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ABSTRACT 19 

Over the last decades, several premature aging mouse models have been developed to 20 

study aging and identify interventions that can delay age-related diseases. Yet, it is still 21 

unclear whether these models truly recapitulate natural aging. Here, we analyzed DNA 22 

methylation in multiple tissues of four previously reported mouse models of premature aging 23 

(ERCC1, LAKI, POLG and XPG). We estimated DNA methylation (DNAm) age of these 24 

samples using the Horvath clock. The most pronounced increase in DNAm age could be 25 

observed in ERCC1 mice, a strain which exhibits a deficit in DNA nucleotide excision repair. 26 

In line with these results, we detected an increase in epigenetic age in fibroblasts isolated 27 

from patients with progeroid syndromes associated with mutations in DNA excision repair 28 

genes. These findings highlight ERCC1 as a particularly attractive mouse model to study 29 

aging in mammals and suggest a strong connection between DNA damage and epigenetic 30 

dysregulation during aging. 31 

32 
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MAIN TEXT 33 

The world's population is growing older. Since aging represents the strongest risk factor for 34 

most human diseases, it is therefore key to identify anti-aging interventions that could delay 35 

or even reverse the aging process1. Towards this goal, several accelerated aging mouse 36 

models have been developed to study the aging process2,3, some of them stemming from 37 

existing human disorders4,5. In this line, premature aging rodents could speed up the 38 

discovery of anti-aging interventions by shortening the experimental time, but only if the 39 

results can be translatable to natural aging. Nevertheless, the physiological relevance of 40 

these models and whether they truly recapitulate or phenocopy natural aging remains 41 

controversial. Epigenetic changes are one of several hallmarks of aging in numerous 42 

organisms6. The importance of epigenetic changes in mammals has been reinforced by the 43 

development of epigenetic clocks that can accurately estimate age in multiple tissues and all 44 

mammalian species7-11. Interestingly, several anti-aging interventions have been shown to 45 

reverse these clocks12, including cellular reprogramming13-16. Here, we sought to assess the 46 

relevance of several premature aging mouse models to study aging. Toward this end, we 47 

analyzed mouse models of segmental progeria by assessing the epigenetic age of multiple 48 

tissues and organs using epigenetic clocks based on DNA methylation.  49 

 50 

Specifically, we analyzed the epigenetic age (“Horvath Pan Tissue clock”)17 of five tissues of 51 

four commonly used premature aging models including: ERCC1, XPG, LAKI and POLG 52 

mice. These mouse strains cause premature aging through various biological mechanisms 53 

by carrying mutations that lead to the manipulation of different hallmarks of aging. 54 

Specifically, ERCC118 and XPG19 mice exhibit a deficit in nucleotide excision repair (NER) of 55 

the nuclear DNA, POLG mice show accumulation of mitochondrial DNA mutations20,21 and 56 

lastly LMNA knock-in (LAKI) mice suffer nuclear lamina defects22,23. To perform comparative 57 

studies in these strains, we assessed the DNA methylation age (DNAm) in ERCC1KO/Δ, 58 

XPGKO/KO, LAKITG/TG and POLGTG/TG mice at several timepoints including during post-natal 59 

development, at median survival, and in old age, relative to each model’s own lifespan. Both 60 
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proliferative (blood and skin) and more terminally differentiated tissues (liver, cerebral cortex, 61 

and skeletal muscle) were analyzed at these ages (Figure 1a). During the generation of 62 

experimental mice, we noticed that while LAKITG/TG and POLGTG/TG mice were born at a 63 

predicted Mendelian frequency, ERCC1KO/Δ and XPGKO/KO showed a perinatal lethality 64 

(Figure S1a). Furthermore, as previously reported the four premature aging animals were 65 

significantly smaller and exhibited reduced body weight compared to their control littermates 66 

as expected (Figure 1b). Before analyzing the progeria models, we first looked at the clock 67 

performance in the control littermate WT mice (C57BL6J and C57BL6J|FVB hybrid 68 

backgrounds), a quality check that methylation can accurately predict chronological age in 69 

multiple tissues. The chronological age prediction in these two different backgrounds was 70 

highly accurate in blood (C57BL6J, RMSE: 2.08wk, r = 0.99; C57BL6J|FVB, RMSE: 2.55wk, 71 

r = 0.95) and provided sufficient accuracy in the other tissues (Figure S1b and Table S1), 72 

confirming the precision of the DNAm clock to predict age, particularly in blood. Next, we 73 

determined the DNAm age in the five tissues of ERCC1KO/Δ, LAKITG/TG and XPGKO/KO at 8 74 

weeks, and POLGTG/TG at 30 weeks of age corresponding to the relative median survival of 75 

the strain. Strikingly, ERCC1KO/Δ was the only premature aging model where we observed 76 

increased biological age compared to control littermates (Figure 1c). Importantly, the 77 

biological age of ERCC1KO/Δ mice was most increased in blood [WT: 6.85w (1.62), KO/Δ: 78 

