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Abstract: The specific roles of allostery in regulating metabolism are not well understood. Here, 
we develop a data-driven mathematical model of mammalian glycolysis that uses enzyme rate 
equations and coupled ordinary differential equations. The key components of our model are the 
rate equations for allosterically regulated enzymes based on the Monod-Wyman-Changeux 20 
model that we derive using a rigorous analysis of thousands of in vitro kinetic measurements. 
The resulting model recapitulates the properties of glycolysis observed in live cells and shows 
that the specific function of allosteric regulation is to maintain high and stable concentrations of 
ATP, while glycolysis without allosteric regulation is fully capable of producing ATP and 
ensuring that ATP hydrolysis generates energy. Our data-based modeling approach provides a 25 
roadmap for a better understanding of the role of allostery in metabolism regulation. 
 
One-Sentence Summary: The glycolysis model based on allosteric enzyme rate equations 
recapitulates properties of glycolysis observed in live cells. 
  30 
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Main Text:  
Glycolysis is conserved across all domains of life. This key pathway harnesses the breakdown of 
glucose to produce energy in the form of ATP and precursors for the biosynthesis of amino 
acids, nucleotides, carbohydrates, and lipids. Glycolysis contributes to ATP homeostasis by both 
directly producing ATP by a process referred to as fermentation or aerobic glycolysis (Fig. 1A) 5 
and by producing pyruvate that can be used as a substrate for additional ATP generation by 
mitochondrial respiration. Aerobic glycolysis is the most active metabolic pathway in 
proliferating mammalian cells (1) (an observation known as the Warburg Effect (2)), where it 
can satisfy all the ATP demand in the absence of respiration (3, 4). The net reaction of aerobic 
glycolysis converts extracellular glucose to two molecules of extracellular lactic acid, while the 10 
only net intracellular reaction is the production of ATP from ADP and inorganic phosphate (Fig. 
1A). The reliance of proliferating cells on aerobic glycolysis for ATP production and the lack of 
intracellular products except for ATP makes glycolysis a convenient self-contained system for 
studying ATP homeostasis. 
Glycolytic ATP production is regulated by mass action and a constellation of allosteric effectors 15 
that tune enzyme activity. Most of our knowledge about the allosteric regulation of glycolysis, 
and metabolism more broadly, is based on careful characterization of purified enzymes. 
However, the properties of metabolic pathways are the result of non-linear interactions between 
dozens of enzymes and metabolites, making it difficult to fully understand the global effects of 
regulation by studying enzymes in isolation. The production of glycolytic ATP provides a clear 20 
example of where our understanding falls short. While many allosteric regulators of glycolytic 
enzymes have been identified, we do not know what specific properties of glycolytic ATP 
production these molecules regulate. Properties of glycolytic ATP production include matching 
ATP supply and demand, maintaining ATP, ADP and phosphate concentrations such that ATP 
hydrolysis generates energy, maintaining a high concentration of ATP relative to ADP and AMP 25 
(5, 6), and enabling rapid adjustment of ATP production in response to changes in demand given 
the half-life of intracellular ATP as low as ~1-10 seconds (7). In addition, glycolytic ATP 
production has to coordinate with respiratory ATP production and with biosynthetic pathways. 
Currently, we do not know which of the latter properties of glycolysis require which allosteric 
regulators, and, in fact, we do not know which of these properties require allosteric regulation at 30 
all. 
Due to the complexity of glycolytic ATP production, a better understanding of its regulation 
requires the use of mathematical modeling. This has been an active area of research for several 
decades, with many groups developing mathematical models of glycolysis (8–21). These efforts 
range from simple idealized models involving a subset of enzymes (8–10, 12, 16) to full-scale 35 
models containing all the enzymes (11, 13–15, 17–21). Previous studies had two key limitations 
that we wanted to address in this report. First, a systematic analysis of the requirement of 
allosteric regulators for various properties of glycolysis has not been performed. Second, enzyme 
rate equations used in the published models, especially for the allosterically regulated enzymes, 
were not systematically derived using comprehensive data from multiple in vitro kinetic studies. 40 

