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Summary 

The number of strandings and unusual mortality events that involve marine mammals may 

have increased, and potential pathogens of the respiratory tract have been found during 

examination of individuals in many of these events. Given that the core microbiome is key 

to understand host-bacteria relationships and to identify their relevance for host health, we 

characterized the core respiratory microbiome of the Eastern North Pacific blue whale, 

Balaenoptera musculus, using blow samples collected by a small quadracopter drone. 16S 

rRNA gene high-throughput sequencing revealed 2,732 amplicon sequence variants (ASVs) 

of which 18 were shared by more than 50% of all blue whales and were considered as the 

core respiratory microbiome. Sixteen bacterial classes with a relative abundance higher than 

0.02% were identified in the blow samples, and eight of these were also found in the seawater 

samples. Nonetheless, blow samples harboured classes not commonly found in seawater, 

such as Acidiomicrobia, Actinobacteria, Campylobacteria, Erysipelotrichia, Leptospirae, 

Mollicutes, and Oxyphotobacteria. Only one whale presented a potential pathogen, 

Mycoplasma, associated with pulmonary pathology in mammals. Ours is the first study to 

characterize the respiratory microbiome of apparently healthy blue whales. The core 

microbiome identified here could be used as a baseline for future long-term studies on blue 

whale health.   

 

Key words: microbiome, blue whale, Balaenoptera musculus, respiratory tract, bacteria, 16S 

rRNA gene  
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Introduction 

The advent of modern technologies that allow identification of all bacteria present in 

environmental or clinical samples (Haegeman et al., 2013; Salter et al., 2014; Rhodes et al., 

2022) has led to a myriad of studies on the abundance, diversity and structure of the 

microbiome of different species (Nelson et al., 2015; Watkins et al., 2022). One of the 

reasons why it is paramount to increase our knowledge about the microbiome of a given 

species is because the microbial communities associated with a particular organ can impact 

the host’s physiology (Foster et al., 2017), and even play an important role in its health status 

(Zaura et al., 2009; Huse et al., 2012; Chaban et al., 2013; Huang et al., 2016; Bierlich et al., 

2018; Watkins et al., 2022). For example, respiratory infections can occur when opportunistic 

microorganisms, which are normally part of the microbiome of a healthy respiratory tract, 

preferentially flourish under certain conditions (Hilty et al., 2010; Dickson et al., 2016; 

Rhodes et al., 2022), and de novo infections may occur if individuals are exposed to 

pathogens. In turn, infections can trigger changes in the diversity and composition of the 

original microbial communities, an event known as dysbiosis (Gagliardi et al., 2018; Infante-

Villamil et al., 2020; Sehnal et al., 2021). Therefore, the composition of the microbiome may 

even be a better predictive marker of progression of a disease, than the simple presence of 

the specific pathogen commonly associated with the disease. This is why having knowledge 

about the microbiome composition and how it varies between healthy and sick animals could 

become an important tool with which to assess the health status of an individual (Shreiner et 

al., 2015).  
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When attempting to use the microbiome to help assess health status, one must distinguish 

between commensal, opportunistic and transient bacteria (Huang et al., 2016; Infante-

Villamil et al., 2020). To do this, it is necessary to identify the bacterial taxa that predominate 

in the community and that are shared by healthy individuals (Huse et al., 2012; The Human 

Microbiome Project Consortium; 2012; Willis et al., 2020), a concept known as the core 

microbiome, which plays an important role in maintaining the functional stability and 

homeostasis of a specific habitat (e.g., skin, gut, lungs) of the host (Shade and Handelsman, 

2012; Hernandez-Agreda et al., 2017; Thomas et al., 2017; Björk et al., 2018; Ross et al., 

2019). The definition of the core microbiome varies across authors, although they tend to 

overlap in many of the components of the microbial community (Risely, 2020). Different 

approaches to define the core microbiome have included the temporal stability (i.e. dynamic 

core, which refers to those bacterial taxa that are present across different stages of the host; 

Shade and Handelsman, 2012: Ozkan et al., 2017), functional level (i.e. functional core: 

which refers to the set of bacterial genes that are important for host metabolic processes; 

Dinsdale et al., 2008), ecological influence (i.e. ecological core: which refers to bacterial 

taxa that are important for shaping the structure of their communities; Coyte and Rakoff-

Nahoum, 2019; Coyte et al., 2019), host fitness (i.e. host-adapted core: which refers to those 

taxa whose presence increases host fitness; Shapira, 2016), and bacterial occupancy 

frequency (i.e. common core: which refers to the most widespread bacterial taxa that are 

shared by a considerable proportion of hosts; Huse et al., 2012; Nishida and Ochman, 2017; 

