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Abstract 25 

High-throughput DNA sequencing technologies open the gate to tremendous 26 

(meta)genomic data from yet-to-be-explored microbial dark matter. However, 27 

accurately assigning protein functions to new gene sequences remains challenging. To 28 

this end, we developed FunGeneTyper, an expandable deep learning-based framework 29 

with models, structured databases and tools for ultra-accurate (>0.99) and fine-grained 30 

classification and discovery of antibiotic resistance genes (ARGs) and virulence factor 31 

or toxin genes. Specifically, this new framework achieves superior performance in 32 

discovering new ARGs from human gut (accuracy: 0.8512; and F1-score: 0.6948), 33 

wastewater (0.7273; 0.6072), and soil (0.8269; 0.5445) samples, beating the state-of-34 

the-art bioinformatics tools and protein sequence-based (F1-score: 0.0556-0.5065) 35 

and domain-based (F1-score: 0.2630-0.5224) alignment approaches. We empowered 36 

the generalized application of the framework by implementing a lightweight, privacy-37 

preserving and plug-and-play neural network module shareable among global 38 

developers and users. The FunGeneTyper* is released to promote the monitoring of 39 

key functional genes and discovery of precious enzymatic resources from diverse 40 

microbiomes. 41 

 42 
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* The codes and database resources are available at: https://github.com/emblab-45 

westlake/FunGeneTyper. 46 
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Main 47 

High-throughput DNA sequencing and metagenomics have generated extensive 48 

protein-coding gene (PCG) sequences from diverse environmental and human 49 

microbiomes1-3. Accurate classification of genes into related protein functions is the 50 

key to effective gene discovery. However, these datasets pose significant 51 

computational challenges in metagenomic studies. Sequence alignment (SA), 52 

implemented using NCBI’s BLAST4, usearch5, and Diamond6, is commonly used for 53 

functional annotation of PCGs7. To minimize false-positives, SA-based methods are 54 

routinely conducted with strict user-defined cutoffs or thresholds (alignment identity, 55 

coverage, and bit scores) to retain high-confidence best hits for each query sequence 56 

from validated databases. This practice is widely implemented in the development of 57 

tools for categorizing genes, including antibiotic resistance genes (ARGs)8,9 and 58 

virulence factor genes (VFGs)10. SA-based approaches effectively predict functions 59 

between genes that share high homology (>80% identity 8,9), but exclude distantly 60 

homogeneous genes that fall below arbitrarily-defined and one-size-fits-all cutoffs 61 

that may represent the majority of targeted functional genes in environmental samples 62 

(e.g. core ARGs in activated sludge11 and soil12). Therefore, these SA approaches with 63 

stringent bioinformatic cutoffs unavoidably generate numerous false-negative results 64 

and heavily underestimate true novelties and diversity of functional genes in largely 65 

uncultured bacteria, thus biasing research outcomes or conclusions. Therefore, it is 66 

crucial to develop intelligent and accurate classification paradigm and bioinformatic 67 
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tools to overcome limitations of existing SA-based classification approaches. 68 

Importantly, this endeavor will accelerate discovery of new genes in future 69 

metagenomic-based environmental and human microbiome studies13,14. 70 

Hidden Markov models (HMM) with manual-crafted sequence alignments and 71 

scoring functions are powerful tools for protein domain-based functional gene 72 

annotation for detecting remote gene homologues with low sequence identity (< 30%) 73 

to known proteins15,16. However, these methods rely on token (amino acid) matching, 74 

which fail to detect high-level semantic representation similarity or structure-level 75 

representation similarity, leading to false-positives17, and thus cannot distinguish 76 

functions of proteins in the same family18. In contrast, deep learning (DL) methods 77 

excel at learning rich and high-level semantic representations when sufficient training 78 

data are available, and are effective at identifying proteins with structural and 79 

functional similarities19-22. Specifically, ground-breaking big language models initially 80 

developed for natural language processing tasks have been successfully applied to 81 

protein function prediction tasks23,24, often termed protein language models (PLMs). 82 

The high-level semantic representations learned from PLMs establish valid 83 

connections between sequences and function25,26. Notwithstanding the power of PLMs, 84 

gene classification tasks, particularly identifying fine-grained protein function 85 

subclasses, pose challenges for data-hungry deep learning paradigms because of 86 

limited supervised training dataset for certain genes. Additionally, it remains unclear 87 

whether advanced PLMs perform better than state-of-the-art metagenomic 88 
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bioinformatics tools at microbiome gene classification and discovery. 89 

Here, we propose FunGeneTyper, a PLM-based deep-learning framework for 90 

accurate and expandable prediction of PCG function. FunGeneTyper implements a 91 

two-stage pipeline that separately handles the assignment of the main types and 92 

subtypes of PCG functional classes, reducing issues associated with insufficient 93 

training data during subtype-level predictions. To improve conciseness, it first 94 

performs standard classification of genes of the main types and then performs fine-95 

grained retrieval by comparing similarities between learned protein subtype 96 

representations. FunGeneTyper models classify ARGs with ultra-high accuracy (>0.99) 97 

and outperforms the state-of-the-art SA and HMM-based methods and tools. 98 

Furthermore, we also demonstrate the generalized application of FunGeneTyper 99 

models in ultra-high classification of VFGs and introduce the adapter module, a 100 

lightweight neural network that can be inserted into the current backbone architecture 101 

to realize parameter-efficient training. The adapter-tuning-based FunGeneTyper 102 

models are expandable to the classification of various categories of genes and enables 103 

sharing of both task-agnostic and task-specific parameters without accessing the 104 

private training dataset. Thus, FunGeneTyper offers a unified and innovative way of 105 

integrating the global efforts of the microbiome and bioinformatics communities, 106 

endowing the FunGeneTyper framework with the ability to conduct unlimited 107 

prediction of functional gene categories beyond the ARGs and VFGs demonstrated 108 

here, which is key to accelerating the global discovery of new and precious genetic 109 
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and enzymatic resources from microbiomes. 110 