Here we describe the development, analysis, and testing of a comprehensive model for the 
mammalian glycolytic pathway. Our model uses enzyme rate equations to describe glycolysis 
activity using a system of ordinary differential equations (ODEs). The key components of our 
model are the newly derived rate equations for allosterically regulated enzymes hexokinase 
(HK), phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 45 
pyruvate kinase (PK). We use the Monod-Wyman-Changeux model (22–26) in combination with 
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rigorous statistical approaches to identify the relevant rate equations and to estimate the kinetic 
constants using a manually curated dataset of thousands of data points from dozens of 
publications. Our model recapitulates all the properties of glycolytic ATP homeostasis described 
above and accurately predicts absolute concentrations of glycolytic intermediates and isotope 
tracing patterns in live cells. We used the model to investigate the role of allosteric regulation in 5 
maintaining ATP homeostasis. Our analysis suggests that allosteric regulation is only required 
for the maintenance of high ATP levels in relation to ADP and AMP, while it is dispensable for 
other properties such as matching ATP supply and demand, ensuring that ATP hydrolysis 
generates energy, and enabling rapid adjustment of ATP production in response to changes in 
demand. Our analysis identifies the specific mechanism that allows allosteric regulation to 10 
maintain high ATP levels by controlling the rate of HK and PFK and shows that allosteric 
regulation is absolutely required for this property of glycolysis. 
Results 
Model development overview 
We have developed a comprehensive mathematical model of aerobic glycolysis to understand the 15 
role of allostery in regulating ATP homeostasis. In this section, we provide an overview of the 
model development while most of the technical details are described in a comprehensive 
Supplementary Text, and Materials and Methods. Our model includes key allosteric regulators 
based on a thorough literature search. Most glycolytic enzymes are encoded by several 
homologous genes that produce enzyme isoforms with tissue-specific expression and distinct 20 
kinetic and allosteric properties. We chose to focus on glycolytic enzyme isoforms that are most 
abundant in proliferating cell lines to facilitate experimental testing (i.e., HK1, PFKP, and PKM2 
isoforms of HK, PFK, and PK). We sought to develop a core model of glycolysis that supports 
ATP homeostasis in the absence of input from other pathways, and hence we only included 
allosteric regulators that are products or substrates of glycolytic enzymes. Our model converts a 25 
qualitative schematic of allosteric regulation (Fig. 1B) into a precise mathematical language. As 
input, the model uses i) the extracellular concentrations of glucose and lactate, ii) cellular 
concentrations of cofactor pools and glycolytic enzymes, and iii) the rate of cellular ATP 
consumption (Fig. 1C). We highlight these inputs separately from the model as these inputs are 
not controlled by glycolysis but depend on the cell type or experimental conditions and thus 30 
cannot be predicted by a glycolysis model. The model takes these inputs and uses enzyme rate 
equations assembled into a system of coupled ordinary differential equations (ODEs) to calculate 
the concentration of every glycolytic intermediate and the rate of every reaction. Our model can 
calculate both steady-state behavior and dynamical responses to perturbations. In effect, our 
model uses in vitro enzyme kinetics to predict any measurable property of glycolysis and many 35 
properties that cannot currently be measured. 
In total, our model contains >150 parameters, including kinetic and thermodynamic constants, 
and estimates of enzyme and cofactor pool concentrations, yet all of these parameters are tightly 
constrained by experimental data. Kinetic constants were estimated from in vitro enzyme 
kinetics data as described briefly below and in full detail in the Supplementary Text. 40 
Thermodynamic constants are taken from the eQuilibrator database (27). Enzyme and cofactor 
pool concentrations are estimated from proteomics and metabolomics data, respectively, as 
described in Materials and Methods. We numerically simulate the model using 
DifferentialEquations.jl library (28) written in the Julia Programming Language (29). Our code is 
heavily optimized so that it takes ~1-10 milliseconds to calculate the results of the model under 45 
given conditions using a single core of a modern computer processor. Optimized code allows us 
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to run the model under millions of different conditions to systematically explore the regulation of 
glycolytic ATP homeostasis. 

 
Fig. 1. Overview of the mammalian glycolysis model. (A) Coarse-grained description of 
aerobic glycolysis highlighting its main function to transform glucose into ATP. (B) Qualitative 5 
schematic of glycolysis showing the chain of enzymes (allosterically regulated enzymes in teal 
and the other enzymes in black) that convert substrates into products (gray). Allosteric activators 
(green) and inhibitors (red) that are included in the model are highlighted. (C) Schematic of the 
glycolysis model including inputs and outputs. (D) Kinetic rate equations are shown for GPI and 
PFK and plots are actual GPI and PFK rates calculated by the respective equations. Note the 10 
dramatic activation of the PFK rate in the presence of inorganic phosphate (Pi) and ADP. 

The defining feature of our model is the use of newly derived kinetic rate equations to describe 
the activity of four allosterically regulated enzymes (i.e., HK1, PFKP, GAPDH, PKM2) using 
the Monod-Wyman-Changeux (MWC) model. MWC is a powerful model for describing the 
activity of allosterically regulated enzymes (22–26), which assumes that allosteric enzymes exist 15 
in two or more conformations with different kinetic properties. Both the binding of substrates 
and allosteric regulators can modify the kinetic properties of an MWC enzyme by stabilizing one 
conformation over another. We use statistical approaches (i.e., regularization and cross-
validation) to identify the simplest MWC kinetic rate equation that can adequately describe the 
available data, allowing us to avoid overfitting and parameter identifiability issues common for 20 
fitting complex equations to finite data (30). MWC equation describing the rate of PFKP in the 
presence of substrates and regulators is shown in Fig. 1D. We described the rest of the glycolytic 
enzymes that are not believed to be allosterically regulated using standard kinetic rate equations 
derived from quasi-steady-state or rapid equilibrium approximations. For the eight enzymes and 
transporters with one substrate and one product, we used reversible Michaelis-Menten equations 25 
(see equation describing the rate of glucose-6-phosphate isomerase (GPI) in Fig. 1D)  and 
estimated their kinetic constants by averaging values from at least three publications per constant 
to verify their consistency and accuracy. For the three remaining enzymes with more than one 
substrate or product (i.e., aldolase (ALDO), phosphoglycerate kinase (PGK), and lactate 
dehydrogenase (LDH)), we fitted their more complex rate equations to manually curated in vitro 30 
kinetics datasets containing 350-700 data points per enzyme. We chose to fit data from ALDO, 
PGK, and LDH instead of averaging over published kinetic constants because many publications 
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describing ALDO, PGK, and LDH activity used different rate equations, and hence the published 
kinetic constants are not directly comparable. A comprehensive description of the derivations 
and fitting of all enzyme rate equations is reported in the Supplementary Text, and we hope this 
compendium of information will serve as a great resource for future investigations of these 
enzymes. 5 

Finally, we want to highlight that our model uses several assumptions that have to be considered 
when interpreting its predictions. First, the model assumes that the activity of enzymes in living 
cells is accurately described using in vitro activity of purified enzymes. Second, the model 
assumes that enzymes and metabolites are well-mixed in the cytosol of the cell. Third, the model 
only describes the effect of regulators that are included in the model. Fourth, the model assumes 10 
that other pathways (e.g., pentose phosphate pathway, mitochondrial pyruvate consumption) do 
not affect the concentration of glycolytic intermediates or glycolytic reaction rates. Deviations 
between the model and experimental observations could be due to any number of these 
assumptions not being valid under the conditions of a particular experiment. On the other hand, 
if the model accurately predicts experimental data, it suggests that these assumptions are valid 15 
under given experimental conditions. 
Glycolysis model recapitulates key properties of ATP homeostasis 
After constructing the model, we first investigated whether it can recapitulate the three key 
properties of ATP homeostasis observed in living cells. First, a minimal working model must 
match ATP supply and demand. Second, it should maintain a high ATP concentration such that 20 
most of the adenine nucleotide pool is in the form of ATP at a wide range of ATP turnovers as 
observed in vivo (5, 6). Third, the model should maintain the mass-action ratio of ATP 
hydrolysis reaction (i.e., the ratio of product concentrations [ADP]•[Phosphate] to substrate 
concentrations [ATP]) far from equilibrium, which is what allows ATP to drive energy-
demanding processes in the cell. 25 

