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Abstract 

Polygenic risk scores built from multi-ancestry genome-wide association studies (GWAS, 

PRSmulti) have the potential to improve PRS accuracy and generalizability across populations. To 

provide the best practice to leverage the increasing diversity of genomic studies, we used large-

scale simulated and empirical data to investigate how ancestry composition, trait-specific genetic 

architecture, and PRS methodology affect the performance of PRSmulti as compared to PRS 

constructed from single-ancestry GWAS (PRSsingle). In both simulations on 6 various scenarios 

and empirical analyses on 17 anthropometric and blood panel traits, we showed that the accuracy 

of PRSmulti overall outperformed PRSsingle in the understudied target populations, except for a few 

comparisons where the understudied population only accounted for a very small proportion of the 

multi-ancestry GWAS. Further, using substantially fewer samples for traits such as height and 

mean corpuscular volume from Biobank Japan (BBJ) may achieve comparable accuracies to 

using 320,000 European (EUR) individuals from UK Biobank (UKBB). Finally, we find that 

incorporating PRS based on local ancestry-informed GWAS and large-scale EUR-based PRS 

improved predictive performance than using EUR-based PRS alone in understudied African 

(AFR) population, especially for less polygenic traits when there are variants with large ancestry-

specific effects. Overall, our study provides insights into how ancestry composition and genetic 

architecture impact polygenic prediction across populations, particularly across imbalanced 

sample sizes. Our work also highlights the need for increasing diversity in genetic studies to 

achieve equitable PRS performance across ancestral populations and provides practical 

guidance on developing PRS from multiple resources. 
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Introduction 

Polygenic risk scores (PRS) are useful tools for approximating the cumulative genetic 

susceptibility to complex traits and diseases. PRS are typically calculated as the weighted sum of 

the number of risk variants, with weights based on their association in genome-wide association 

studies (GWAS). Using well-powered GWAS and advanced statistical methodology, PRS have 

shown early promise in predicting traits and disease risks, with accuracies comparable to 

monogenic variants and traditional clinical risk factors1–5. However, current GWAS have vast 

Eurocentric study biases, resulting in attenuated PRS accuracies in other populations, with 

performance declining with increasing genetic distance between the discovery and target 

populations6–9. Such accuracy differences could be attributable to various factors, such as 

demographic history, environment, phenotypic heterogeneity, and between-ancestry linkage 

disequilibrium (LD) and/or minor allele frequency (MAF) differences6,7. The current reduced 

performance of PRS across populations impedes their equitable applications and may even 

exacerbate health disparities especially for minority populations that tend to experience the 

greatest burden of disease10,11.  

 

To achieve the most accurate and generalizable PRS, we would require access to large-scale 

and diverse GWAS, especially with representation that matches the specific target population. 

However, GWAS in European (EUR) populations are currently much larger than in other 

populations, and although efforts are underway to rectify these gaps, it will be many years before 

the global population is fully represented. Helpfully, studies have shown that using GWAS data 

with even a small proportion of non-European individuals has the potential to improve the 

predictive accuracy of PRS in underrepresented populations12–14. This could largely be due to the 

fact that common variants explain a large proportion of heritable variation and that causal variants 

underlying complex traits and diseases are expected to be largely shared across ancestries7,15–

17. With the increasing availability and scale of genomic data from underrepresented and 

ancestrally diverse populations, we are especially interested in how this greater diversity could 

improve the generalizability of PRS.  

 

In particular, recently admixed populations consisting of chromosomal segments of mosaic 

ancestries, often systematically excluded from current genomic studies due to their complicated 

population structure18,19, could provide unique opportunities to develop more generalizable PRS 

as their genetic effects are estimated in more consistent environments, reducing confounding 

relative to estimates across ancestry groups. Further, deep phenotyping is generally lacking or 

inconsistently measured in diverse populations across continents, but phenotypes can be 

measured more comparably in recently admixed populations. Recent methodological 

advancements in local ancestry inference and association testing have enabled us to conduct 

ancestry-specific GWAS in admixed populations20–22. It remains unclear how PRS based on such 

local ancestry-informed summary statistics perform in underrepresented populations and how to 

integrate them with available large-scale EUR-based PRS. 

 

Recently developed statistical methodologies leverage the increasing diversity of GWAS data to 

improve PRS portability,  including PolyPred23, PRS-CSx24 and CT-SLEB25. However, the effect 
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of genetic architecture, ancestry composition of GWAS discovery cohorts, and PRS construction 

methodologies on cross-ancestry predictive accuracy remains largely unclear. For example, a 

recent study found no increase in accuracy when meta-analyzing GWAS from a relatively small 

Ugandan cohort with the large EUR-based data from UK Biobank (UKBB)12. Furthermore, 

theoretical frameworks for approximating expected PRS accuracy from multi-ancestry GWAS are 

lacking. Current theoretical calculations for PRS accuracy implicitly assume homogeneous-

ancestry discovery samples26,27, leaving out factors that are expected to play a role with multi-

ancestry cohorts. Such factors may include between-ancestry LD and MAF differences, between-

ancestry genetic correlation, and heritability and sample sizes from different ancestries. 

 

To provide insights into those issues, we first explored the impact of ancestry compositions in 

discovery GWAS on predictive accuracy of PRS using large-scale population genetic simulations 

and real genomic data from the BioBank Japan (BBJ)28 and UKBB. The overall study design is 

shown in Figure S1. In what follows, we use the expression single-ancestry GWAS to refer to a 

GWAS including only one ancestry; we use multi-ancestry GWAS to refer to those including two 

or more ancestries. We meta-analyzed EUR GWAS and GWAS in other minority populations 

(Minor GWAS) with different ratios of sample sizes to mimic multi-ancestry GWAS with varying 

ancestry composition. Specifically, we focused on Asians (EAS) and Africans (AFR) minority 

populations in this study. We compared PRS performance constructed from single-ancestry 

GWAS (PRSsingle) and multi-ancestry GWAS (PRSmulti), respectively. We find that PRSmulti 

generally outperforms PRSsingle (mostly large-scale EUR GWAS-derived PRS), but that 

performance depends on trait-specific genetic architecture and ancestry composition of discovery 

GWAS. As admixed populations are understudied yet disproportionately yield novel genetic 

findings29, we further conducted local ancestry inference to explore whether, how, and to what 

extent PRS generalizability can be improved using GWAS discovery data from AFR-EUR 

admixed individuals. We find that PRS constructed from local ancestry-informed GWAS can 

improve PRS performance in the underrepresented AFR population for those less polygenic traits 

with large-effect ancestry-enriched variants. Overall, we show the PRS predictive performance is 

usually but not always improved using multi-ancestry GWAS as compared to using single-

ancestry GWAS, which is highly dependent on ancestry-composition, trait specific genetic 

architecture, and PRS construction methods. 

 

Results 

Evaluating the effects of imbalanced sample sizes across ancestries on PRS 

accuracy through simulations 

We simulated genotypes using HapGen2 and phenotypes according to six different scenarios 

with varying trait heritability (ℎ2 = 0.03, 0.05) and number of causal variants (𝑀𝑐  = 100, 500, 1000), 

such that the polygenicity ranged from ~0.1% to ~1%. We assumed that the causal variants and 

their effect sizes are shared across ancestries (i.e., cross-ancestry genetic correlation is 1). To 

mimic the imperfect tagging of causal variants by genotyped or imputed variants, we excluded 

the causal variants when performing GWAS. As for single-ancestry discovery GWAS, we ran 
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GWAS or meta-analyzed GWAS in different numbers of bins, varying from 1 to 52 in each 

ancestry. As for multi-ancestry discovery GWAS, we meta-analyzed EUR GWAS and Minor 

GWAS (EAS or AFR GWAS) to vary the ancestry composition. We used different numbers of bins 

from EUR GWAS (from 4 to 52 with 4 increments, each bin with 10,000). We also varied the 

contribution from minority populations, ranging from 1 to 52 bins from EAS or AFR GWAS. We 

constructed PRS by P+T using varying p-value thresholds and reported the accuracy based on 

the optimal threshold fine-tuned in the validation cohort. The simulation setup is shown in detail 

in Figure S1 and Methods. 

