addition, the production of Notch and
Delta activity is balanced by decay.

Long-range signalling
Besides lateral cell-cell signalling, we also consider the
possibility of long-range signalling with respect to non-
neighbouring cells. We loosely refer to cell protrusions

1The quantity a1/k is the neighbour Delta activity level necessary
for half-maximal Notch activation, while b−1/h is the Notch activity
level necessary for half-maximal Delta inhibition.

as the main mechanism for general, isotropic long-
range signalling, interchangeably using these terms. A
detailed discussion of protrusion dynamics is presented
in Mogilner and Rubinstein (2005). For now, our notion
of protrusions remains relatively abstract.
There are several ways to implement protrusion-cell sig-
nalling. As a first simplification, we assume ⟨di⟩ is the
only term affected by long-range signalling and extend
its definition to include non-neighbouring cells that con-
tact cell i. Each cell has area 1, and pℓ is the max-
imum protrusion length (or reach) measured from the
cell centre. For most of this work, signalling from non-
neighbouring cells occurs if a cell is within reach of pro-
trusions. However, we also investigate the cases where
ligand density decays with distance and protrusions are
stochastic.
In general, we consider the approach suggested in
Vasilopoulos and Painter (2016). Here, the authors
used a weighting function ω(s,r) defining the signalling
level from a signaller cell s to a receiver cell r. ω deter-
mines which cells are connected through protrusions,
defining a connectivity matrix whose entries yield the
signalling intensity. In a simplistic protrusion model, all
non-zero entries of such a matrix are equal. The weight-
ing function ω captures the matrix information, and we
may rewrite the interaction term as follows

⟨di⟩ =
∑

j∈n(i)
ω(i, j)dj , (6)

where the sum is made over the neighbours of i (nn(i))
and the non-neighbouring cells that are reached by the
protrusions (np(i)) of cell i. Such array of indexes is
defined as n(i) = nn(i) ∪ np(i). The further assump-
tion that each cell has a finite amount of active ligand to
distribute at any given time point results in the following
restriction ∑

j∈n(i)
ω(i, j) = ω < +∞. (7)

Although there is some freedom in the interpretation of
ω, we assume ω = 1 for simplicity.

The ϵ-Collier model
Our model, hereafter named the ϵ-Collier model, ex-
tends the mathematical systems in Collier et al. (1996)
by considering the inclusion of long-range signalling via
protrusions balanced by the relative weighting factor
ϵ ∈ [0,1].
We begin by weighting each signalling contribution, jux-
tacrine (ωJ ) and protrusion-based (ωP ), by the factor ϵ,
to define the combined weighting function

ω ≡ (1− ϵ)ωJ + ϵωP . (8)

Eq. (6) and Eq. (8) define the ϵ-Collier model, consid-
ering protrusions of relative signalling intensity ϵ. Natu-
rally, Eq. (8) is only interesting when ωJ and ωP are re-
stricted to nn(i) and np(i), respectively. For example,
the case ϵ = 0 and ωJ (i, j) = χnn(i)(j)/6, where χnn(i)
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is the indicator (or characteristic) function of the set
nn(i), corresponds to the original Collier model (Collier
et al., 1996).

Coupling dynamics
We perform a linear stability analysis to understand the
criteria for pattern formation driven by Notch-Delta sig-
nalling. This is a useful tool to not only identify the re-
gions of the parameter space for which spontaneous
patterning of SOP cells occurs but also to determine
the typical spacing between Delta-expressing cells, of-
ten called the characteristic length of the pattern or pat-
tern wavelength (Turing, 1952; Webb and Owen, 2004;
Collier et al., 1996). Our analysis closely follows the
methods outlined in Collier et al. (1996); Vasilopoulos
and Painter (2016); Formosa-Jordan and Ibañes (2009)
and Murray (2001), for the two-dimensional hexagonal
array, and is based on the framework presented in SN1.
Eq. (1)-Eq. (2) possesses a single positive homoge-
neous steady state (n∗,d∗). At this state, we have
f(g(n∗)) = n∗ and g(n∗) = d∗, which is unique because
f(g(n)) is monotonically decreasing for all n ≥ 0. Then,
for small perturbations ñi = ni − n∗ and d̃i = di − d∗,
linearisation leads to

d

dt
ñi = A⟨d̃i⟩− ñi (9)

d

dt
d̃i = νBñi −νd̃i, (10)

where A = f ′(g(n∗)) is the signal trans-activation by
the ligand and B = g′(n∗) is the ligand inhibition by the
signal. For a N × M periodic hexagonal lattice, with
1 ≤ j ≤ N and 1 ≤ k ≤ M , the perturbations can be
written as a discrete Fourier series

ñi ≡ ñj,k =
N∑

q=1

M∑
p=1

ξq,pe2πi(qj/N+pk/M) (11)

d̃i ≡ d̃j,k =
N∑

q=1

M∑
p=1

ηq,pe2πi(qj/N+pk/M), (12)

where two subindexes have been used to refer to the
spatial position of cell i within the two-dimensional
hexagonal lattice. For 1 ≤ q ≤ N and 1 ≤ p ≤ M , the
inverted transform is

ξq,p = 1
MN

M∑
k=1

N∑
j=1

ñj,ke−2πi(qj/N+pk/M) (13)

ηq,p = 1
MN

M∑
k=1

N∑
j=1

d̃j,ke−2πi(qj/N+pk/M). (14)

Finally, applying this change of variables to Eq. (9) and
Eq. (10) leads to the following system of two ordinary
differential equations (ODEs)

d

dt

(
ξq,p

ηq,p

)
= L

(
ξq,p

ηq,p

)
, (15)

where matrix L is a specification of matrix Lq̄,p̄ in
Eq. (S67), defined as

L =
(

−1 AΩq̄,p̄

νB −ν

)
(16)

and Ωq̄,p̄ is the function that takes into account the spa-
tial coupling terms of Eq. (9) and Eq. (10) within the
hexagonal lattice (in this case, Ωq̄,p̄ ∝ [Ωq̄,p̄]12, defined
by Eq. (S66)). We have then turned Eq. (1)-Eq. (2) into
a system of constant-coefficient linear differential equa-
tions described by Eq. (15), which has a straightforward
family of solutions. For now, however, we focus on the
coupling function Ωq̄,p̄, which holds the main mecha-
nisms behind the dynamics of juxtacrine and long-range
signalling in our system.
Ωq̄,p̄ varies according to the weighting function ω. Here,
q̄ = q/N and p̄ = p/M define the discrete wavenumbers
(Fourier modes) and thus solutions for 0 < q̄, p̄ ≤ 1 cor-
respond to patterned solutions with corresponding pat-
tern wavelenghts (1/q̄,1/p̄). We assume that connec-
tions between cells depend only on their relative posi-
tions in the lattice (Figure 1b) and therefore, for a sender
cell s and a receiver cell r, we set ω(sj,k, rj′,k′) ≡
ω(j′ − j,k′ − k) = ω(∆j,∆k). Hence, Ωq̄,p̄ is, in gen-
eral, given by

Ωq̄,p̄ =
∑

∆jk∈S

ω(∆j,∆k)e−2πi(q̄∆j+p̄∆k). (17)

Now, if we assume connections are symmetric, i.e,
ω(∆j,∆k) = ω(−∆j,−∆k), we have, by Example 1.1
in SN1,

Ωq̄,p̄ =
∑

∆jk∈S

ω(∆j,∆k)cos(2π(q̄∆j + p̄∆k)). (18)

The diagonalisation of L leads to the temporal eigenval-
ues

λ±
q̄,p̄ = 1

2

[
−(1+ν)±

√
(1+ν)2 −4ν(1−ABΩq̄,p̄)

]
.

