






Figure 7: Prediction of Parts, Pattern Completion and Transfer Learning: (A) Given only
an initial glimpse (purple box) for an input image (a “0” and a “3”), an APC model trained on the
MNIST handwritten digits dataset predicts its best guess of the parts of the object and their locations
(red, green and blue segments in row below). (B) APC model trained on the Omniglot handwritten
characters dataset (from 50 different alphabets) can transfer its learned knowledge to predict parts of
previously unseen character classes. First column: input image from a novel character class. Middle
column: APC model’s reconstruction of the input. Last column: parts predicted by the model. (Adapted
from [10]).

4.2.2 Local Reference Frames allow Policy Re-Use and Hierarchical Planning

Figure 8D illustrates the bottom-level policies for three such action embedding vectors A1, A2 and A3,
which generate policies for reaching goal locations 1, 2, and 3 respectively. Note that the Ai are defined
with respect to higher-level state S1 or S2. Defining these policies to operate within the local reference
frame of the higher-level state S1 or S2 (regardless of global location in the building) confers the APC
model with enormous flexibility because the same policy can be re-used at multiple locations to solve
local tasks (here, reach sub-goals within S1 or S2). For example, to solve the navigation problem in
Figure 8C, the APC model only needs to plan and execute 3 higher-level actions or options: A1 followed
by A2 followed by A3, compared to planning a sequence of 12 lower-level actions to reach the same goal.

The two-level APC model was trained as follows. The higher-level states represented 3 � 3 local reference
frames and were defined by an embedding vector generating the transition function for “room type” S1
or S2 , along with the location for this local reference frame in the global frame of the building. The
lower-level action network was trained to map a higher-level action embedding vector Ai to a lower-level
policy for navigating to a particular goal location i within S1 or S2. For this study, eight embedding
vectors A1, . . . ,A8 were trained, using REINFORCE-based RL [62], to generate via the network Ha

eight lower-level policies to navigate to each of the four corners of room types S1 and S2.

The higher-level state network was trained to predict the next higher-level state (decoded as an image of
room type S1 or S2, plus its location) given the current higher-level state and higher-level action. This
trained higher-level state network was used for planning at each step a sequence of 4 higher-level actions
using random-sampling shooting model predictive control (MPC) [54]: random state-action trajectories
of length 4 were generated using the higher-level state network by starting from the current state and
picking one of the four random actions Ai for each next state; the action sequence with the highest
total reward was selected and its first action was executed, and this process was repeated. Figures 9A-C
illustrate this high-level planning and MPC process using the trained APC model.

Figure 9D illustrates the efficacy of the APC model’s high-level planning compared to lower-level planning
(MPC using random sequences of 4 primitive actions; Euclidean distance heuristic; see [10] for details):
as expected, the average number of planning steps to reach the goal increases dramatically for larger
distances from the goal for the lower-level planner compared to high-level planning by the APC model.
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Figure 8: Solving a Navigation Task using a State-Action Hierarchy. (A) The problem of
navigating in a large building can be reduced to planning using high-level states (B) and higher level
actions ((C) and (D)). Blue: current location, gray: walls, green: current goal location. See text for
details. (Adapted from [10]).
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Figure 9: Hierarchical Planning. (A) To navigate to the green goal location from the blue start
location, the APC model uses its learned high-level state network to sample K high-level state-action
sequences (K = 2 here, shown bifurcating from the initial state). In each sequence, the high-level state
is depicted by a predicted room image (red or yellow outlined image) and its location (marked by an
“X” in the global frame below the image). High-level action is depicted by its associated goal location
(purple) in a square local frame. (B) Given the sampled sequences, the model picks the sequence with
highest total reward, executes this sequence’s first (high-level) action to reach the blue location shown
in the top panel, and repeats to reach the goal location with 3 high-level actions (bottom panel in (B)).
Small red dot: intermediate location; small blue dot: intermediate goal. (C) shows the same APC model
solving two more navigation problems involving new start and goal locations using hierarchical planning.
(D) High-level planning by the APC model versus low-level heuristic planning using primitive actions
(see text for details). Average number of planning steps for the low-level planner quickly increases as
distance to goal increases compared to high-level planning by the APC model. (Adapted from [10]).
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Figure 10: Hippocampal Binding of Cortical Representations and Episodic Memory. (A)
depicts a generative model that connects an associative memory (emulating the hippocampus) to the
highest level of a hierarchical APC model (emulating the cortex). The associative memory stores a
memory vector m that encodes the current highest-level state and action vectors ŝ(N) and â(N) as an
episodic memory. Later activation of the memory vector m by an internal or external cue recalls the
entire sequence of states and actions in the memorized episode as activations cascade down the cortical
hierarchy. (B) An example of episodic recall in a two-level memory-augmented model. The model was
shown 5 episodes of the image sequence in the top panel. The bottom panel shows the responses of five
most active lower-level model neurons at each time step when presented with the training image sequence
(“Conditioning”) and when presented with only the “Start” frame (image from time step 0), only the
“Middle” frame (from time step 2) and only the “End” frame (from time step 4). Episodic recall from
memory is indicated by the similarity in activation patterns between “Conditioning” and “Start.” ((B)
adapted from [48]).