PRS predictive accuracy improved with more individuals from target populations included 

in the multi-ancestry GWAS but varying with genetic architecture 

We first explored how different LD reference panels impact PRS predictive accuracy of P+T when 

the ancestry composition of the multi-ancestry GWAS varied. Specifically, we used three sets of 

LD reference panels, including two single-ancestry datasets (N=10,000) that matched the 

ancestry composition of each population contributing to the discovery GWAS, and one combined 

dataset (N=10,000) with individuals proportional to the ancestry composition of the discovery 

GWAS. Overall, we observed that the impact of the LD reference panel was subtle for more 

polygenic traits compared to less polygenic ones (Figure S2 and Table S1). When using single-

ancestry LD reference panels, we found that using the one matching the majority ancestry in the 

discovery GWAS provided better predictive performance. Furthermore, we found that such single-

ancestry LD reference panels generally provided comparable predictive accuracy to the 

proportional combined ancestry panel, especially when the ancestry composition was 

increasingly disproportionate. In particular, the proportional combined ancestry LD panel did not 

yield significantly better PRS accuracy compared to the optimal single-ancestry LD panel, and 

minor differences were smallest for the most polygenic scenarios. In our simulation setup, the 

proportion of understudied populations could go above 50% although this was always not the 

case in current multi-ancestry GWAS. We hereafter will report the results based on the estimates 

using the combined LD reference panel to avoid arbitrariness when ancestry proportions for multi-

ancestry GWAS are similar.  

 

We observed consistent upward trends of predictive accuracy in the understudied target 

populations with increasing target-ancestry matched samples included in discovery GWAS 

(Figure S2). Such improvement varied between different genetic architectures. Specifically, we 

found the accuracy reached a plateau sooner in smaller numbers of bins from minority populations 

for less polygenic traits with larger per-variant explained variance when compared to more 

polygenic traits with lower variance explained for each variant.  

  

PRS predictive accuracy is higher with multi-ancestry GWAS than with single-ancestry 

GWAS 

When constructed PRS using single-ancestry GWAS, we found that using more ancestry-

matched GWAS outperformed other discovery populations (Figure S3). Compared to using EUR 

GWAS, the benefit of using ancestry-matched GWAS was generally more obvious for more 
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polygenic traits and larger GWAS. Relative to PRS accuracy attained using EUR GWAS only, we 

observed substantial accuracy improvements in the target population by including more 

individuals from the target ancestry in multi-ancestry GWAS; this trend was clearer for more 

polygenic traits (Figure 1 and Figure S4). However, we did not consistently observe such 

accuracy gains for the majority EUR population, or the other understudied ancestry not included 

in the multi-ancestry discovery GWAS. In our simulations but unlike in most GWAS, populations 

typically understudied in current genomic studies can be the majority in the discovery GWAS. 

Nevertheless, we still observed substantial PRS accuracy improvements when the proportion of 

understudied populations in the discovery GWAS was less than 50%. We expected to observe 

similar relative improvements in the target populations using PRSmulti compared to using EUR 

GWAS-derived PRS (PRSEUR_GWAS) with the same number of bins from EUR populations. 

Specifically, the relative accuracy here was calculated as the difference in PRS R2 between the 

PRS derived from multi-ancestry GWAS and EUR GWAS divided by the PRS R2 in EUR ancestry 

from the EUR GWAS, i.e. 𝑅𝐴 =  
𝑅𝑡𝑎𝑟𝑔𝑒𝑡

2  𝑢𝑠𝑖𝑛𝑔 𝑃𝑅𝑆𝑚𝑢𝑙𝑡𝑖 − 𝑅𝑡𝑎𝑟𝑔𝑒𝑡
2  𝑢𝑠𝑖𝑛𝑔 𝑃𝑅𝑆𝐸𝑈𝑅_𝐺𝑊𝐴𝑆 

𝑅𝐸𝑈𝑅
2  𝑢𝑠𝑖𝑛𝑔 𝑃𝑅𝑆𝐸𝑈𝑅_𝐺𝑊𝐴𝑆

. Compared with 

using large-scale EUR only GWAS, we found that multi-ancestry GWAS with much smaller 

sample sizes could achieve comparable or better predictive accuracy (Table S1). Overall, adding 

fewer individuals from the target populations improved accuracy for less polygenic traits versus 

more polygenic traits. Similarly, larger sample sizes from AFR populations were required 

compared to EAS populations especially for more polygenic traits, likely due to the larger effective 

population size in AFR populations and larger genetic divergence between EUR and AFR 

populations.  

 

Relative to accuracy using Minor GWAS only, we found that in the ancestry-matched minority 

population, the accuracy improvement of using multi-ancestry GWAS gradually diminished and 

remained similar to using Minor GWAS even when the sample size of multi-ancestry GWAS was 

much larger (Figure S5 and Table S1). We showed that in general no obvious improvement was 

achieved by PRSmulti when the understudied target populations accounted for more than half 

sample sizes of the multi-ancestry GWAS except for the least polygenic traits where a much 

smaller Minor GWAS outperformed multi-ancestry GWAS. Interestingly, we observed consistent 

accuracy improvements for target populations of EUR and the ancestry not included in the multi-

ancestry GWAS when compared to using PRS derived from Minor GWAS (PRSMinor_GWAS), 

although such improvement decreased with larger numbers of bins from minority populations. 

This could be due to multi-ancestry GWAS being more genetically similar to those populations as 

compared to Minor GWAS.  

  

Empirical analysis of PRS accuracy within and across ancestries using 17 

quantitative phenotypes 

Genetic architecture of 17 studied phenotypes 

To understand how trait genetic architecture influences predictive accuracy of PRS across 

ancestries, we first estimated several parameters influencing different aspects of genetic 
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architecture for 17 phenotypes in the UKBB and BBJ (Table S2 and Table S3). Specifically, we 

estimated SNP-based heritability, polygenicity (𝜋, the proportion of SNPs with nonzero effects) 

and a coefficient of negative selection (S, measuring the relationship between MAF and estimated 

effect sizes) using SBayesS.  

 

The phenotypes included in this study varied widely in genetic architecture across these estimated 

parameters, with polygenicity estimates ranging from low (e.g., mean corpuscular hemoglobin 

concentration [MCHC], basophil count [basophil], mean corpuscular hemoglobin [MCH], mean 

corpuscular volume [MCV]) to high (e.g., height and body mass index [BMI]) (Figure 2 and Table 

S3). SNP-based heritability estimates similarly ranged from <0.1 for basophil and MCHC to 0.54 

and 0.33 for height using UKBB and BBJ, respectively, regardless of polygenicity. These 

polygenicity estimates are relative and cannot be directly interpreted as the number of causal 

variants. Rather, we used them here to quantify the relative degree of polygenicity between 

phenotypes with estimates based on the same set of SNPs as well as using marginal effects from 

GWAS conducted in a consistent manner. The median S parameters were -0.63 and -0.47 using 

UKBB and BBJ, respectively. While the negative S values indicate negative selection (i.e., rarer 

variants have larger effects), it remains unclear to what degree population stratification could 

confound its estimates30,31. We found that the polygenicity estimates using UKBB were mostly 

higher than those using BBJ, which could be due to the higher statistical power with larger sample 

sizes in the UKBB resulting in more variants with small effects being detected. Similarly, we 

observed significantly higher SNP-based heritability in the UKBB compared to BBJ except for 

MCHC and basophil, indicating possible phenotype heterogeneity between the two cohorts. 

Specifically, BBJ is a hospital-based cohort with participants recruited with certain diseases, 

whereas UKBB is a population-based cohort with overall healthier participants. This is also 

consistent with the previous study using estimates from LD score regression (LDSC) and 

stratified-LDSC6. Moreover, as described previously6, the estimated cross-ancestry genetic 

correlations between UKBB and BBJ for those traits were not statistically different from 1 (p-

value > 0.05/17) except for a few including basophil (0.5945, SE = 0.1221), height (0.6932, SE = 

0.0172), BMI, (0.7474, SE = 0.0230), diastolic blood pressure (DBP, 0.8354, SE = 0.0509), and 

systolic blood pressure (SBP, 0.8469, SE = 0.0430).  

 

PRS accuracy using smaller target ancestry-matched GWAS versus larger-scale EUR 

GWAS may be comparable depending on methodology and trait-specific genetic 

architecture 

We first constructed PRS using P+T and PRS-CS for different phenotypes in the target 

populations using single-ancestry discovery GWAS from UKBB and BBJ, respectively.  