12.46w (1.08)], but was also significantly increased in brain, liver, skeletal muscle and skin, 79 

tissues and organs known to be affected in this mouse model. Conversely, we did not detect 80 

any acceleration in DNAm age at 8 weeks in LAKI or XPG mice, nor in POLG mice at 30 81 

weeks in any tissue (Figure 1c). This result indicates that only ERCC1 aging mouse model 82 

shows a significant increase in epigenetic age at the median lifespan.  83 

 84 

Subsequently, and with the goal of confirming this observation, we analyzed the methylation 85 

age at different times points during the lifespan of the mice including, ERCC1KO/Δ (2, 8 and 86 

20 weeks), LAKITG/TG (8 and 23 weeks), and POLGTG/TG (30 and 47 weeks). Interestingly, in 87 

the ERCC1KO/Δ mice, biological age was increased mildly at 2 weeks old in blood, but not in 88 
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other tissues. However, at 20 weeks, DNAm age was significantly accelerated in blood, liver, 89 

and skin (Figure 2a and Table S2). Conversely, as we observed at earlier timepoints, DNAm 90 

age was not changed in any of the analyzed tissues at 14.4 weeks in LAKITG/TG mice, nor in 91 

POLGTG/TG mice at 47 weeks (Figure S1c). Together, our results further confirm that the 92 

biological age measured by DNA methylation is increased only in the ERCC1 mouse model 93 

of premature aging, at multiple ages, with blood being the tissue with the strongest statistical 94 

power. Importantly, when the same analysis was restricted to either male or female only, the 95 

same trend appeared, with increased DNAm age primarily in the ERCC1 mouse model. 96 

Next, we wondered whether the observed differences between methylation age and 97 

chronological age in ERCC1 mice were constant or changed throughout life. To determine 98 

this accelerated aging rate, we calculated the slope between biological and chronological 99 

age in each tissue in ERCC1 +/+ vs. KO/Δ mice. Importantly, the rate was significantly 100 

different in blood (Slope: WT = 0.78, KO/Δ = 1.29), skeletal muscle (Slope: WT = 0.84, KO/Δ 101 

= 1.17) and brain (Slope: WT = 0.91, KO/Δ = 1.2) (Figure 2b), demonstrating that the 102 

difference between biological and chronological age increased during life in ERCC1KO/Δ 103 

mice. 104 

 105 

Lastly, to investigate the potential relevance of these findings to human patients, we 106 

analyzed the DNAm age of samples obtained from patients affected by diseases caused by 107 

mutations in DNA excision repair genes associated with aging phenotypes: Xeroderma 108 

Pigmentosum (XP) affecting ERCC524, and Cockayne Syndrome (CS) type A (CSA) 109 

affecting ERCC8 and type B (CSB) affecting ERCC625. Towards this goal, we profiled DNAm 110 

age from fibroblasts derived from patients at multiple ages: control (1, 5, 11-year-old), CSA 111 

(1, 3, 5-year-old), CSB (3, 8, 10-year-old), XP (1, 2, 5-year-old). For this analysis only, we 112 

selected the DNAm age from the “Skin&Blood” Clock, as this has previously been shown to 113 

be more accurate than the “PanTissue” clock to assess age of human fibroblasts26, a finding 114 

that we also confirmed in our own dataset (Figure 3a). Importantly, the DNAm age was 115 

significantly higher in the affected patients compared to control samples (Figure 3a). Finally, 116 
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we calculated the difference between DNAm age and chronological age for each sample, 117 

detecting a significant increase for the XP patients and a strong tendency in the rest of the 118 

disease samples (Figure 3b). Overall, these results indicate that human progeroid 119 

syndromes associated with mutations in DNA excision repair genes display accelerated 120 

epigenetic age. 121 

 122 

Although premature aging models have been widely used to study aging and evaluate anti-123 

aging interventions, their physiological relevance for the study of aging has not been deeply 124 

investigated. Here, we analyzed the biological age (“Horvath clock”) of four premature aging 125 

mouse models (ERCC1, POLG, XPG, LAKI) and demonstrated that only ERCC1 mice truly 126 

shows accelerated aging. 127 

 128 

Depletion of ERCC1 protein results in a defect in DNA repair, leading to an accumulation of 129 