5 Cortical Predictive Coding, Hippocampal Binding and
Episodic Memory

Before concluding, we note that the state and action networks at different levels of the APC hierarchy
learn generic “basis functions” in their synaptic weights for representing states and actions. The basis
functions emerge as result of learning from interactions with the environment. The simplest example
of these basis functions are at the lowest level of the hierarchy in our APC example for vision. When
a sparseness constraint is imposed on the state vectors [49], the basis functions that are learned from
natural videos comprise of oriented Gabor filters coding for edges/bars at different orientations (for
more details, see results in [48] from a version of the APC model without actions (Dynamic Predictive

Coding)). In this case, the state vector ŝ
(i+1)
t is a specific activation pattern of the state-estimating

neurons representing a specific image patch as a combination of the learned basis Gabor filters.

Generalizing this idea to the APC hierarchical network, it can be seen that at the highest level N of
the network, we have specific activation patterns ŝ(N) and â(N) of state-estimating neurons and abstract
action/goal-encoding neurons together representing an entire sequence of specific states and actions
corresponding to the current episode of interaction with the environment.

By connecting this highest level of the APC network to a hippocampus-like associative memory, one can
store the current activation patterns ŝ(N) and â(N) as an episodic memory vector m (Figure 10A). This
episodic memory can later be retrieved when given an internal or external cue, e.g., a partial input that is
the beginning of the episodic sequence. Figure 10B (from [48]) provides an example of such a recall by a
two-level memory-augmented dynamic predictive coding model (APC without actions) which was shown
5 episodes of a sequence depicting the digit “5” moving from left to right (top panel in Figure 10B).
By storing the sequence information as a vector m in its associative memory, the model was later able
to retrieve the entire sequence given only the starting image as a cue (Figure 10B (lower panels)): this
is reflected in the similarity between the activation pattern of the network’s lower-level neurons during
recall (“Start” condition) and the activation pattern observed during training (“Conditioning”).
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More importantly, the cortical representation at the highest levels can be regarded as a factored rep-
resentation of the world, involving state representations from multiple modalities (vision, audition, so-
matosensation etc.) and actions. The convergence of these different state and action vectors into an
associative memory at the top of the hierarchy allows the model to perform binding: these different
multimodal representations are bound into a single temporary memory representation m. This repre-
sentation is fed back to the cortical network as depicted in the generative model in Figure 10A, allowing
the fused multimodal information in memory to influence the different cortical areas down the hierarchy
to the lowest levels.