(19)
Then, since ν > 0, λ+

q̄,p̄ is a positive real number if and
only if ABΩq̄,p̄ > 1. A and B are the slopes of the
feedback functions f and g at the homogeneous steady
state and |AB| is defined as the feedback strength. If
|AB| = 0, then the homogeneous solution is linearly sta-
ble, Re(λ±

q̄,p̄) < 0, and thus no periodic pattern is ex-
pected to emerge. On the other hand, the feedback
strength has to be sufficiently high for patterns to arise,
that is, |AB| > |1/Ωmin|, where Ωmin denotes the mini-
mum of the real function Ωq̄,p̄, so that Re(λ+

q̄,p̄) is max-
imal. With A > 0, B < 0 and assuming Ωmin < 0, we
expect patterned solutions provided

AB <
1

Ωmin
. (20)

In particular, this feedback is controlled by the tuple
(a,b,h,k) as follows

A = f ′(g(n∗)) = akd∗k−1

(a+d∗k)2
(21)
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(a)

(b)

(c) ϵ = 0 (d) ϵ = 0.2

(e) ϵ = 0.4 (f) ϵ = 1

Figure 1. Long-range Notch-Delta signalling on hexagonal lattices.
(a) Hexagonal torus. Periodic hexagonal lattices can be seen as hexagonal tori. (b) Hexagonal lattice main directions (q,p axes) and cell position indexation relative
to a focal cell (0,0). Different cell labelling schemes yield equivalent formulations of Ωq̄,p̄. (c-f) Notch-Delta patterns on a 14 × 14 periodic lattice for varying ϵ. SOP
cells (white, high Delta, low Notch) contrast with non-SOP cells (green, low Delta, high Notch). Here, a = 0.01, b = 100, h = k = 6 and ν = 1. Initial conditions
ni(0) and di(0) have arbitrary values between 0 and 0.1.

B = g′(n∗) = − bhn∗h−1

(1+ bn∗h)2 , (22)

where, again, (n∗,d∗) is a homogeneous steady state,
rt = 1/a is the trans-interactions strength and b is the
ligand inhibition strength. The homogeneous fixed point
(n∗,d∗) can be found by setting ⟨di⟩ = di and finding
the intersection of ni = f(di) and di = g(ni). Assuming
for convenience h = k, this can be rewritten as

n∗ = f(g(n∗)) (23)

d∗ = g(n∗), (24)

which can be numerically solved for each triple (h,rt, b)
in the parameter space. Such a solution, together with
Eq. (20), defines the discrete Turing spaces consisting
of rt-b parameter regions there spontaneous patterns
occur. Outside such regions, pattern formation is not
expected.
We now explore different weighting functions to capture
the effects of juxtacrine signalling and protrusions, and
discuss what features of ω affect Ωmin. We recall that ω
determines the family of systems Eq. (1)-Eq. (2) via the
weighting dynamics defined by Eq. (6) and Eq. (8).
For a given cell on a hexagonal lattice, we denote the
closest ring of order k ∈ N0 by Rk, such that R0 is the
cell itself, R1 are its 6 neighbouring cells, R2 is the ring
of 12 second-neighbour cells, and so forth. Notice that
|Rk| = 6k (k > 0). We further expand the definition of S
in SN1 by defining Sk as the relative index set of cells

in Rk (according to Figure 1b), that is,

S0 = {(0,0)}
S1 = {(±1,0),(0,±1),(±1,±1)}
S2 = {(0,±2),(±2,0),±(1,−1),

± (1,2),±(2,1),±(2,2)}
...

. (25)

This notation will be used throughout this work. Notice
that such a definition can be ambiguous in different con-
texts, as discussed in Remark 1.2 (SN1).

Results
Juxtacrine signalling and simplistic protrusions
For juxtacrine signalling on a hexagonal lattice, without
protrusions, we set

ωJ (∆j,∆k) =
{

1
6 if (∆j,∆k) ∈ S1,

0 otherwise,
(26)

so that

Ωq̄,p̄ = 1
3 [cos(2πq̄)+cos(2πp̄)+cos(2π (q̄ + p̄))] .

(27)
Notice that Ωq̄,p̄ takes discrete values within the inter-
val [−0.5,1]. The modes that minimise Eq. (27) are
those for which M and N are multiples of 3, thus
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Figure 2. Coupling dynamics of simplistic protrusions as functions of ϵ.
(a) 1/|Ωmin|. In this case, (q̄, p̄)|ϵ=0 ∈ {(1/3,1/3),(2/3,2/3)} and maxϵ Ωmin ≃ −0.192. (b) Plot of the fastest growing modes (q̄, p̄). q̄ (purple) and p̄

(orange, artificially shifted) have identical plots. (c) Maximum value of Re(λ±
q̄,p̄) as function of ϵ, with AB = 1/(maxϵ Ωmin) ≃ −5.207. (d-f) Plot of Ωq̄,p̄ and

respective minimising modes (in red). (g-i) Simulations on a 14 × 14 lattice for different values of ϵ. Here, h = k = 6. Other parameters are given in Table 1.
ni(0),di(0) ∈ [0,0.1].