 

Overall, there was a clear increasing trend in the target populations between PRS accuracy and 

a larger discovery GWAS (Figure 3 and Table S4). However, such patterns differed by ancestry 

and PRS methods in a trait-specific manner. For example, the upward trend in the UKBB-EAS 

was not obviously witnessed for basophil, a rare cell type, when using BBJ. This might be 

attributable to smaller GWAS sample sizes, ascertainment bias and lower heritability in the BBJ. 

Moreover, we observed that the more sophisticated method PRS-CS overall significantly 
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outperformed the classic P+T method across traits especially for more polygenic traits and larger 

sample sizes (one-side Wilcoxon test, p-value < 0.05). Specifically, the median accuracy of PRS 

derived from BBJ in the UKBB-EAS was 0.013 and 0.010 using PRS-CS and P+T, respectively. 

The corresponding values were 0.046 and 0.032 when the discovery GWAS was UKBB. 

However, we observed that accuracy of PRS using P+T outperformed PRS-CS for MCH and MCV 

when BBJ was the discovery GWAS, which could be due to ancestry-enriched variants with large 

effects for such traits. Further, we showed that for most traits when using full UKBB GWAS with 

much larger sample sizes provided better predictive accuracy in the UKBB-EAS than using full 

BBJ. However, for traits such as height, MCV and MCH, using target-ancestry matched GWAS 

presented consistently better predictive performance but dependent on PRS methods. 

Specifically, the pattern was witnessed using both P+T and PRS-CS for height but only P+T for 

MCV and MCH. Moreover, PRS derived from BBJ for those traits with a much smaller sample 

size achieved similar or even better performance than full UKBB-derived PRS.  

 

Consistent with previous work6–9, PRSsingle was generally more transferable (as measured by 

relative accuracy, the ratio of predictive accuracy between target populations) when the target 

population was more genetically related to the discovery GWAS (Figure S6). Interestingly, we 

observed that in comparison with predictive accuracy, there was no obvious increasing trend 

between PRS relative accuracy and larger UKBB-based GWAS sample sizes while there was 

more variation using BBJ-based GWAS due to its smaller sample size and lower SNP-based 

heritability. These results suggest that the PRS transferability issue is unlikely to be improved by 

just using larger EUR GWAS.  

 

Multi-ancestry GWAS-derived PRS usually improves predictive performance relative to 

single-ancestry GWAS-derived PRS 

To explore PRS predictive performance using multi-ancestry GWAS, we meta-analyzed single-

ancestry GWAS from UKBB and BBJ. Similar to the simulation setup, we mimicked proportional 

ancestry composition in the multi-ancestry GWAS by meta-analyzing EUR GWAS from various 

bins in the UKBB, ranging from 8 to 64 with an increment of 8 (each bin of 5,000), and GWAS in 

the BBJ (see Methods, Figure S1 and Table S2). The ratio of EUR/EAS samples was between 

64:1 to 8/BinTotal (total number of bins for the specific trait as shown in Table S2), thus ~85% multi-

ancestry GWAS having a EUR proportion larger than 50%. We performed P+T and PRS-CS using 

different LD reference panels and evaluated the performance in the target populations. 

 

Similar to the phenomenon we observed in our simulations of predictive accuracy being less 

affected by the choice of LD reference panel for more polygenic traits, we found that there was 

only a slight difference between using the combined LD reference panel proportional to the 

ancestries included in the multi-ancestry GWAS and using the panel matched with the majority 

population of discovery GWAS for P+T (Figure S7 and Table S5). Moreover, the majority of PRS 

was constructed from GWAS with more EUR individuals; we hereafter reported the results using 

1KG-EUR as the LD reference for both P+T and PRS-CS.  
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Compared to PRS using single-ancestry GWAS from UKBB (PRSEUR_GWAS), we found it was 

heartening that 99.7% and 92.4% of PRSmulti improved predictive accuracy in the UKBB-EAS 

when using P+T and PRS-CS, respectively (Table S6 and Figure S8). With more EAS samples 

added into the discovery GWAS, we found that the PRS accuracy in the UKBB-EAS also 

increased (Figure 4). For example, the largest absolute accuracy improvements of PRSmulti 

compared to PRSEUR_GWAS using P+T were 0.038 (0.085 VS 0.047), 0.035 (0.058 VS 0.023) and 

0.034 (0.071 VS 0.037) for platelet count (PLT), BMI and height, respectively, when the number 

of bins from BBJ was or was close to the total number of bins and the number of bins from UKBB 

was 64. Whilst PRS-CS witnessed corresponding improvements of 0.020 (0.0126 VS 0.101), 

0.025 (0.075 VS 0.050) and 0.013 (0.097 VS 0.084) for the three traits. Moreover, P+T showed 

overall more improvement as compared to PRS-CS regardless of the number of bins from EUR 

GWAS, with the median R2 improvement being 0.014 and 0.008, respectively. The upward trend 

was not consistently shown between PRS accuracy in the UKBB-EUR, especially using PRS-CS 

(Figure S9 and Table S6). This pattern was consistent with our simulation results and previous 

reports that PRS accuracy for the minority populations included in the multi-ancestry GWAS 

benefited more from adding more ancestry-matched individuals compared to other populations 

including EUR populations32. We noted that the accuracy of PRSmulti could remain largely 

unchanged or slightly decrease when the number of bins from BBJ was small, which was 

consistent with previous studies12,32.  

  

PRS derived from meta-analyzed multi-ancestry GWAS often outperform weighted PRS 

in understudied populations 

Linearly combining PRS constructed from GWAS with different ancestries has also previously 

been proposed to improve prediction in diverse populations33. Here, we constructed the weighted 

PRS (PRSweighted) by linearly combined PRS derived from single-ancestry GWAS from UKBB and 

BBJ (see Methods). We then compared the accuracy of PRSmulti and PRSweighted using both P+T 

and PRS-CS. 

 

Among the comparisons in the UKBB-EAS, 91.4% and 78.0% showed accuracy improvement of 

PRSmulti compared to PRSweighted when using P+T and PRS-CS, respectively. We found that 

PRSmulti achieved better performance than PRSweighted, especially in the UKBB-EAS (Figure S10 

and Table S7, p-value < 0.05, one-side Wilcoxon test). The median improvement of PRSmulti was 

0.011 and 0.003 using P+T and PRS-CS, respectively. We observed the largest improvement of 

PRSmulti in the UKBB-EAS using P+T were 0.045 (0.065 VS 0.020) and 0.036 (0.048 VS 0.012) 

for monocyte count (monocyte) with a ratio of bins from UKBB and BBJ being 56:15 and DBP 

with bin ratio being 40:25, respectively. While using PRS-CS, we found that the accuracy of 

PRSmulti greatly improved for PLT (0.091 VS 0.073) with bin ratio being 24:1 and lymphocyte 

(0.044 VS 0.028) with bin ratio being 16:1. We did not observe a consistent pattern between 

accuracy differences and GWAS sample sizes. Moreover, although overall better performance 

was shown for PRSmulti, we found that PRSweighted instead significantly outperformed PRSmulti for 

PLT using P+T (0.086 VS 0.081) and for height using PRS-CS (0.091 VS 0.082). For the accuracy 

differences between the two PRS strategies in the UKBB-EUR, we observed slight improvement 

of PRSmulti (0.003) using P+T, but higher accuracy of PRSweighted (0.002) using PRS-CS. The 
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different pattern in the UKBB-EAS and UKBB-EUR might be due to the overall higher SNP-based 

heritability in the UKBB than the BBJ, resulting in more information being borrowed for EAS 

samples when meta-analyzing with EUR samples. This is also consistent with the multi-trait 

analyses that those traits with smaller sample sizes and SNP-based heritability benefited more 

from shared genetic components34. 

 

PRS derived from local ancestry-informed GWAS can improve accuracy for 

some less polygenic traits 

We utilized local ancestry-informed summary statistics generated by Tractor21 from the admixed 

AFR-EUR individuals to construct PRS in the understudied AFR population across 17 traits. We 

referred to PRS derived from such local ancestry-informed ancestry specific GWAS summary 

statistics in AFR ancestry as AFRTractor. Two different PRS methods, P+T and PRS-CS, were 

used to benchmark performance of ancestry-specific PRS as compared to PRS build off of large-

scale traditional summary statistics. Here, we denoted such traditional large-scale EUR GWAS 

performed with standard linear regression as EURStandard. To compare with PRS performance 

derived from different GWAS, we further constructed weighted PRS (PRSweighted) by leveraging 

existing large-scale EUR GWAS as well as AFRTractor and compared with PRS derived from multi-

ancestry meta-analyzed GWAS (MetaStandard, see Methods).  