Results 111 

FunGeneTyper framework, structured database, and deep learning models  112 

FunGeneTyper is the first unified framework that utilizes DL models and structured 113 

functional gene datasets (SFGD) to develop new DL-based classifiers for any gene 114 

category via transfer learning. This novel framework achieves highly accurate PCG 115 

classification from metagenomic studies and extends the models to efficiently predict 116 

broad categories of gene functions from large varieties of microbiomes with 117 

corresponding customizable SFGD. 118 

Structured functional gene datasets  119 

We deployed a transferable strategy to collect high-quality reference gene sequences 120 

to meet FunGeneTyper’s training requirements with high reliability (Fig. 1a). 121 

Experimentally-confirmed reference sequences of target genes from literature and/or 122 

expert-curated databases were used as the core dataset, and highly homologous 123 

protein sequences (at least 80% identity and 80% coverage) were extracted from 124 

Uniref100 database and used as the expanded functional genes dataset. A non-target 125 

sequence dataset was selected from Swiss-Prot database (version: June 2021) by 126 

excluding perfect matches to the target genes, and used as the negative training set so 127 

that FunGeneTyper could learn sufficient features of non-target genes. Core and 128 

expanded functional gene datasets and the non-target dataset were integrated to form 129 
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the SFGD, which was organized hierarchically into a secondary structure based on 130 

gene ontology. The SFGD was divided into training, validation, and testing sets (ratio 131 

6:2:2) and used to train the following two DL models. 132 

Deep learning models 133 

The framework has a top-down protein function prediction workflow featuring two 134 

DL models (Fig. 1b), FunTrans and FunRep, which progressively classify protein 135 

sequences from the upper (type) to lower (subtype) functional levels. FunGeneTyper 136 

was pre-trained on ESM-1b, a large-scale pre-trained protein sequence model based 137 

on the transformer architecture released by Facebook22. ESM-1b is composed of the 138 

33-layer transformer architecture consisting of 650 million parameters trained on 139 

Uniref50. It has the superior capacity to infer fundamental structural and functional 140 

characteristics of proteins from sequences that can significantly increase the 141 

performance metrics for sequence-function tasks. Despite sharing the 33-layer 142 

transformer architecture, FunTrans and FunRep were independently constructed, 143 

trained, and optimized, to complete two-level functional classification tasks that 144 

successively assigned a PCG to its best matches of functional type and subtype in a 145 

structured database, respectively. 146 

FunTrans distinguishes protein sequences and classify them into specific functional 147 

types equivalent to gene families with the same or similar functions. It is inspired by 148 

the fact that proteins with similar structures and functions clustered closer together in 149 

the embedding space. The main FunTrans structure is a 33-layer transformer that 150 
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implements initial classification of input data (Fig. 1c). Adapter modules are inserted 151 

into each transformer block as trainable parameters. The adapter enables efficient 152 

fine-tuning of parameters for different gene classification tasks. High parameter 153 

sharing is achieved under the premise that the parameters of the original network 154 

remain unchanged. Adapter modules enable flexible and parameter-efficient transfer 155 

learning and prevent overfitting27,28. FunTrans adds a nonlinear classification layer at 156 

the end of the sequence semantic representation for functional classification.  157 

FunRep has a structure similar to that of FunTrans and can be used to embed 158 

representation retrieval for further subtype classification of protein function (Fig. 1d). 159 

It uses embedding representation retrieval to accurately predict functional subtypes of 160 

the FunTrans output results for classification. FunRep also adds an adapter layer to 161 

increase robustness and insight into a broader range of gene classification. 162 

FunGeneTyper classification performance and learning ability 163 

The spread of antibiotic resistance has raised public health concerns globally29. 164 

Reliable ARG model classification is important for surveillance and control of the 165 

spread of antibiotic resistance, and achieving sufficient model sensitivity to remote 166 

homologues is key to discovering new ARGs. Therefore, we first classified ARGs and 167 

demonstrated the ability of the FunGeneTyper framework to achieve this goal. Before 168 

building the ARGs classification models, we constructed a hierarchical structured 169 

ARG database (SARD) based on antibiotic resistance ontology of the comprehensive 170 

antibiotic resistance database (CARD)7. Based on CARD’s ontological rules, ARGs 171 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 23, 2023. ; https://doi.org/10.1101/2022.12.28.522150doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.28.522150


were assigned to class and group hierarchies based on the types of drugs to which 172 

they confer resistance, and the subtypes of genes with the same resistance function, 173 

respectively (Dataset S1). To test and improve the sensitivity of the model, we used 174 

different identity thresholds to collect four non-target sequence sets from Swiss-Prot 175 

database —excluding ARGs — as negative training datasets, for model training 176 

(Supplementary Figure 1, see Methods). The addition of a negative training set allows 177 

the model to learn features of non-targeted genes, which gives the model the ability to 178 

directly classify targeted (e.g., ARGs) and non-targeted genes (e.g., non-ARGs) from 179 

new datasets to be tested. We evaluated the impact of four identity thresholds of the 180 

negative datasets on the learning features of the model. The results of five-fold cross-181 

validation revealed that the model with 0% identity as the threshold for recruiting 182 

non-target sequences had the best performance metrics, including accuracy, recall, 183 

precision, and F1-score (Fig. 2a). Under these optimized conditions, the positive 184 