We performed simulations to determine whether the glycolysis model can recapitulate the key 
properties of ATP homeostasis. We report all ATPase rates in terms of percent of HK1 activity, 
which is the slowest enzyme and glycolysis cannot proceed faster than the maximal rate of its 
slowest enzyme (maximal rates are determined by the product of intracellular enzyme 
concentration and Vmax). First, we found that the glycolysis model produces as much ATP as is 30 
consumed and rapidly adjusts to stepwise increase or decrease of ATP consumption, as is 
necessary under physiological conditions (Fig. 2A). Second, we showed that > 90% of adenine 
nucleotide pool was maintained as ATP and ATP concentrations varied by < 10% when we 
introduced physiologically relevant 2-fold stepwise changes in ATP consumption rate (Fig. 2B). 
Thus, as has been observed in muscle and heart in vivo (5, 6), our model maintains nearly 35 
constant ATP levels in response to large changes in ATP turnover. The latter is the key property 
of feedback regulation of glycolysis that is required to ensure that cellular ATP-consuming 
enzymes with KM ~1-100 µM are not affected by changes in ATP turnover. Finally, we showed 
that the glycolysis model maintains ATP, ADP and inorganic phosphate concentrations such that 
the ATP hydrolysis reaction is 109-1011-fold away from equilibrium, equivalent to 20-25 kBT 40 
(Fig. 2C), which is similar to what has been measured in cells (7) and what allows ATP 
hydrolysis to drive energy-demanding processes. We reran the model 10,000 times using 
randomly drawn model parameters and initial conditions to show that the ability of the model to 
maintain most of the adenine nucleotide pool in the form of ATP levels is largely insensitive to 
initial conditions and to changes in model parameters within the range of experimental errors for 45 
each parameter (Fig. S1). The coefficient of variation (CV) of the area under the curve of ATP 
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concentrations at a range of ATPase rates (15%) is lower than the average CV of a model 
parameter (24%), which suggests that maintenance of high ATP levels is the robust property of 
the model (Fig. S1B). 
Several kinetics models of glycolysis have been reported over the past several decades, yet none 
of these reports investigated whether those models can recapitulate properties of ATP 5 
homeostasis except for matching ATP supply and demand. To perform a head-to-head 
comparison, we implemented a recent mechanistic model of yeast glycolysis that we will refer to 
as the van Heerden model (19). Upon repeating the simulations in Fig. 2A-C (Fig. S2), the van 
Heerden model produced ATP in response to ATP consumption and maintained the high energy 
of ATP hydrolysis (Fig. S2A, C). However, the van Heerden model could only support ATP 10 
levels that are orders of magnitude lower than our model and exhibited volatility in ATP 
concentration spanning almost two orders of magnitude in response to 2-fold stepwise changes in 
ATP demand compared to the <10% change exhibited by our model under the same conditions 
(Fig. S2B). Thus, the van Heerden model does not capture the feedback regulation that is needed 
to maintain most of the adenine nucleotide pool in the form of ATP and ensure stable ATP levels 15 
in response to changes in ATPase rate as observed in vivo (5, 6). 
In summary, our glycolysis model is the first reported model that recapitulates all the key 
properties of ATP homeostasis such as matching ATP supply and demand, maintaining stable 
ATP levels such that most of the adenine nucleotide pool is in the form of ATP, and maintaining 
high energy of ATP hydrolysis over a large range of ATP consumption rates. 20 
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Fig. 2. Glycolysis model recapitulates qualitative and quantitative properties of glycolysis 
observed in live cells. (A-C) Model simulations showing changes in (A) ATP production rate, 
(B) ATP concentration (total adenine pool size is labeled with dashed grey line), and (C) energy 
released during ATP hydrolysis in response to a 2-fold stepwise increase or decrease of ATPase 
rate. ATPase energy is calculated as a natural logarithm of the disequilibrium ratio (i.e., mass-5 
action ratio divided by the equilibrium constant) for the ATPase reaction. (D) Comparison of 
measured glycolytic intermediate concentrations and model predictions. Black empty circles 
indicate the experimentally determined metabolite concentrations. Colored lines with ribbon 
indicate the median and 95% CI of model predictions. The shift from left to right for each 
metabolite level prediction corresponds to increasing rates of ATP consumption from 2% to 20% 10 
of glycolysis Vmax (see inset for ADP) to highlight the effect of ATP consumption on 
metabolite concentrations. (E) Comparison of [U-13C]Glucose and [U-13C]Lactate tracing data 
with model prediction. Circles connected with dotted lines are data and lines with ribbons are 
model predictions. ATPase rate = 15% of glycolysis Vmax was chosen for model predictions. 
Model predictions in (D) and (E) are from simulations where bootstrapped model parameter 15 
combinations could match ATP supply and demand, which were > 79% and >93% of 
simulations for (D) and (E), respectively. Julia code to reproduce this figure is available at 
https://github.com/DenisTitovLab/Glycolysis.jl. 