 

Local ancestry-informed ancestry-specific GWAS had a much smaller sample size relative to the 

EUR-inclusive GWAS, as is typical for GWAS of underrepresented populations. As expected, we 

did not observe significant predictive accuracy of PRS derived from such AFR-specific GWAS 

(AFRTractor) for most traits such as height and BMI (Figure 5 and Table S8). Notably, AFRTractor 

provided better performing PRS for 5 traits including white blood cell count (WBC), neutrophil 

count (neutrophil), MCV, MCH and MCHC; their accuracies using P+T were significantly higher 

than those from using EURStandard (one-side Wilcoxon test, p-value = 0.004) despite EURstandard 

having much larger-scale discovery data (Figure 5 and Table S8). This might be attributable to 

those traits containing large-effect AFR-enriched variants, especially for MCV, MCH and MCHC, 

which are captured by Tractor GWAS12,21. Consistent with previous findings, P+T overall 

outperformed PRS-CS for these traits with much sparser genetic architectures. Given that 

heritability bounds predictive accuracy, which can vary among populations and contexts, we also 

compared heritability estimates in the Pan-UK Biobank Project 

(https://pan.ukbb.broadinstitute.org/docs/heritability/index.html) among AFR and EUR 

populations. Consistent with our PRS accuracy results, we observed higher but not statistically 

different SNP-based heritability estimated using LDSC in AFR than in EUR for WBC (0.41, SE = 

0.19 VS 0.17, SE = 0.01), neutrophil (0.44, SE = 0.26 VS 0.15, SE = 0.01), and MCHC (0.15, SE 

= 0.11 VS 0.06, SE = 0.01). The lack of statistical difference stems from the large standard error 

likely due to the small sample size of AFR, although sparser genetic architectures also lead to 

less stable heritability estimates with LDSC.  

 

We also showed that using weighted linear regression to combine AFRTractor and EURStandard, 

improved predictive accuracy for those above-mentioned 5 traits with ancestry-enriched variants. 
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This result is similar to the findings in previous sections that for some traits with large effect 

ancestry-enriched variants, weighting PRS by linearly combining discovery GWAS from multiple 

populations performed better compared to the meta-analysis strategy; for traits without these 

ancestry-enriched variants, the meta-analysis strategy showed overall higher performance. 

Specifically, the mean accuracy of PRSweighted for those 5 traits was 0.044, 0.031, and 0.028 using 

P+T, PRS-CS and PRS-CSx, respectively; and the differences between the three PRS 

construction methods were not significant. The mean accuracy of MetaStandard was 0.016 and 0.008 

using PRS-CS and P+T, respectively. Lastly, we did not observe significant differences between 

running standard linear regression with covariates in admixed populations and AFRTractor, although 

it is worth noting that the effective sample size of local ancestry-informed GWAS is ~20% smaller 

due to the reduction from deconvolving ancestral tracts when generating ancestry-specific GWAS 

summary statistics. We also note that in-sample LD was usually required for PRS derived from 

traditional GWAS performed with linear regression in admixed populations with complicated LD 

structure, whereas we can utilize external LD reference panels for PRS derived from local 

ancestry-informed GWAS as shown here, eliminating the need for direct access to the individual-

level genotypes of admixed populations (Figure 5 and Table S8).   

 

Discussion 

In this study, we performed extensive evaluations of PRS performance through both simulation 

and empirical analyses to explore the impact of ancestry composition, trait-specific genetic 

architecture and PRS methodology on PRS predictive accuracy and generalizability across 

populations.  

 

Our simulations demonstrated that predictive accuracy in the understudied target population 

benefited from increasing genetic diversity of discovery GWAS, and that this pattern varied across 

trait genetic architectures and ancestry composition. Compared to using EUR GWAS, we showed 

that there were considerable improvements from adding a smaller proportion of understudied 

populations for less polygenic traits, whereas for more polygenic traits, accuracy continued to 

improve more as a function of sample size. Moreover, the generalizability of PRS was also 

improved by using multi-ancestry GWAS. On the other hand, we found that a much smaller 

underrepresented target-ancestry matched GWAS could achieve comparable predictive accuracy 

to a large multi-ancestry GWAS.  

 

We recapitulated the main findings from our simulations in empirical analyses for phenotypes 

across a range of genetic architectures. Specifically, we showed that the addition of samples from 

an underrepresented target ancestry - even with small proportions - may improve the predictive 

accuracy in the target ancestry. However, the extent of the improvement was affected by various 

factors such as the sample size ratios between EUR GWAS and Minor GWAS, trait genetic 

architecture, and LD reference panels. Among those factors, between-ancestry genetic 

architecture differences, in particular, ancestry-enriched variants with large effects, affected 

accuracy improvement more than sample sizes and LD reference panels. We note that the 

advantage of PRS constructed from multi-ancestry GWAS is likely to dwindle when the sample 
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size of understudied populations continues to increase. It is still recommended to leverage large-

scale EUR GWAS for current scale of understudied populations, although we may not expect 

accuracy improvement when meta-analyzing extremely small Minor GWAS.  

 

We also found that leveraging information from multiple ancestries by directly meta-analyzing the 

datasets could improve predictive performance more than linearly combining PRS through an 

optimized weighting strategy in understudied populations, especially for P+T. This has also been 

shown using a more sophisticated genome-wide PRS method, PRS-CSx, which jointly analyzes 

multiple GWAS while accounting for LD from different ancestries35. We think improvements from 

meta-analyzed GWAS could be due to the fact that PRSmulti implicitly assumed that the causal 

variants are shared between ancestries, and thus, the underrepresented target ancestry, 

especially when its SNP-based heritability is lower, borrows more genetic information from the 

other ancestry with larger sample sizes. Although the predictive performance of PRSmulti in the 

UKBB-EAS is better overall with this approach, we note that its accuracy could be affected by the 

choice of LD reference panel, while PRSweighted was not limited by this factor.  

 

We also showed that these findings from simulations and empirical analyses on 17 traits using 

BBJ and UKBB were largely generalizable when incorporating PRS derived from local ancestry-

informed GWAS and large-scale EUR GWAS. Specifically, we found that PRSweighted provided 

overall better performance for traits with ancestry-enriched variants, such as MCHC and MCV, 

compared to PRSmulti. We have shown the advantage of leveraging GWAS in admixed populations 

by accounting for local-ancestry, and without direct access to individual genotypes of admixed 

populations to improve PRS predictive performance in understudied populations. However, the 

sample size of admixed individuals here was relatively small, and we expect that further guidance 

on optimal PRS strategies for improved generalizability using PRS derived from local ancestry-

informed GWAS will follow from future analyses of datasets with larger sample size such as All of 

Us. 

 

While some previous studies have shown the benefits of leveraging increasing genetic diversity 

to improve PRS accuracy in global populations14,36, most have used GWAS with primarily 

European ancestry. In this study, we have provided additional best practices for developing PRS 

for understudied populations using different discovery cohorts, particularly when GWAS have 

different ancestry compositions across various trait genetic architectures (Figure 6). Our 

suggestions focus on general guidelines when constructing PRSsingle and PRSmulti (or PRSweighted) 

depending on genetic architecture, ancestry composition, sample sizes and statistical power, PRS 

methodology, and LD reference panels. 

 

First, when developing PRSsingle, the choice of input GWAS, i.e., whether using large-scale EUR 

GWAS or using underrepresented target-ancestry matched GWAS, is dependent on cross-

ancestry genetic correlation (𝑟𝑔), SNP-based heritability in discovery (ℎ𝑑
2 ) and target populations 

(ℎ𝑡
2), discovery GWAS sample size (𝑁𝑑) and the number of genome-wide independent segments 

in the discovery population (𝑀𝑑). We further illustrate the relationship between PRS accuracy and 

single-ancestry discovery GWAS sample size for traits studied here in Figure S11. For traits with 

relatively low 𝑟𝑔 and a sizable ancestry-matched GWAS (e.g., > 20-40% of EUR GWAS), such as 
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BMI and height, PRS accuracy in the target population benefits from using ancestry-matched 

GWAS; for traits with high 𝑟𝑔 and SNP-based heritability, larger-scale EUR GWAS will likely 

perform better than smaller-scale ancestry-matched GWAS. We note that these results could be 

affected by characteristics of the target cohort and phenotype precision. We provide a theoretical 

equation to estimate the expected accuracy using discovery GWAS with ancestry different from 

target population, thus enabling comparisons with accuracy using EUR GWAS based on prior 

information of different parameters. We expect that Bayesian methods adaptive to trait genetic 

architecture are expected to show better performance compared to classic P+T methods unless 

there are target ancestry-enriched variants or traits with very sparse genetic architecture, as 

shown in previous studies36–39. 

