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Abstract 9 

The fact that objects without proper support will fall to the ground is not only a 10 

natural phenomenon, but also common sense in mind. Previous studies suggest that 11 

humans may infer objects’ stability through a world model that performs mental 12 

simulations with a priori knowledge of gravity acting upon the objects. Here we 13 

measured participants’ sensitivity to gravity’s direction, the most critical parameter of 14 

gravity in stability inference, to investigate how the world model works. We found 15 

that the world model was not a faithful replica of Newton’s law of gravity but rather 16 

encoded gravity’s direction as a Gaussian distribution, with the vertical direction as 17 

the maximum likelihood. The world model with this stochastic feature fit nicely with 18 

participants’ subjective sense of objects’ stability and explained the illusion that taller 19 

objects are perceived as more likely to fall. Furthermore, a computational model with 20 

reinforcement learning revealed that the stochastic feature likely originated from 21 

agent-environment interaction, and computer simulations illustrated the ecological 22 

advantage of the stochastic over deterministic representation of gravity’s direction in 23 

balancing accuracy and speed for efficient stability inference. In summary, the 24 

stochastic world model on gravity provides an example of how a priori knowledge of 25 

the physical world is implemented in the brain that helps humans operate flexibly in 26 

open-ended environments. 27 
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Introduction 32 

About two thousand years ago, Confucius warned his disciples that a wise man should 33 

not stand next to a collapsing wall. We, wise or not, can easily judge whether a wall is 34 

stable or collapsing in a fraction of a second (Battaglia et al., 2013; Kubricht et al., 35 

2017; McCloskey, 1983). This astonishing performance is unlikely to have been 36 

achieved by previous visual experience alone. Taking a stack consisting of ten blocks 37 

as an example (Fig. 1), we can quickly report its stability with a satisfactory accuracy 38 

of 70% on average (Bear et al., 2021; Zhang et al., 2016), but the universal cardinality 39 

of possible configurations is at least 3.72×1019 (Extended Data Fig. 1), which is much 40 

larger than the total number of sand grains on Earth (est. 7.5×1018) (Blatner, 2013). 41 

Contrary to this intuition, four-month-old infants, who have a little visual experience 42 

of the physical world, expect a box to fall if it loses contact with a support platform 43 

(Baillargeon, 1994, 2004). Our minds may therefore have devised a mechanism that 44 

differs from the widely used discriminative approach in artificial neural networks, 45 

which relies on the extensive visual experience of objects and feedback about their 46 

stability (Bear et al., 2021; Li et al., 2016; Zhang et al., 2016). 47 

Indeed, both behavioral and neuroimaging studies have suggested that humans 48 

possess a priori knowledge of Newton’s law of physics in the mind. For example, 49 

infants as young as seven months expect a downward moving object to accelerate and 50 

an upward moving object to decelerate (Friedman, 2002; Kim & Spelke, 1999), and 51 

adults can estimate the remaining time to catch a moving ball (McIntyre et al., 2001; 52 

Zago & Lacquaniti, 2005) even in the absence of visual information (Lacquaniti & 53 

Maioli, 1989; Zago et al., 2009). Further fMRI studies have revealed the parieto-54 

insular vestibular cortex in the brain as the neural basis for gravity-based stability 55 

inference, suggesting that this knowledge is encapsulated as a cognitive module 56 

(Fischer et al., 2016; Indovina et al., 2005; Pramod et al., 2022). Accordingly, our 57 

brain is proposed as a set of generative machines that actively predict future events of 58 

the ever-changing physical world through mental simulation with a priori knowledge 59 

acting upon the world (Battaglia et al., 2013; Hegarty, 2004; Huang & Rao, 2011; 60 

Tenenbaum et al., 2011; Ullman et al., 2017). For this reason, the generative machine 61 

is also called the world model (Land, 2014; Tenenbaum et al., 2011).  62 

Recently, the idea of the world model has become popular to explain the 63 

predictive nature of the brain (Friston et al., 2021) and to improve the generality and 64 
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robustness of the artificial neural networks (Matsuo et al., 2022). However, how a 65 

priori knowledge is implemented in the world model remains to be determined. A 66 

widely adopted but not rigorously tested assumption is that the world model in the 67 

brain is a faithful replica of the physical laws of the world (Allen et al., 2020; 68 

Battaglia et al., 2013; Lake et al., 2017; Zhou et al., 2022). For example, the direction 69 

of gravity encoded in the world model, which is the most critical parameter for 70 

stability inference, is assumed to be straightly downward, the same as the direction of 71 

gravity in the physical world. Alternatively, there is a consensus that the brain 72 

actively correlates, integrates, and comprehends the data from sensory organs (e.g., 73 

electromagnetic waves from the eyes) and adds meaning to them (i.e., color). 74 

Therefore, the representation of the world in the brain may not be the same as reality. 75 

Here, we investigated these two alternative hypotheses for the construction of the 76 

world model in the brain by examining how gravity’s direction was represented in the 77 

world model when participants judged the stability of objects.  78 

To do this, we measured participants’ sensitivity to gravity’s direction in a 79 

stability inference task (Battaglia et al., 2013) and found that gravity’s direction was 80 

encoded in a Gaussian distribution, with the vertical direction as the maximum 81 

likelihood. This stochastic parameter was then built into the world model to simulate 82 

the displacement of blocks in a stack under the force of gravity, and the simulation 83 

result fits nicely with participants’ judgment of stacks’ stability and explained the 84 

daily illusion that taller objects are perceived as more like to fall. A computational 85 

model with a reinforcement learning algorithm was devised to reveal its origin 86 

through interactions with the physical world. Finally, we explored the ecological 87 

advantage of the stochastic feature of the world model. 88 

 89 
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Results 94 

The direction of gravity in the world model 95 

The direction of gravity is perpendicular to the ground surface. Here, we first tested 96 

humans’ sensitivity to gravity’s direction to investigate how faithfully our gravity is 97 

represented in the world model compared to gravity in the physical world. To do this, 98 

we used Pybullet (Coumans & Bai, 2016), a forward physics simulator, to manipulate 99 

gravity’s direction. Then, we asked the participants to judge whether the collapse 100 

trajectories of unstable stacks were normal (Fig 1a, Supplementary Movie S1). The 101 

direction of simulated gravity was measured by a parameter pair (𝜃, 𝜑) (Fig 1b), 102 

which determines the deviation of the direction of simulated gravity from the 103 

direction of gravity in the physical world. Specifically, 𝜃 is the vertical component of 104 

the direction that affects the degree of collapse, and 𝜑 is the horizontal component 105 

that determines the orientation of collapse. We collected participants’ judgment of the 106 

normality of collapse trajectories while varying 𝜃 from 0 to 45o and 𝜑 from 0o to 360o 107 

across the force space, and the normality ratio of the judgment for each angle pair was 108 

used to index participants’ sensitivity to gravity’s direction (Fig 1c). As expected, 109 

when 𝜃 is equal to 0 (i.e., the direction of the simulated gravity is the direction of the 110 

natural gravity), the participants were likely to report that the collapse trajectory was 111 

normal (accuracy: 91.0%, STD: 8.0%). Then, the critical question is how participants’ 112 

subjective sense about the normality of collapse trajectories changes as a function of 113 