(q̄, p̄) ∈ {(1/3,1/3),(2/3,2/3)} and a pattern with wave-
length 3 along the main directions of the hexagonal
lattice emerges, provided AB < −2. In general, and
depending on the initial conditions, such patterns may
yield 1, 2 or 3 different cell types, as discussed in more
detail below.
Considering protrusions, we first look at the more
straightforward case where only the first ring of 12 non-
neighbouring cells, R2, is reached by protrusions. Here,
signalling is weighted laterally by Eq. (26) and on R2 by

ωP (∆j,∆k) =
{

1
12 if (∆j,∆k) ∈ S2,

0 otherwise.
(28)

Figures 1c-1f show the observable patterns for differ-
ent values of ϵ, with initial conditions near the homoge-
neous steady state. Notice that the limit case ϵ = 1 has
the extreme feature of no juxtacrine signalling, hence
the small clusters of Delta-expressing cells in Figure 1f.
Even for small values of ϵ, sparse patterns are evident.
We may then weight each signalling contribution with a
factor ϵ > 0 and define the combined weighting function

ω = (1− ϵ)ωJ + ϵωP . Using this leads to

Ωq̄,p̄ = (1− ϵ)
3 [cos(2πq̄)+cos(2πp̄)+cos(2π (q̄ + p̄))]

+ ϵ

6

[
cos(4πq̄)+cos(2π(p̄− q̄))+cos(4πp̄)

+cos(2π (2q̄ + p̄))+cos(2π (q̄ +2p̄))

+cos(4π (q̄ + p̄))
]
. (29)

In this case, minimising Ωq̄,p̄ is trickier and therefore we
consider a numerical approach. For different values of
the long-range signalling strength ϵ, Figure 2a shows
the change of 1/|Ωmin| for increasing values of ϵ. No-
tice that Ωmax = 1 for all ϵ. Equal juxtacrine-protrusion
weighting occurs when ϵ = 2/3 (Ωmin(2/3) ≃ −0.24).
For each ϵ, the number of modes varies, as seen in
Figure 2b. Notice that Ωq̄,p̄ = Ω1−q̄,1−p̄ and, in fact,
Ωq̄,p̄ is symmetric with respect to the planes q̄ = p̄ and
q̄ = 1 − p̄ for all ϵ. An interesting observation is that at
around ϵ = 0.4 there are a total of 8 minimising modes,
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Figure 3. Phase diagrams and patterning speed.
(a) Log-log contour plot of AB as a function of rt, b. The regions delimited by the dashed lines indicate the Turing spaces where spontaneous pattern formation
occurs (AB < 1/Ωmin(ϵ)), for each ϵ ∈ {0,0.2,0.4,0.7,1}. Here, h = k = 6. In this region, minrt,b AB ≃ −11.986 at (rt, b) ≃ (104.041,102). Purple line
corresponds to AB = −2 (ϵ = 0). (b) Patterning time for different values of ϵ. Blue dots indicate the mean patterning time for each ϵ. Here, d = 0.01. Parameter
values are given in Table 1. ni(0),di(0) ∈ [0,0.1].

contrasting to the single pair of modes for ϵ < 0.4 and
the 6 distinct modes for ϵ > 0.4 (Figures 2d-2f, Video
SV1). The bifurcation observed in Figure 2b at ϵ = 0.4
is predicted independently of the Hill functions, and can
be mathematically shown by solving, for ϵ,

Ω 1
3 , 1

3
(ϵ) = Ωq̄,p̄(ϵ) (30)

and a minimising pair (q̄, p̄) ̸∈ {(1/3,1/3),(2/3,2/3)}
(see SN1 for details). Figures 2g-2i show some of the
simulations for corresponding values of ϵ.
As discussed before, the critical wave numbers max-
imise the real part of the temporal eigenvectors. Equiv-
alently, Figure 2c shows maxq̄,p̄ Re(λ±

q̄,p̄) as a func-
tion of the relative weight parameter ϵ, corresponding
to the critical AB = 1/(maxϵ Ωmin) ≃ −5.207. Here,
maxq̄,p̄(Re(λ±

q̄,p̄)) > 0 for all ϵ, and thus patterns are
expected to emerge with the maximising wavelength
modes. As suggested by Eq. (21)-Eq. (24), we may
go a step further and work out the specific parameter
regions for which |AB| yields pattern formation. The
phase diagrams (Turing spaces) in Figure 3a (Video
SV2) represent the regions in the rt-b plane such that
AB < 1/Ωmin, or more specifically,

n∗1−hd∗1−k((1+ bn∗h)(a+d∗k))2 < −abhkΩmin(ϵ)
(31)

for different values of Ωmin and corresponding ϵ. The
ϵ-Collier model is quite robust with respect to the pair
(rt, b), corresponding to the trans-interactions strength
and ligand inhibition strength parameters, respectively.
Increasing ϵ from zero initially reduces the size of the
discrete Turing space, in which patterning occurs, fol-
lowed by an increase after intermediate values of ϵ
(Ωmin(ϵ) has a maximiser at ϵ ≃ 0.455), which is in
accordance with the monotonicity change of 1/|Ωmin|
(Figure 2a). Note that Turing spaces for different
values of ϵ are strictly contained sets, via Eq. (31).
In the region (rt, b) ∈ [10−1,108] × [100,102], patterns
emerge for any ϵ, since minrt,b AB ≃ −11.986 <
−5.207 ≃ 1/maxϵ Ωmin (there are always non-empty
Turing spaces).

Patterning speed is also affected by relative weighting,
as seen in Figure 3b. We define the patterning time as
the first instant t for which∑

j,k

|dj,k(t)−dj,k(t−1)| ≤ d (32)

for some threshold d. Fixing d = 0.01, we see that, pat-
terning slows down for different ranges of ϵ, resulting in
slowing spikes around 0.05 < ϵ < 0.2 and 0.6 < ϵ < 0.7.
Simulations were done over tissues with random initial
conditions, for each ϵ.

Multiple cell types
For a narrow range of ϵ values, Eq. (1)-Eq. (2) con-
verges into alternative stable solutions that include more
than two cell types (based on stable Delta activity lev-
els). This effect is observable at both ends of the ϵ spec-
trum, defining thresholds of pattern selection.
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Figure 4. Dynamics at critical ϵ values.
Delta activity dynamics on 6 × 6 (a,c) and 14 × 14 (b,d) periodic lattice, for
(a-b) ϵ ≃ 0.039, and (c-d) ϵ ≃ 0.85.

To two decimal places, for ϵ ≃ 0.039, 6 × 6 and 14 × 14
periodic lattices yield approximately 3 and 5 different cell
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types, respectively (Figures 4a-4b). For ϵ ≃ 0.85, we
get approximately 3 and 4 cell types, respectively (Fig-
ures 4c-4d). Whether some of these solutions eventu-
ally converge to others, reducing the number of distinct
cell types, is not known. The definition of a cell type is
also somewhat ambiguous, but we believe this effect to
be noteworthy nonetheless.

Long and oriented protrusions

A possible first extension is to consider the effects of
longer or oriented protrusions. Examples of applications
regarding this type of long-range signalling can be found
in the emergence of spotted patterns similar to the ones
observed in the skin of pearl danio fish and striped ze-
brafish-type patterns (Hamada et al., 2014; Eom et al.,
2015; Kondo et al., 2021). In Vasilopoulos and Painter
(2016), a general weighting function was considered to
account for protrusion length and orientation. Here, we
adapt such a framework by focusing only on the protru-
sion weighting component ωpg , given by

ωpg (∆j,∆m) =


ω∗e−σ1(ds,r−d̂)2

eσ2 cos(α(θs,r−θ̂))

if 1 < ds,r ≤ pℓ

and |θs,r| ≥ pθ,

0 otherwise,
(33)

where ds,r and θs,r ∈ (−π,π] are defined as the rela-
tive distance and the angular bearing between the sig-
nalling and receiving cells, respectively. σ1,σ2, d̂, θ̂ and
α are parameters that control the shape and form of the
weighting function, and ω∗ is the normalising coefficient
implicitly defined by Eq. (7). Furthermore, pℓ is the max-
imum protrusion length and pθ is an angle bound.