Bierlich et al., 2018; Ingala et al., 2018; Risely, 2020). 
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Regardless of the approach chosen, identifying the common core bacteriome requires setting 

the detection threshold (relative abundance) and the occurrence percentage (prevalence) of 

bacterial taxa (Astudillo-García et al., 2017), criteria which have varied widely among 

published studies (Risely, 2020), with common core annotations ranging from as low as 30% 

(e.g., Ainsworth et al., 2015) to 100% prevalences (e.g. Huse et al., 2012; Apprill et al., 2017; 

Hernandez-Agreda et al., 2017; Antwis et al., 2018), and detection thresholds varying from 

0.001% to 0.1% (Astudillo-García et al., 2017; Antwis et al., 2018). Given that biological 

justifications for such prevalence and thresholds values are rare (Risely, 2020), it is important 

to recognize the arbitrary aspect of the common core definition and to be cautious when 

interpreting the results. However, the microbiome common core tends to be robust despite 

varying definitions, particularly when samples from closely related individuals are analysed 

(Astudillo-García et al., 2017; Risely, 2020). 

 

Bacteria of the mammalian microbiome are found in composite communities (Lee and 

Mazmanian, 2010; Rhodes et al., 2022) whose diversity and abundance is determined by 

multiple interactions between species (Shade and Handelsman, 2012; Stubbendieck et al., 

2016). The cetacean microbiome has recently begun to be studied and important initial 

assessments of microbial diversity have been made for a few species (Venn-Watson et al., 

2008; Johnson et al., 2009; Lima et al., 2012; Bik et al., 2016; Soverini et al., 2016; Raverty 

et al., 2017; Rhodes et al., 2022). Among cetaceans, baleen whales play important roles in 

the marine ecosystem, as they are long-lived, contribute to the movement and storage of 

carbon (Pershing et al., 2010) and are considered sentinels of ocean health (Moore et al., 
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2019; Palmer et al., 2022). However, to date, little is known about the respiratory microbiome 

of baleen whales, and while some opportunistic pathogens of the respiratory tract have been 

described for live free-ranging individuals of a few baleen whale species (Acevedo-

Whitehouse et al., 2010), to the best of our knowledge, there is only one published study on 

the core respiratory microbiome of a baleen whale, the humpback whale, Megaptera 

novaeangliae (Apprill et al., 2017).  

 

In this study, we characterized the common core respiratory microbiome of the Eastern North 

Pacific blue whale, using next generation sequencing on 17 blow samples collected from 

adult blue whales by a non-invasive drone-based technique (Domínguez-Sánchez et al., 

2018) during the boreal winter months in the Gulf of California.  

 

Results 

A total of 20 samples were collected and analysed in this study. These samples included 17 

photo-identified blue whales and three technical controls (seawater, human sneeze, and PCR 

blank). Exhaled breath samples were collected from animals in the Gulf of California using 

a small drone. No adverse behaviour was detected before, during or after sampling (see 

Domínguez-Sánchez et al., 2018). We identified 379,813 sequences (of which 23,585 were 

unique sequences) corresponding to the sum of readings identified in the blow samples and 

technical controls, which ranged from 12,146 to 32,148, and from 12,646 to 20,471 

sequences, respectively. These corresponded to 2,732 amplicon sequence variants (ASVs). 

The sample coverage (i.e., the proportion of the total number of individuals in a community 
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that belong to the species represented in the sample; Chao and Chiu, 2016) exceeded 98% in 

all cases. Alpha diversity measures of all samples (blow and technical controls) (Fig. 1) 

revealed that species richness (S) ranged from 165 to 924 (mean = 453.35); Simpson’s index 

of diversity (D) ranged from 0.55 to 0.99 (mean = 0.95). Blow samples (S mean = 486.5, D 

mean = 0.94) were different from the controls (S mean = 265.6, D mean = 0.98) in those 

metrics (p = 0.0052, and p = 0.017; respectively). Beta diversity differed significantly 

between the blow samples and the technical control samples (PERMANOVA, F= 17.677, 

P>0.001). 