The above ideas are consistent with the notion of binding in AI, particularly in neurocompositional
representations, where “fillers” (specific instances) are bound to semantic “roles” and allow modeling
of lingistic, logical and symbolic concepts [35]. We expect the benefits of such a representation, which
include fast transfer of knowledge and zero shot learning due to compositional generalization, to also
accrue to the memory-augmented APC model. Such a model shares similarities with the Tolman-
Eichenbaum Machine (TEM) model of interactions between the hippocampus and the entorhinal cortex
[63].

In summary, the APCmodel suggests that the cortex encodes generic semantic knowledge about the world
within state and action networks that implement nested reference frames. Any particular instantiation of
this knowledge invoked by, for example, an interaction with a person or an object, is stored temporarily
as an episodic memory vector m in the hippocampus. This instantiation could be used for reasoning
about the current situation or for planning, and if deemed important, could be consolidated within the
cortex by updating cortical networks via replay during inactivity or sleep.

6 Discussion

This article explored a sensory-motor theory of cortical function based on active predictive coding (APC).
The theory proposes that (a) each cortical column implements both a state transition network for state
prediction and a policy network for action/goal prediction (thereby defining a reference frame [7, 27]),
and (b) higher-level neurons representing more abstract states and actions modulate the lower-level state
and action networks via top-down modulatory feedback to change the functions they are computing,
leading to nested reference frames and hierarchical representations of objects, states and actions. A
neuroanatomical mapping of the APC model to cortical laminar structure was suggested in Section 2.4,
although it should be noted that this is only one of several possible mappings and key elements of this
mapping remain to be tested.

6.1 Diverse Capabilities of the APC Model

The APC model confers on the cortex a diverse range of capabilities using the same basic architecture,
lending support to the hypothesis [5–7, 64, 65] of a common computational principle operating across
the neocortex:

• Parsing images and learning part-whole hierarchies: Eye movements can be used to parse
images and learn hierarchical representations of parts and sub-parts of objects (Section 4.1.1);

• Invariant perception: Learned representations of objects and sequences can be transformed
by the generative model to match current inputs to remain invariant to different types of trans-
formations (translations in Section 4.1.1, other transformations such as rotations and scaling in
[12]);

• Perceptual stability: Inference in the APC model naturally leads to integration of information
across actions such as eye movements, leading to perceptual stability (Section 4.1.1);

• Compositionality and fast transfer of knowledge: The APC architecture allows composi-
tional representations to be learned, allowing the model to compose and generate new objects and
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sequences made up of novel combinations parts and sub-parts, allowing fast generalization and
recognition of novel inputs (Sections 4.1.1, 4.2 and 5);

• Efficient planning: Hierarchical state networks in the APC model can be used to solve tasks such
as navigating in a large building efficiently by planning using hierarchical actions (Section 4.2);

• Habit formation: Successful plans can be used to learn new policies (“habits”); alternately,
the APC model also allows policies to be learned using hierarchical reinforcement learning (Sec-
tion 4.1.1);

• Reference frames and temporal hierarchies: The APC model provides a neural implemen-
tation of the concept of nested reference frames [7] and shows how joint temporal hierarchies of
states and actions can be learned;

• Prediction and postdiction: Since the model maintains a temporally stable state representation
at the highest level that encodes entire sequences, the update of this representation during predic-
tion error minimization leads to an explanation for both predictive and postdictive phenomena in
perception such as the flash-lag illusion and the color-phi effect (see [48] for details);

• Generating “schemas” or “programs” for solving novel tasks: The APC model suggests
a neural mechanism (via top-down inputs/gain modulation) for generating new sensory-motor
“programs” on-the-fly to solve novel tasks (Section 3.4);

• Binding and episodic memories of perception-action sequences: When coupled with an
associative memory emulating the role of the hippocampus, the model binds multimodal cortical
activations at the highest level into an episodic memory (sequence of multimodal states and actions),
allowing activity recall and cortical consolidation at a later time, and promoting fast generalization
and learning (Section 5);