DNA mutations in multiple tissues and organs. Importantly, DNA damage has been 130 

proposed as one of the most central hallmarks of aging, as well as a causative driver27,28. 131 

Here, we show that a defective DNA repair mechanism leads to epigenetic aging, strongly 132 

suggesting a link between DNA damage and epigenetic dysregulation. Interestingly, dietary 133 

restriction, the most robust anti-aging intervention, dramatically extends lifespan of 134 

ERCC1KO/Δ mice29 and knocking down of ERCC1 gene in blood specifically causes 135 

premature aging30. Furthermore, we noted that even though DNAm age was increased in 136 

ERCC1 mice already at 2 weeks, greater changes were observed in older animals indicating 137 

a progressive age acceleration during aging. In this line, we postulate that a higher DNA 138 

repair capacity during development31 or embryonic reprogramming programs, which might 139 

prevent potential epigenetic dysregulation as consequence of DNA damage, could protect 140 

the animals during gestation. Taken together, these results suggest that ERCC1 mice stand 141 

perhaps as one of the most relevant mouse models of premature aging. 142 

 143 
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The methylation clock was more accurate in blood, a rapidly proliferative tissue that 144 

undergoes constant regeneration, in which the most significant and strongest differences 145 

between ERCC1 and control mice were observed. Therefore, due to its easy collection and 146 

strong sensitivity for epigenetic aging, we propose the use of blood as one of the best 147 

choices to study and analyze the effect of anti-aging interventions. Lastly, although multiple 148 

groups have examined the biological age of human diseases associated with premature 149 

aging, no changes in DNAm age have been observed in the blood of Hutchinson-Gilford 150 

progeria syndrome patients32. On the other hand, a significant increase in biological age was 151 

seen in samples from Werner33, Down syndrome even in newborns34 in several human 152 

overgrowth syndromes including Sotos syndrome35 and Tatton-Brown-Rahman syndrome36 153 

and very recently in Leigh Syndrome and mitochondrial encephalopathy with lactic acidosis 154 

and stroke-like episodes (MELAS) patients37. Other studies have identified changes in 155 

DNAm in premature aging models, independent of the DNA methylation clocks38-40.  Our 156 

survey of mouse models of premature aging may be expanded to alternative premature 157 

aging models2, or additional tissues and timepoints. Likewise, it would be interesting to also 158 

assess biological age using newly developed clocks, such as transcriptomic, proteomic or 159 

chromatin accessibility clocks41-43. 160 

 161 
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 190 

FIGURE LEGENDS 191 

FIGURE 1. DNA methylation in premature aging mouse models. (a) Schematic 192 

representation of premature mouse strains and littermate controls, tissues collected, and 193 

timepoints taken. (b) Evolution of body weight (grams) of mutant and controls mice from 4 194 

weeks until the euthanize point, data are mean ± SEM. (c) Methylation biological age (in 195 

weeks) of  ERCC1KO/Δ, XPGKO/KO, LAKITG/TG at 8 weeks and POLGTG/TG at 30 weeks. Data 196 

are represented as box plots (center line shows median, box shows 25th and 75th 197 

percentiles and whiskers show minimum and maximum values and statistical significance 198 

was assessed by two-sided unpaired t-test. 199 
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 200 

FIGURE 2. DNA methylation ERCC1 mice. (a) Methylation biological age (in weeks) of 201 

ERCC1KO/Δ mice at 2, 8 and 20 weeks in multiple organs/tissues and WT littermate controls 202 

estimated by Horvath clock. Data are represented as box plots (center line shows median, 203 

box shows 25th and 75th percentiles and whiskers show minimum and maximum values and 204 

statistical significance was assessed by two-sided unpaired t-test. (b) Slope of aging in 205 

ERCC1KO/Δ and controls mice in tissues analyzed from 2 to 20 weeks old. Significance of the 206 

interaction term in the linear regression was analyzed. 207 

 208 

FIGURE 3. DNA methylation in fibroblasts from human premature aging diseases. (a) 209 

DNAm age versus chronological age (in years) and (b) difference between biological and 210 

chronological age in human samples in fibroblasts isolated from individual with Cockayne 211 