Glycolysis model recapitulates live cell data 
Given that our model could reproduce the wealth of measurements of each glycolytic enzyme in 20 
vitro and recapitulate the key properties of ATP homeostasis, we set out to determine whether 
the model could predict the results of experiments in live cells. 
To directly compare model predictions to data from bulk cell measurements, we had to adjust the 
model output in two ways. First, we corrected for the fact that metabolites inside the cell can 
either be bound to proteins or exist in free form in solution. Concentration terms in enzyme rate 25 
equations refer specifically to free metabolite concentrations, so we converted free metabolite 
concentrations to free + bound concentrations (using the known concentrations and binding 
constants of all enzymes) before comparing prediction to bulk cell lysis measurements. An 
important caveat of this calculation is that we only consider glycolytic enzymes, which neglects 
the binding of glycolytic intermediates to other enzymes. Second, we corrected for the fact that 30 
glycolytic enzymes are localized to the cytosol (i.e., the part of the cytoplasm that is devoid of 
organelles) and that a significant fraction of cytosol is occupied by macromolecules and not 
water. The latter effectively means that all the enzymes and metabolites of glycolysis are 
concentrated in a volume that is ~50% of cellular volume assuming 70% of the cell is cytosol 
and 70% of the cytosol is water. 35 

We first compared the model predictions of bound and free metabolites with absolute 
intracellular metabolite concentrations determined by liquid chromatography-mass spectrometry 
(LC-MS). Mammalian cells can synthesize ATP using the mitochondrial electron transport chain 
(ETC) or aerobic glycolysis. Since our current model only describes ATP homeostasis by aerobic 
glycolysis, the most appropriate comparison would be with cells that don’t have a functional 40 
ETC like red blood cells (which do not have mitochondria and get their ATP exclusively from 
aerobic glycolysis) or cells treated with ETC inhibitors. In our experiments, we opted for the 
latter, performing our experiments in the presence of ETC inhibitors. Yet, in addition, we also 
used published data from red blood cells as well as cancer cell lines because the model 
predictions suggested that the effect of glycolysis rate on the concentrations of most 45 
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intermediates is smaller than the confidence intervals of model predictions. Indeed, we found 
that 95% confidence intervals of model predictions of most of the 18 glycolytic intermediate 
concentrations at a range of ATP consumption rates overlapped within experimental values (Fig. 
2D). The latter result is notable given that our model contains no direct information about 
intracellular metabolite levels and is free to predict concentrations from 0 to +∞ and even below 5 
zero if the model is implemented incorrectly. 
Next, we compared [U-13C]Glucose and [U-13C]Lactate labeling kinetics predicted by the model 
and measured in experiments. For these measurements, we exchanged normal media for media 
containing [U-13C]Glucose (the input for the glycolysis pathway) or [U-13C]Lactate (the final 
product) and then lysed cells at different time intervals to estimate the rate and fraction at which 10 
13C from [U-13C]Glucose or [U-13C]Lactate is incorporated into glycolytic intermediates. We 
observed that the glycolysis model accurately recapitulated the kinetics of 13C labeling fraction 
of intermediates after switching to [U-13C]Glucose or [U-13C]Lactate-containing media (Fig. 2E). 
It is particularly noteworthy that the model can recapitulate labeling from [U-13C]Lactate where 
only intracellular lactate and pyruvate are labeled, as this indicates that our model can accurately 15 
capture the extent of reversibility of glycolysis reactions. 
Allosteric regulation of HK1 and PFKP is required for the maintenance of ATP levels 
Having established that the model recapitulates the key properties of ATP homeostasis and 
accurately predicts measurement in live cells, we next used the model to investigate the function 
of allosteric regulation in maintaining ATP homeostasis. We hypothesized that specific allosteric 20 
regulators could serve in a number of critical roles including matching ATP supply and demand, 
maintaining high and stable ATP levels such that the majority of the adenine nucleotide pool is 
in the form of ATP, rapidly responding to acute perturbations of the ATPase rate, or maintaining 
high energy of ATP hydrolysis. 
We first removed all allosteric regulators to see if the resulting simple pathway remained 25 
functional. Specifically, we made the HK1, PFKP, GAPDH, and PKM2 enzymes behave as 
Michaelis-Menten-like enzymes with kinetic parameters corresponding to their faster (active) 
MWC conformation. We also removed competitive inhibition of the HK catalytic site by G6P, 
which proceeds through standard non-allosteric competitive inhibition. Surprisingly, the model 
without any regulation was fully capable of matching ATP supply and demand and was further 30 
able to maintain the high energy of ATP hydrolysis (Fig. 3A, C). However, without allosteric 
regulation, we observed a complete breakdown of ATP concentration maintenance, where ATP 
levels were almost 1000-fold lower, and a small 2-fold increase and decrease of ATPase rate led 
to an almost 10-fold change in ATP concentration compared to <10% change in ATP 
concentration for the complete model (Fig. 3B). Allosteric regulation allowed glycolysis to 35 
maintain >90% of the adenine pool in the form of ATP while in the absence of allosteric 
regulation <1% of the adenine pool was in the form of ATP. Systematic investigation of model 
behavior at different ATPase rates showed that the model without regulation is not capable of 
maintaining most of the adenine nucleotide pool in the form of ATP levels at any ATPase value, 
which is contrary to the constant ATP concentrations observed both in vivo (5, 6) and in the 40 
complete model (Fig. 3D, vertical drop-off indicates where the ATP production by the model 
cannot match ATPase rate anymore). We also note that the unregulated model can support higher 
ATP production rates hinting at the potential tradeoffs of maintaining high ATP level using 
allosteric regulation (Fig. 3E, solid red line is shifted to the right of the solid blue line). 
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We next removed the regulation of specific enzymes one by one, computationally dissecting the 
pathway to better understand the role of each enzyme (Fig. 3D-F, Fig. S3). Specifically, we 
removed a particular allosteric regulator from the relevant kinetic rate equations by setting its 
binding constant for both active and inactive MWC conformation to ∞. We found that the 
allosteric regulation of HK1 and PFKP is responsible for maintaining high and stable ATP 5 
levels, whereas removing the allosteric regulation of GAPDH and PKM2 had no discernable 
effect (Fig. 3D). Digging further, we removed each of the allosteric activators and inhibitors of 
HK1 and PFKP and found that these regulators work together to ensure the robust maintenance 
of ATP levels, so that removing any single regulator only led to a partial loss of ATP 
maintenance capacity (Fig. S3). In general, removing inhibitors (i.e., G6P for HK1 and ATP for 10 
PFKP) led to worse ATP maintenance at low ATPase rates (Fig. 3E, Fig. S3E-H), while 
removing activators (i.e., phosphate for both HK1 and PFKP and ADP for PFKP) led to poorer 
ATP maintenance at high ATPase rates (Fig. 3F, Fig. S3K-N). 