SARD set contained 61874 ARG sequences, including 2972 experimentally-185 

confirmed core sequences inherited from the CARD and 58902 homology-predicted 186 

(>80% identity and >80% coverage) expanded ARG sequences from Uniref100. All 187 

ARG reference sequences were hierarchically assigned to 19 classes and 2972 groups 188 

(Dataset S2 and Supplementary Figure 2). 189 

To demonstrate the powerful utility of FunGeneTyper, we used the reference 190 

protein sequences in SARD to train two transformer models (FunTrans and FunRep) 191 

and developed them as a new deep-learning ARGTyper deep-learning classifier. We 192 
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used the trained ARGTyper to classify the testing set to validate the performance of 193 

the ARGTyper. The overall ARGTyper performance metrics prove that FunGeneTyper 194 

provides an excellent and robust framework for gene classification. Specifically, the 195 

optimal FunTrans model at the ARG class level reached an accuracy of 0.9979, a 196 

precision of 0.9830, a recall rate of 0.9683, and an F1 score of 0.9756 (Fig. 2b). 197 

Moreover, the prediction precision and recall of all 17 ARG classes exceeded 0.96 198 

(Fig. 2c), apart from fusidic acid and triclosan, which showed lower precision and 199 

recall because they have only 21 and 53 reference sequences, respectively, in SARD 200 

(Dataset S3). More training data helps the model learn more features. Nonetheless, the 201 

power of FunTrans to classify these temporarily less-represented classes of ARGs will 202 

improve as more functionally-verified sequences will be available for model training. 203 

The vector space generated by FunGeneTyper was semantically rich and encoded 204 

structural, evolutionary, and functional information. To explain what our model 205 

intuitively learns, we obtained representations of all classes of ARG and non-ARG 206 

sequences in the training set. We used uniform manifold approximation and projection 207 

(UMAP) to reduce data dimensions in each layer to two. Visualizations performed in 208 

the four essential representative layers (1st, 5th, 32nd, and 33rd) revealed the learning 209 

process of the model (Fig. 2d). All ARG sequences were highly entangled at the first 210 

level of encoding input. However, they became increasingly separated as the 211 

transformer model got deeper. Each type of ARG undergoes a process from dispersion 212 

to aggregation. This finding verified that FunTrans can efficiently learn the 213 
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representation features of sequences from raw input data with high entanglement. 214 

Prediction multiclass confusion matrix was used to represent the effect of 215 

FunTrans on the learning features of each ARG class. The results indicated that the 216 

FunTrans model was excellent at predicting all ARG classes (Fig. 2e). We continued 217 

to locate significant classification errors in the ARG classes using error detection 218 

counts (Fig. 2f). Prediction error was concentrated in the multidrug class. Specifically, 219 

33 non-ARG sequences were mispredicted as multidrug resistance, whereas 39 220 

multidrug resistance protein sequences were mispredicted as non-ARG sequences. 221 

The poor prediction performance of these proteins is mainly due to their high 222 

structural differences and diverse biological functions that include roles other than 223 

multidrug resistance30, making it challenging for a DL model to effectively learn 224 

sufficient discriminative features in the absence of sufficient training data. Multidrug 225 

efflux pumps30 export antibiotics and other diverse extraneous substrates, including 226 

organic solvents, toxic heavy metals, and antimicrobials, and also fulfill other key 227 

biological functions such as biofilm formation, quorum sensing and survival and 228 

pathogenicity of bacteria30. Therefore, multidrug resistance proteins or efflux pumps 229 

were not seriously considered as ARGs17,31 and we recommend excluding their 230 

sequences from ARG analysis unless they can be reliably or unambiguously assigned 231 

to resistance functions of certain antibiotic classes. 232 

Once the FunTrans model was shown to be robust and accurate in identifying 233 

ARGs and classifying them into 19 classes, we trained FunRep, which conducted a 234 
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more detailed lower-level classification of ARGs into 2972 groups (Dataset S3). 235 

FunRep achieved an overall prediction accuracy of 0.9023 for all ARG groups 236 

(Dataset S4). We used UMAP to visualize FunRep model's learning process. UMAP 237 

was used to visualize the characteristics of the final layer of all classes except the 238 

Fusidic acid class (21 sequences, Dataset S3). UMAP showed that FunRep can cluster 239 

the features of each group in the main ARG classes, including beta-lactams (5909 240 

sequences), Macrolides-Lincosamides-Streptogramines (MLS, 2317 sequences), 241 

aminoglycosides (3483 sequences), and glycopeptides (2037 sequences) 242 

(Supplementary Figure 3). 243 

In summary, we demonstrated the application of the FunGeneTyper framework to 244 

develop ARGTyper as the first transformer-based ARG classifier trained from a 245 

customized structured ARG database (SARD). The performance metrics of the testing 246 

set show that FunTrans and FunRep can achieve highly accurate (accuracy=0.998) 247 

and robust (F1-score=0.976) identification of all known types (classes) and subtypes 248 

(groups) of ARGs in the authoritative CARD. Both the accuracy and robustness of 249 