 

The phylogenetically diverse sequence assemblage of all samples (whale blows and technical 

controls) reached sixteen identified bacterial classes (Fig. 2). Some of these classes were 

shared between seawater and blow samples, including Bacilli, Gammaproteobacteria (the 

most abundant class in seawater, representing 20.9% of relative abundance), Clostridia, 

Negativicutes, and Verrucomicrobiae. However, blow samples harboured classes that are not 

commonly found in seawater, such as, Actinobacteria, Alphaproteobacteria, 

Campylobacteria, Erysipelotrichia, Leptospirae, and Mollicutes (Fig. 2). Acidiomicrobia 

and Oxyphotobacteria was identified only in two whales (Bm051 and Bm056) and two 

technical controls (ControlCADS and ControlWater). Only one whale blow (Bm057) had a 

high abundance of Mycoplasma spp. (34.4% of relative abundance).  

 

Eighteen ASVs were present in more than 50% of the blow samples (Fig. 3) and were 

considered as the common core microbiome of the respiratory tract of the blue whales in the 
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Gulf of California (Table 1). These common core members spanned ten bacterial families 

(Campylobacteraceae, Cardiobacteriaceae, Erysipelotrichiaceae, Flavobacteriaceae, 

Lachnospiraceae, Leptotrichiaceae, Moraxellaceae, Porphyromonadaceae, Prevotellaceae 

and Propionibacteriacea). Additionally, analysing changes in the pattern of the common 

central microbiome,  based on a range of prevalences  and detection threshold values, it was 

possible to identify that the common central microbiome of blue whale blow can vary from 

1166 ASV (5% prevalence and 0.001 detection threshold) to 1 ASV (80% prevalence and 

0.02 detection threshold), in all cases revealing Cutibacterium spp. as the genus with the 

highest prevalence in blue whale blow samples. This bacterium was also identified in two 

technical controls (ControlCADS and ControlLab), with a relative abundance of 14.8%, and 

3.6%, respectively. The most abundant genus identified in seawater was Herbaspirillum spp. 

This genus was detected in only three samples (Bm023, Bm043, and Bm059) with relative 

abundances of 6.1%, 8.3% and 8.7%, respectively, compared to 14.5% in the seawater 

sample. 

 

Discussion 

 

Recent studies of the human respiratory microbiome have shown that bacterial communities 

of the respiratory tract are key to maintaining respiratory health (Glendinning et al., 2017; 

Olufunmilola et al., 2020; Santacroce et al., 2020), not only in terms of their metabolic 

contribution (Van Treuren and Dodd, 2019), but also because they prevent the colonization 

of the epithelium by environmental pathogens (Man et al., 2017; Yamamoto et el., 2021). 
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Identifying the composition and abundance of the bacterial communities that constitute the 

microbiome of healthy individuals is an important step to establishing a baseline that will 

help identify bacteria associated with respiratory diseases (Lemon et al., 2010; Lima et al., 

2012), assess chronic states of suboptimal health (Mackenzie et al., 2017) and predict 

community changes due to perturbation (Shade and Handelsman, 2012; Yamamoto et al., 

2021).  

 

We aimed to characterize the respiratory microbiome of the blue whale, the planet’s largest 

extant animal. The results of our study demonstrated that the blow of this baleen whale 

species supports a diverse and rich community of bacteria. We identified 2,732 ASVs with 

high sample coverage and with varying levels of richness and relative abundance among 

samples, which could be an indicator of temporary fluctuations in the composition of the 

microbiome (Eloe-fadrosh and Rasko, 2013). Richness and relative abundance of 

microbiome varies among healthy animals (The Human Microbiome Project Consortium, 

2012) and this is determined mainly by bacterial immigration from the environment to the 

lungs during inhalation, bacterial elimination via mucociliary clearance, and a relatively 

small contribution of growth rate of each bacterial community (Dickson, et al., 2014; 

Dickson et al., 2016; Huffnagle et al., 2017). Evidently, we cannot rule out that the observed 

variation was also related to differences in the volume of blow collected, which due to the 

nature of our collection technique, could not be standardized. On one hand, whales are likely 

to differ in the amount of exhaled breath condensate exhaled, depending on the whale’s size, 

and the depth and duration of the dive. Furthermore, although drones are safe, minimally 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 29, 2022. ; https://doi.org/10.1101/2022.12.29.522252doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.29.522252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Core respiratory microbiome of the blue whale, Balaenoptera musculus 

Domínguez-Sánchez, C, Álvarez-Martínez RC, Gendron D, Acevedo-Whitehouse K 

 

 

 10

invasive, and seem to not affect the whales during blow collection (Domínguez-Sánchez et 

al., 2018), inherent limitations such as flight height and different wind conditions, could 

potentially result in different volumes of blow being collected (Apprill et al., 2017). 