𝜃. If our world model on gravity is a faithful replica of the physical reality, we should 114 

expect the immediate detection of abnormality when 𝜃 is away from 0.  115 

 116 
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 117 
Fig 1. Gravity’s direction in the world model. a) The design of the behavioral experiment. Left: A 118 
rotating camera was used to rotate a stack 360o to display the 3-dimensional appearance of the 119 
configuration. Middle: Gravity’s direction was randomly sampled from a spherical surface. Right: The 120 
physics simulator simulated the collapse trajectory of the stack under this selected direction, and 121 
participants reported whether the collapse trajectory was normal. b) The spherical surface of gravity’s 122 
direction was determined by two parameters 𝜃 and 𝜑. c) The procedure of calculating the normality 123 
ratio as the function of angle pairs. Left: Each cell represents the response of normality for an angle 124 
pair within a run. Middle: Responses for unsampled pairs were interpolated with the averaged 125 
responses along 𝜑. Right:  The normality ratio for each angle pair was calculated by averaging 126 
responses across runs and participants. d) Left: Gravity’s direction encoded in the world model follows 127 
a Gaussian distribution with the vertical direction as the maximum likelihood. Note that the normality 128 
ratios for 𝜃	> 0 were sampled from 𝜑	𝜖	(0°, 180°), and for 𝜃 < 0 were sampled from 𝜑	𝜖	(180°, 360°). 129 
Right: The sphere represents the space of gravity’s direction, with two poles pointing upward and 130 
downward, respectively. Each dot in the sphere represents one angle pair, and the color on a dot 131 
indicates the likelihood that the collapse trajectory under this gravity direction was judged normal. e) In 132 
a new setting, gravity’s direction is reversed. Left: An example collapse trajectory when gravity’s 133 
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direction was upward. Right: A trajectory when the direction was away from the vertical upward. f) 134 
Gravity’s direction encoded in the world model when gravity’s direction in the physical world was 135 
reversed. Error bar: standard error. 136 

 137 

Contrary to this intuition, the subjective sense of the abnormality was not 138 

immediately apparent as 𝜃 moved away from 0; instead, the rate of reporting 139 

normality of collapse trajectories decreased gradually as a function of 𝜃, which was 140 

the best fit by a Gaussian function with 𝜎 = 19.9 (Fig. 1d left). That is, the 141 

participants were 50.9% confident in reporting a normal collapse trajectory when the 142 

vertical offset of 𝜃 was 19.9o. In addition, accuracy in detecting the abnormality was 143 

not affected by 𝜑 (Extended Data Fig. 2), consistent with the uniformly distributed 144 

gravitational field in the physical world. This pattern was observed for all participants 145 

tested, with 𝜎 varying from 11.1 to 37.1 (Extended Data Fig. 2). Therefore, the world 146 

model on gravity is unlikely to be a faithful replica of the physical world; instead, it 147 

encodes gravity’s direction as a Gaussian distribution with the vertical direction as the 148 

maximum likelihood (Fig 1d right). 149 

To further test whether the world model on gravity, once established, is 150 

encapsulated from visual experience and task context, we inverted the virtual 151 

environment upside down with gravity’s direction pointing upward, and then asked 152 

the same group of participants to judge whether collapse trajectories were normal (Fig 153 

1e, see Supplementary Movie S2). We found that the normality ratio also decreased 154 

gradually as a function of 𝜃 (Fig. 1f, 𝜎 = 17.2; Extended Data Fig 3 for each 155 

participant), which was not significantly different from that in the environment with 156 

gravity pointing downward. Indeed, each participant’s 𝜎 in the upright condition was 157 

in high agreement with the 𝜎 in the upside-down condition (r = 0.91, p < 0.01). That 158 

is, the visual experience and task context apparently did not cognitively penetrate 159 

humans’ world model on gravity, suggesting that it is likely encapsulated as a 160 

cognitive module.  161 

 How does the stochastic gravity’s direction in the world model affect our 162 

inference on objects’ stability? To answer this question, we recruited an independent 163 

group of participants to estimate the stability of 60 stacks of different configurations 164 

(Fig 2a), half of which were stable. During the experiment, the participants were 165 

required to judge how stable each stack was on a 0-7 scale without feedback, which 166 

was used to index their subjective sense about stacks’ stability. Two world models 167 
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were constructed for comparison. One world model was equipped with a vertically 168 

downward direction of gravity without any stochastic variance. This deterministic 169 

model is intended to simulate how the stacks fell in the real world, and is therefore 170 

called a natural gravity simulator (NGS) (Fig 2b top). The other model is the same as 171 

the NGS, except that the deterministic direction of gravity in the NGS was replaced 172 

by the stochastic direction obtained from the previous psychophysical experiment. 173 

This model is thus called the mental gravity simulator (MGS, Fig 2c top). Both 174 

models were used to quantify the degree of stability by measuring the proportion of 175 

unmoved blocks after the collapse, where the proportion of unmoved blocks after the 176 

simulation was used to estimate the stability of the stacks.  177 

NGS-estimated stability was significantly correlated with participants’ 178 

subjective sense (Fig 2b bottom; r = 0.70, p < 0.01), consistent with previous findings 179 

(Battaglia et al., 2013). However, the participants were more inclined to judge stacks 180 

as more likely to collapse, as the dots in Fig 2b are more concentrated on the lower 181 

side of the diagonal line. This phenomenon is referred to as the inference bias, which 182 

was indexed as the difference in stability estimates between the participants and the 183 

NGS (inference bias = -0.31, p < 0.01) (see Methods). In other words, the participants 184 

were unlikely to infer stacks’ stability from simulations with a deterministic direction 185 

of gravity pointing vertically downward. In contrast, the MGS randomly sampled 186 

pairs of (𝜃!, 𝜑!) from the Gaussian distribution as gravity’s directions 100 times, and 187 

the estimated stability of a stack was the averaged stability of simulations with 188 

different angle pairs. Aside from a similar magnitude of the correlation in the stability 189 

estimates between the participants and the MGS (Fig 2c bottom; r = 0.75, p < 0.01), 190 

the MGS, unlike the NGS, perfectly captured participants’ judgment of stability 191 

because the points were evenly distributed along the diagonal line (inference bias = 192 