• Language and symbolic representations: The state-action representations in the APC model
can be made categorical [57], opening the door to representing symbols, learning grammars and
understanding and producing language. The ability of the APC model to perform binding with
the current task’s cortical representation is similar to the “filler:role” mechanism used in neuro-
compositonal computing [35] for solving linguistic and symbolic tasks;

• Learning abstract concepts: The same sensory-motor architecture used for perception and
planning can also be used to model abstract concepts such as family trees by using abstract states
to represent parents and children, and abstract actions (up, down etc.) to traverse and define the
tree; results along these lines were obtained using the TEM model [63] where a recurrent neural
network (similar to our state transition network) was used in conjunction with an associative
memory to learn the structure of family trees from examples.

6.2 Related Models

The APC model shares broad similarities with other models of cortical function. The idea that the
cortex relies on predictions and performs inference over a hierarchy of time scales is common to many
models of cortical function [1, 66–71], going back to the seminal early work of MacKay [72] and Albus
[73]. The goal of putting action on an equal footing with perception in terms of Bayesian inference
and prediction error minimization is in keeping with the theories of active inference and free energy
minimization proposed by Friston and colleagues [50, 74]. Compositionality and the representation of
sensory-motor information in cortical columns are also central tenets of the “thousand brains” theory
proposed by Hawkins and colleagues [7, 27, 28]. Their model differs from the APC model in postulating
the existence of grid cells in all cortical areas, not leveraging hierarchical state-action representations,
and not invoking policy functions for computing actions.

The close interaction between state-estimation networks and action-computing networks in the APC
model is consistent with theories of optimal motor control [75]. However, based on recent evidence
pointing to motor outputs from Layer 5 in essentially all cortical areas [4, 13–15, 17], the APC model
proposes that all cortical columns include both state-estimation and policy components. Even primary
motor cortex (M1), which is often cited as an example of a cortical area missing the sensory input Layer 4,
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receives sensory information from other cortical and subcortical areas [76–78], and can therefore predict
and estimate state (e.g., proprioceptive state) and compute actions via the circuits in the superficial and
deep layers of M1. In fact, the APC model’s interpretation of Layer 5 outputs as abstract actions or goal
vectors for spinal circuits is consistent with a previously proposed active inference model of M1 [33].

Finally, the idea that the policy network outputs serve as a prior for selecting actions during planning
provides a potential neural implementation of Gibson’s model of perception based on affordances [79].
An object, when estimated by higher-level state-estimating neurons, generates a prior distribution over
suitable actions for that object via the policy network in the APC model (see Section 3.3.2). This prior
affinity for certain actions for an object is learned by the hierarchical cortical state-action networks
during the course of solving many tasks involving similar types of objects.

6.3 Model Predictions and Open Questions

The first major prediction of the APC model is that every cortical column computes an abstract action
or “goal” that is conveyed to subcortical motor centers, which may or may not choose to act upon this
output. The actual action that was executed is then conveyed back to all cortical areas via the thalamus
to update the cortical state and action representations. The precise mechanism that mediates the final
action selection in subcortical motor centers based on cortical outputs remains an open question.

A second prediction is that cortical areas interact with each other via top-down modulation targeting
apical dendrites of cortical pyramidal neurons – the computational role of such modulation is to change
the function being computed by the lower level’s state-transition and action/policy networks based on a
higher-level’s state and action vectors (Section 3.2.1). Such an arrangement predicts that representations
at higher levels encode information over longer time scales than lower levels [8, 9, 48]. The mechanisms
underlying the modulatory interactions between higher-order and lower-order cortical areas across these
time scales, and the role of alpha, beta, theta and gamma oscillations in such interactions are not yet
clear.

While there is emerging neurophysiological and neuroanatomical evidence that lend some support to the
APC model’s predictions [13, 29–33, 38], there is much that remains to be tested. We hope that the
APC theory inspires new experiments that address the core question that motivated the theory: how
does the neocortex learn and use its sensory-motor internal model of the world?
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