We assume ds,r is the same for each cell in Rk, k ≥ 2,
and thus we may rewrite it, using our previous index
notation, as a function of (∆j,∆m)

ds,r ≡ ds,r(∆j,∆m) = k, if (∆j,∆m) ∈ Sk, (34)

which yields 1 < k ≤ pℓ. Definition Eq. (34) is equiv-
alent to the hexagonal-Manhattan distance dH defined
in Remark 1.2. Notice also that, with pℓ = 2, pθ = 0,
σ1,2 = 0 and ω∗ = 1/12, we recover the R2 weighting
function ωP given by Eq. (29). We set, in this case,
ω = (1− ϵ)ωJ + ϵωpg .

We focus only on the case of longer protrusions and
thus we impose radial symmetry by taking σ2 = 0,
pθ = 0 (cases with σ2 > 0 lead to axial and polarised
signalling systems, as discussed in Vasilopoulos and
Painter (2016)). Intuitively, σ1 represents the strength
of ligand density decay with distance. In the follow-
ing, we assume long-range signalling strength to de-
crease as a function of ds,r and therefore take d̂ =
ds,r(∆j,∆m)|(∆j,∆m)∈R2 = 2 and σ1 > 0. Hence

Eq. (33) simplifies to

ωpg (∆j,∆m) =


ω∗e−σ1(ds,r(∆j,∆m)−2)2

if 1 < ds,r ≤ pℓ,

0 otherwise,

(35)

where, from Eq. (7),

ωpg (pℓ,σ1) ≡ 1
ω∗ (36)

=
∑

(∆j,∆m)∈
⋃pℓ

k=2 Sk

e−σ1(ds,r(∆j,∆m)−2)2

(37)

= 6
pℓ∑

k=2
ke−σ1(k−2)2

. (38)

Under the assumption that protrusions may reach up to
R4 (pℓ = 4), we have that, as an example, ωpg (4,σ1) =
12 + 18e−σ1 + 24e−4σ1 . For different values of σ1, Fig-
ure 5d shows the minimal feedback strength required
for patterning, derived from Ωq̄,p̄. The case σ1 = 0
yields equal Rk (2 ≤ k ≤ 4) weighting and thus ω∗ =
1/|
⋃pℓ

k=2 Rk| = 1/54, in this case (Figures 5a-5c). As
σ1 → ∞, ω∗ → 1/12 and we recover the dynamics for
R2 protrusions (Figure 5e). Figures 6a-6c show simula-
tions for different values of pℓ. Surprisingly, the pattern
wavelengths for pℓ = 4 are not correctly predicted by
LSA, as seen by comparing the minimisers of Figure 5c
with the simulation in Figure 6c. For this value of pℓ, the
minimising modes remain unchanged for a wider range
of ϵ.
Considering bounded protrusions significantly alters the
coupling function and symmetry may be broken. Inter-
esting pattern may arise in this case when ϵ = 1, spe-
cially regarding the emergence of clustering effects or
zebrafish-type patterns (Binshtok and Sprinzak, 2018;
Kondo et al., 2021; Moreira and Deutsch, 2005) (Fig-
ures 6d-6e).

Stochastic protrusions
One way of generalising the weighting function ω is to
consider some level of randomness in protrusion-cell
signalling. Previous studies have suggested that pat-
tern regularity and refinement can be greatly improved
by considering dynamic lifespan-based protrusions (Co-
hen et al., 2010a). Here, we extend such an approach
to the ϵ-Collier model on the R2 ring.
Depending on the protrusion type and level of biolog-
ical detail, different stochastic models may be imple-
mented. For example, in the case of the eukaryotic flag-
ellum (Marshall and Rosenbaum, 2001) and stereocilia
(Narayanan et al., 2015), the length evolution can be
studied using a master equation with length-dependent
rates of protrusion attachment and detachment. For
such systems, the length fluctuations can be mapped
onto an Ornstein-Uhlenbeck process. In another case,
Pilus, which is a bacterial protrusion, keeps elongating
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Figure 5. Coupling dynamics of long protrusions as functions of ϵ.
(a-c) Plot of Ωq̄,p̄ and respective minimising modes (in red) with σ1 = 0. Wavier plots are observable due to the more complex nature of the weighting function,
with pℓ = 4. (d) Critical |AB| for different values of σ1, given by |1/Ωmin|, with pℓ = 4. (e) 1/ω∗ as a function of pℓ and σ1. ω∗ → 1/12 as σ1 → ∞. Other
parameters are given in Table 1.

(a) pℓ = 2 (b) pℓ = 3 (c) pℓ = 4

(d) (e)

Figure 6. Patterning with long and oriented protrusions.
(a-c) Simulations on a 14×14 lattice for different values of pℓ. Here, ϵ = 0.6 and h = k = 6. (d-e) Bounded protrusions may lead to other patterns, relevant to other
applications. Here, ϵ = 1. Parameter values for all simulations are shown in Table 1 in Supplementary Note 3.
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and retracting with velocities in between pauses (Koch
et al., 2021), and so the length dynamics can be de-
scribed by a three-state Markov process. Further details
on the physics of filopodial protrusions can be found in
Mogilner and Rubinstein (2005); Patra and Chowdhury
(2020) and an extensive discussion on length control of
long cell protrusions of various types was presented in
Patra et al. (2022).
Here, however, we assume isotropic protrusions and
consider dynamic binding and unbinding of filopodia to
non-neighbouring cells throughout the simulation. The
lifespan of protrusions is determined by birth and death
rates, pb and pd, respectively. These correspond to the
attachment and detachment rates of protrusions to non-
neighbouring cells. Within a short time interval ∆t, a link
is formed between a cell and one of its second neigh-
bours with probability pb∆t. Such a link is destroyed
with probability pd∆t. This leads to the formulation of
a continuous-time telegraph process (Kac, 1974; Bena
et al., 2002; Kolesnik and Ratanov, 2013; López and
Ratanov, 2014) with rates pb and pd. This process is
also known as a dichotomic or two-valued Markov pro-
cess. In the following, we first present well-known re-
sults on telegraph processes, followed by the applica-
tion to our case.
From stochastic theory, the general telegraph process
is defined as a memoryless continuous-time stochastic
process that has two distinct values. If the two possible
values that a random variable X(t) can take are x1 and
x2, then the process can be described by the following
master equations

∂tP (x1, t|x,t0) = −γ1P (x1, t|x,t0)+γ2P (x2, t|x,t0)
(39)