 

There are various indexes that are used to estimate the diversity of the microbial 

communities. In our study we used Simpson’s diversity index because it considers both 

richness and evenness (Johnson and Burnet, 2016) and was previously identified as one of 

the most accurate estimators of diversity in an unknown bacterial community (Haegeman et 

al., 2013; Johnson and Burnet, 2016). In our study, Simpson’s diversity index averaged 0.94 

(minimum = 0.55, maximum = 0.98), demonstrating high bacterial diversity in the blow of 

the whales that we sampled. Some studies have shown that the microbiome of a healthy 

animal tends to have a high diversity, which presumably allows it to tolerate or counteract 

changes that may occur due to extrinsic challenges (Chan et al., 2013; Gibson et al., 2019; 

Jiménez et al., 2019). Bacterial diversity was high in nearly all of the blue whale blow 

samples, and the composition of the microbiome was dominated mainly by members of the 

phyla Actinobacteria, Firmicutes and Proteobacteria, which have been reported as major 

components of the healthy respiratory microbiome of other mammals (Chaban et al., 2013; 

Dickson et al., 2016, Rhodes et al., 2022). Simpson´s diversity index was similar to that 

reported for humpback whale blow (Apprill et al., 2017) and bottlenose dolphin blowhole 

(Johnson et al., 2009; Bik et al., 2016). It is likely that these results are evidence that the 

respiratory microbiome diversity (based on Simpson´s index) remains preserved among 

cetaceans. However, the blue whale blow had nearly twice the taxonomic richness than 
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reported for humpback whales. In our samples, the percentage of "others" (sum of bacteria 

that does not reach the detection threshold of 0.02%) was higher than in humpback whales 

(see Apprill et al., 2017). Based on this result, we suggest that the microbiome of the blue 

whale respiratory system might be more complex than that of the humpback whale. At this 

stage we can only speculate about the reasons that could give rise to such a difference. This 

may be due to having used DADA2 for resolving ASVs rather than minimum entropy 

decomposition (MEDs; Eren et al., 2015), which were used in the previous study, given that 

although similar in what they report, ASVs are better at removing erroneous sequences 

(Callahan et al., 2016; Ahlgren et al., 2019). As the algorithm DADA2 allows for the 

independent analysis or grouping of samples, we conducted pooled analyses to increase 

sensitivity to detect ASVs that could be present at very low frequencies in multiple samples 

(Callahan et al., 2016). This approach could explain why a higher percentage (mean = 

30.91%) of “rare bacterial biosphere” (Pedrós-Alió, 2012) was identified in our study than in 

the humpback whale study (see Apprill et al., 2017). This “rare bacterial biosphere”, formed 

by bacteria that are present at low relative abundances are particularly important for dealing 

with dysbiosis, as they could be considered as a seed bank of genetic resources that can lead 

the restoration of the core microbiome (Pedrós-Alió, 2012; Skopina et al., 2016; Jousset et 

al., 2017). A more complex respiratory microbial community is likely to be beneficial to the 

whales, given that microbiomes with higher richness of species have more synergistic 

interactions between bacterial taxa, that improve the functioning of the ecosystem (Bell et 

al., 2005). It is worth mentioning that most studies published to date do not consider the 

bacterial taxa found in low abundances to be relevant; however, these small populations are 
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now thought to play an important role for the functioning of the ecosystem (Willis et al., 

2017) and host health (Guss et al., 2011; Jouseet et al., 2017). It has been demonstrated that 

high diversity of low-abundance bacteria is correlated with less severe bacterial infections in 

human lungs (Van der Gast et al., 2011). 

 

Eight bacterial phyla were identified in the blow samples, and some of these were also found 

in the seawater samples. This is unsurprising, as there is likely to be some seawater carried 

over when the whales exhale. However, the blow samples harboured ASVs belonging to 

bacterial classes that were not found in the seawater technical control. These bacteria 

included genera such as Actinobacteria, Alphaproteobacteria, Campylobacteria, 

Erysipelotrichia, Leptospirae, and Mollicutes. This shows that despite potential carry over 

of sea water to the blow during exhalation, bacterial communities of the blue whale 

respiratory tract are different than those of seawater.  Having found Acidiomicrobia and 

Oxyphotobacteria in two whales (Bm051 and Bm056) and two technical controls 

(ControlCADS and ControlWater), may be suggestive of contamination. Nevertheless, is 

interesting that those bacterial classes were not found in seawater (ControlWater) as they are 

bacteria reported in marine algae and corals (Hernadez-Agreda et al., 2017; Pearman et al., 

2019; Garcia-Pichel et al., 2020). 