0.04, p > 0.05; see Extended Data Fig. 4 for the agreement when the MGS was 193 

implemented with different Gaussian functions). In other words, the magnitude of the 194 

correlation coefficients is not the only indicator to evaluate the model’s fitness. In 195 

short, the world model that represents gravity’s direction as a Gaussian distribution 196 

around the vertical direction properly explains our tendency to judge stacks as more 197 

prone to collapse.  198 

 199 
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 200 
Fig 2. Stability inference by the world model on gravity. a) An experiment to rate the stability of 201 
stacks, half of which were stable and the other half unstable. b) Top: The procedure of the NGS to 202 
estimate the actual stability of stacks by simulation, and for unstable stacks the stability was indexed by 203 
the proportion of displaced blocks. Bottom: The correlation between the stability estimates of the 204 
participant and those of the NGS. Each dot represents one stack, and the lines denote the standard 205 
errors. c) Top: The procedure of the MGS, where the stability of a stack was estimated by averaging 206 
the estimated stabilities from multiple simulations with different gravity directions sampled from the 207 
Gaussian distribution. Bottom: The correlation between the stability estimates of the participant and 208 
those of the MGS. d) Left: The illusion that taller objects are perceived as more unstable than shorter 209 
ones. Right: The inference bias was indexed by the difference between the stability estimated by the 210 
MGS and that estimated by the NGS. The larger the negative values, the more likely stacks were 211 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2022.12.30.522364doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522364
http://creativecommons.org/licenses/by/4.0/


unstable. The x-axis denotes the height of a stack containing ten blocks, where the height, length, and 212 
width of each block were 1.2, 0.4, and 0.4, respectively. IB: inference bias. Error bar: standard error. 213 

 214 

The stochastic world model illustrated by the MGS that led to participants’ 215 

inference bias may explain the daily illusion that we perceive taller objects to be more 216 

unstable than shorter ones (Fig 2d left). An intuitive explanation from physics is that a 217 

tall object has a higher center of gravity, and thus an external perturbation makes it 218 

more likely to collapse. Our stochastic world model, on the other hand, provides an 219 

alternative explanation without introducing external perturbations, simply because 220 

deviations from gravity’s veridical direction are likely to accumulate with the height 221 

of the objects. To test this conjecture, we constructed a set of stacks with different 222 

heights, and estimated the degree of stacks’ stability with the MGS and the NGS, 223 

respectively. Because the MGS was considered to be the world model implemented in 224 

the brain, the inference bias here was calculated as the difference in stability estimates 225 

between the MGS and the NGS, with negative values indicating a tendency to judge a 226 

stable stack as an unstable one. Consistent with the inference bias found in humans, 227 

the MGS found stacks of all heights to be more prone to collapse (Fig 2d right; 228 

inference bias < 0, p < 0.01 for all heights). Critically, the bias increased 229 

monotonically with increasing height, consistent with the illusion that taller objects 230 

are considered more prone to collapse (see Extended Data Fig. 5 for the inference bias 231 

when the MGS was equipped with different levels of deviation). In short, the 232 

stochastic world model on gravity provides a more concise explanation for the daily 233 

illusion that taller objects are perceived as more likely to collapse, without assuming 234 

external perturbations.  235 

 236 

The origin of the stochastic feature of the world model 237 

A deterministic model that combines gravity’s veridical direction with external 238 

perturbations, such as an external force or perceptual uncertainty (Allen et al., 2020; 239 

Battaglia et al., 2013; Lake et al., 2017; Smith & Vul, 2013), is theoretically 240 

equivalent to our stochastic model that represents gravity’s direction in a Gaussian 241 

distribution; therefore, it also fits well with humans’ inference on stability by fine-242 

tuning the parameters of external perturbations. Although both the cognitive 243 

impenetrability and the self-consistency without resorting to an external perturbation 244 
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found in our study favor the stochastic model over the deterministic one, more direct 245 

evidence comes from the origin of the stochastic feature of the world model.  246 

Because our intelligence emerges and evolves under the constraints of the 247 

physical world, the stochastic feature may emerge as a biological agent interacts with 248 

the environment, where the mismatches between external feedback from the 249 

environment and internal expectations from the world model are in turn used to fine-250 

tune the world model (Friston et al., 2021; MacKay, 1956; Matsuo et al., 2022). To 251 

simulate this process, here we designed a reinforcement learning (RL) framework to 252 

model this interactive process to illustrate how the world model on gravity evolves 253 

(Fig 3a). Specifically, an agent perceived a stack in the environment, which was then 254 

acted upon by a simulated gravity with direction parameters (i.e., 𝜃 and 𝜑) sampled 255 

from a spherical direction space. The initial probabilities for the sampling directions 256 

were identical (Fig 3b, left). The final state of the stack served as the agent’s 257 

expectation under the effect of the simulated gravity. The mismatch between the 258 

expectation and the observed final state of the stack under the natural gravity was 259 

used to update the sampling probability of the direction space, with a larger 260 

discrepancy leading to a larger decrease in probabilities through RL. Within this RL 261 

framework, we constructed 100,000 stacks of 2 to 15 blocks to train the world model 262 

on gravity. As the training progressed, the probabilities of the direction space 263 

gradually converged downward (Fig 3b, middle; see Extended Data Fig. 6 for the 264 

training trajectory). Although gravity’s direction in the environment was vertical, the 265 

distribution of updated probabilities in the direction space was gradational (𝜎 = 21.6; 266 

Fig 3b, right), which is close to gravity’s direction represented in the world model 267 

derived from the psychophysics experiment on human participants. Therefore, the 268 

world model representing gravity’s direction in a Gaussian distribution can emerge 269 

automatically as the agent interacts with the environment, without the need for any 270 

external perturbation.  271 

 272 
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 273 
Fig 3. The origin of the stochastic feature of gravity’s direction. a) The reinforcement learning 274 
framework, which updated gravity’s direction (𝜃, 𝜑)	of the world model by minimizing the difference 275 
between the expectation from the internal simulation (i.e., simulated states) and the observation from 276 
the physical world (i.e., actual states). b) Gravity’s directions, which were uniformly distributed on the 277 
spherical surface, gradually converged downward as the training progressed, and eventually stabilized 278 
in a Gaussian distribution with the vertical direction as the maximum likelihood. Color denotes the 279 
probability of a parameter pair being adopted as gravity’s direction. c) Left: World models constructed 280 
by reinforcement learning when stacks in the physical world were composed of different numbers of 281 
blocks ranging from 2 to 15. Right: The variance of the Gaussian distribution, illustrated by the width 282 
of the distribution of gravity’s direction on a spherical surface, monotonically decreased as the number 283 
of blocks in the stacks increased. 284 

 285 

 To further illustrate the idea that the environment constrains the form of 286 

intelligence, we systematically manipulated the appearance of the physical world 287 

while holding the natural gravity constant. Specifically, we constructed 14 worlds, 288 

each containing stacks of the same number of blocks, but with different 289 

configurations. The number of blocks ranged from 2 to 15. We trained the world 290 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2022.12.30.522364doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522364
http://creativecommons.org/licenses/by/4.0/


model on gravity under the same RL framework for each world, and found that all 291 

world models represented gravity’s direction in a Gaussian distribution (Fig 3c left; 292 

see Extended Data Fig. 7 for all world models). However, the width of the 293 

distribution, indexed by the parameter of 𝜎, decreased monotonically as the number of 294 

blocks increased (Fig 3c right). This phenomenon was shown because in general 295 

stacks containing more blocks were more likely to be affected by forces whose 296 

directions were not perpendicular to the ground surface, which provided more 297 

information about gravity, and thus resulted in a more accurate representation of 298 

gravity’s direction in the world model. In short, the world model on gravity resonates 299 

with not only the physical law governing the environment, but also the specific 300 

regularities of the environment the agent encountered.  301 

 302 

The ecological advantage of the stochastic world model 303 

When passing a cliff face, we have to be constantly aware of the stability of the rocks 304 

on the cliff. The ideal response would be both accurate and fast, but accuracy and 305 

speed are often difficult to achieve simultaneously. Here we investigated how the 306 

world model on gravity balances these two factors with its stochastic feature. To 307 

answer this question, we used a linear classifier (i.e., logistic regression) to model 308 

humans’ decision-making behavior at different stages of the mental simulation. 309 