∂tP (x2, t|x,t0) = γ1P (x1, t|x,t0)−γ2P (x2, t|x,t0),
(40)

where γ1 is the transition rate from state x1 to state x2
and γ2 is the transition rate from state x2 to state x1. In
matrix form, Eq. (39)-Eq. (40) can be rewritten as

dP
dt

= ΓP, (41)

where P = (P (x1, t|x,t0),P (x2, t|x,t0))T and

Γ =
(

−γ1 γ2
γ1 −γ2

)
. (42)

To find the general solution of Eq. (41), we begin by
determining the eigenvalues and eigenvectors of matrix
Γ, which are given by λ1 = 0, λ2 = −(γ1 +γ2) and

v1 =
(

C1
γ1
γ2

C1

)
, v2 =

(
C2

−C2

)
, (43)

respectively, with C1 and C2 depending on the initial
conditions. Hence, the solution is then given by{

P (x1, t|x,t0) = C1 +C2e−(γ1+γ2)t

P (x2, t|x,t0) = γ1
γ2

C1 −C2e−(γ1+γ2)t (44)

⇔ P(t) =
(

I +Γ (1−e−(γ1+γ2)t)
γ1 +γ2

)
P(0), (45)

where P(0) = [C1 + C2,(γ1/γ2)C1 − C2]T in the case
t0 ≡ 0, without loss of generality. With initial conditions
given by

P (x′, t0|x0, t0) = δx′,x0 =
{

1, if x′ = x0

0, if x′ ̸= x0
, (46)

where δij is the Kronecker delta, the solution in the com-
pact form can be given by

P1 = γ2
γ1 +γ2

+e
− t−t0

(γ1+γ2)−1
(

γ1δx1,x0

γ1 +γ2
−

γ2δx2,x0

γ1 +γ2

)
(47)

P2 = γ1
γ1 +γ2

−e
− t−t0

(γ1+γ2)−1
(

γ1δx1,x0

γ1 +γ2
−

γ2δx2,x0

γ1 +γ2

)
,

(48)

where P1 = P (x1, t|x0, t0) and P2 = P (x2, t|x0, t0). We
are now interested in studying the asymptotic dynamics
of the telegraph process, approximating its discrete re-
alisations to a Bernoulli process, given a suitable con-
dition on the realisation timescales. With ∆t ≡ t − t0 ≫
(γ1 +γ2)−1, the solution approaches a stationary distri-
bution Ps given by

Ps ≡ lim
∆t≫(γ1+γ2)−1

P(t) = 1
γ1 +γ2

(
γ2
γ1

)
. (49)

The time-dependent ensemble average satisfies

⟨X(t),x0, t0⟩ = x1P1 +x2P2 (50)

= x1γ2 +x2γ1
γ1 +γ2

+e
− t−t0

(γ1+γ2)−1
(

(x1 −x2)(γ1δx1,x0 −γ2δx2,x0)
γ1 +γ2

)
.

(51)

Hence, the stationary average is given by

⟨X⟩s = lim
∆t≫(γ1+γ2)−1

⟨X(t),x0, t0⟩ = x1γ2 +x2γ1
γ1 +γ2

.

(52)

In our case, we have γ1 = pb, γ2 = pd, x1 = 0 and
x2 = 1. Hence, in the limit where ∆t ≫ (pb + pd)−1,
the probability of finding a protrusion is pb/(pb + pd).
We may then treat such a process as a Bernoulli pro-
cess with probability pb/(pb + pd). In other words, if the
timescale at which we make the observation is longer
than the inverse of the event rates, we may expect the
process to be memoryless every time we observe, de-
scribing a Bernoulli process.
In the following, we assume that neighbouring R1
cells are always linked, with weight (1 − ϵ)/6, and R2
cells are linked with stochastic weight ϵϵ̃k/12. ϵ is
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now weighted by independent and identically distributed
(i.i.d.) random variables

ϵ̃k ∼ Bern
(

pb

pb +pd

)
(53)

for each k in R2. At each time step, the stochastic cou-
pling term is then given by

⟨d̃i⟩(t) = 1− ϵ

6
∑

j∈R1

dj(t)+ ϵ

12
∑

k∈R2

dk(t)ϵ̃k, (54)

where the second term is a sum of weighted i.i.d.
Bernoulli distributions. Note that d̃i here should not
be confused with the homogeneous state perturbation
introduced in other sections. One of the key aspects
of having dynamic protrusions is the possibility of pat-
tern refinement over time. As suggested in Cohen et al.
(2010a), we define the coefficient of variation, ζV , of
a pattern as the ratio between the standard deviation
and mean of the distances from each SOP cell to its
6 closest SOP cells. This coefficient yields a measure
of the global order of the emergent pattern, which we
then track for different values of (pb,pd), as seen in Fig-
ure 7a. The case (pb,pd) = (10,3.5) is particularly in-
teresting as the pattern converges to ideal cell packing
(ζV = 0) at around t = 390 (Figure 7e).
Some patterns only stabilise once optimal packing is
attained, depending on the tissue dimensions. For a
periodic tissue whose dimensions are multiples of 14,
which guarantees optimal R2-signal sparse patterning
is possible (notice that 14 × 7 would also work), once
the coefficient of variation is minimised, patterning does
stabilise. In many cases, given enough time, the stable
R3 pattern is obtained after gradual refinement deter-
mined by pb and pd. In a perfectly refined pattern, one
should expect ζV = 0, which means each SOP cell is
surrounded in R3 by 6 other equally spaced SOP cells
(Figure 7e, Video SV3).
It should be noted that the simulations shown in Figure
7 are all isolated examples corresponding to single real-
isations. Although the purpose of this study is to identify
pb and pd such that pattern refinement is achieved, the
complex relation between such rates to guarantee con-
vergence to the refined pattern may be hinted at by a
thorough stochastic analysis, which is beyond the scope
of this work.
Interestingly, if we look at the extreme case of sudden
removal of protrusions (from the refined state), we see
that such a state is stable under purely juxtacrine lat-
eral inhibition (Figure 7e). This is similar to taking ϵ = 0
after pattern stabilisation. Patterns of such wavelength
contrast with the ones predicted by LSA, but they do not
contradict pattern selection under consideration of non-
linear terms (Collier et al., 1996), as discussed below.
Considering different approaches to noise-driven pro-
trusions might help in better understanding the role of
stochastic effects in patterning and refinement. For
instance, avoiding the Bernoulli approximation on the

Markov-type protrusion dynamics could hint at a more
realistic description of filopodium behaviour and conse-
quently pattern formation. Noise-mediated filopodium
reach and orientation have been studied in Cohen et al.
(2010a). Cellular automaton models have also been
used to explain sparse and more complex patterns (Co-
hen et al., 2010b). Dichotomous noise has also been
applied in Langevin dynamics, in a broader scenario
(Barik et al., 2006). Hence, a natural alternative to this
source of noise, is to study the role of intrinsic noise,
driven by Langevin dynamics, which we discuss next.