 

Eighteen ASVs belonging to the families Campylobacteraceae, Cardiobacteriaceae, 

Erysipelotrichiaceae, Flavobacteriaceae, Lachnospiraceae, Leptotrichiaceae, 

Moraxellaceae, Porphyromonadaceae, Prevotellaceae and Propionibacteriacea; were 
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shared in more than a half of the blue whale’s samples and we considered them to be the 

common core respiratory microbiome. It appears that interindividual variability of the blue 

whales’ respiratory microbiome is higher compared to that of the humpback whale, as 25 

distinct bacteria were found to be shared among all the animals sampled (Apprill et al., 2017). 

One bacterial genus (Porphyromonas) detected here was previously found in humpback 

whale skin (Apprill et al., 2014) and humpback whale blow (Apprill et al., 2017). 

Porphyromonas and Fusobacterium have been described as bacteria of the core pulmonary 

microbiome in humans (Erb-Downward et al., 2011; Charlson et al., 2012; Huang et al., 

2013; Morris et al., 2013; Cui et al., 2014). These bacteria have also been reported 

sporadically and in low abundance in the respiratory tract of sheep (Glendinning et al., 2016). 

We also identified Moraxella spp. in the blue whale blow. This bacterial genus is present in 

the humpback whale blow (Apprill et al. 2017) and is commonly found in the lungs of healthy 

dogs (Tress et al., 2017), although it has also been reported in humans (Yi et al., 2014) and 

cattle with respiratory diseases (Lima et al., 2016). The bacteria identified in the blue whale 

respiratory tract are similar to those reported in other mammals, and some of them are known 

to cause disease. At this stage we are unable to unequivocally establish that the health of the 

whales sampled was not compromised; however, given that they were present in most of the 

whales, we can assume that they are part of their respiratory microbiome, and that they are 

likely to reflect a healthy respiratory tract.  

 

Interestingly, three bacterial genera (Staphylococcus, Propinebacterium, Corinebacterium) 

that were identified in the blue whale blow are associated with the skin of humans and other 
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terrestrial mammals (Grice and Segre, 2011; Byrd et al., 2018; Worthing et al., 2018) and 

were recently identified as part of the skin microbiota of captive bottlenose dolphins 

(Tursiops truncatus), killer whales, and free-ranging humpback whales (Apprill et al., 2014; 

Chiarello et al., 2017; Hooper et al., 2018; Rhodes et al., 2022).  It is likely that their presence 

in the blow samples indicates that they colonize the blowhole epithelial lining of blue whales 

and be expelled forcefully during exhalation (Apprill et al., 2017), leading to their presence 

in the blow samples. 

 

An unexpected finding was Herbaspirillum spp., a bacterial genus that tends to be found in 

soil and freshwater environments (Dobritsa et al., 2010), and that has also been identified as 

a contaminant in 16S rRNA gene sequencing, most often during sample preparation, as it has 

been isolated from deionized water (Grahn et al., 2003; Mohammadi et al., 2005; Bohus et 

al., 2011; Kéki et al., 2013). Nonetheless, this was the most abundant genus identified in 

seawater and while it was detected in three blow samples (Bm023, Bm043, and Bm059), the 

relative abundance of this bacterial genus was very low. Using SourceTracker it was possible 

to verify that there was no contamination of Herbaspirillum spp. proceeding from the 

reagents in the laboratory during the 16S rRNA sequencing. Also, this genus is unlikely to 

have been detected due to procedural contamination because in the other blow samples 

Herbaspirillum spp. was not detected. Thus, the presence of this genera in the three samples 

is likely to reflect contamination with seawater. 
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In our study, we were able to detect Mycoplasma spp. (34.4% relative abundance) in a single 

blue whale (sample Bm057). This genus, along with 22 other potentially pathogenic bacteria, 

has been identified in killer whales (Raverty et al., 2017; Rhodes et al., 2022). Having 

detected only one potentially pathogenic bacterial genus in this study could mean that blue 

whales are not commonly in contact with coastal areas where spillover of pathogens from 

humans or domestic animals could occur, unlike killer whales that live in areas where there 

is a large number of environmental stressors of human origin (Raverty et al., 2017). However, 

a previous study reported Entamoeba spp., Giardia spp., and Balantidium spp., most likely 

from sewage discharge, in faeces of blue whales from this region (Pacheco-Armenta 2019), 

so it is plausible that rather than limited exposure, the presence of Mycoplasma in one 

individual reflects a suboptimal immune status or an underlying upper or lower respiratory 

condition, which could allow respiratory colonization of this pathogen. The presence of 