Syndrome A (CSA), Cockayne Syndrome B (CSB), Xeroderma Pigmentosum (XP) and 212 

controls analyzed by Skin&Blood Clock. Data are represented as box plots (center line 213 

shows median, box shows 25th and 75th percentiles and whiskers show minimum and 214 

maximum values and statistical significance was assessed by two-sided unpaired t-test. 215 

 216 

SUPPLEMENTARY FIGURE 1. DNA methylation in premature aging mouse models 217 

additional data. (a) Breeding protocol to generate the four premature mouse strains and 218 

littermate control mice. Statistical significance was assessed by Pearson’s chi-squared test. 219 

(b) Correlation between biological and chronological age (in weeks) in WT control mice in 220 

C57BL6J and C57BL6J|FVB backgrounds in analyzed tissues from 2- to 47-week-old. (c) 221 

Methylation biological age of POLGTG/TG (at 30 and 47 weeks old) and LAKITG/TG (at 8 and 23 222 

weeks) in multiple organs/tissues and WT littermate controls by Horvath clock. Data are 223 

represented as box plots (center line shows median, box shows 25th and 75th percentiles 224 

and whiskers show minimum and maximum values) and statistical significance was 225 

assessed by two-sided unpaired t-test. 226 

 227 
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EXPERIMENTAL PROCEDURES 228 

Animal housing 229 

All the experimental experiment were performed in accordance with Swiss legislation after 230 

the approval from the local authorities (Cantonal veterinary office, Canton de Vaud, 231 

Switzerland). Mice were housed in groups of five per cage with a 12hr light/dark cycle 232 

between 06:00 and 18:00 in a temperature-controlled environment at 25°C and humidity 233 

between 40 % and 70 %, with free access to water and food. Wild type (WT) and premature 234 

aging mouse models used in this study were generated by breeding (Figure S1a) and 235 

housed together until they reached the desired age in the Animal Facilities of Epalinges and 236 

Department of Biomedical Science of the University of Lausanne. 237 

 238 

Mouse strains 239 

ERCC1KO/Δ 44 and XPGKO/KO mice19 and littermate controls (ERCC1+/+ and XPG+/+) were used 240 

in C57BL6J|FVB hybrid background. POLGD257A/D257A, herein referred to as POLGTG/TG 20,21 241 

and LAKITG/TG 22 and sibling controls (POLG+/+ and LAKI+/+) were generated in C57BL6J 242 

background.  243 

 244 

Mouse monitoring and euthanasia 245 

All mice were monitored at least three times per week to evaluate their activity, posture, 246 

alertness, body weight, presence of tumors or wound, and surface temperature. Males and 247 

females were euthanized at the specific timepoints by CO2 inhalation (6 min, flow rate 20% 248 

volume/min). Subsequently, before perfusing the mice with saline, blood was collected from 249 

the heart. Finally, multiple organs and tissues were collected in liquid nitrogen and used for 250 

DNA extraction to perform MethylArray. 251 

 252 

Cell culture and maintenance 253 

Human fibroblasts were obtained from the Coriell cell repositories and cultured in DMEM 254 

(Gibco, 11960085) with 10% FBS (Hyclone, SH30088.03) containing non-essential amino 255 
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acids, GlutaMax and Sodium Pyruvate (Gibco, 11140035, 35050061, 11360039) at 37°C in 256 

hypoxic conditions (3% O2). Subsequently, fibroblasts were passaged and cultured 257 

according to standard protocols. 258 

 259 

DNA extractions 260 

Total DNA was extracted from tissues and cells using Monarch Genomic DNA Purification 261 

Kit (New England Biolab, T3010L) and protocols were carefully followed. Tissues were cut 262 

into small pieces to ensure rapid lysis. Total DNA concentrations were determined using the 263 

Qubit DNA BR Assay Kit (Thermofisher, Q10211). 264 

 265 

DNA methylation clock 266 

The mouse clock was developed in17. We used the “Pan Tissue” mouse clock since we 267 

analyzed different tissues. The software code of the mouse clocks can be found in the 268 

supplements of17. 269 

The mouse methylation data were generated on the small and the extended version of 270 

HorvathMammalMethylChip45. We used the SeSaMe normalization method46. Human 271 

methylation data were generated on the Illumina EPIC array platforms that profiles 866k 272 

cytosines. We used the noob normalization method implemented in the R function 273 

preprocessNoob. The human DNAm age was estimated using the Skin&blood clock 274 

algorithm26. 275 

 276 

Statistical analysis 277 

Unsupervised hierarchical clustering based on interarray correlation coefficients was used to 278 

identify putative technical outliers. One liver sample with negative methylation age was 279 

removed. All plots were generated using the R software package ggplot2. Statistical 280 

differences between groups were assessed using a two-tailed unpaired Student’s t-test. 281 