 
Fig. 3. Allosteric regulation is required for the maintenance of high and stable ATP levels. 15 
(A-C) Model simulations showing the effect of removal of allosteric regulation of HK1, PFKP, 
GAPDH, and PKM2 on (A) ATP production rate, (B) ATP concentration, and (C) energy 
released during ATP hydrolysis [Left axis] in response to a 2-fold stepwise increase or decrease 
of ATPase rate [Right axis]. Energy is calculated as a natural logarithm of the disequilibrium 
ratio (i.e., mass-action ratio divided by the equilibrium constant) for the ATPase reaction. (D-F) 20 
Steady-state ATP concentrations at a range of ATPase rate of the glycolysis model with and 
without (D) allosteric regulation of enzymes, (E) allosteric activators, and (F) allosteric 
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inhibitors. Dashed grey line indicates the total adenine pool size (i.e., ATP + ADP + AMP). Julia 
code to reproduce this figure is available at https://github.com/DenisTitovLab/Glycolysis.jl. 
We performed a global sensitivity analysis of our model to systematically explore the role of all 
model parameters in matching ATP supply and demand, maintaining high ATP levels, and 
maintaining high energy of ATP hydrolysis. The goal of global sensitivity analysis is to calculate 5 
the contribution of each model parameter and parameter interactions to the variance of a specific 
model output (31). We used the area under the curve (AUC) for the ratio of ATP production to 
ATP consumption, the ratio of ATP concentration to adenine pool size, and the energy of ATP 
hydrolysis at a log range of ATPase values as proxies for the model’s ability to match ATP 
supply and demand, maintain high ATP levels and maintain high energy of ATP hydrolysis, 10 
respectively (Fig. S4A, D, G). We first estimated the variance of the AUC proxies by randomly 
varying each parameter of the model independently from a uniform distribution spanning a 9-
fold range from 3 times lower to 3 times higher than the default model parameter values. The 
coefficient of variation for all three AUC proxies was in the narrow range of 0.13-0.4 in response 
to random changes in parameter values spanning 9-fold, indicating that these are robust 15 
properties of the model (Fig. S4B, E, H). The coefficient of variation for maintaining high ATP 
levels was about 3-fold larger than for maintaining high energy of ATP hydrolysis or for 
matching ATP supply and demand, suggesting that the former is more sensitive to changes in 
specific model parameters. Two metrics for each model parameter are typically reported for 
variance-based global sensitivity analysis. The first-order effect sensitivity index S1 reports the 20 
fraction of variance of the model output that will be removed if the corresponding parameter is 
fixed. The total-order sensitivity index ST reports the variance that will be left if values of all but 
the corresponding parameter are fixed. Larger values of S1 and ST indicate that a given parameter 
is important. Global sensitivity analysis showed that the KM and Vmax for HK1 had the highest S1 
and ST for all three model outputs, as expected since HK1 is the rate-limiting enzyme in the 25 
pathway. The second largest S1 and ST for maintaining high ATP levels were given by the kinetic 
parameters that control allosteric regulation of HK1 and PFKP while the second largest S1 and ST 
for matching ATP supply and demand and for maintaining high energy of ATP hydrolysis were 
simply the KM and Vmax of PFKP or the second slowest enzyme in the model after HK1 based on 
the product of enzyme concentration and Vmax (Fig. S4C, F, I). 30 

In summary, analysis of our model proposes that the function of allosteric regulation of HK1 and 
PFKP is to maintain high and stable ATP levels, while a pathway composed of non-allosteric, 
unregulated enzymes is sufficient to rapidly produce ATP in response to ATP consumption and 
maintain high energy of ATP hydrolysis. 
Mechanism of high and stable ATP level maintenance by HK1 and PFKP allosteric 35 
regulation. 
We next wanted to gain insight into the mechanism by which allosteric regulation of HK1 and 
PFKP allows glycolysis to maintain high and stable ATP levels. Here, we first provide an 
intuitive explanation of the mechanism that we identified and then show simulations supporting 
this mechanism. The concentration of ATP inside the cell is limited by adenine nucleotide pool 40 
size. To maintain a high ATP level, glycolysis has to convert most of the ADP into ATP or, 
equivalently, maintain most of the adenine nucleotide pool in the form of ATP. The latter 
automatically leads to the ability of glycolysis to maintain near-constant ATP levels in a narrow 
range of <10% (or <1%) at a range of ATP turnover rates where glycolysis can maintain >90% 
(or >99%) of adenine nucleotide pool as ATP. The relative level of ATP and ADP concentrations 45 
depends on the kinetic properties of ATP-consuming enzymes HK1 and PFKP and ATP-
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producing enzymes PGK and PKM2. ATP consumption rate by the cell is of course another key 
determinant of ATP and ADP levels but this reaction is not directly controlled by glycolysis. 
Reactions in a metabolic pathway can proceed at the same arbitrary rate of 1 while being far 
from equilibrium (i.e., forward reaction rate of 1 and reverse rate of 0) or close to equilibrium 
(i.e., forward rate of 101 and reverse rate of 100). Under the conditions when glycolysis proceeds 5 
in the net forward direction, the concentrations of products relative to substrates for each enzyme 
will be highest if the enzyme reaction is close to equilibrium and lowest if the enzyme reaction is 
far from equilibrium. Therefore, to maintain a high level of ATP in relation to ADP glycolysis 
has to maintain ATP-consuming enzymes (i.e., ATP is a substrate and ADP is the product) HK1 
and PFKP as far from equilibrium as possible and ATP-producing enzymes (i.e., ADP is a 10 
substrate and ATP is the product) PGK and PKM2 as close to equilibrium as possible (Fig. 4A). 
The above is the general consequence of the structure of the glycolysis pathway that has both 
ATP-consuming and ATP-producing reaction and is independent on the specific kinetic 
properties of enzymes. Simulations show that the glycolysis model behaves according to the 
principle described above where HK1 and PFKP reaction are kept much further from equilibrium 15 
(forward to reverse rate ratio of 106-108) than all other glycolytic enzymes at a range of ATPase 
rates that support high levels of ATP (Fig. 4B). 