 

Second, relative to PRSsingle using EUR GWAS, we recommend using PRSmulti except when the 

target ancestry-matched GWAS is extremely small. We showed that there was little to no 

improvement comparing PRSmulti to PRSsingle when the sample size from the target population was 

only a few thousands (e.g., < 10,000). The theoretical equation derived for cross-ancestry 

prediction mentioned above is also applicable for prediction using multi-ancestry GWAS. 

Therefore, PRSmulti is also generally preferred for traits with high 𝑟𝑔 and SNP-based heritability 

and large sample size. There is increasing evidence showing that most common variants are 

shared between-ancestries, thus supporting high cross-ancestry 𝑟𝑔 for most traits7,16. However, 

estimates of 𝑟𝑔 can be affected by phenotypic and environmental heterogeneity between different 

populations15,40. A consideration when constructing PRS based on multi-ancestry GWAS using 

summary-level based methods, such as P+T and PRS-CS, is which LD reference panel best 

approximates the LD structure between SNPs while being most readily available to researchers. 

We have shown that when EUR is still the majority population in the discovery GWAS, using the 

EUR-based reference panel can approximate the LD of discovery GWAS well compared to a 

combined panel with multiple ancestries proportional to the discovery GWAS, which are 

consistent with our previous findings14.  

 

Third, although it is common practice to develop weighted linear combinations of PRS from 

ancestry-specific GWAS due to the easy access to external ancestry-matched LD reference 

panels, we suggest constructing PRS using multi-ancestry GWAS rather than through linear 

combinations based on our results. The difference between these two strategies was subtler using 

PRS-CS with some notable exceptions, including higher accuracy with PRSweighted for traits with 

low 𝑟𝑔 such as height. We also showed that PRSweighted outperformed PRSmulti in the UKBB-AFR 

for traits with AFR-enriched variants, such as WBC and MCHC, when incorporating local 

ancestry-informed GWAS and large-scale EUR GWAS. More practically, PRSweighted is more 

efficient which can directly use PRS weights from resources such as PGS Catalog41.  

 

In summary, there is no one-size-fits all method or approach for constructing PRS, as the optimal 

approach depends on genetic architecture, ancestry composition, statistical power, and other 

factors. These factors can be complex, particularly as a deluge of methods are being developed 

to address the PRS generalizability problem. To inform optimal approaches across a wide variety 

of scenarios, we have distilled the results of a wide range of simulations and empirical analyses 
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across trait genetic architectures, ancestries, and methods into a set of guidelines from 

parameters that are typically evaluated at the outset of a genetic study. 

Limitations of the study 

Last but not least, we note a few limitations and future directions in our study. First, we are focused 

on common variants present in different populations, while population-enriched variants by 

definition have lower frequencies and larger effect sizes in some populations. The role of such 

variants on polygenic prediction are worth exploring across phenotypes when there are sufficient 

sample sizes for different ancestral populations. We have shown that for traits with target 

ancestry-enriched variants where their effect sizes are larger in minority populations, substantially 

smaller target-ancestry matched GWAS can yield comparable or better predictive performance 

than using larger-scale EUR GWAS. This highlights again the importance of diversifying genomic 

studies. Second, as we used external LD reference panels for PRS construction, PRS 

performance decreases with LD mismatch between the discovery population and LD reference 

panel, especially using multi-ancestry GWAS. While we show that LD reference panel differences 

have a relatively modest effect on PRS accuracy, they have a much larger effect on fine-

mapping42, so future efforts are warranted to share in-sample LD without direct access to 

individual-level genotypes, especially for large consortia with numerous and diverse cohorts. 

Alternatively, developing more sophisticated individual-level PRS methods that preserve privacy 

and are scalable to current biobank-scale genomics data is also promising. Third, we are focused 

on quantitative phenotypes with a range of genetic architectures, but we expect the findings are 

generally applicable to binary traits, as we have investigated previously14. However, there are 

some caveats for studying binary phenotypes which may be more susceptible to different factors, 

such as variable case/control ratios, phenotype definitions, environmental differences, and 

smaller effective sample sizes or lower statistical power. Fourth, we have provided theoretical 

expectations of cross-ancestry prediction, but they are to some extent limited by reliable estimates 

for different parameters such as cross-ancestry genetic correlation and the effective number of 

independent genome-wide segments, which can prove especially challenging to estimate for 

multi-ancestry discovery GWAS with highly imbalanced sample sizes. We also observed a 

discrepancy between expected and observed accuracies. The most straightforward explanation 

might be that the assumptions of trait genetic architecture are different between PRS construction 

methods and theory. Thus, expected accuracy models should be adaptive to trait-specific genetic 

architecture. Finally, as there is no one-size-fits-all method, we focus on P+T and PRS-CS in this 

study. Although we show that trends are generally consistent between the two methods and we 

expect they are mostly generalizable to other methods, there are still some slight differences 

especially regarding the choice of using meta-analysis and weighted strategies. Despite the 

limitations, our findings have shown the benefits of leveraging increasing diversity of current 

genomics studies to improve polygenic prediction across populations. We also highlight the 

necessity of diversifying the ancestry as well as phenotype spectrum when collecting genomics 

data from global populations to achieve more equitable use of PRS for traits with varying genetic 

architectures.  
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Figure Legends 

Figure 1. Predictive accuracy improvement of PRS using meta-analyzed 

multi-ancestry (EUR and EAS) GWAS compared to using EUR GWAS in 6 

simulated genetic architectures.  

We illustrated the results using 32 EUR bins as an example. PRS was evaluated in AFR, EAS 

and EUR, respectively. Full results are shown in Table S1. The red vertical dashed line in each 

panel indicates the point where the number of bins from EUR and EAS populations is the same. 

The black horizontal dashed line indicates y=0. The error bars represent the standard errors of 

predictive accuracy differences using PRS derived from multi-ancestry GWAS (PRSmulti) and EUR 

GWAS (PRSEUR_GWAS), respectively. 

Figure 2: Genetic architecture of 17 studied traits between Biobank Japan 

(BBJ) and UK Biobank (UKBB). 

The phenotypes were ranked according to their polygenicity estimates using GWAS from UKBB. 

The error bar was the standard deviation of the corresponding estimate. Trait abbreviations are 

shown in Table S2. The vertical dashed line was the median estimate. Full results are shown in 

Table S3. 

Figure 3. Predictive performance of 17 traits in the UKBB-EAS using P+T 

and PRS-CS.  

We used GWAS from both Biobank Japan (BBJ) and UK Biobank (UKBB) to construct PRS. We 

reported the predictive accuracy in the UKBB-EAS using the auto model for PRS-CS and optimal 

p-value for P+T (see Methods). We showed the results for 7 traits with SNP-based heritability > 

0.1 in both BBJ and UKBB, while they were ranked by polygenicity estimated using UKBB (Figure 

2). Trait abbreviations are all described further in Table S2. Full results for all traits are shown in 

Table S4. 
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Figure 4. Accuracy improvement of PRS in the UKBB-EAS using multi-

ancestry GWAS relative to using EUR GWAS for P+T and PRS-CS.  

We constructed PRS using P+T and PRS-CS and evaluated them in the UKBB-EAS. The y-axis 

is the accuracy difference of PRS between using multi-ancestry GWAS (PRSmulti) and using EUR 

GWAS (PRSEUR_GWAS) when the number of bins from EUR GWAS is 64. The x-axis is the number 

of bins from BBJ included in the multi-ancestry GWAS. The error bars indicate the standard error 

of mean accuracy improvement. The red dashed line is y=0. The red dashed line is y=0. We 

showed the results for 7 traits with SNP-based heritability > 0.1 in both Biobank Japan (BBJ) and 

UK Biobank (UKBB), while they were ranked by polygenicity estimates using UKBB (Figure 2). 