Mycoplasma spp. could be indicative of a transient bloom of this bacteria within the 

respiratory tract, or of an active respiratory infection, because these bacteria are typically 

present in the respiratory tract at a low abundance, but during active pathological processes, 

such as pneumonia and other respiratory conditions, their relative abundance increases (Dai 

et al., 2018). Indeed, this opportunistic bacterial genera has been implicated in respiratory 

diseases of humans (Chandra et al., 2015; Prince et al., 2018; Qu et al., 2018; Li et al., 2019) 

and other mammals (Cai et al., 2019; Choi et al., 2019; Tao et al., 2019). In marine mammals, 

Mycoplasma has been related to signs of respiratory disease and has been detected in the 

lungs of stranded harbour porpoises (Phocoena phocoena), Sowerby’s beaked whale 

(Mesoplodon bidens) (Foster et al., 2011) and California sea lions (Zalophus californianus) 
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(Haulena et al., 2013) during unusual mortality events. However, the role of Mycoplasma 

during episodes of disease in cetaceans, their host specificity, their diversity, and their 

association to cetacean stranding events, remains poorly understood (Foster et al., 2011; 

Rhodes et al., 2022). It is certainly possible that the whale from which sample Bm057 was 

collected, was experiencing a respiratory infection that involved Mycoplasma. Gaining 

clinical information that would allow us to establish this beyond any doubt is not feasible, 

but we propose that future studies consider using the presence of Mycoplasma in the blow as 

an indicator of suboptimal respiratory health.  

 

It is important to note that the respiratory microbiome of the blue whales analysed in our 

study harboured bacteria that are commonly found in the oropharynx, nasopharynx and the 

mouth of different terrestrial mammals (German and Palmer, 2006; Guglielmetti et al., 2010) 

in which those anatomical structures are interconnected in the upper respiratory tract. In 

contrast, cetaceans have no anatomical connection between the nasopharynx and the mouth 

(Apprill et al., 2017; Smith et al., 2017). This finding constitutes strong evidence that the 

core microbiome that we have described belongs to the respiratory system of blue whales 

and does not include their oral bacteria. 

 

Given the current state of our oceans, which face habitat degradation, pollution, and other 

anthropogenic stressors (Melcón et al., 2012; Mouton and Botha, 2012; Palmer et al., 2022), 

suboptimal immune responses can occur in top-predator marine animals (Acevedo-

Whitehouse and Duffus, 2009; Van Bressem et al., 2009; Hall et al., 2018), in turn increasing 
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the risk of diseases in their populations (e.g. Sós et al., 2013; Van Bressem et al., 2014; 

Reisfeld et al., 2019). In this sense, it is important to strengthen and expand efforts for health 

assessment of their populations (Gulland and Hall, 2007), efforts which to date include the 

determination of body condition by photogrammetry and measures of blubber thickness (e.g. 

Pettis et al., 2004; Konishi et al., 2008; Bradford et al., 2012; Durban et al., 2016), evaluation 

of skin integrity (Van Bressem et al., 2015), and quantitation of specific gene transcripts in 

the skin (Simond et al., 2019). In order to use the respiratory microbiome as a tool to help 

assess the health of large whales (Apprill et al., 2017; Rhodes et al., 2022), it is imperative 

to first increase our understanding of the core microbiome of the respiratory tract of different 

species, which is what our study has done for the Eastern North Pacific blue whale.   

 

Conclusion 

Ours is the first study to characterize the microbiome of the respiratory tract in blue whales. 

We found that the blue whales sampled in the Gulf of California harboured a similar 

respiratory bacterial composition among individuals. Additionally, our richness and relative 

abundance results are comparable with those reported in the microbiome of healthy animals 

and humans, so we propose that the core respiratory microbiome identified here could be 

used as a baseline for future long-term studies aimed at identifying shifts in the 

composition and co-occurrence patterns of the respiratory microbiome and identify ASVs 

related to changes in body condition, as a proxy for poor health condition.   
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Materials and Methods 

Sample collection. Using a small Phantom 3® quadracopter drone (DJI Innovations, China) 

with floaters and sterile Petri dishes (Domínguez-Sánchez et al., 2018), we collected 17 blow 

samples from 17 individual blue whales sampled between February and March of 2016 and 

2017 in Loreto Bay National Park (25°51’51’’N, 111°07’18’’O) within the Gulf of 

California, Mexico. The number of sampled whales represents 17% of the estimated 100 blue 

whales that reside during winter/spring in the southwestern Gulf of California (mark-

recapture data from 1994-2006; Ugalde de la Cruz, 2006; SEMARNAT, 2018).  