FunGeneTyper models outperform previously published results from DeepARG 250 

(accuracy>0.97, F1-score>0.93 9) and HMD-ARG (accuracy=0.935, F1-score=0.893 251 

32) on their own testing sets of ARGs. 252 

Model performance in the discovery of new genes 253 

The ‘twilight zone’ of protein sequence alignment is a complex, long-standing 254 

problem plaguing protein function prediction33,34, limiting the discovery of PCGs in 255 
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the largely uncultured microbial world. In contrast to classic SA-based tools, DL-256 

based models (FunRep and FunTrans) of the FunGeneTyper framework are designed 257 

with unique features and intrinsic advantages for predicting remote homologues of 258 

protein sequences with guaranteed accuracy and robustness, as previously 259 

demonstrated for ARG classification.  260 

To compare FunGeneTyper’s ability to identify new PCGs with those of existing 261 

methodologies, we evaluated its ability of its DL-based models to discover remote 262 

homologues by predicting experimentally-confirmed protein sequences of new ARGs 263 

discovered from three representative habitats: human gut (n = 168)35, wastewater 264 

treatment plants (n = 77)11, and soil (n = 52)36-39. We computed the predictive 265 

performance of FunGeneTyper classifier for ARGs (ARGTyper) and compared it with 266 

that of three state-of-the-art tools: DL-based tools (HMD-ARG32 and DeepARG9), 267 

SA-based tools (RGI7), and HMM-based tools (Resfams18) (Table 1). FunGeneTyper 268 

had higher accuracy, precision, recall, and F1-score for predicting new ARGs 269 

compared with HMD-ARG32 and DeepARG9. The significant improvement was 270 

primarily attributed to our implementation of the protein semantic models (i.e., 271 

FunTrans and FunRep) in FunGeneTyper, which can learn more hidden features of 272 

protein sequences, especially the context information19,21, compared with the 273 

traditional one-hot encoding algorithm and the convolutional neural network used by 274 

HMD-ARG32 and the multilayer perceptron used by DeepARG9. Moreover, the 275 

overall classification performance of FunGeneTyper, as benchmarked by the F1-score 276 
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(0.5445 to 0.6948), was much higher than that of the classic SA-based methods 277 

(0.0556 to 0.6598) and HMM-based methods (0.2630 to 0.5224) (Table 1). Although 278 

RGI also achieved high accuracy (0.8830) in human intestinal data, its precision 279 

(0.4545), recall (0.3968), and F1-score (0.4195) were much lower than those of the 280 

FunTrans model (0.7500, 0.6642, and 0.6948, respectively) because many of the new 281 

ARG sequences tested here fell below the commonly applied stringent identity cutoffs 282 

(> 95% RGI). It is expected that when a strict one-size-fits-all filter cutoff is applied 283 

to the alignment results, many false-negatives would result, limiting the discovery of 284 

ARGs that show a more remote homology to database sequences. The superior 285 

performance of the FunGeneTyper classifier over existing tools in identifying new 286 

ARGs was further evident when comparative tests were performed using wastewater 287 

treatment plant (WWTP) or soil samples compared with human gut samples (Table 1). 288 

This indicates that FunGeneTyper has a greater capacity to predict functional genes in 289 

complex environmental samples. To further resolve the superior predictive 290 

performance of FunGeneTyper for remote homologues of functional genes over 291 

existing tools, we divided the ARGs data into lower homology (≤50% identity) and 292 

higher homology (≥50% identity) datasets (Supplementary Figure 4). FunGeneTyper 293 

not only consistently achieved better classification performance of higher homology 294 

ARGs in all three sample groups (WWTP, soil, and human gut), it also showed 295 

outstanding performance at accurately and sensitively predicting the function of 296 

remote homologous sequences (Dataset S5). 297 
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Taken together, our results exemplify the discovery and classification of novel 298 

ARGs, especially among relatively remote homologues (<50% identity), and 299 

demonstrate that FunGeneTyper is best at predicting new ARG protein sequences, 300 

exhibiting unprecedented capacity to identify new genes with high accuracy, 301 

sensitivity, and robustness. 302 

Evaluating the generalizability of FunGeneTyper 303 

To demonstrate the generalizability of FunTrans and FunRep in classifying other gene 304 

categories, we trained the models using a calibrated and professionally expanded 305 

bacterial virulence factor database, VFNet40 and utilized them to develop a new 306 

transformer-based classifier of virulence factor gene (VFG), named VFGTyper. 307 

Before training the model, we built a two-level expert-curated structured database 308 

based on the virulence ontology and reference sequences in the VFNet database. 309 

Semantic and categorically ambiguous data were cleaned (Methods). The final 310 

structured virulence factor database (SVFD) consisted of 160484 VFG sequences 311 

distributed into 2837 classes in 45 families (Dataset S6).  312 

We followed a strategy similar to that mentioned above to train the model, 313 

collecting a non-target dataset with 551,783 sequences (excluding VFGs) from Swiss-314 

Prot, as the negative dataset (see Methods). With the merit of the proposed adapter 315 

module, we only need to re-train a new adapter when building a VFGTyper. The 316 

design of adapter allows us to train only a new classifier and an adapter when 317 

predicting new functions. All the parameters in the backbone network can be reused. 318 
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Therefore, VFGTyper can be regarded as a new task branch in the FunGeneTyper 319 

framework, where only the adapter and classifier differ. We verified the VFGTyper 320 

using the testing set to provide evidence of its generalizability in the functional 321 

genotyping process. VFGTyper achieved an accuracy of 0.9907 (Fig. 3a) in the family 322 

level prediction task. The obfuscation matrix results also showed that FunTrans 323 

achieved excellent classification performance for each VFG at the family level (Fig. 324 

3b, Supplementary Figure 5). In addition, FunRep was 0.9499 accurate at predicting 325 

different VFG classes in the second-stage prediction.  326 

In conclusion, we demonstrated that FunGeneTyper can be successfully 327 

generalized to develop VFGTyper as the first transformer-based VFG classifier of its 328 

kind and applied the new classifier to achieve ultra-accurate classification of VFGs by 329 

adding new adapters. To vividly show that FunGeneTyper can learn sufficient 330 

discriminative features from different groups of functional gene datasets, we 331 

visualized the learning process of FunTrans and FunRep models for VFG sequences. 332 