Trait abbreviations are all described further in Table S2. Full results are shown in Table S6. 

Figure 5. Predictive accuracy for P+T and PRS-CS/PRS-CSx in the UK 

Biobank African population using various discovery GWAS.  

AFRTractor denotes the AFR-specific GWAS performed using Tractor. EURStandard refers to 

standard GWAS performed in the European population in the UKBB. MetaStandard is the meta-

analysis performed on AFRTractor and EURStandard. The weighted PRS was constructed through a 

linear combination of PRS generated from AFRTractor and EURStandard, respectively, using various 

methods including P+T and PRS-CS. Further, we also constructed weighted PRS using PRS-

CSx where the input GWAS were AFRTractor and EURStandard. This figure shows the results for 

traits with SNP-based heritability > 0.1 in the UK Biobank African population (UKBB-AFR); full 

results are shown in Table S8. 

Figure 6. General practices for developing PRS using different discovery 

GWAS.  

We summarized the general practice for developing PRS A) using single-ancestry GWAS 

(PRSsingle); and B) using GWAS from multiple ancestries (PRSmulti or PRSweighted). For PRSsingle, 

we can compare the expected accuracies either using underrepresented target-ancestry 

matched GWAS (Minor GWAS) or large-scale European-based GWAS (EUR GWAS) and 

choose the input GWAS for PRS method based on prior information including cross-ancestry 

genetic correlation (𝑟𝑔), SNP-based heritability in discovery (ℎ𝑑
2 ) and target populations (ℎ𝑡

2), 

discovery GWAS sample size (𝑁𝑑) and the number of genome-wide independent segments in 

the discovery population (𝑀𝑑). For PRSmulti, meta-analysis is generally recommended whilst the 

linear weighted combination shows its superiority for traits with ancestry-enriched variants. 
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Methods 

Simulations  

Simulated genotypes in three populations 

To explore whether the predictive accuracy in the underrepresented target ancestry could be 

improved with additional samples included in the multi-ancestry discovery GWAS, we simulated 

genotypes of chromosome 22 for 560,000 individuals in each population including European 

ancestry (EUR), East Asian ancestry (EAS) and African ancestry (AFR) using the software 

HapGen243. We used the haplotypes from 1000 Genome Project (1KG, Phase 3)44 as the sample 

pool. We excluded Americans of African Ancestry in SW USA and African Caribbeans in 

Barbados from the AFR samples due to their high degree of recent admixture. We used default 

parameters in HapGen2 with effective sample sizes of 11,375, 12,239 and 17,380 for EUR, EAS 

and AFR, respectively43. After simulating the genotypes on chromosome 22, we ran analyses with 

a total of 87,938 overlapping SNPs across the three ancestries which passed quality control filters: 

minor allele frequency (MAF) > 0.01, Hardy-Weinberg Equilibrium (HWE) p-value > 10−6 and 

genotype missingness rates across individuals < 0.05. We then removed 2nd-degree related 

individuals using the software KING45, resulting in 534,352, 533,996 and 537,498 unrelated 

individuals from EUR, EAS and AFR, separately. We randomly sampled 10K and 520K individuals 

from each ancestry as the withheld target population and discovery population, respectively.  

 

Simulated phenotypes with varying trait genetic architecture 

For the sake of simplicity, we assumed that causal variants are shared across populations and 

their effect sizes are perfectly correlated (𝑟𝑔 = 1). We simulated phenotypes based on the simple 

additive model: 𝑦 =  𝑔 +  𝑒, where 𝑔 = ∑ 𝑥𝑖𝑗𝛽𝑗 .
𝑀𝑐
𝑗=1   𝑀𝑐  is the number of causal variants, 𝑥𝑖𝑗 is the 

genotype coded as 0, 1, or 2 for the 𝑗th SNP in the 𝑖th population. The effect size of 𝑗th SNP is 

drawn from a multivariate normal distribution, 𝛽𝑗~𝑀𝑉𝑁(0, 𝛴),where the diagonal and off-diagonal 

elements of 𝛴 were 
ℎ2

2𝑓𝑖𝑗(1−𝑓𝑖𝑗)𝑀𝐶
 and 𝑟𝑔 ×

ℎ2

2𝑓𝑖𝑗(1−𝑓𝑖𝑗)𝑀𝐶
, respectively. We denoted 𝑓𝑖𝑗 as the MAF of  

𝑗th SNP in the 𝑖th population and ℎ2 as the trait heritability. We simulated the environmental 

effects to follow a normal distribution with 0 mean and 1 − ℎ2 variance, 𝑒 ~ 𝑁(0, 1 − ℎ2). We 

simulated different levels of heritability for chromosome 22 (ℎ2 = 0.03, 0.05) and various numbers 

of causal variants (𝑀𝑐  = 100, 500, 1000) randomly sampled from all the 87,938 SNPs, resulting 

in a total of 6 simulation scenarios that span a range of realistic polygenicity from ~0.1% to ~1% 

causal variants.  

Downsampling GWAS 

We split the 520,000 unrelated individuals included in the discovery population into 52 evenly 

distributed bins (each with N =10,000). We labeled each bin from 1 to the total number of bins 

(Bintotal = 52), i.e., Bin1, Bin2, …, Bintotal. We ran GWAS using simple linear regression implemented 

in PLINK v2.046 in each of those 52 bins in the three populations, respectively. We excluded the 
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causal variants when running GWAS to mimic the phenomenon of imperfect tagging. We then 

iteratively meta-analyzed a different number of bins using inverse-variance weighted meta-

analysis in METAL47. Specifically, we first ran meta-analyses on Bin1+Bin2, Bin1+Bin2+Bin3, …, 

and Bin1+Bin2+Bin3+...+Bintotal in each population.  

 

To mimic a multi-ancestry meta-analysis scenario with different proportions of ancestries, we 

arbitrarily selected a subset of bins from EUR GWAS, ranging from 4 to 52 bins with increments 

of 4. We iteratively added different numbers of bins, ranging from 1 to 52 in EAS and AFR, 

respectively, into EUR GWAS through meta-analysis using the inverse-variance weighted fixed 

effects model implemented in METAL. By doing this, the ratio of sample sizes of EUR/EAS and 

EUR/AFR included in the meta-analyzed multi-ancestry GWAS (Meta) ranged from 52:1 to 4:52. 

This simulation setup is illustrated in Figure S1. 

 

LD clumping (P+T) 

We used PLINK v1.90 to clump quasi-independent SNPs with LD r2 < 0.1 in 500Kb windows. We 

tested a total of four different LD reference panels (one for single-ancestry and three for multi-

ancestry GWAS) with consideration to the ancestry composition of the discovery GWAS and 

target population to explore the impact of various LD reference panels on predictive accuracy. 

For the single-ancestry GWAS, we used the 10,000 withheld ancestry-matched target populations 

as the LD reference panel. For the multi-ancestry GWAS, we used three LD reference panels. 

Specifically, we used two LD reference panels composed of a single ancestry that did not mirror 

the makeup of the discovery GWAS, including one panel of 10,000 withheld EUR individuals and 

the other from understudied populations (either 10,000 EAS or 10,000 AFR in this study). The 

third panel consisted of individuals from different ancestries that were proportional to discovery 

GWAS with a total of 10,000 samples. We calculated PRS in the withheld target population using 

8 different p-value thresholds: 5 × 10-8, 1 × 10-6, 1× 10-4, 1 × 10-3, 0.01, 0.05, 0.1, and 1. We 

denoted PRS constructed from single-ancestry GWAS as single-ancestry PRS (PRSsingle) and 

those from meta-analyzed multi-ancestry GWAS as multi-ancestry PRS (PRSmulti). We calculated 

the predictive accuracy as the variance explained by the PRS (R2) through linear regression: 

𝑦 ~ PRS and computed the corresponding 95% confidence intervals (CIs) through bootstrap. 

When selecting the optimal p-value threshold with the highest predictive accuracy, we evenly split 

the target population into a test cohort and a validation cohort. We hyper-tuned the p-value 

threshold in the validation cohort and evaluated the accuracy in the test cohort.  