Specifically, we collected all the position coordinates of a stack’s blocks at different 310 

stages of the simulation. The position difference between the intermediate states of 311 

the stack and the initial state provides information about the stability of the stack. For 312 

example, a stable stack should have no difference in the positions of the component 313 

blocks at all simulation stages, and an unstable stack should have a gradually 314 

increasing position difference. If the linear classifier detected the difference in 315 

positions sufficient for the classification at any stage, it classified the stack as 316 

unstable, otherwise stable (Fig 4a). The classification accuracy gradually increased as 317 

the simulation progressed until it reached the asymptote.  318 

As expected, for the NGS (i.e., the world model with the deterministic 319 

direction of gravity), the accuracy at the plateau was close to 100% (95.3% on 320 

average, Fig 4b top red box), significantly higher than that for the MGS (80.1% on 321 

average, Fig 4b top blue box) (t = 19.59, p<0.001), simply because of the stochastic 322 

feature of gravity’s direction. However, the MGS reached the plateau of decision 323 
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accuracy much faster than the NGS (response time, indexed by the ratio between the 324 

time to reach the plateau and the time to reach the final stage: 27.1% vs. 75.2%, t = 325 

15.58, p < 0.001) (Fig 4b middle). The same pattern was also observed with different 326 

variances of the Gaussian distribution (Extended Data Fig. 8). That is, the stochastic 327 

world model prioritized speed over accuracy, echoing the basic principle of survival: 328 

fleeing potential danger as quickly as possible, rather than making a perfect decision 329 

with a dreadful delay. In addition, by integrating the prediction accuracy and the 330 

response time as a measure of efficiency, we found that the stochastic world model 331 

provided a better balance between accuracy and speed, with an efficiency 332 

significantly higher than that provided by the NGS (3.49 vs. 1.32, t = 9.12, p < 0.001; 333 

Fig 4b bottom). 334 

 335 

 336 
Fig 4. The ecological advantage of the stochastic feature. a) Illustration that modeled humans’ 337 
decision-making behavior at different stages of the mental simulation using the NGS and MGS. b) The 338 
decision of the linear classifier based on the simulation of the MGS was less accurate than that of the 339 
NGS (top), but the decision was made faster in the MGS than in the NGS (middle). The MGS was 340 
more efficient than the NGS in combining accuracy and speed (bottom). c) The relationship between 341 
the number of simulations and the variance of the estimated stability. d) The difference in the variance 342 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2022.12.30.522364doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522364
http://creativecommons.org/licenses/by/4.0/


of the estimated stability between the participants and the MGS. The difference was minimal when the 343 
MGS ran the simulation three times. Error bar: standard error. 344 

 345 

 On the other hand, if time permits, multiple simulations with the MGS can 346 

significantly reduce the variance introduced by the stochastic representation of 347 

gravity’s direction (Fig 4c). To explore whether humans adopted this strategy of 348 

performing multiple simulations before making a decision, we ran simulations with 349 

the MGS at different numbers of times and then matched them with humans’ 350 

performance. We found that the variance of humans’ inference on stability best 351 

matched that of the MGS after three simulations (Fig 4d; see Extended Data Fig. 9 for 352 

the model-behavior correspondence under different numbers of simulations). 353 

Therefore, humans are likely to run simulations a limited number of times to infer 354 

stacks’ stability. 355 

 356 
 357 
 358 
  359 
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Discussion 360 
In this study, we investigated how the physical law of gravity is embodied in the brain 361 

as a world model that guides inferences on objects’ stability. A series of 362 

psychophysics experiments showed that the world model on gravity is not a faithful 363 

replica of the physical world, but rather a stochastic model that captures the essence 364 

of the vertically downward direction of gravity as the maximum likelihood of a 365 

Gaussian distribution. The stochastic feature of the world model not only fits humans’ 366 

stability inference behavior better than the deterministic model, but also provides new 367 

insight into the daily illusion that taller objects are perceived as more likely to 368 

collapse. We further illustrated how the stochastic feature evolved through 369 

interactions with the environment using reinforcement learning, and well-balanced 370 

accuracy and speed to produce a unique ecological advantage for our survival in the 371 

physical world.   372 

About 300 years ago, the philosopher Immanuel Kant proposed the intuition of 373 

space and time as a priori knowledge in the mind for us to understand the physical 374 

world (Kant, 1781), but only until recently have researchers investigated how the 375 

intuition is implemented in the brain as intuitive physics (Kubricht et al., 2017; 376 

McCloskey, 1983). In the Noisy Newtonian Framework, intuitive physics is depicted 377 

as a combination of Newtonian physics and uncertainty generated by noise (Battaglia 378 

et al., 2013; Kubricht et al., 2017; Sanborn et al., 2013). The introduction of 379 

uncertainty helps to reconcile the misconception occurring under unfavorable 380 

conditions, such as unfamiliar events or static scenes (Kaiser et al., 1986, 1992; Kim 381 

& Spelke, 1999; McCloskey, 1983; Smith & Vul, 2013), which was once thought to 382 

support Aristotelian physics (DiSessa, 1982; Halloun & Hestenes, 1985). The noise in 383 

previous studies was thought to originate from sources such as perceptual uncertainty 384 

or external perturbations of forces, rather than from the intuitive physical engine 385 

itself, which is thought to be a deterministic system. Our study extends these 386 

deterministic models by showing a stochastic world model that the noise instead came 387 

from the representation of gravity’s direction under Gaussian distribution. The 388 

inherent stochastic feature of gravity’s direction did not need to rely on external noise 389 

to explain the illusory instability of taller objects. In addition, it was also confirmed 390 

by the cognitive impenetrability of the Gaussian distribution of gravity’s direction 391 

when gravity’s direction in the physical world was reversed (Pylyshyn, 1980).  392 
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With a reinforcement learning framework, we further demonstrated a possible 393 

origin of the stochastic feature of the world model through interactions with the 394 

physical world. In contrast to summarizing statistical patterns from the experience 395 

(Bear et al., 2021; Li et al., 2016; Zhang et al., 2016), this framework was designed to 396 

simulate how an agent constructed the world model on gravity through agent-397 

environment interactions. Specifically, a world model with undifferentiated directions 398 

of gravity generated a prediction on the stability of an object, and the mismatches 399 

between the prediction and the observation of the object from the physical world were 400 

used to fine-tune the distribution of the directions in the world model. This process is 401 

similar to how humans update their internal knowledge by comparing simulated 402 

expectations (Hegarty, 2004; Ullman et al., 2017) with actual observations 403 

(Baillargeon, 1994, 2004; Kotovsky & Baillargeon, 2000). After several generations 404 

of error minimization, a Gaussian distribution of gravity’s direction with the vertically 405 

downward direction as the maximum likelihood was similar to that observed in the 406 

human world model. Interestingly, when the physical worlds that the agent interacted 407 

with changed their appearance with stacks of different heights, the world models 408 

maintained their general patterns, but the stochastic representation of gravity’s 409 

direction changed accordingly. This finding not only demonstrates the robustness of 410 

the active inference (Hegarty, 2004; Ullman et al., 2017), which efficiently encodes 411 

critical features under different physical worlds, but also resonates with the idea that 412 

intelligence develops under the constraints of the physical world. Taken together, the 413 

finding from the RL framework implies that the world model on gravity in humans 414 

may also be constructed in the same way, possibly through the mechanism of the 415 

predictive coding in a generative process (Friston, 2018; Huang & Rao, 2011). 416 