 

Fig. 4. Allosteric regulation maintains high ATP levels by keeping ATP-consuming HK and 
PFK reactions far from equilibrium at a range of ATP turnovers. (A) Schematic of the 20 
glycolysis pathway showing that in order to maintain high ATP level HK and PFK reactions 
should be far from equilibrium and PGK and PK close to equilibrium. (B) Ratio of forward to 
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reverse rate for all enzymes in the full model at a range of ATPase that support high ATP level 
showing that HK and PFK are maintained far from equilibrium. Data for each enzyme is 
displayed at a 2-20% range of increasing ATPase rates from left to right as shown in more detail 
in the inset. (C) Schematic of a simplified glycolysis-like pathway containing two enzymes. (D) 
Simulation of the two enzyme pathway at 9-fold range of the 6 parameter controlling this 5 
pathway showing that only ~0.1% of parameter combination support conditions when ATP > 
ADP. (E) Ratio of forward to reverse rates for Enzyme 1, Enzyme 2 and ATPase of two enzyme 
model for simulations in Panel D that support ATP > ADP. (F) Ratios of !!"#$%&	(, !!"#$%&	)and 
!!"#*+,"-. of two enzyme model for simulations in Panel D that support ATP > ADP. (G) 
Simulation of two enzyme model ("./$%&	( = "./$%&	) = 100 and "./*+,"-. = 1000) shows that 10 
maximal ATP level is achieved when rate of Enzyme 1 is exactly equal to rate of ATPase and 
rate of enzyme 2 is higher than ATPase rate. Julia code to reproduce this figure is available at 
https://github.com/DenisTitovLab/Glycolysis.jl. 

To gain a better understanding of how glycolysis maintains high ATP levels, we used a 
simplified model of glycolysis, referred to as two-enzyme model, containing ATP-consuming 15 
Enzyme 1, ATP-producing Enzyme 2 and ATPase (Fig. 4C): 
Enzyme 1: & + &()  ⇄ , + &-) 
Enzyme 2: , + )ℎ/01ℎ234 + 2&-)  ⇄ 6 + 2&() 

ATPase: &() + 7)8 ⇄ )ℎ/01ℎ234 + &-) 
Note that metabolite B is phosphorylated, which conserves phosphate in each step. We describe 20 
the rates of Enzymes 1 and 2 and ATPase using a simple mass-action driven equation with two 
parameters being the maximal enzyme activity !!"#$%& (superscripts always denote the enzyme 
under consideration) and the equilibrium concentration of reaction "./$%&: 

 9234$%& = !!"#$%& :1 − Γ$%&
"./$%&

=  (1) 

where Γ$%& is the mass action ratio of corresponding reaction: 

 Γ$%&	( = [,][&-)]
[&][&()]   

 Γ$%&	) = [6][&()])
[,][&-)])[)ℎ/01ℎ234]  

 

 Γ*+,"-. = [&-)][)ℎ/01ℎ234]
[&()]  

 

The two-enzyme model reduces the number of parameters from > 100 to 6. Only two of the 25 
parameters of the two-enzyme model can be controlled by allostery (!!"#$%&	( and !!"#$%&	)), further 
simplifying the analysis of the role of allostery in regulating this model.  
We first searched for values of the six parameters of the two-enzyme model that would support 
ATP > ADP. We performed 100,000 simulations using random values of all 6 parameters drawn 
from uniform distribution spanning a 9-fold range from 3 times lower to 3 times higher than then 30 
default model parameters !!"#$%&	( = !!"#$%&	) = !!"#*+,"-. = 0.001, "./$%&	( = "./$%&	) = 100, and 
"./*+,"-. = 1000 (Fig. 4D). Only ~ 0.1% of parameter combinations could maintain ATP > 
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ADP. By contrast, ~25% of simulations could match ATP supply and demand or maintained 
energy of ATP hydrolysis above 10 kBT, suggesting that maintenance of ATP > ADP is a non-
trivial task that requires specific combinations of the 6 parameters (Fig. S5A, D).  
We investigated the parameter combinations that allowed the two-enzyme model to maintain 
ATP > ADP. The simulations that supported ATP > ADP also maintained Enzyme 1 and ATPase 5 
reaction far from equilibrium and Enzyme 2 reaction close to equilibrium (Fig. 4E) as is 
described for the full glycolysis model above. We next investigated the ratios of parameters that 
allowed the two-enzyme model to maintain ATP > ADP, and we found a simple relationship 
!!"#$%&	) > !!"#$%&	( = !!"#*+,"-. (Fig. 4F). We confirmed this relationship in simulations where we 
fixed !!"#$%&	( = !!"#*+,"-. or !!"#$%&	) = !!"#*+,"-. and varied the rate of the other enzyme (Fig. 4G). 10 
On the other hand, any condition where !!"#$%&	( > !!"#*+,"-. and !!"#$%&	) > !!"#*+,"-.was sufficient 
to match ATP supply and demand or to maintain high energy of ATP hydrolysis (Fig. S5B, C, E, 
F). Overall, our analysis suggests that to maintain high and stable ATP levels, allosteric 
regulation has to keep HK1 and PFKP reactions far from equilibrium by controlling the apparent 
Vmax rates of these enzymes such that they are exactly equal to each other and to the apparent 15 
Vmax of ATPase rate while being lower than the rates of all other glycolytic enzymes at a range of 
ATPase rates. 
Excess activity of enzymes relative to HK and PFK is required for the maintenance of ATP 
levels 
We next explored what attributes of the glycolysis pathway other than allosteric regulation of 20 
HK1 and PFKP might be required for maintaining most of the adenine pool in the form of ATP. 
Analysis of the two-enzyme model showed that the activity of ATP-producing Enzyme 2 should 
be as high as possible compared to the activity of ATP-consuming Enzyme 1 and ATPase (Fig. 
4G). We investigated whether a similar mechanism works in the full glycolysis model. First, we 
looked at the maximal activity of glycolytic enzymes. In agreement with the two-enzyme model, 25 
most glycolytic enzymes have a large excess of activity compared to HK1 and PFKP (Fig. 5A). 
In fact, most enzymes are present at 10-fold higher concentrations than is required for the 
maximal activity of the glycolysis pathway limited by HK1. Such high levels of expression 
represent a significant investment of resources by the cell, given that expression of enzymes like 
GAPDH and PKM2 can approach 1% of the proteome. 30 