Consistent with the learning process for ARGs (Fig. 2d), both models also achieved 333 

effective feature clustering and classification of VFGs at both the family (Fig. 3c) and 334 

class (Supplementary Figure 6) levels. Besides classification performance, we also 335 

proved VFGTyper’s full capability in the discovery of an experimentally-confirmed 336 

novel VFG (NCBI accession no.: WP_034687872.1) of a toxin family in 337 

Chryseobacterium piperi with sequence similarity to botulinum neurotoxins (BoNTs) 338 

through re-analysis of published genome 41. Specifically, of the 8 putative toxin genes 339 
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of C. piperi showing no significant (n=6) or only limited (n=2) sequence homology 340 

(i.e., global identity < 10%) to known reference VFGs, 7 were effectively identified as 341 

VFGs by FunGeneTyper and 4 were further classified as BoNTs (Dataset S7). 342 

Compared with a conventional sequence alignment (SA)-based approach which failed 343 

to predict 6 VFGs, the deep learning models of FunGeneTyper showed much greater 344 

capacity for the discovery of remote homologues of known toxin genes. Therefore, 345 

FunGeneTyper represents an expandable deep learning-based framework for ultra-346 

accurate classification and discovery of functional genes, as demonstrated here for 347 

ARGs and VFGs. 348 

Privacy-preserving global sharing of plug-and-play adapters for functional gene 349 

discovery 350 

To demonstrate the parameter efficiency of FunGeneTyper’s adapter modules, all 650 351 

million parameters of the pre-trained model are fine-tuned as a benchmark test which 352 

achieved excellent prediction accuracy in ARGs class (0.9988) and VFGs family 353 

(0.9930). Comparatively, with only fine-tuning of about 21 million parameters (3% of 354 

all parameters) of the Adapter layer, we demonstrated that FunGeneTyper achieved 355 

near-identical excellent performance of 0.9979 for ARGs class and 0.9907 for VFGs 356 

family, proving that parameter-efficient lightweight plug-and-play adapter modules of 357 

FunGeneTyper can be easily shared without little loss of prediction accuracy. 358 

Benefiting from the parameter-efficient property, FunGeneTyper has two novel 359 

merits. First, FunGeneTyper enables effective effort-sharing by the entire community 360 
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(Fig. 4). Specifically, a researcher who has trained our FunGeneTyper model for 361 

classification or discovery of functional genes (other than ARGs and VFGs 362 

demonstrated here) can submit their adapters (along with a classification layer) to the 363 

adapter hub. Once the adapter has been submitted, the module can be downloaded and 364 

easily inserted into the FunGeneTyper model for direct downstream user application. 365 

Second, the adapter design helps solve data privacy issues. Where researchers have 366 

not publicly released their own datasets, they can train FunGeneTyper with their 367 

private datasets, submit only the adapter module (again along with a classification 368 

layer), and provide functional descriptions of their FunGeneTyper. Thus, the private 369 

datasets are protected, while the uploaded adapter models can be used without model 370 

training. As the number of researchers getting involved in the development of 371 

FunGeneTyper increases, the model may become a universal toolkit that can be used 372 

for predicting functional genes simply by looking up related functional modules. We 373 

believe that with the elegant adapter module, FunGeneTyper will facilitate adapter 374 

sharing and model integration globally. 375 

Discussion 376 

Metagenomics has provided an opportunity for identifying microbiome diversity and 377 

novel functionalities. However, the speed at which high-throughput DNA sequencing 378 

technologies unravel the vast genetic novelties of uncultured microbes in nature 379 

outpaces our capacity to understand their function. Previous approaches for functional 380 
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classification of PCGs were based on sequence alignment using tools such as BLAST4, 381 

usearch5, and Diamond6 or conserved motifs and domains using Hidden Markov 382 

Models. Selection of uniform cutoffs and thresholds usually limit the accuracy and/or 383 

sensitivity of these methods for functional gene prediction. Protein semantic 384 

algorithms based on NLP methods have been developed 20,24. However, these 385 

algorithms are not optimized for classifying different categories of microbial genes, 386 

and a unified thinking paradigm is required to meet the needs for accelerated 387 

discovery of new genes. 388 

Our study provides an expandable deep learning-based framework for efficient 389 

and robust gene function prediction, which represents an emerging methodological 390 

paradigm for global developers and users to tackle unprecedented challenges and 391 

meet the above-mentioned urgent needs in the classification and discovery of any 392 

group of functional PCGs. We propose an end-to-end FunGeneTyper framework for 393 

the classification prediction of gene functions. We exemplify the framework by 394 

developing two transformer-based classifiers, ARGTyper and VFGTyper, based on 395 

deep learning models coupled with expert-curated structured databases (SARD and 396 

SVFD) to realize robust functional classification of bacterial ARGs and VFGs, which 397 

are two categories of genes key to WHO’s one health approach for human, animal, 398 

and environmental health protection42.  399 

A series of experimental validations, including five-fold cross-validation, testing 400 

set validation, and experimentally-confirmed protein sequence validation, 401 
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demonstrate the effectiveness and robustness of FunGeneTyper. Using ARG as an 402 

example, FunGeneTyper models are more effective than SA-based and DL-based 403 

models in predicting protein sequences of new ARGs from the human gut, WWTP, 404 

and soil microbiomes with relatively low homology (< 50% similarity) to known 405 