Our world model on gravity provides an example of the world model theory 417 

that emphasizes the predictive nature of generative neural networks implemented with 418 

a priori knowledge of the physical world (Friston et al., 2021; Land, 2014; Matsuo et 419 

al., 2022). In contrast to traditional discriminative neural networks that learn statistical 420 

patterns for stability from gigantic amounts of labeled stacks, generative models 421 

equipped with the physics laws governing the physical world rely much less on 422 

experience. Importantly, the stochastic feature of the model further enhances the 423 

efficiency by balancing accuracy and speed, which improves our chances of better 424 

survival (Cosmides & Tooby, 1997) and adaptation to novel environments (e.g., 425 

astronauts in outer space (Wang et al., 2022)). Indeed, the close link between human 426 
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cognition and the physical world through interaction may shed light on the 427 

development of a new generation of AI with human-like intelligence that can work 428 

flexibly in open-ended environments (Marcus, 2018, 2020). 429 

 430 
 431 
 432 
 433 
  434 
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Methods 435 
Creating stacks with different configurations 436 

We designed a block-stacking procedure in a physical simulation platform (PyBullet) 437 

to generate stacks with different configurations. All stacks used in this study were 438 

generated using this procedure with the same parameters listed below.  439 

The block-stacking procedure includes three steps (Extended Data Fig. 1a): (1) 440 

defining the designated area, (2) stacking blocks, and (3) fine-tuning block positions. 441 

The first step is to designate a restricted place area. All blocks of a stack were 442 

required to place within the designated area. The designated area controls the 443 

aggregation level of blocks, with a small area clustering blocks closer than a large 444 

area. The designated area is determined by two horizontal parameters x and y, which 445 

separately represent the size of the area in two horizontal directions. Therefore, when 446 

the block number is fixed, a smaller area in general constructs a higher stack. After 447 

designating the area, in step two we stacked blocks in random horizontal positions 448 

within the area one by one. If no block was positioned under a new block, the new 449 

block would be directly placed on the ground; otherwise, it would stack on the 450 

positioned block. The horizontal position of each block was independently sampled 451 

from a uniform distribution, with lower and upper bounds being -x and +x, or -y and 452 

+y separately (x and y were all independently sampled from a uniform distribution 453 

𝑈(0.2, 2.0)). The first two steps allow us to generate a large number of configurations 454 

within the designated area, which is the only restriction of the block-stacking 455 

procedure. To better control the physical stability of each stack, in step three we fine-456 

tuned blocks in the stack by adjusting overlaps between every neighboring one, which 457 

was randomly sampled from a uniform distribution 𝑈(0.2, 0.8). Smaller overlap 458 

between neighboring blocks is more likely to construct unstable stacks, whereas more 459 

extensive overlap results in more stable stacks. The overlap of neighboring blocks 460 

without contact is set to 0. Note that the overlap between neighboring blocks is not the 461 

only factor determining a stack's stability, and step three is used to generate stacks 462 

without consuming too many computational resources.  463 

The size of each block has a 3D aspect ratio of 3:1:1 (length: width: height), 464 

with an arbitrary unit of 1.2:0.4:0.4. This constitutes three types of blocks (length, 465 

width, or height is 1.2, respectively, see Extended Data Fig. 1b). Each block of a stack 466 

was randomly selected as one of the three types of blocks. The mass of each block is 467 
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set to 0.2 kg, and the friction coefficients and the coefficients of restitution between 468 

blocks are set to 1 and 0, respectively. 469 

 470 

Estimating the stability of a stack 471 

The stability of a stack was obtained by a rigid-body forward simulation under the 472 

natural gravity environment (i.e., natural gravity simulator, NGS). The direction of the 473 

natural gravity points downward (i.e., 𝐺⃗ = (0, 0, -9.8)), and all blocks of a stack are 474 

affected by the same gravity. Gravity is the only factor for changing the state of each 475 

block, and no external force is added during the simulation. Within each simulation, 476 

we recorded 500 simulation stages. In each stage, the center position of each block 477 

was collected to measure the stability of the stack. If the position of any block does 478 

not change during the simulation, the stack is considered stable, otherwise unstable. 479 

We formulate the stack’s state according to the below criteria: 480 

 𝑆𝑡𝑎𝑏𝑙𝑒:	∀𝑡 ∧ ∀𝑚, |𝑃"# − 𝑃$#| < 𝜀 
(1) 

𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒:	∃𝑡 ∨ ∃𝑚, |𝑃"# − 𝑃$#| > 𝜀	 

Where 𝑡 is a simulation stage, m is the block number of a stack, 𝑃"# is the position of 481 

the block m at stage t, and 𝜀 is the just noticeable difference (i.e., j.n.d) of the 482 

perception, which is set to 0.01.  483 

 The stability of a stack is further calculated by measuring the proportion of 484 

displaced blocks, which is formulated as the following, 485 

 
𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

∑ 𝕀(|𝑃%# − 𝑃$#| < 𝜀)&
#'(

𝑀  (2) 

Where M is the total number of blocks of a stack, and T is the final stage of the 486 

simulation (i.e., T = 500). 𝕀(∙) = 1 when |𝑃%) − 𝑃$)| < 𝜀, which denotes that the 487 

stack is stable. 488 

  489 

Measuring participants’ sensitivity to gravity’s direction 490 

We decomposed gravity’s direction into three independent components (Fig. 1b). 491 

 𝐺* = 𝑔 sin 𝜃 cos𝜑 

(3)  𝐺+ = 𝑔 sin 𝜃 sin𝜑 

 𝐺, = 𝑔 cos 𝜃 

Where g is the magnitude of gravity (g = 9.8), which was fixed in this study. 𝜃 492 

represents the vertical component, 𝜑 represents the horizontal component, and x, y, 493 
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and z are three mutually perpendicular axes. The direction of the gravity was 494 

determined by the angle pair (𝜃, 𝜑), where 𝜃 affects the extent of the collapse, and 𝜑 495 

affects the orientation of the collapse. When 𝜃 is 0, gravity’s direction is vertical.  496 

 We performed a psychophysics experiment to measure humans’ sensitivity to 497 

gravity’s direction. In this experiment, 10 participants (5 female, age range: 21-28) 498 

from Tsinghua University were recruited to finish four runs of the behavioral 499 

experiment, which measured their ability to detect the abnormality of stacks’ collapse 500 

trajectories. The experiment was approved by the Institutional Review Board of 501 