Clock performance was assessed by correlation (Pearson coefficient) and Random Mean 282 

Square Error (RMSE), using the R software. To determine if there was a significant 283 
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difference in the slope of aging between WT and transgenic mice, we looked at the 284 

significance of the interaction term in the linear regression: DNAm age ~ WT/TG + Age + 285 

WT/TG*Age. 286 

 287 
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Figure 1

(a) Experimental design (b)
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Figure 2

(b) Rate of accerelated aging in ERCC1 mice
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Figure S1

(a) Generation of experimental premature aging mouse models
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Table S1

Tissue C57BL6J [RMSE (r)] C57BL6J | FVB [RMSE (r)]
Blood 2.08 (0.99) 2.55 (0.95)
Brain 8.71 (0.96) 4.13 (0.89)
Liver 8.49 (0.98) 3.04 (0.97)

Muscle 11.2 (0.98) 2.51 (0.95)
Skin 7.59 (0.96) 3.21 (0.91)
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Table S2

Model Timepoint Tissue WT [Avg (Sd; N)] KO [Avg (Sd; N)] P (t-test) Sig
Blood 3.17 (0.93; 8) 4.35 (0.86; 7) 0.025 *
Brain 3.37 (1.53; 8) 3.12 (0.84; 8) 0.69
Liver 4.05 (0.9; 8) 4.89 (0.92; 7) 0.098
Muscle 3.86 (0.88; 8) 4.75 (1.33; 8) 0.138
Skin 4.33 (1.25; 8) 4.91 (1.25; 8) 0.368
Blood 6.85 (1.62; 8) 12.46 (1.08; 8) 0 ***
Brain 12.8 (1.29; 8) 15.01 (1.84; 8) 0.016 *
Liver 11.66 (1.33; 8) 14.78 (1.49; 8) 0.001 **
Muscle 9.98 (1.23; 8) 11.87 (1.1; 8) 0.006 **
Skin 9.68 (1.36; 8) 11 (1.06; 8) 0.049 *
Blood 16.95 (2.95; 10) 27.58 (3.83; 6) 0 ***
Brain 20.7 (4.23; 10) 25.39 (2.54; 6) 0.015 *
Liver 21.56 (1.74; 9) 25.07 (3.62; 6) 0.065
Muscle 19.2 (2.95; 10) 25.82 (3.69; 6) 0.005 **
Skin 15.97 (3.04; 10) 18.91 (2.37; 6) 0.051
Blood 7.96 (0.73; 8) 9.09 (1.08; 8) 0.03 *
Brain 12.3 (2.4; 8) 13.67 (1.58; 8) 0.201
Liver 11.11 (1.83; 8) 11.45 (1.54; 8) 0.702
Muscle 10.01 (1.8; 8) 10.07 (2.04; 8) 0.947
Skin 8.79 (1.14; 8) 8.18 (0.7; 8) 0.22
Blood 9.35 (0.42; 8) 8.44 (1.09; 8) 0.054
Brain 14.17 (1.74; 8) 14.46 (1.78; 8) 0.745
Liver 11.74 (1.34; 8) 10.59 (1.15; 8) 0.086
Muscle 11.66 (0.81; 8) 10.94 (0.74; 8) 0.085
Skin 9.24 (1.24; 8) 8.55 (0.69; 8) 0.199
Brain 19.87 (NA; 1) 21.27 (3.54; 4)
Liver 21.13 (6; 2) 16.97 (2.31; 4) 0.501
Muscle 22.78 (4.04; 2) 17.92 (3.91; 3) 0.303
Skin 17 (3.36; 2) 15.92 (2.2; 4) 0.733
Blood 30.6 (2.68; 8) 27.3 (4.99; 8) 0.129
Brain 40.89 (2.93; 8) 37.5 (4.76; 8) 0.113
Liver 36.81 (2.15; 8) 35.63 (2.44; 8) 0.322
Muscle 41.67 (5.64; 8) 45.81 (5.36; 8) 0.154
Skin 35.6 (7.44; 8) 34.05 (8.42; 8) 0.702
Brain 46.62 (7.83; 2) 45.96 (6.12; 2) 0.934
Liver 63.41 (5.88; 2) 51.25 (7.35; 2) 0.215
Muscle 65.48 (1.9; 2) 61.37 (6.16; 2) 0.512
Skin 59.1 (2.87; 2) 63.98 (1.8; 2) 0.202
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