ARGs. This shows that ARGTyper has an unmatched advantage in discovering ARGs, 406 

primarily because of the powerful learning ability of protein semantic models. Since 407 

experimentally-confirmed sequences of the major categories, types, and subtypes of 408 

genes are not sufficient, expanding the database based on sequence homology is 409 

common and necessary to obtain sufficient training sequence data. UMAP analysis 410 

showed that the expanded sequences represent reliable datasets and support our model 411 

to better learn discriminative protein semantic features to achieve satisfactory 412 

performance in identifying functional genes, including ARGs and VFGs. 413 

Accurately classifying target genes from the huge interference of non-target gene 414 

data is a problem. Therefore, we purposefully introduced non-functional genetic 415 

datasets as part of the training set. Although this operation increases training 416 

complexity, it enables our model to accurately classify target genes from noisy data 417 

when used to analyze large-scale metagenomic sequence datasets from environmental 418 

or animal microbiome samples. Some machine learning methods rely on sequence 419 

alignment tools to create a similarity score matrix of potential gene sequences and 420 

databases9,43. Such practices will inevitably be affected (and limited) by the selection 421 

of arbitrary thresholds for the results. The FunGeneTyper framework proposed here 422 
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can accurately annotate genes via classification through discriminative features 423 

learned from multiple sequences. The limited number of training sequences may 424 

prevent the models from learning sufficient features. This transient issue would, 425 

however, be easily solved once more experimentally-confirmed reference protein 426 

sequences of target genes are available for model retraining and refinement. 427 

Meanwhile, the robustness of deep learning to noise labels44 can also help our 428 

framework models and classifiers outperform existing ones in discovering new genes. 429 

In particular, once large amounts of (meta)genomic data are freely available, a 430 

uniform and convenient understanding of the relationship between microbial gene 431 

sequences and protein function becomes a perennial challenge that can be tackled to 432 

create opportunities for gene discovery. There are other gene categories, apart from 433 

ARGs and VFGs, including those associated with microbially-driven global 434 

biogeochemical cycling (carbon, nitrogen, phosphorus, and sulfur) or microbial 435 

biodegradation (bioremediation and bio-restoration) and biosynthesis (biomedicine 436 

and bioresources) (Fig. 5), such as those well established by the RDP’s FunGene 437 

database45. Building a dynamic metagenomic bioinformatics community will help us 438 

better understand gene function. In principle, FunGeneTyper can predict the function 439 

of any gene category based on prior parameters of the pre-trained model and the 440 

adapter’s transfer-learning ability. The adapter module used in FunGeneTyper is a 441 

lightweight plug-and-play neural network that only fine-tunes and maintains a small 442 

set of parameters and is conducive for sharing and promotion. Therefore, other 443 
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researchers can use the framework and training parameters we provide to train their 444 

own core datasets to easily develop predictive deep learning models of genes of 445 

interest. Researchers can also share a trained adapter through the adapter sharing 446 

community (ASC) without disclosing their private datasets. The future prosperity and 447 

collaboration of the ASC under the guidance of FunGeneTyper framework provide an 448 

interactive, dynamic, and continuously improving or evolving platform for functional 449 

classification of various PCG sequences. More importantly, FunGeneTyper and ASC 450 

are expected to contribute significantly to advances in industrial biotechnology, health 451 

and medicine, food and agriculture, environmental biotechnology, and bioenergy (Fig. 452 

5), as they are increasingly applied to accelerate the discovery of new genes and 453 

enzymatic resources from microbiomes.  454 

In conclusion, FunGeneTyper provides an innovative and unified framework with 455 

deep learning models (i.e., FunTrans and FunRep), expandable classifier toolkits (e.g., 456 

ARGTyper and VFGTyper) and customizable structured databases for the ultra-457 

accurate classification and discovery of functional genes (e.g., ARGs and VFGs) that 458 

have scientific and biotechnological significance. This framework will contribute to 459 

the robust monitoring of function genes and discovery of  novel enzymatic resources 460 

from diverse microbiomes and uncultured microbes therein, which is critical to 461 

understand and harness the microbiome sciences underlying environment 462 

(biogeochemistry, bio-restoration, and bioremediation)14 bioeconomy (bioenergy and 463 

bioresources)13, and human systems (food and health)20,46. 464 
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Methods 465 

Collection and expansion of the core dataset 466 

The core dataset used for FunGeneTyper model training is a set of experimentally-467 

confirmed reference sequences of target functional genes collected from literature 468 

and/or expert-curated databases. Because the core dataset does not always contain a 469 

sufficient number of experimentally-confirmed sequences (no more than 10 470 

sequences40) for every type or subtype of functional gene, it is expanded to retrieve 471 

more sequence data to improve and optimize the training of deep learning models. In 472 

the subsequent training method, which separates the extended categories of five or 473 

more sequences into the training set, verification set, and testing set at a ratio of 6:2:2, 474 

any categories that are unsuitable for inclusion in these five sequences are included in 475 

the training set. 476 

Construction of structured antibiotic resistance database (SARD) 477 

Core ARGs dataset 478 

To ensure the professionalism and accuracy of the training dataset, reference protein 479 

sequences of ARGs defined by homologs in the authoritative CARD were selected as 480 

core data for downstream model training. The sequences were clustered using CD-481 

HIT47 (v4.8.1) at an amino acid sequence identity of 100%, and all protein sequences 482 

and their ontological information were manually checked to ensure that each ARG 483 

was properly classified into class (type) and group (subtype) based on their 484 
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ontological information. Generally, class is equivalent to CARD’s ontology terms for 485 

antibiotic drug types, and group is equivalent to the specific sequence category. 486 

Macrolides, lincosamides, and streptogramins were combined into the MLS class. 487 

Based on the above procedures, a core dataset of 2972 non-redundant sequences 488 

representing 2972 groups of ARGs from 19 classes was obtained and used to build the 489 