Using our model, we tested whether this high level of enzyme expression is required to maintain 
high ATP levels. Increasing or decreasing the concentrations of all enzymes from TPI to LDH by 
20-fold more than default model values led to no changes in ATP maintenance (Fig. 5B). 
However, upon decreasing the expression of these enzymes more than 20-fold, the ability of the 
model to maintain more than 50% of the adenine pool in the form of ATP levels eventually 35 
collapsed (Fig. 5B) without significantly affecting the ability of the model to match ATP supply 
and demand (Fig. 5C). In this way, our results suggest a mechanistic explanation for the 
seemingly wasteful large excess expression of enzyme of glycolysis relative to HK and PFK. 
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Fig. 5. Excess activity of glycolytic enzymes relative to HK and PFK is required for ATP 
maintenance. (A) Maximal enzyme activity in the model. Activities of all isoforms for each 
enzyme were summed together. The dashed line indicates the activity for each enzyme that 
matches the maximal activity of the slowest enzyme HK1 corrected for the stoichiometry of 5 
reactions. (B) Steady-state ATP concentrations at a range of ATPase rates of the glycolysis 
model with scaled concentrations of lower glycolysis enzymes TPI, GAPDH, PGK, PGAM, 
ENO, PK, and LDH. The dashed grey line indicates the total adenine pool size (i.e., ATP + ADP 
+ AMP). The fold range of ATPase rates where the model can maintain >50% of the adenine 
nucleotide pool as ATP is highlighted in legend. (C) Ratios of ATP production rate to ATPase 10 
Vmax at a range of ATPase rates of the glycolysis model with scaled concentrations of lower 
glycolysis enzymes TPI, GAPDH, PGK, PGAM, ENO, PK, and LDH. Julia code to reproduce 
this figure is available at https://github.com/DenisTitovLab/Glycolysis.jl. 

Inorganic phosphate pool improves the maintenance of high ATP levels 
We next investigated the role of cofactor pool sizes in maintaining ATP levels. The three 15 
cofactor pools that are included in our model are the adenine nucleotide pool (i.e., 
ATP+ADP+AMP), NAD(H) pool (i.e., NAD+ + NADH), and the inorganic phosphate pool (i.e., 
the sum of all phosphate atoms except for ATP, ADP, and AMP). For the inorganic phosphate 
pool, we chose not to consider phosphate which is part of the adenine nucleotide pool to be able 
to separate the effect of inorganic phosphate and the effect of adenine nucleotides. We performed 20 
a global sensitivity analysis by varying cofactor pool sizes over a 9-fold range centered around 
the default values of each pool size. Based on S1 and ST sensitivity indexes, phosphate pool size 
had the largest effect on the model's ability to maintain high ATP levels while adenine pool size 
had a smaller effect and NAD(H) pool size had little to no effect (Fig. S6A-B). 
To confirm the effect of the phosphate pool on maintaining ATP levels, we simulated an increase 25 
or decrease of the level of all phosphorylated metabolites except ATP, ADP, and AMP (Fig. 6A). 
The simulations showed that doubling the phosphate pool led to an increase in the range of 
ATPase rates where the model can maintain more than 50% of the adenine pools in the form of 
ATP (i.e., faster divided by slowest supported ATPase rate) from 9-fold to 19-fold. While 
removal of the phosphate pool led to the shrinking of the supported ATPase range from 9-fold to 30 
1.3-fold. This effect is ultimately driven by the concentration of inorganic phosphate, which if 
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kept constant abrogates the effect of a changing phosphate pool (Fig. S6C) and largely rescues 
high ATP level maintenance at low ATPase rates. This suggests that at low ATPase rates, our 
model is not capable of keeping phosphate concentration high enough to allow sufficient 
GAPDH activity as a large fraction of phosphate is incorporated into glycolytic intermediates. 
The phosphate pool of the default model is ~20mM, which, based on our simulations, is large 5 
enough to achieve close to optimal ATP level maintenance for our model (Fig. 6A). Cells have 
several reserves for phosphate in addition to glycolytic intermediates such as creatine phosphate 
and phosphorylated nucleotides other than adenines, which together contribute to at least 10 mM 
additional phosphate pool. In addition, cells have complex regulatory machinery to regulate 
intracellular phosphate levels, and it is likely that this machinery will prevent phosphate 10 
concentration from dropping below the minimal level sufficient for GAPDH activity. The 
inclusion of these additional phosphate reserves and phosphate regulatory systems should further 
improve the ATP level maintenance of our model and might fully eliminate the defect observed 
at low ATPase rates. 
Finally, we confirmed the effect of adenine pool size on ATP level maintenance using 15 
simulations where we increased or decreased the combined level of ATP, ADP, and AMP (Fig. 
6B). The simulations showed that doubling the adenine pool led to a decrease in the range of 
ATPase rates where the model can maintain most of the adenine pools in the form of ATP from 
9-fold to 4-fold. While halving the adenine pool led to the increase of the supported ATPase 
range from 9-fold to 13-fold. The effect of adenine pool size on ATP level maintenance can be 20 
understood by considering that the activity of HK and PFK is in part controlled by their KM for 
ATP. High adenine pool size leads to higher ATP levels and increases the activity of HK and 
PFK, which improves ATP level maintenance at high ATPase rates and deteriorates it at low 
ATPase rates. Thus, adjusting the size of the adenine pool is a strategy that cells could use to 
selectively improve ATP level maintenance at high or low ATPase rates without changing 25 
enzyme levels. 