Each whale was photo-identified prior to collecting the samples (Gendron and Ugalde de la 

Cruz, 2012). The approach to the whale with the drone was made from the caudal fin heading 

towards the head to minimize disturbance and sampling was conducted at a height between 

3 to 4 m above the blowhole (Domínguez-Sánchez et al., 2018).  

For each sample, the blow droplets were swabbed directly from the Petri dish using sterile 

cotton-tipped swabs. These were then transferred to a sterile 1.5 mL cryogenic microtube 

containing 500 µL of 96% molecular grade ethanol and kept frozen in a liquid nitrogen 

container until processing.  

In addition to the blow samples, we collected environmental and technical controls. For this, 

we collected 1 ml of seawater at a depth of 0.10 m in the same location where we sampled 

the whales’ blow. Two additional types of controls were collected but only one was used. 

Namely, we flew the drone with a sterile Petri dish attached and maintained the same altitude 

over the water and the same distance to the boat as we did when collecting the blow samples, 

but this was done in absence of any whale (this control was not included in this study because 
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no bacterial DNA was detected in the sample). The second technical control was a human 

sneeze (ControlCADS), sampled from the person who collected and processed the samples.  

 

DNA extraction, PCR amplification and sequencing. DNA was isolated from the swabs, 

seawater and environmental samples using the QIAamp ® DNA Mini Kit (QIAGEN, 

Germany). The primers used for sequencing the 16SrRNA V3 and V4 regions were 341F (5'- 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-[CCTACGGGNGGCWGCAG]) 

and 785R (5' GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-

[GACTACHVGGGTATCTAATCC]), which amplified a single product of approximately 

460 bp (Thijs et al., 2017). The Illumina overhang adapter sequences for the forward and 

reverse primers are the first 33 and 34 bp, respectively. The PCR program used an initial 

denaturation step at 95°C for 3 min; 25 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 

30s; and a final extension step at 72°C for 5 min. Each 25 µL-reaction contained 12.5 ng of 

extracted DNA, 5 µM of barcoded primers and 2x KAPA HiFi HotStart Ready Mix 

(KAPABIOSYSTEM, Cape Town, South Africa). We included one internal control (PCR 

blank) named ControlLab, as technical control. 1 µl of each sample was run on a 2100 

Bioanalyzer (Agilent Technologies, CA, USA) with an Agilent DNA 1000 chip (Agilent 

Technologies, CA, USA) to verify amplicon size. AMPure XP beads (New England BioLabs, 

USA) were used to remove unused primers and primer dimer species. The PCR products 

were pooled into two libraries of equal concentrations. Amplicons were sequenced over 2- 

by 250-bp MiSeq at the Unit of Sequencing and Identification of Polymorphisms of the 
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National Institute of Genomic Medicine (Instituto Nacional de Medicina Genómica, Unidad 

de Secuenciación e Identificación de Polimorfismos) in Mexico. 

 

16S rRNA Sequence data processing.  Quality control of the 379,813 raw sequences 

obtained was performed using the FASTQC pipeline available at the Galaxy web platform 

(www.usegalaxy.com) according to the creators’ instructions (Afgan et al., 2018). This 

allowed us to obtain a quick impression of the data and avoid downstream problems. We 

used the Divisive Amplicon Denoising Algorithm 2 (dada2, v.1.9.1) (Callahan et al., 2016), 

to infer exact amplicon sequence variants (ASVs) instead of the rough and less precise 16S 

rRNA OTU clustering approach (Callahan et al., 2017; Dahan et al., 2018) that groups the 

sequences with a 97% identity (Edgar, 2013; Edgar, 2017). Firstly, we filtered and trimmed 

the raw sequences (the quality score “Q” threshold to filter sequences was set at 25). Next, 

we combined all identical reads into unique sequences, determining the abundance that 

corresponded to the number of reads of each unique sequence. The forward and reverse reads 

for each sample were combined into a single merged contig sequence. After building the 

ASV table and removing chimeras (detected using self-referencing), sequences were 

classified and identified with DECIPHER (v.2.0) (Wright, 2016), using the SILVA rRNA 

sequence database (v.132) as the taxa reference (Quast et al., 2013). We estimated the 

sampling coverage in blow samples and technical controls using Good´s coverage estimator 

(Zhauan 2017) with the QsRutils package (v.0.1.4). Finally, we classified and used phyloseq 

(v.1.25.0) (McMurdie and Holmes, 2013) to remove any sequence belonging to archaea, 

chloroplasts, and eukarya, as well as unknown sequences, and mitochondrial sequences. 
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Respiratory microbiome analysis. To identify the common core of the respiratory 

microbiome, we used the ASVs, and taxonomy table generated with the dada2 pipeline. 