SARD, which was used in subsequent analyses. 490 

Expanded ARGs dataset 491 

To ensure sufficient training data, the core dataset was expanded by retrieving close 492 

homologues of its ARGs from the Uniref100 database following strict screening 493 

criteria. Briefly, Diamond6 (version 2.0.15) was used to index the ARG sequences in 494 

the core dataset and to search for homologous sequences with an amino acid identity 495 

and coverage greater than or equal to 80%. The extracted candidate sequences were 496 

dereplicated and used as expanded datasets. 497 

Negative dataset 498 

To ensure that the model can learn sufficient features of non-target gene function, 499 

which is essential for robustly predicting target function directly from metagenomic 500 

data, we used the Swiss-Prot database, an expert-validated protein database, to 501 

generate a negative dataset for use as a non-ARG training set. First, protein sequences 502 

associated with antibiotic resistance in the Swiss-Prot database were screened out 503 

using the keywords KW-0046. The remaining sequences were aligned against the core 504 

ARGs dataset using Diamond software. Sequences with an alignment coverage 505 
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greater than 80% were extracted and categorized into four negative datasets based on 506 

their sequence alignment identity (ID): identity 0 (ID ≤0%), identity 30 (ID ≤30%), 507 

identity 50 (ID ≤50%), and identity 80 (ID ≤80%). 508 

Construction of structured virulence factor database (SVFD) 509 

Core VFGs dataset 510 

Virulence factor databases were collected from VFNet40. Zheng et al40 performed a 511 

detailed similarity search for known and potential VFGs in the complete bacterial 512 

genome downloaded from the NCBI server using VFanalyzer48, with Virulence Factor 513 

Database (VFDB) as the core database48. VFNet is an expanded virulence factor 514 

database that can be used directly in the training process. 515 

Negative dataset 516 

The non-VFG collection process is similar to that of the non-ARG collection process, 517 

except that KW-0800 is used to filter sequences from Swiss-Prot database (version: 518 

June 2021). 519 

Architecture of the FunGeneTyper model 520 

FunGeneTyper is a universal function classification framework composed of two core 521 

deep learning models, FunTrans and FunRep, which share similar structures but are 522 

designed to classify functional genes at the type and subtype levels, respectively. Both 523 

models are modular adapter-based architectures that leverage a few extra parameters 524 

to achieve efficient fine-tuning of large-scale PLMs. In detail, utilizing the state-of-525 
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the-art large-scale protein PLM esm-1b as a 33-layer transformer encoder framework 526 

as the foundation, we plug adapters in each transformer layer of the PLM, which are 527 

individual modular units that are used as newly introduced weights to be fine-tuned 528 

for specific functional tasks. Notably, ESM-1b, through self-supervised learning on 529 

the UniRef50 dataset, was shown to have a superior capacity to infer fundamental 530 

structural and functional characteristics of proteins from gene sequences49. 531 

The holistic architecture is depicted in Fig. 1a and consists of three main 532 

components: a multi-headed self-attention, a feed-forward network, and an adapter 533 

layer. Each sublayer contains layer normalization and skip connections to effectively 534 

train the neural network and avoid overfitting. It is worth noting that the bottleneck-535 

shaped adapter module consists of a down-project linear � � ����� � ���� 536 

where  � is embedding size of the Transformer model, �  is the dimension of the 537 

adapter and � � � , a ReLU activation followed by an up-projection � � ����� �538 

�
���. The adapter layer is formulated as follows: 539 

�� 	 �
������ ���

Adapter� 	 ���ReLU�������� � ��
 

where �� is the hidden feature at transformer layer �, � 	 1280, and � 	 256 in the 540 

actual training.  541 

Following the approach of BERT50, hidden features from the first token of the 542 

sequence of the last layer are extracted. In contrast to FunTrans, which adds a 543 

nonlinear layer for protein function classification after the representations of the last 544 
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layer, FunRep first computes the hidden features of experimentally-confirmed core 545 

sequences and then annotates PCGs by finding the sequence’s category with the 546 

closest Euclidean distance in the representation space.  547 

Here, we use a dual-tower architecture with shared parameters similar to 548 

Sentence-BERT51 for model training in order to place sequences with the same 549 

category closer in the representation space. FunRep is trained by constructing 550 

& ', ), � *  triples, where ' is the anchor sequence, )  is a positive example 551 

possessing the same category as ', and �is a negative example whose category is 552 

different from ' and the hidden representations they obtained through FunRep are
, +, 553 

and ,, respectively. The loss function adopts Triplet Loss, which is defined as follows:  554 

��--�
, +, ,� 	 �
.�/�
, +� ‐ /�
, ,�� � �
12,, 0� 

where / is the Euclidean distance between vectors, and �
12, is an adjustable 555 

threshold, set to 1.0 during model training. ARGTyper-FunRep and VFGTyper-556 

FunRep are classified at the group level with the same 21.76M learnable training 557 

parameters.  558 

Training settings  559 

All datasets are divided into training, validation and testing in a 6:2:2 ratio, and the 560 

five-fold cross-validation is performed. Adam optimizer with default parameters is 561 

used, dropout is set to 0.2, learning rate is 1e-5, and the early stopping method is 562 

adopted to prevent overfitting. The accuracy, precision, recall and F1-score are used to 563 
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evaluate the performance. As a result, the micro average of the F1-score also equals 564 

that of precision and recall, as well as the overall accuracy. Thus, we report only the 565 

overall accuracy for the micro average metrics while reporting precision, recall and 566 

F1-score for the macro average metrics. 567 

Evaluation of FunGeneTyper for the discovery of new functional genes  568 

To validate the capacity of FunGeneTyper models in discovering new functional 569 

genes, experimentally confirmed ARGs from functional metagenomics studies were 570 

retrieved from NCBI’s protein database (accession numbers in Dataset S8). After 571 

removing those ARGs showing perfect sequence match to the CARD database (or 572 

core dataset of ARGs), 297 experimentally confirmed ARG sequences of human gut35 573 