Tsinghua University, and informed consent was obtained from all participants before 502 

the experiment. 503 

 The collapse trajectory of a stack was solely determined by gravity with 504 

different directions, where larger values of 𝜃 and 𝜑 made the trajectories more 505 

abnormal. A pilot experiment showed that almost all 𝜃! greater than 45 degrees made 506 

the collapse trajectory abnormal to most participants, and therefore in the experiment, 507 

𝜃 ranges from 0 to 45 degrees with a step of 3 degrees.  𝜑 ranges from 0 to 360 508 

degrees with a step of 24 degrees. Therefore, 𝜃 and 𝜑 consists of 16 values, 509 

respectively, which were randomly combined into 96 pairs of (𝜃, 𝜑) with each value 510 

repeating 6 times in each run. In a trial, an unstable stack was constructed, and then 511 

the camera rotated one circle to show the 3D configuration of the stack to participants 512 

(Supplementary Movie S1). The configuration was randomly selected from a dataset 513 

with more than 2,000 unstable stacks, which was generated with the block-stacking 514 

procedure before the experiment. Each stack in the database was constructed with 10 515 

blocks, and the color of each block was randomly rendered. There was a 1-sec delay 516 

after the rotation, during which the participants were instructed to infer the collapse 517 

trajectory based on the configuration. Then, simulated gravity with a direction 518 

determined by an angle pair (𝜃, 𝜑) was applied to the stack, and the stack started to 519 

collapse. If the collapse trajectory met participants’ expectations, they were instructed 520 

to choose ‘Normal,’ otherwise ‘Abnormal’. Once the judgment was made, the 521 

subsequent trial started immediately. Each trial lasts about 10 seconds, taking 16 522 

minutes for a run. 523 

 In addition, to test if participants’ sensitivity to gravity’s direction is 524 

encapsulated from visual experience and task context, we flipped gravity’s direction 525 
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upside down by inverting the camera’s view, and the rest procedure remained the 526 

same.  527 

 To calculate participants’ sensitivity to gravity’s direction, we converted their 528 

behavioral judgment into normality ratio, which is the percentage that a trajectory was 529 

judged as normal, which was calculated as below: 530 

 𝑅𝑎𝑡𝑖𝑜-,/ =
𝑛-,/
𝑁-,/

 (4) 

Where 𝑛-,/ is the number of trajectories that were judged as ‘Normal’ with the angle 531 

pair (𝜃, 𝜑), 𝑁-,/ is the total number of trajectories with the same angle pair. Because 532 

the angle pairs tested were a subset of all possible angle pairs, we used the average 533 

ratio along 𝜑 as the ratio of angle pairs untested (Fig. 1c) to acquire each participant’s 534 

tuning curve. Finally, we calculated participants’ sensitivity by fitting their normality 535 

ratios at different 𝜃 to a Gaussian distribution.  536 

 𝑅𝑎𝑡𝑖𝑜- = 𝐴𝑒0
-!
12! (5) 

Where 𝑅𝑎𝑡𝑖𝑜- is the normality ratio of 𝜃, which was calculated by averaging the 537 

normality ratio along all 𝜑!, A is the magnitude of the gaussian curve, 𝜎 is the 538 

variance of the Gaussian curve. The best-fitted 𝜎 was used to index participants’ 539 

sensitivity to gravity’s direction, and a larger 𝜎 indicates a lower sensitivity.  540 

 541 

Measuring participants’ ability on stability inference 542 

Another group of 11 participants (5 female, age range: 21-32) from Tsinghua 543 

University completed a behavioral experiment for judging the stability of 60 stacks. 544 

The experiment was approved by the Institutional Review Board of Tsinghua 545 

University, and informed consent was obtained from all participants before the 546 

experiment. One male participant (age: 25) was excluded from further analyses 547 

because his judgment showed an extremely weak correlation with the actual stability 548 

of stacks (rs < 0.30 for all experimental runs), as compared to the rest of the 549 

participants. 550 

The stacks contained 26 unstable and 34 stable stacks, which were randomly 551 

interleaved in each run. The participants were instructed to judge stacks’ stability on 552 

an 8-point Likert scale, with 0 referring to ‘definitely unstable’ and 7 to ‘definitely 553 

stable.’ There was no feedback after each judgment. The participants completed six 554 

runs, within which the same group of stacks was presented but the sequence, blocks’ 555 
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colors, and camera’s perspective were all randomized. After the experiment, only two 556 

participants reported that they suspected a few stacks were repeated in different runs, 557 

but they could not locate the stacks they suspected. Besides, their behavioral 558 

performance was not significantly different from other participants. 559 

 Participants’ stability judgment was rescaled to 0 and 1 to match the scale of 560 

the stacks’ stability. The participants’ inference bias (IB) was indexed as the 561 

difference in stability judgment between the participants and the NGS, shown as 562 

 𝐼𝐵 = 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦34#56 − 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦789 (6) 

Negative IB indicates that participants tended to consider a stable stack as an unstable 563 

one. 564 

 565 

Estimating the stability of stacks based on the stochastic world model 566 

on gravity 567 

The actual stability of a stack can be calculated with a one-time simulation of NGS (𝐺⃗ 568 

= (0, 0, -9.8)). In contrast, the stochastic nature of mental gravity requires a multiple-569 

time simulation with different gravity’s directions. Specifically, we first randomly 570 

sampled several angle pairs (𝜃!, 𝜑!) from the Gaussian distribution of gravity’s 571 

directions in humans. The distribution was the average of two distributions acquired 572 

from the real world (i.e., gravity’s direction is downward) and the inverted world (the 573 

direction is upward), with angles having larger normality ratios more likely being 574 

sampled. We then applied the simulated gravity with these sampled directions to the 575 

stack, and used the averaged stability with these directions as the stability of the stack 576 

estimated by the MGS. Similar to the IB between the participants and the NGS, the IB 577 

between the MGS and NGS was calculated as  578 

𝐼𝐵 = 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦&89 − 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦789 (7) 

Stacks of different heights were created to investigate whether the stochastic 579 

world model on gravity results in the illusion that tall objects are considered less 580 

stable than short ones. The height of a stack was correlated with the size of the 581 

designated area, with a smaller area size corresponding to taller stacks. Therefore, we 582 

designated several square areas with different sizes. The side length of the squares 583 

ranged from 0.2 to 2.0, with an increase of 0.1. For each square, we used the block-584 

stacking procedure to generate 100 stable and 100 unstable stacks consisting of 10 585 

blocks. The height of each stack was the height of the highest block. 586 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2022.12.30.522364doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522364
http://creativecommons.org/licenses/by/4.0/


 587 

Investigating the origin of the stochastic world model on gravity 588 

A reinforcement learning (RL) framework was used to simulate the development of 589 

the stochastic nature of the world model on gravity. To do this, we first created stacks 590 

whose block number ranged from 2 to 15 with the block-stacking procedure, and 591 

initialized a spherical force space, where 𝜃 ranged from 0 to 180 degrees and 𝜑 from 592 