Intrinsic noise
Different types of noise have been considered in other
works, specifically of additive and multiplicative na-
ture. The additive noise approach considers noise as
a stochastic term that is added to each of the species
equations in the signalling system (in our case, two) in
the form of independent Wiener processes. The mul-
tiplicative noise approach is subject to response func-
tions that are proportional to the response level of the
system. In other words, the noise term is multiplied by
a factor that scales with the current state of the sys-
tem. The key difference is that additive noise has fixed
magnitude, while multiplicative noise depends on the
level of the state variables (Fuliński and Telejko, 1991;
Van Kampen, 1992).
In this section, we aim to study the impact of intrin-
sic noise on statistical fluctuations in SOP cell pat-
terning via long-range signalling as per the ϵ-Collier
model. We also study the patterning speed depend-
ing on the effective cell volume within the multiplicative
noise terms. In case of morphogen-mediated pattern-
ing of gene expression, intrinsic noise has proven to
affect timescale dynamics of bistable switches (Perez-
Carrasco et al., 2016). Stochastic effects were shown
to accelerate juxtacrine pattern formation and alterna-
tive lateral inhibition models (Wearing et al., 2000) were
found to be robust to intrinsic noise (Rudge and Bur-
rage, 2008). Statistical properties of protein concen-
tration in gene-regulated networks were more generally
discussed in Thattai and Van Oudenaarden (2001). In
order to motivate the investigations of this section, we
revise well-known facts about the Chemical Langevin
Equation (CLE), a multivariable Itô stochastic differential
equation that describes the time evolution of molecular
counts of reacting chemical species (Gillespie, 2000).
In signalling systems, noise may arise from the stochas-
tic nature of chemical kinetics derived from random mo-
tions and collisions of molecules. For K molecular
species, if X(t) = (X1(t), ...,XK(t)), where Xk(t) is
the number of molecules of species k in the system,
and provided X(t) is a jump-type Markov process un-
der a propensity-based evolution law, chemical kinetics
regarding M reaction channels can be captured by the
Chemical Master Equation (CME) (Mcquarrie and Gille-
spie, 1967; Gillespie, 1976, 1992), given by

P (X(t) = x |X(t0) = x0)
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Figure 7. Dynamics of stochastic protrusions.
(a) Stochastic behaviour of the coefficient of variation ζV in spacing between nearest Delta-expressing cells. (b-e) Pattern refinement may take a long time to stabilise.
Once reaching the refined state at t = 400, the pattern hardly changes. The final pattern is also stable under no protrusions. Here, ϵ = 0.6, pb = 10 and pd = 3.5.
Other parameter values are given in Table 1.

=
M∑

j=1

[
aj(x −vj)P ((X(t) = x −vj |X(t0) = x0)

−aj(x)P ((X(t) = x |X(t0) = x0)
]
, (55)

where vj is the stoichiometric (state-change) vector for
reaction j. The propensity function aj is mathematically
defined as the product between the specific probability
rate constant and the number of distinct combinations
of reactant molecules available in the state X, for each
reaction channel (Oppenheim et al., 1969; Kohlmaier,
1972). The Stochastic Simulation Algorithm (SSA) pre-
sented in Gillespie (1977) often accompanies the CME
as an exact approach to simulating chemical kinetics.
Here, however, we focus on the stochastic differential
equation approximation, discussed next.
For well-mixed systems with large numbers of
molecules, the species dynamics can be deterministi-
cally captured by

dX(t)
dt

=
M∑

j=1
vjaj(X(t)), (56)

which is often written in terms of the species concen-
trations. In Gillespie (2000) it was shown that, within
“macroscopically infinitesimal” time intervals (so that
propensity functions remain approximately constant,
yet many reactions are expected to occur), the CME

Eq. (55) can be approximated as a chemical Langevin
equation (Gillespie, 1996; Turner et al., 2004; Li and Li,
2017), given in its standard white noise form as

dX(t)
dt

=
M∑

j=1
vjaj(X(t))+

M∑
j=1

vj

√
aj(X(t))Γj(t),

(57)

where the Γj(t) are temporally uncorrelated, statisti-
cally independent Gaussian white noises. Specifically,
Γj(t) satisfy ⟨Γj(t)Γk(t′)⟩ = δjkδ(t − t′). Here δjk is
the Kronecker delta, δ(t− t′) is the Dirac delta.
In our case, we are interested in understanding how
noise generated by chemical kinetics influences long-
range signalling dynamics. While Notch and Delta
levels may have ambiguous definitions (Collier et al.,
1996), here we assume they are concentrations, thus
requiring an adaptation of Eq. (57) using the effective
cell volume V , given by the ratio between the average
number of species molecules and the maximum values
ni and di attain. In some sense, V defines the noise in-
tensity in these signalling dynamics. With the change of
variables (ni,di) = X(t)/V , Eq. (57) becomes, for each
cell i,

d

dt

(
ni

di

)
= d(X(t)/V )

dt
(58)
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=
M∑

j=1
vj

aj(X(t))
V

+ 1√
V

M∑
j=1

vj

√
aj(X(t))

V
Γj(t).

(59)

We may then write the stochastic version of Eq. (1)-
Eq. (2)

d

dt
ni = f(⟨di⟩)−ni +

√
f(⟨di⟩)

V
Γ1(t)−

√
ni

V
Γ2(t)

(60)

d

dt
di = ν(g(ni)−di)+

√
νg(ni)

V
Γ3(t)−

√
νdi

V
Γ4(t),

(61)

where we fixed M = 4, a1 = f(⟨di⟩)V , a2 = niV , a3 =
νg(ni)V and a4 = νdiV . Notice that Γj are also uncor-
related for different cells, though we avoid over-notation
with index i. In our case, K = 2 and M = 4 for N cells.
Eq. (57) is known as the standard-form CLE, but it is
not the only possible formulation, and other formulations
with different numbers of Gaussian noises are conceiv-
able (Schnoerr et al., 2014; Mélykúti et al., 2010). In
this section we discuss stochastic simulations based on
Eq. (60)-Eq. (61). Note that the deterministic system is
recovered when V → ∞.
Figure 8 shows the simulation results for different values
of ϵ and effective volume V , within values motivated by
the discussion in the previous paragraph. Effective vol-
ume values greater than 1000 seem to approximate the
deterministic case. Note that the different realisations
for the deterministic case (V → ∞) correspond to dif-
ferent initial conditions. Patterning time was computed
by identifying a threshold percentage of the mean Delta
activity of the deterministic steady state solution. Once
a stochastic system passed such a threshold, the time
was registered. It is interesting to notice that pattern-
ing time does not seem to correlate with the effective
volume. A clear delay is observable for an intermediate
value of ϵ (ϵ = 0.4), when compared to the deterministic
case. However, it is worth noting that simulations were
done over a relatively small number of lattices to opti-
mise computational efficiency. More simulations might
potentially yield different results.