 

Fig. 6. Large pool of inorganic phosphate is required for maintenance of stable ATP levels. 
(A) Effect of different amounts of phosphate pool (excluding ATP, ADP, and AMP) on ATP 
concentration maintenance at different ATPase rates. (B) Effect of increasing or decreasing 30 
adenine nucleotide pool on ATP concentration maintenance at different ATPase rates. The 
dashed grey line indicates the total adenine pool size (i.e., ATP + ADP + AMP). The fold range 
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of ATPase rates where the model can maintain >50% of the adenine nucleotide pool as ATP is 
highlighted in figure legends. Julia code to reproduce this figure is available at 
https://github.com/DenisTitovLab/Glycolysis.jl. 

Discussion 
Allosteric regulation in metabolism has historically been studied by rigorously characterizing 5 
enzymes in isolation. While this has greatly advanced our understanding of the key regulatory 
enzymes involved in this pathway, many emergent properties of metabolism are difficult to 
understand by focusing on one enzyme at a time. Novel approaches that combine theory and 
experiment are needed to advance our understanding of metabolic regulation. Here, we describe 
a data-driven model of glycolysis that harnesses a core of enzymatic rate equations and is fueled 10 
by a broad swath of in vitro activity data. Our model contains kinetic and thermodynamic 
parameters describing the activity and allosteric regulation of all glycolytic enzymes through a 
system of ODEs, and it can predict the output of glycolysis under numerous conditions as 
described above.  
Allosteric regulators of glycolysis are postulated to play an important role in regulating ATP 15 
production, but their specific functions remain poorly understood and could involve matching  
ATP supply and demand, maintaining high energy of ATP hydrolysis to drive cellular processes 
(i.e., ensuring that the ATPase reaction is maintained far from equilibrium), maintaining high 
and stable concentrations of ATP such that most of the adenine nucleotide pool is in the form of 
ATP (i.e., ensuring that enzymes requiring ATP are not kinetically blocked due to low 20 
concentrations of ATP), or achieving rapid changes of ATP production in response to sudden 
changes in ATP demand. Our framework suggests that allosteric regulators are exclusively 
required to maintain high and stable ATP levels. Indeed, we explicitly show in silico that a 
glycolysis pathway that lacks all allosteric regulation can perform all the functions above except 
for maintaining most of the adenine nucleotide pool in the form of ATP. 25 

A key advantage of a mechanistic model of glycolysis is that it enables us to computationally 
dissect the effects of adding or removing any component in the pathway. Analysis of our model 
has provided explanations for several observed experimental phenomena and yielded multiple 
predictions that will require experimental follow-up. For example, our analysis revealed that 
allosteric control of HK1 and PFKP is specifically required to maintain most of the adenine 30 
nucleotide pool in the form of ATP, providing an explanation for the evolution of HK1 and 
PFKP as the sites of allosteric regulation across all domains of life. Surprisingly, allosteric 
regulation of HK1 and PFKP is predicted to be dispensable for the ability of aerobic glycolysis to 
match ATP supply and demand or maintain the high energy of ATP hydrolysis. This result 
predicts that cells expressing non-allosteric mutants of HK1 and PFKP will have a clear defect in 35 
their ability to maintain most of their adenine pool in the form of ATP but should still be capable 
of producing ATP and will likely be viable under some conditions. To the best of our knowledge, 
the latter experiment has never been attempted. In addition, our model predicts that enzymes of 
lower glycolysis such as GAPDH, PKM2, and LDH should be as active as possible in relation to 
HK1 and PFKP to allow glycolysis to maintain most of its adenine pool in the form of ATP 40 
explaining why enzymes of lower glycolysis are expressed at more than 10-fold higher levels 
than HK1 or PFKP (Fig. 5A). Finally, we also find that a pool of inorganic phosphate separate 
from adenine nucleotide pool is predicted to be important for the ability of glycolysis to maintain 
most of the adenine nucleotide pool in the form of ATP, which has also not been experimentally 
tested. 45 
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Our model not only confirmed the important role for feedback inhibition by G6P and ATP on 
glycolytic regulation, but also showed an unexpected role for inorganic phosphate as the key 
regulator of glycolysis. Phosphate has historically not been considered an important regulator of 
this pathway, although this role has been proposed in the past (32–34). Mechanistically, 
phosphate competes with G6P and ATP for the same binding sites and thus serves to inhibit 5 
these feedback inhibitors while not influencing HK1 and PFKP activity in the absence of G6P 
and ATP (35, 36). In addition, phosphate is the substrate of the GAPDH enzyme. Phosphate has 
several properties that we speculate contribute to its proposed role as the key positive regulator 
of glycolysis. First, it is a small molecule with a dense negative charge, enabling it to compete 
with negatively charged G6P and ATP at structurally diverse allosteric sites. Second, phosphate 10 
is the product of the ATPase reaction, so its level goes up when glycolysis activity should be 
upregulated in response to an increase in ATPase activity. But, unlike ADP (the other product of 
the ATPase reaction), the amount of phosphate is not limited by the adenine pool size, and 
phosphate levels can increase much more than ADP or AMP. We hypothesize that one of the 
roles of the creatine phosphate pool is to allow for a dramatic rise in phosphate levels in response 15 
to a small change in ATP concentration in order to help maintain ATP homeostasis. 
To end, we highlight that the same conceptual framework used here for aerobic glycolysis can be 
similarly applied to other metabolic pathways. The core of our model is in vitro rate equations 
for each of the glycolytic enzymes, and as long as these equations are available or can be derived 
for another pathway, the ability to weave them together into a comprehensive systems-level 20 
description will be identical to what was described here. Enzyme rate equations that we derived 
for glycolytic enzymes can be used to describe most metabolic enzymes simply by changing the 
names of products and substrates and fitting them to in vitro kinetics data. We hope that this 
work will encourage more research on allosteric regulation from both theoreticians and 
experimentalists, as much more analysis and experimental testing can be done than what was 25 
covered in this article. 
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