 

Empirical analysis of 17 quantitative traits in the UKBB and BBJ 

We further explored how the findings from simulations generalized in real data using 17 

quantitative traits shared between UKBB and BBJ, including anthropometric traits (BMI and 

height) and blood panel traits studied previously (Table S2)6. We investigated these traits due to 

their widespread availability in biobanks as well as their high statistical power given their 

quantitative nature. 
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Datasets and Quality Control (QC) 

UK Biobank (UKBB)  

The details of assigning ancestry for each individual in the UKBB are described in the Pan-UK 

Biobank Project (Pan UKBB: https://pan.ukbb.broadinstitute.org/). Briefly, a random forest 

classifier trained on reference data from 1KG and Human Genome Diversity Project (HGDP)48 

was used to classify cohort individuals under continental population labels based on the top 6 

principal components (PCs). In this study, we used a total of 361,144 and 2,684 unrelated EUR 

and EAS participants, respectively. We obtained unrelated individuals through running 

hl.maximal_independent_set using Hail (https://hail.is/). Specifically, within each population, we 

ran PC-Relate49 with k=10 and min_individual_maf=0.05. We used the individuals assigned EAS 

ancestry as the target dataset. For EUR samples, we first randomly withheld 5,000 individuals 

with complete phenotype information for all 17 studied phenotypes as the target population. We 

split the remaining individuals into evenly distributed bins (each of N = 5,000) for each phenotype. 

The number of total bins for each studied phenotype ranged from 68 to 71 according to phenotype 

missingness (Table S2). We labeled each bin from 1 to the total number of bins in the same way 

as described in simulations. 

 

BioBank Japan (BBJ)  

BBJ is a multi-institutional hospital-based biobank which has recruited approximately 200,000 

participants from 12 medical institutions in Japan between fiscal years 2003 and 200728. Written 

informed consents were obtained from all the participants, as approved by the ethics committees 

of the RIKEN Center for Integrative Medical Sciences, and the Institute of Medical Sciences, the 

University of Tokyo. The participants were genotyped using either (i) the Illumina 

HumanOmniExpressExome BeadChip or (ii) a combination of the Illumina HumanOmniExpress 

and HumanExome BeadChips. The genotypes were then prephased using Eagle50 and imputed 

using Minimac351 with a reference panel that consists of 1KG samples (N = 2,504) and whole-

genome sequencing (WGS) data of Japanese individuals (N = 1,037)52. Standard quality controls 

of participants and genotypes were applied as described elsewhere52. Briefly, we excluded 

samples with low call rates (< 98%), closely related individuals (PLINK PI_HAT > 0.175), or non-

Japanese outliers based on the PCA. We then excluded genotyped variants with call rate < 98%, 

HWE P-value < 1.0 × 10−6, number of heterozygotes < 5, or low concordance rate (< 99.5%) with 

WGS for a subset of individuals (N = 939). Phenotypes were retrieved from medical records and 

prepared as described previously53. 

1000 Genomes Project Phase 3 (1KG) 

We used 1KG phase 3 data as LD reference panels in this study. Specifically, we kept 495 

unrelated EUR, 498 unrelated EAS, and 484 unrelated AFR individuals from 1KG. The AFR 

individuals were used in the recently admixed population analysis only.  
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Quality Control 

The imputation strategies for UKBB and BBJ have been described in detail elsewhere54,55. After 

imputation, we first excluded ambiguous variants (e.g., A/T and C/G) and further filtered to keep 

those variants with imputation INFO score > 0.3, MAF > 0.01, HWE p-value > 10-6, and genotyping 

missing rates across individuals < 0.05. A total of ~8.6M and ~6.6M SNPs were retained for UKBB 

and BBJ, respectively. We used SNPs passing these quality controls in our analyses, resulting in 

~3.6M SNPs that overlapped between two biobanks and 1KG.  

 

PRS construction 

Discovery GWAS 

All phenotypes were curated and transformed to be normally distributed as described previously6. 

We then performed GWAS on the rank normalized phenotypes using simple linear regression 

implemented in PLINK v2.0. We included age, sex, age2, age × sex, age2 × sex, and the first 20 

PCs as the covariates. Similar to the GWAS strategy described in Simulations, we first ran GWAS 

in each bin and then iteratively meta-analyzed different numbers of bins using inverse-variance 

weighted meta-analysis in METAL in the UKBB and BBJ, respectively. When meta-analyzing the 

single-ancestry GWAS from UKBB and BBJ (denoted as Meta), the number of bins from EUR 

GWAS we used for 17 traits ranged from 8 to 64 with an increment of 8 and we iteratively added 

bins from GWAS in the BBJ.  

PRS construction methods 

We used two methods to construct PRS in the target populations (UKBB-EAS and UKBB-EUR) 

including P+T, as described in Simulations, and PRS-CS39, which infers posterior mean effects of 

SNPs by placing a continuous shrinkage prior through a Bayesian regression framework. To 

reduce the overall computational burden, we first ran PRS-CS using GWAS summary statistics 

from UKBB with varying numbers of bins (from 8 to 64, with an increment of 8) for 17 traits. We 

explored how the hyper-parameter (phi, the proportion of SNPs with nonzero effects) affects PRS 

performance with different GWAS sample sizes as well as trait genetic architectures. Specifically, 

we ran both the grid model with various phi parameters (1× 10-6, 1× 10-4, 0.01 and 1) and the auto 

model which automatically estimates the phi parameter based on the input GWAS. We used 

default settings for all other parameters. We found that in the UKBB, PRS-CS-auto provided 

comparable predictive accuracy across all traits compared to using the optimal phi parameter in 

the grid model (Figure S12). Therefore, we used the PRS-CS-auto model for BBJ and Meta to 

construct PRS when using PRS-CS. We used LD reference panels in ancestry-matched 

populations from 1KG for PRSsingle. For PRSmulti, we used 1KG-EUR as the LD reference panel.  

 

To further explore the performance of PRS leveraging discovery GWAS from multiple ancestries, 

we used a previously developed method by linearly combining PRS based on optimized weights33. 

Specifically, the weighted PRS is calculated as PRSweighted = w1 * PRSUKBB + w2 * PRSBBJ. The 

weights w1 and w2 were optimal incremental R2 in the validation cohort where we split the target 

population into two even parts.  
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PRS performance evaluation 

We used the incremental R2 from the linear regression after regressing out the impact of 

covariates to evaluate the predictive accuracy. We computed the corresponding 95% confidence 

intervals (CIs) through bootstrap.  

 

Measures of genetic architecture using summary-data-based BayesS (SBayesS)56  

To better understand the impact of trait genetic architecture on PRS predictive performance, we 

evaluated three parameters including the polygenicity (𝜋, proportion of SNPs with nonzero 

effects), SNP-based heritability and S (the relationship between MAF and effect sizes) for 17 

studied phenotypes using SBayesS implemented in the software GCTB 

(https://cnsgenomics.com/software/gctb/) (Table S2). We used meta-analyzed GWAS across the 

full UKBB and BBJ datasets. We used the LD reference panel provided by GCTB for UKBB 

GWAS. We constructed a shrunk LD matrix using 50,000 unrelated individuals from BBJ as the 

LD reference panel for BBJ GWAS. We used 4 chains for the MCMC process which calculated 

the Gelman-Rubin convergence diagnostic (also known as potential scale reduction factor) for 

these three parameters. We performed the analyses using other default settings for SBayesS. As 

Bayesian models might suffer from convergence issues, we considered a threshold < 1.2 of the 

Gelman-Rubin convergence diagnostic as good convergence for the estimated parameters.  

 

UK Biobank recent admixture ancestry analysis 

To investigate one explanation for poor transferability of PRS across populations – genetic 

divergence between the discovery and target cohorts – we further explored whether PRS 

constructed from ancestry-specific summary statistics generated with local ancestry-informed 

GWAS in admixed populations improves predictive performance in underrepresented 

populations. Specifically, we used the Tractor method21, accounting for both local ancestry and 

risk allele information, to run GWAS in two-way admixed AFR-EUR individuals from the UKBB (N 

= 4,576). The average AFR proportion was 62.9%. We used 4,022 unrelated relatively 

homogeneous AFR individuals, which are independent from the admixed individuals, as the target 

cohort.   

 

We followed the same criteria for QC and individual selection as described in Atkinson et al.21. 

For sample QC, we excluded individuals that had <95% call rate, withdrew from the study, had 

closer than 2nd degree relatives present in the sample, or that had sex chromosome aneuploidies. 