Robustness and pattern selection
We now explore how Fourier analysis describes pattern
selection under LSA. Again, we discuss robustness to
changes in two of the main parameters in the ϵ-Collier
model: the Hill function switch parameters, given by the
trans-interactions strength rt = 1/a and the ligand in-
hibition strength b. We study the convergence to the
desired pattern with long-range signalling for different
values of a and b. Here, we consider protrusions acting
on the R2 ring. In a system with two variables per cell
like the linearised system

d

dt
ñi = A⟨d̃i⟩− ñi (62)

d

dt
d̃i = νBñi −νd̃i (63)

the characteristic polynomial is of second order. As a
consequence, each couple (q̄, p̄) has two eigenvectors
and eigenvalues. We then have that the solution of the
linearised problem is given by(

ñj,k(t)
d̃j,k(t)

)
=

N∑
q=1

M∑
p=1

A(q̄, p̄)e2πi(q̄j+p̄k), (64)

where

A(q̄, p̄) ≡ C+
q̄,p̄e

λ+
q̄,p̄tv+

q̄,p̄ +C−
q̄,p̄e

λ−
q̄,p̄tv−

q̄,p̄, (65)

and where v±
q̄,p̄ and λ±

q̄,p̄ are the eigenvectors and
eigenvalues associated to (q̄, p̄), respectively. C+

q̄,p̄ and
C−

q̄,p̄ are constants depending on the initial conditions
of the problem. In the case that at least one family of
modes (q̄, p̄) grows exponentially fast, it linearly desta-
bilises the homogeneous solution and this family dom-
inates over the rest, giving rise to a periodic pattern
with the (q̄, p̄)-wavenumbers. At such critical modes, we
have that the eigenvalue with the largest real part and
respective eigenvector are given, as functions of ϵ, by

λ∗(ϵ) = 1
2(−(1+ν)+

√
(1+ν)2 −4ν(1−ABΩmin(ϵ)))

(66)

v∗(ϵ) =
(1

2 (ν −1+
√

(1+ν)2 −4ν(1−ABΩmin(ϵ))
νB

)
.

(67)

Hence, for large t, the dominant pattern is a superposi-
tion of modes with periodicity determined by (q̄, p̄) and ϵ.
Thus, for each family of critical modes W , the solutions
in Eq. (64) asymptotically satisfy(

ñj,k

d̃j,k

)
≃ v∗eλ∗t

∑
(q̄,p̄)∈W

C+
q̄,p̄e2πi(q̄j+p̄k), (68)

where λ∗,v∗ and W are all functions of ϵ. It is then
clear that the long term behaviour of this solution is de-
pendent on the amplitudes of the Fourier components in
Eq. (68), which in turn depend on the initial conditions
of the problem. In fact, since v∗eλ∗t is independent
of (q̄, p̄) and |e2πi(q̄j+p̄k)| = 1, the relative amplitude is
given by C+

q̄,p̄, which is implicitly determined by

C+
q̄,p̄v+

q̄,p̄ +C−
q̄,p̄v−

q̄,p̄ =
(

ξq,p(0)
ηq,p(0)

)
(69)

= 1
NM

N∑
j=1

M∑
k=1

(
ñj,k(0)
d̃j,k(0)

)
e−2πi(q̄j+p̄k).

(70)

Hence, depending on the choice of the initial condi-
tions and consequently, C+

q̄,p̄, the long term behaviour of
the solution could yield different patterns and cell types.
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Figure 8. Intrinsic noise dynamics with long-range signalling.
Plots on the left show the mean Delta activity dynamics over time. Plots on the right show the patterning time. Blue dots indicate the average over 5 samples (grey)
per cell volume, while the red dot corresponds to the limit V → ∞ (deterministic ODE). Simulations were done for different values of V and ϵ on 14 × 14 periodic
lattices. Here, h = k = 6 and the mean Delta threshold was set to 0.12 (all cells). (a-b) ϵ = 0.2. (c-d) ϵ = 0.4. (e-f) ϵ = 0.6. See Table 1 for details.

Similar to the analysis in Collier et al. (1996), the generic
pattern predicted by linear stability analysis might yield
more than two cell types, depending on the choices of
C+

q̄,p̄.

Numerically, however, cells usually opt for one of two
possible fates, (n,d) ∈ {(0,1),(1,0)}, and therefore
nonlinear effects play a role in determining the num-
ber of cell types. Consequently, our model is robust
because the final pattern of cell differentiation is not af-
fected by the specific form of the Hill functions, as long
as the feedback between cells is strong enough, similar
to the lateral inhibition case (ϵ = 0).

Figure 9 shows the pattern selection with correspond-
ing fastest growing modes for different values of ϵ and
C+

q̄,p̄ = 1. From vector Eq. (68), we simply plot the real
part of the normalised sum values of its second term,

corresponding to Delta activity (determining the opac-
ity of each white cell). When necessary, and to illus-
trate the nature of the pattern, we provide rational ap-
proximations of the real values of the minimising (q̄, p̄)-
wavenumbers.

Figure S5 compares the final patterns from Figure 9 with
an SOP cell filtering based on a specific threshold (per-
centage of steady state solution) and a numerical sim-
ulation. In other words, the plots in each middle panel
correspond to the selection of cells whose Delta level
is above a specific threshold (dT ). It is noticeable that
LSA fails to predict sparse patterning for a wide range
of values of ϵ. It is only for ϵ ≥ 0.4 that sparser patterns
emerge, yet more than two cell types are observable
prior to filtering. Figure S6 shows the dependence of
cell fates on the choice of C+

q̄,p̄. Similar to the conclu-
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(a) ϵ = 0 (b) ϵ = 0.2

(c) ϵ = 0.4

(d) ϵ = 0.6

(e) ϵ = 0.8

(f) ϵ = 1

Figure 9. Pattern selection via LSA: asymptotic solutions.
Eq. (68) decomposes the asymptotic solution to the linearised system in terms corresponding to different minimizing modes (q̄, p̄). Each term solution is represented
on the left of each of the subfigures (a-f), for different values of ϵ, while their linearly combined solution is on the right. Due to symmetry, the pattern observed for each
single mode (q̄, p̄) is the same for (1 − q̄,1 − p̄) and thus we omit half of the single mode patterns. Here, C+

q̄,p̄ = 1 ∀(q̄, p̄). The modes in (d) and (e) are rational
approximations of the real values, as explained in the main text. Other parameter values are given in Table 1.

sions for lateral inhibition in Collier et al. (1996), differ-
ent choices of constants lead to fundamentally different
SOP cell patterns and cell types. Considering imaginary
constants, for example, leads to intermediary cell types
in the case of 0 ≤ ϵ < 0.4 (Figure S6a). Despite partially
describing sparse patterning via long-range signalling,