0 to 360 degrees. The spherical space covered all possible force directions, with the 593 

initial probability of being sampled by the MGS identical. During the training, three 594 

angle pairs (𝜃!, 𝜑!) were sampled according to the probability of the spherical space, 595 

and then applied to a stack for simulating its collapse trajectory, which was divided 596 

into 500 stages. We optimized the sampling probability of gravity’s direction by 597 

comparing the estimated stability (i.e., expectation) with the actual stability (i.e., 598 

observation) as a Q value, with a higher Q value suggesting that the sampled gravity’s 599 

direction more likely mismatched the actual gravity’s direction. The Q value was 600 

calculated as 601 

 
𝑄 =

∑ 𝕀(Y𝑃#,(-,/) − 𝑃#Y < 𝜀)&
#'(

𝑀  (8) 

Where 𝑃#,(-,/) is the final position of block m with gravity’s direction (𝜃, 𝜑), 𝑃# is 602 

the final position of block m with NGS, M is the block number of the stack, and the 603 

j.n.d. 𝜀 is set to 0.01. The mismatch between the expectation and the observation was 604 

used to update the sampling probability of the angle pair using a temporal difference 605 

optimization 606 

 𝑊-,/ ← 𝑊-,/ + 𝛾(𝑄 −𝑊-,/) (9) 

Where 𝛾 = 0.15 as the learning rate. This process was iterated to update the sample 607 

probability of angle pairs (𝜃!, 𝜑!) until the training stopped. We prepared 100,000 608 

configurations for the training.  609 

 610 

Evaluating the ecological advantage of the model  611 

To investigate how the world model on gravity balances response accuracy and speed, 612 

we trained a linear classifier (i.e., logistic regression) to model humans’ decision-613 

making process at different simulation stages. During the simulation, the same stack 614 

was separately simulated using the NGS and MGS, and we collected the position 615 

coordinates of all blocks at each stage. Differences in the positions of the blocks 616 
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between the intermediate stage and the initial stage provided information about the 617 

stability of a stack, with more displaced blocks suggesting the lower stack’s stability. 618 

As the simulation proceeded, differences in position gradually accumulated for 619 

unstable stacks, otherwise unchanged for stable stacks. The linear classifier was 620 

trained to judge whether a stack is stable with differences in position as inputs. 621 

 We used the block-stacking procedure to create stacks consisting of 2 to 10 622 

blocks, and estimated their stabilities with the NGS for simulation in 500 stages. For 623 

each block number, there were 100 stable and 100 unstable stacks to train the linear 624 

classifier, and its prediction accuracy was measured with another group of 100 stable 625 

and 100 unstable stacks at every simulation stage.  626 

 The difference in positions of each block between the intermediate and initial 627 

stages was used as the input of the linear classifier. Specifically, we collected all 628 

vertex positions of a block during the simulation to acquire the difference in position, 629 

which included 8 coordinate points for each block in each stage. We did not collect 630 

the central position as previously used in the stability estimation, simply because it 631 

did not provide information on the shape and size of the block. We separately 632 

performed the simulation using the MGS and NGS, calculated the difference in 633 

position between the intermediate stage and the initial stage, and then flattened the 634 

difference to generate 24 position features for each block (i.e., eight positions per 635 

block in three-dimensional space). Therefore, for a 10-block stack as an example, 636 

there were 240 position features were prepared as the input of the linear classifier.  637 

 Prediction accuracy at each stage was estimated by evaluating whether a stack 638 

tested was stable with the MGS or with the NGS. The highest accuracy in the whole 639 

simulation stages was used as the prediction accuracy. Accordingly, the first 640 

simulation stage to reach the maximum accuracy provided information on response 641 

speed: reaching the maximum accuracy with a smaller number of stages indicates the 642 

classifier model accomplishes stability inference in a shorter amount of time (i.e., 643 

quick response). Therefore, we measured the response speed by estimating the steps 644 

to reach the accuracy plateau. 645 

 
𝑇𝑖𝑚𝑒 =

𝑡̂
𝑇 

(10) 
𝑡̂ = 𝑎𝑟𝑔max

"
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦" 

Where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦" is the accuracy of stage t. 𝑡̂ is the stage that a linear classifier 646 

acquires the maximum accuracy for the first time, T is the total stage number of each 647 
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simulation (T = 500). Higher values indicate longer response time (i.e., slower 648 

response). Finally, the efficiency of the stability inference, which is the balance 649 

between accuracy and speed, by dividing the prediction accuracy by the response 650 

time. 651 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑇𝑖𝑚𝑒  (11) 

 652 
 653 
 654 
 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
  663 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2022.12.30.522364doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522364
http://creativecommons.org/licenses/by/4.0/


References 664 
Allen, K. R., Smith, K. A., & Tenenbaum, J. B. (2020). Rapid trial-and-error learning 665 
with simulation supports flexible tool use and physical reasoning. Proceedings of the 666 
National Academy of Sciences, 117(47), 29302–29310. 667 
Baillargeon, R. (1994). How do infants learn about the physical world? Current 668 
Directions in Psychological Science, 3(5), 133–140. 669 
Baillargeon, R. (2004). Infants’ physical world. Current Directions in Psychological 670 
Science, 13(3), 89–94. 671 
Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine 672 
of physical scene understanding. Proceedings of the National Academy of Sciences, 673 
110(45), 18327–18332. 674 
Bear, D. M., Wang, E., Mrowca, D., Binder, F. J., Tung, H.-Y. F., Pramod, R., 675 
Holdaway, C., Tao, S., Smith, K., Sun, F.-Y., & others. (2021). Physion: Evaluating 676 
physical prediction from vision in humans and machines. ArXiv Preprint 677 
ArXiv:2106.08261. 678 
Blatner, D. (2013). Spectrums: Our mind-boggling universe from infinitesimal to 679 
infinity. A&C Black. 680 
Cosmides, L., & Tooby, J. (1997). Evolutionary psychology: A primer. 681 
Coumans, E., & Bai, Y. (2016). Pybullet, a python module for physics simulation for 682 
games, robotics and machine learning. https://pybullet.org 683 
DiSessa, A. A. (1982). Unlearning Aristotelian physics: A study of knowledge-based 684 
learning. Cognitive Science, 6(1), 37–75. 685 
Fischer, J., Mikhael, J. G., Tenenbaum, J. B., & Kanwisher, N. (2016). Functional 686 
neuroanatomy of intuitive physical inference. Proceedings of the National Academy 687 
of Sciences, 113(34), E5072–E5081. 688 
Friedman, W. J. (2002). Arrows of time in Infancy: The representation of temporal–689 
causal invariances. Cognitive Psychology, 44(3), 252–296. 690 
Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience, 21(8), 691 
1019–1021. 692 
Friston, K., Moran, R. J., Nagai, Y., Taniguchi, T., Gomi, H., & Tenenbaum, J. 693 
(2021). World model learning and inference. Neural Networks, 144, 573–590. 694 
Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. 695 
American Journal of Physics, 53(11), 1056–1065. 696 
Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive 697 
Sciences, 8(6), 280–285. 698 
Huang, Y., & Rao, R. P. (2011). Predictive coding. Wiley Interdisciplinary Reviews: 699 
Cognitive Science, 2(5), 580–593. 700 
Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E., & Lacquaniti, F. (2005). 701 
Representation of visual gravitational motion in the human vestibular cortex. Science, 702 
308(5720), 416–419. 703 
Kaiser, M. K., Jonides, J., & Alexander, J. (1986). Intuitive reasoning about abstract 704 
and familiar physics problems. Memory & Cognition, 14(4), 308–312. 705 
Kaiser, M. K., Proffitt, D. R., Whelan, S. M., & Hecht, H. (1992). Influence of 706 
animation on dynamical judgments. Journal of Experimental Psychology: Human 707 
Perception and Performance, 18(3), 669. 708 
Kant, I. (1781). The Critique of Pure Reason. 709 
Kim, I.-K., & Spelke, E. S. (1999). Perception and understanding of effects of gravity 710 
and inertia on object motion. Developmental Science, 2(3), 339–362. 711 
Kotovsky, L., & Baillargeon, R. (2000). Reasoning about collisions involving inert 712 
objects in 7.5-month-old infants. Developmental Science, 3(3), 344–359. 713 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2022.12.30.522364doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522364
http://creativecommons.org/licenses/by/4.0/