Using phyloseq (v.1.25.0) (McMurdie and Holmes, 2013), we identified the distribution of 

reads counts from all the samples, as well as sampling coverage, plot rarefaction curves and 

the stacked barplot of Phyla to get a sense of the community composition in the samples. To 

achieve this, we pruned out low abundance taxa and only included those Phyla that 

contributed more than 0.02% of the relative abundance of each sample. Using microbiome 

(v.1.3.1) (Lahti et al., 2017) we identified the common core microbiome (threshold detection 

= 0.2/100, prevalence = 50/100). We selected those values because we wanted a more 

conservative approach and did not want to take into account “rare bacteria” in the analysis. 

In addition, we analysed how the pattern of the common central microbiome changed based 

on a sliding prevalence range (5% - 100%) and four detection threshold values (0.001, 0.002, 

0.01, and 0.02). With these criteria, a linear model could be built to determine the number of 

ASVs detected given a detection threshold value for a specific prevalence. We calculated 

alpha diversity: richness (S) and Simpson´s diversity index (D)  with vegan (v.2.5.4) 

(Oksanen et al., 2019). Alpha diversity measures were tested for deviations from normality 

with a Shapiro-Wilk test. To examine differences in alpha diversity metrics between the blow 

samples and controls we performed a Wilcoxon rank sum test. We also used vegan (v.2.5.4) 

to run the permutational multivariate ANOVA (PERMANOVA) on unweighted Unifrac 

distances to test for differences between the microbiome composition of blue whale blow 

samples and technical controls. We used SourceTracker (Knights et al., 2013) to estimate the 
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proportion of the bacterial community in the blue whales’ blows samples that comes from 

the set of technical controls. All graphs were rendered with ggplot2 (Wickham, 2016). 

 

Ethics approval and consent to participate. This study complied with the 

recommendations and methods for approaching blue whales provided by Mexican legislation 

(NOM-059-SEMARNAT-2010). All procedures were approved by the Bioethics committee 

of the Universidad Autónoma de Queretaro (Mexico) and sampling was conducted under 

permits SGPA/DGVS/00255/16 and SGPA/DGVS/01832/17 issued by the Dirección 

General de Vida Silvestre to D. Gendron.  
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Table 1. Taxonomic classification of the eighteen ASVs that make up the core microbiome 

of the respiratory tract of the blue whale.  

Domain Phylum Class Order Family Genus Species 

Bacteria Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae Cutibacterium unclassified 

Bacteria Fusobacteria Fusobacteriia Fusobacteriales Leptotrichiaceae Oceanivirga unclassified 

Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Dielma unclassified 

Bacteria Fusobacteria Fusobacteriia Fusobacteriales Leptotrichiaceae Oceanivirga unclassified 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Moraxella unclassified 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Moraxella unclassified 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Moraxella unclassified 

Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas unclassified 

Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Alloprevotella unclassified 

Bacteria Fusobacteria Fusobacteriia Fusobacteriales Leptotrichiaceae unclassified unclassified 

Bacteria Fusobacteria Fusobacteriia Fusobacteriales Leptotrichiaceae Oceanivirga unclassified 

Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Arcobacter unclassified 

Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas unclassified 

Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Natranaerovirga unclassified 

Bacteria Proteobacteria Gammaproteobacteria Cardiobacteriales Cardiobacteriaceae Suttonella unclassified 

Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas unclassified 

Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Natranaerovirga unclassified 

Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Tenacibaculum unclassified 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 29, 2022. ; https://doi.org/10.1101/2022.12.29.522252doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.29.522252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Core respiratory microbiome of the blue whale, Balaenoptera musculus 

Domínguez-Sánchez, C, Álvarez-Martínez RC, Gendron D, Acevedo-Whitehouse K 

 

 

 42

 

 

 

Figure 1. Bacterial alpha diversity measures in blue whale blow samples and technical 

controls. 
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Figure 2. The phylogenetically diverse assemblage of all samples (whale blows and 

technical controls). Plot shows the sixteen identified bacterial classes, unclassified, and 

“others” (sum of bacteria that did not reach the detection threshold of 0.02%). 
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Figure 3. Relative abundance of bacterial classes that form the core respiratory microbiome 

of the blue whale (Eighteen ASVs present in more than 50% of the blow samples). 
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