LSA does not fully capture the main mechanisms re-
quired to explain longer wavelength patterns. A nonlin-
ear approach is then required to extract some more in-
formation on the dynamics of such systems and pattern
selection.
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Weakly nonlinear stability analysis
Since LSA has failed to predict sparse pattern forma-
tion for many values of ϵ, alternative types of stability
analysis could be explored. In reaction-diffusion sys-
tems, weakly nonlinear stability analysis (WNSA) has
provided further qualitative conclusions about the ef-
fects of nonlinear terms, based on the amplitude dy-
namics of the Fourier components corresponding to the
fastest growing modes (Turing, 1952; Wollkind et al.,
1994). In Supplementary Note 2 (SN2), we explore a
possible application of such methodologies to pattern-
ing derived from long-range signalling. In the following,
we take ui = (ni,di) and

dui

dt
= F(ni,di) =

(
F1(ni,di)
F2(ni,di)

)
=
(

f(⟨di⟩)−ni

ν(g(ni)−di)

)
(71)

for each cell i. We aim to extend the linear approach to
consider solutions of Eq. (71) in the harmonic form

ui(t) = vi
0 +vi

1A(t)+vi
2A2(t)+vi

3A3(t)+O(A4),
(72)

for some constant vectors {vi
k}0≤k≤3, and where A

satisfies the following Landau equation (Aranson and
Kramer, 2002)

dA

dt
(t) = λ∗A(t)−κA3(t)+O(A5), (73)

where λ∗ and κ are motivated in SN2. Discrete Fourier
transforms may be used to decouple the original sys-
tem of 2NM equations. In the linear case, given
exponential-based solutions of the linearised system,
the main problem relied on minimising Ωq̄,p̄ in order
to find the fastest growing modes (q̄, p̄). This problem
changes and becomes relatively trickier in the case of
WNSA due to multiple mathematical obstacles.
The extension of Ωq̄,p̄ to the weakly nonlinear solution
in Eq. (72) is not trivial and, in general, we should not
expect a higher-order extension of the decomposition
in Eq. (S164) to occur due to cross-derivative terms.
However, given the specific shape of our system (see
SN2 for details), the higher-order cross-derivatives are
all zero. Hence, we may write

dui

dt
≃

K∑
j=0

1
j! (D

jF)u∗ [(ui)j ]

+
∑
r ̸=i

 K∑
j=0

1
j! (D

jF)u∗ [(ur)j ]

 . (74)

where (DjF)u∗ is defined in SN2. All that remains now
is to find a simplification of the right-hand side term of
Eq. (74) so that the decoupling is complete and we may
write the entire expression as a function of (ni,di).
As detailed in SN2, however, such a decoupling seems
mathematically unfeasible in the case of translationally

invariant Notch-Delta signalling systems, given the com-
plexity generated by the higher-order terms of Eq. (74).
Any methodology as systematic as the linear case
seems to be out of reach within our framework. There-
fore, WNSA is insufficient to describe quantitative dy-
namics of long-range signalling, without further as-
sumptions, as discussed below.

Discussion
In this work, we have outlined some of the main tools
for analysing a general long-range signalling model.
We developed such a model by taking a relative sig-
nalling approach. Long-range signalling via filopodia is
weighted by a parameter ϵ, while the juxtacrine con-
tribution is weighted by 1 − ϵ. This constitutes the ϵ-
Collier model, understood as a long-range extension of
the original Collier model (Collier et al., 1996). We found
that sparser patterns on periodic hexagonal lattices are
robust and tend to emerge even for small values of ϵ.
Additionally, we discovered that the speed of pattern-
ing is dependent on ϵ, directly delaying or accelerating
differentiation for different ranges of ϵ.
To comprehend the linear effects of long-distance sig-
nalling, we first employed linear stability analysis for
generally coupled and translationally invariant systems,
followed by a direct application to the ϵ-Collier model
of long-range Notch-Delta signalling. We explored vari-
ous protrusion modelling situations, including short- and
long-range protrusions, stochastic protrusions, and in-
trinsic noise dynamics. While LSA proved to be a use-
ful tool for identifying the fastest-growing modes under
Fourier analysis, we also revealed some of its faults in
the long-range scenario. In contrast to solely juxtacrine
models, LSA failed to predict sparser patterning across
a broad range of ϵ values, indicating that nonlinear ef-
fects play a significant role in sparse pattern selection.
Nonetheless, LSA predicted sparse patterns for certain
values of ϵ given a particular SOP detection threshold.
We also examined the system’s response to various as-
sumptions on the effective volume of cells and found
that the effective volume appears to have no effect on
the patterning time. However, this was performed on
small lattices for computational efficiency, and the re-
sults may vary for other lattice sizes.
Motivated by such limitations in LSA, we devised
a framework for weakly nonlinear stability analysis
in order to achieve expanded qualitative conclusions
on wavelength selection in Fourier-transformed cou-
pling functions. Specifically, we presented the main
methodology behind a potential framework for WNSA
of translationally invariant Notch-Delta systems. We
expanded well-known reaction-diffusion techniques to
coupled spatially discrete systems, such as the ϵ-Collier
model on a periodic hexagonal lattice, by considering
harmonic-based Landau-type solutions. Unfortunately,
we found that the decoupling mechanism in translation-
ally invariant systems appears impractical in WNSA.
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For the purpose of refining our LSA and WNSA esti-
mates, bifurcation theory may shed light on other critical
parts of our analysis. Numerically, one might addition-
ally examine parameters closer to the point at which the
homogeneous state becomes linearly unstable (dashed
lines in Figure 3a). Here, it is anticipated that the model
will behave more linearly; hence, LSA may match the
simulation outcomes better. If this does not occur, it may
indicate a subcritical bifurcation (as opposed to a super-
critical one), and when a subcritical bifurcation occurs,
LSA does not necessarily predict the patterning out-
come (Crawford, 1991; Stefanou and Alevizos, 2016).
In the case of WNSA, we computed higher-order terms
around an equilibrium branch. Similarly, if we focus in-
stead on a bifurcation point, we may be able to make
progress and solve the mathematical dilemma.
This work provides a framework for understanding pat-
tern formation in relatively general long-range signalling
systems, highlighting some of the primary mathemati-
cal obstacles in such a theory and indicating possible
generalisations and future research avenues.

Computational methods
Simulations
All simulations were performed using Interactive Ep-
ithelium (IEp), a Wolfram Mathematica tool for hybrid
Notch-Delta epithelial signalling and patterning simula-
tions. IEp aims to provide a practical tool for testing pa-
rameter robustness while simulating the dynamics of the
Notch-Delta signalling pathway in an epithelium. Table
1 in Supplementary Note 3 contains the precise param-
eter values for the simulation plots shown in this work.

Code availability
The source code and data that were used to develop
the main conclusions and analyses presented in this
work are available on the following repository hosted
on GitHub: https://github.com/fberkemeier/Notch-Delta-
Coupling.git. The relevant video simulations can also be
found in this repository. Previous versions are available
upon request. For any comments/suggestions, as well
as copyright issues, please contact fp409@cam.ac.uk.
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