(n = 168), WWTPs11 (n = 77), and soil36-39 (n = 52) bacteria were retained for use in 574 

the downstream comparisons between FunGeneTyper and the well-established SA-575 

based (RGI7), HMM-based (Resfams18), and DL-based (DeepARG9 and HMD-ARG32) 576 

approaches in terms of classification performance of the new ARGs. In this study, 577 

four evaluation metrics including the accuracy, precision, recall and F1-score were 578 

computed to assess the multi-classification results performance using the following 579 

equations:  580 

'334
3� 	  
�) � ��

�) � 5) � 5� � ��
 

)�32-2�, 	  
�)

�) � 5)
 

6�3
�� 	  
�)

�) � 5�
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where TP is the number of true positives, TN is the number of true negatives, FP is the 581 

number of false positives, and FN is the number of false negatives. 582 

 To compare the ability of FunGeneTyper for discovering new VFGs, BoNTs-like 583 

sequences from the genome of Chryseobacterium piperi reported in a prior study 41 584 

was downloaded from NCBI’s database by accession number (Dataset S7). Then, 585 

VFGTyper was used to predict VFGs and their affiliated family from the BoNTs-like 586 

sequences, and the output results were compared with those by a conventional 587 

sequence alignment-based approach with Diamond6 (version 2.0.15) search of the 588 

BoNTs-like sequences against SVFD. 589 
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 780 

Fig. 1 FunGeneTyper model design and database construction workflows. a, Process 781 

of preparing a structured functional gene dataset (SFGD). The data set is divided into 782 

the training set, validation set and testing set in a 6:2:2 ratio. b, Two-level hierarchical 783 

structure of FunGeneTyper. c, Schematic representation of FunTrans model. d, 784 

Schematic representation of FunRep model.  785 
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 787 

Fig. 2. Performance evaluation of deep-learning FunGeneTyper models with 788 

structured Antibiotic Resistance Gene Database (SARD) for classification of 789 

ARGs. a, Evaluation of the influence of identity threshold used for selecting the 790 

negative dataset on model performance in the classification of ARGs. b, Performance 791 

metrics of ARGTyper developed based on FunGeneTyper models and SARD. c, 792 

Performance of all 19 classes as indicated by precision and recall of ARGs and non-793 

ARG classes. d, Visualization of feature learning at different layers during the 794 

ARGTyper training process. e, Confusion matrix for ARG class classification, 795 

confusion between true (y-axis) and predicted (x-axis) ARGs. f, Number of ARG 796 

protein sequences annotated incorrectly. MLS: Macrolides, Lincosamides and 797 

Streptogramines.  798 
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 799 

Fig. 3. Transfer learning of FunGeneTyper models on Structured Virulence 800 

Factor Gene Database (VFGD) and performance evaluation for VFG 801 

classification. a, Performance metrics of VFGTyper developed based on 802 

FunGeneTyper models and VFGD. b, Precision and Recall of VFGs family and non-803 

VFGs category. c, Visualization of feature learning at different layers in VFGs 804 

FunTrans training. VFGs: virulence factor genes. 805 
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 807 

Fig. 4. Schematic of the Adapter Sharing Community (ASC) in the framework of 808 

FunGeneTyper. The community developers are cyber de-centralized to train 809 

customizable structured databases and develop deep learning classifiers of various 810 

categories of functional genes, while users utilize the classifiers of interest to 811 

accelerate the discovery of genes which, in turn, provide new experimentally-812 

confirmed sequences to expand the structured databases and improve deep-learning 813 

models. 814 
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 816 

Fig. 5. Potential applications of FunGeneTyper to the discovery of microbiome 817 

resources for enhancing our environment, bioeconomy, and human systems. 818 

Metagenomic discovery of precious genetic and enzymatic resources facilitated by the 819 

Adapter Sharing Community of FunGeneTyper can contribute to follow-up 820 

microbiome, genetic and protein engineering researches for enhancing human health 821 

and eco-environment systems. 822 
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Table 1 Performance comparison between FunGeneTyper and other alternative bioinformatics tools for the discovery of experimentally 823 

confirmed new ARGs. In total, 297 experimentally confirmed ARGs sequences of human gut35 (n = 168), WWTPs11 (n = 77), and soil36-39 (n = 824 

52) bacteria were included in the comparative analysis which was performed under the default settings of each deep-learning (DL)-based, 825 

sequence alignment (SA)-based or Hidden Markov Model (HMM)-based tool recommended by the developers.  826 

Tools 
Human gut (n=168) WWTP (n=77) Soil (n=52) 

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score 

DL-based tools  
FunGeneTyper 0.8512  0.7500  0.6642  0.6948  0.7273  0.7500  0.5403  0.6072  0.8269  0.5926  0.5529  0.5445  

            
HMD-ARG 0.8452  0.6000  0.5230  0.5486  0.5714  0.7161  0.3877  0.4589  0.8077  0.6000  0.4560  0.5119  

            
DeepARG 0.3512  0.6250  0.4720  0.5149  0.1688  0.5714  0.1682  0.2591  0.2885  0.3750  0.1057  0.1607  

            
SA-based tools            

RGI  0.3452  0.6250  0.4596  0.5065  0.0390  0.3750  0.0349  0.0632  0.1538  0.1250  0.0357  0.0556  

            
HMM-based tools            

Resfams 0.8830  0.4545  0.3968  0.4195  0.6234  0.6250  0.4736  0.5224  0.8088  0.2727  0.2545  0.2630  

 827 
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