For variant QC we restricted to biallelic SNPs with >90% call rate, Hardy-Weinberg Equilibrium p 

value > 10-6, and MAF of at least 0.5%. We selected two-way admixed AFR-EUR individuals from 

the UKBB by first using the PC loadings from the reference dataset described previously for 

ancestry inference (1KG + HGDP) to project UKBB individuals into the same PC space. We 

applied the same random forest ancestry classifier described previously to the projected UK 

Biobank PCA data and assigned AFR ancestry if the probability was >50%. We restricted to only 

two-way admixed AFR-EUR ancestry individuals by selecting those individuals assigned the 

‘AFR’ population label, then filtering to those with at least 12.5% European ancestry, at least 10% 
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African ancestry, and who did not deviate more than 1 standard deviation from the AFR-EUR cline 

based on their PC loadings. This resulted in 4,576 individuals. 

 

We ran local ancestry deconvolution on this set of admixed individuals using RFmix v220 with 1 

EM iteration and a window size of 0.2 cM with the HapMap combined recombination map57 to 

inform switch locations. The -n 5 flag (terminal node size for random forest trees) was included to 

account for an unequal number of reference individuals per reference population. We used the --

reanalyze-reference flag, which recalculates admixture in the reference samples for improved 

ability to distinguish ancestries. As a reference panel, we used continental AFR and EUR 

individuals from the 1KG.  

 

We then ran Tractor GWAS for those 17 quantitative traits on these UKBB admixed AFR-EUR 

individuals, which generates ancestry-specific summary statistics for the AFR (AFRTractor) and 

EUR (EURTractor) ancestry components. We compared the PRS performance when calculating 

using these ancestry-specific effect size estimates versus standard GWAS methods in an 

admixed discovery cohort by performing GWAS in the same set of admixed individuals using the 

simple linear regression model as described previously (ADMStandard). To compare to common 

practices in statistical genetics, we also used GWAS summary statistics using the UKBB EUR 

GWAS (EURstandard, N = 320,000) from previous section and meta-analyzed AFRTractor with 

EURstandard (Metastandard, N = 324,576). 

 

We constructed PRS based on HapMap3 SNPs for P+T and PRS-CS, as previous work showed 

similar performance with P+T using reliable HapMap3 SNPs only to using genome-wide SNPs14. 

Given the ancestry composition of discovery GWAS, we used different sets of reference panels 

for various discovery GWAS. Specifically, we used 1KG-EUR as the LD reference panel for 

EURTractor, EURstandard and Metastandard, and 1KG-AFR for AFRTractor. We used an in-sample LD panel 

for ADMStandard. We optimized p-value thresholds for P+T and phi parameters for PRS-CS, 

respectively, in the validation cohort. To leverage information from multi-ancestry GWAS, we also 

constructed weighted PRS using GWAS of AFRTractor and EURStandard, for P+T and PRS-CS, 

respectively. We further compared the weighted PRS to that using PRS-CSx which accounts for 

between-ancestry LD. We evenly split the target AFR cohort into two random sets to serve as 

independent validation and test datasets. We calculated the predictive accuracy using 

incremental R2 as previously described. We repeated the process 100 times and reported the 

standard error of predictive accuracy across 100 estimates.  
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Data and code availability 

1000 Genome Phase 3 data can be accessed at 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data. We used 

UK Biobank data via application 31063. The software used in this study can be found at: Plink 

(https://www.cog-genomics.org/plink/), PRS-CS (https://github.com/getian107/PRScs),  PRS-

CSx (https://github.com/getian107/PRScsx), Tractor (https://github.com/Atkinson-Lab/Tractor), 

and SBayesS/GCTB (https://cnsgenomics.com/software/gctb/). The Pan UK Biobank Project can 

be accessed at: Pan-UK Biobank Project https://pan.ukbb.broadinstitute.org. The codes used in 

this study have been deposited to https://github.com/ywangleo/multi-ancestry-PRS.  
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Main Figures 

 

Figure 1. Predictive accuracy improvement of PRS using meta-analyzed 

multi-ancestry (EUR and EAS) GWAS compared to using EUR GWAS in 6 

simulated genetic architectures.  

We illustrated the results using 32 EUR bins as an example. PRS was evaluated in AFR, EAS 

and EUR, respectively. Full results are shown in Table S1. The red vertical dashed line in each 

panel indicates the point where the number of bins from EUR and EAS populations is the same. 

The black horizontal dashed line indicates y=0. The error bars represent the standard errors of 

predictive accuracy differences using PRS derived from multi-ancestry GWAS (PRSmulti) and EUR 

GWAS (PRSEUR_GWAS), respectively. 
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Figure 2: Genetic architecture of 17 studied traits between Biobank Japan 

(BBJ) and UK Biobank (UKBB). 

The phenotypes were ranked according to their polygenicity estimates using GWAS from UKBB. 

The error bar was the standard deviation of the corresponding estimate. Trait abbreviations are 

shown in Table S2. The vertical dashed line was the median estimate. Full results are shown in 

Table S3.  
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Figure 3. Predictive performance of 17 traits in the UK Biobank East-Asian 

population using P+T and PRS-CS.  

We used GWAS from both Biobank Japan (BBJ) and UK Biobank (UKBB) to construct PRS. We 

reported the predictive accuracy in the UK Biobank East-Asian population (UKBB-EAS) using the 

auto model for PRS-CS and optimal p-value for P+T (see Methods). We showed the results for 

7 traits with SNP-based heritability > 0.1 in both BBJ and UKBB, while they were ranked by 

polygenicity estimated using UKBB (Figure 2). Trait abbreviations are all described further in 

Table S2. Full results for all traits are shown in Table S4.  
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Figure 4. Accuracy improvement of PRS in the UK Biobank East-Asian 

population using multi-ancestry GWAS relative to using EUR GWAS for P+T 

and PRS-CS.  

We constructed PRS using P+T and PRS-CS and evaluated them in the UK Biobank East-Asian 

population (UKBB-EAS). The y-axis is the accuracy difference of PRS between using multi-

ancestry GWAS (PRSmulti) and using EUR GWAS (PRSEUR_GWAS) when the number of bins from 

EUR GWAS is 64. The x-axis is the number of bins from BBJ included in the multi-ancestry 

GWAS. The error bars indicate the standard error of mean accuracy improvement. The red 

dashed line is y=0. The red dashed line is y=0. We showed the results for 7 traits with SNP-based 

heritability > 0.1 in both Biobank Japan (BBJ) and UK Biobank (UKBB), while they were ranked 

by polygenicity estimates using UKBB (Figure 2). Trait abbreviations are all described further in 

Table S2. Full results are shown in Table S6. 
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Figure 5. Predictive accuracy for P+T and PRS-CS/PRS-CSx in the UK 

Biobank African population using various discovery GWAS.  

AFRTractor denotes the AFR-specific GWAS performed using Tractor. EURStandard refers to 

standard GWAS performed in the European population in the UKBB. MetaStandard is the meta-

analysis performed on AFRTractor and EURStandard. The weighted PRS was constructed through a 

linear combination of PRS generated from AFRTractor and EURStandard, respectively, using various 

methods including P+T and PRS-CS. Further, we also constructed weighted PRS using PRS-

CSx where the input GWAS were AFRTractor and EURStandard. This figure shows the results for 

traits with SNP-based heritability > 0.1 in the UK Biobank African population (UKBB-AFR); full 

results are shown in Table S8.  
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Figure 6. General practices for developing PRS using different discovery 

GWAS.  

We summarized the general practice for developing PRS A) using single-ancestry GWAS 

(PRSsingle); and B) using GWAS from multiple ancestries (PRSmulti or PRSweighted). For PRSsingle, we 

can compare the expected accuracies either using underrepresented target-ancestry matched 

GWAS (Minor GWAS) or large-scale European-based GWAS (EUR GWAS) and choose the input 

GWAS for PRS method based on prior information including cross-ancestry genetic correlation 

(𝑟𝑔), SNP-based heritability in discovery (ℎ𝑑
2 ) and target populations (ℎ𝑡

2), discovery GWAS sample 

size (𝑁𝑑) and the number of genome-wide independent segments in the discovery population 
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(𝑀𝑑). For PRSmulti, meta-analysis is generally recommended whilst the linear weighted 

combination shows its superiority for traits with ancestry-enriched variants. 
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