Kubricht, J. R., Holyoak, K. J., & Lu, H. (2017). Intuitive physics: Current research 714 
and controversies. Trends in Cognitive Sciences, 21(10), 749–759. 715 
Lacquaniti, F., & Maioli, C. (1989). Adaptation to suppression of visual information 716 
during catching. Journal of Neuroscience, 9(1), 149–159. 717 
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building 718 
machines that learn and think like people. Behavioral and Brain Sciences, 40. 719 
Land, M. F. (2014). Do we have an internal model of the outside world? 720 
Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1636), 721 
20130045. 722 
Li, W., Azimi, S., Leonardis, A., & Fritz, M. (2016). To fall or not to fall: A visual 723 
approach to physical stability prediction. ArXiv Preprint ArXiv:1604.00066. 724 
MacKay, D. M. (1956). The epistemological problem for automata. In Automata 725 
Studies.(AM-34), Volume 34 (pp. 235–252). Princeton University Press. 726 
Marcus, G. (2018). Deep Learning: A Critical Appraisal. 727 
Marcus, G. (2020). The next decade in ai: Four steps towards robust artificial 728 
intelligence. ArXiv Preprint ArXiv:2002.06177. 729 
Matsuo, Y., LeCun, Y., Sahani, M., Precup, D., Silver, D., Sugiyama, M., Uchibe, E., 730 
& Morimoto, J. (2022). Deep learning, reinforcement learning, and world models. 731 
Neural Networks. 732 
McCloskey, M. (1983). Intuitive physics. Scientific American, 248(4), 122–131. 733 
McIntyre, J., Zago, M., Berthoz, A., & Lacquaniti, F. (2001). Does the brain model 734 
Newton’s laws? Nature Neuroscience, 4(7), 693–694. 735 
Pramod, R., Cohen, M. A., Tenenbaum, J. B., & Kanwisher, N. (2022). Invariant 736 
representation of physical stability in the human brain. ELife, 11, e71736. 737 
Pylyshyn, Z. W. (1980). Computation and cognition: Issues in the foundations of 738 
cognitive science. Behavioral and Brain Sciences, 3(1), 111–132. 739 
Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2013). Reconciling intuitive 740 
physics and Newtonian mechanics for colliding objects. Psychological Review, 741 
120(2), 411. 742 
Smith, K. A., & Vul, E. (2013). Sources of uncertainty in intuitive physics. Topics in 743 
Cognitive Science, 5(1), 185–199. 744 
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to 745 
grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279–1285. 746 
Ullman, T. D., Spelke, E., Battaglia, P., & Tenenbaum, J. B. (2017). Mind games: 747 
Game engines as an architecture for intuitive physics. Trends in Cognitive Sciences, 748 
21(9), 649–665. 749 
Wang, Y., Zhang, X., Wang, C., Huang, W., Xu, Q., Liu, D., Zhou, W., Chen, S., & 750 
Jiang, Y. (2022). Modulation of biological motion perception in humans by gravity. 751 
Nature Communications, 13(1), 1–10. 752 
Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling 753 
objects: A review of evidence for an internal model of gravity. Journal of Neural 754 
Engineering, 2(3), S198. 755 
Zago, M., McIntyre, J., Senot, P., & Lacquaniti, F. (2009). Visuo-motor coordination 756 
and internal models for object interception. Experimental Brain Research, 192(4), 757 
571–604. 758 
Zhang, R., Wu, J., Zhang, C., Freeman, W. T., & Tenenbaum, J. B. (2016). A 759 
comparative evaluation of approximate probabilistic simulation and deep neural 760 
networks as accounts of human physical scene understanding. ArXiv Preprint 761 
ArXiv:1605.01138. 762 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2022.12.30.522364doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522364
http://creativecommons.org/licenses/by/4.0/


Zhou, L., Smith, K., Tenenbaum, J., & Gerstenberg, T. (2022). Mental Jenga: A 763 
counterfactual simulation model of physical support. 764 
 765 

 766 

 767 
 768 
  769 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2022.12.30.522364doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522364
http://creativecommons.org/licenses/by/4.0/


Acknowledgments 770 

Funding: This study was funded by Beijing Municipal Science & Technology 771 

Commission and Administrative Commission of Zhongguancun Science Park 772 

(Z221100002722012), the Shuimu Tsinghua Scholar Program (T.H.), Tsinghua 773 

University Guoqiang Institute (2020GQG1016), Tsinghua University Qiyuan 774 

Laboratory, and Beijing Academy of Artificial Intelligence (BAAI). 775 

Author contributions: J.L. conceptualized the study. T.H. designed and conducted 776 

the experiments. T.H. analyzed data. T.H. and J.L. wrote the manuscript. 777 

Competing interests: Authors declare no competing interests. 778 

Data and materials availability: All code and data underlying our study and 779 

necessary to reproduce the results are available on Github: 780 

https://github.com/helloTC/GravityWorldModel. 781 

 782 

  783 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2022.12.30.522364doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522364
http://creativecommons.org/licenses/by/4.0/


Extended Data Fig.1 784 

 785 
Extended Data Fig. 1 Construction of stacks with different configurations. a) Illustration of the 786 
block-stacking procedure to create stacks in different configurations. A configuration was constructed 787 
by placing multiple blocks within a designated area. If there was no positioned block in the area, a new 788 
block was placed on the ground; otherwise, it was placed on top of the positioned block. b) Three types 789 
of blocks with an aspect ratio of 3:1:1. c) This procedure can create a large number of stacks with 790 
different configurations within designated areas. Note that in small areas, the height of stacks was 791 
taller. d) The lower bound of configurations’ possible number showed an exponential relation with the 792 
number of blocks in a stack. The procedure can create at least 3.72 × 10"# configurations for stacks 793 
consisting of 10 blocks. See the appendix for the estimation. 794 

 795 

 796 
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Extended Data Fig.2 799 

 800 
Extended Data Fig. 2 The stochastic world model on gravity of each participant. The normality 801 
ratios of 𝜃 followed a Gaussian distribution, with the variance ranging from 11.1 to 37.1. No stochastic 802 
characteristic was observed in 𝜑.  803 
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Extended Data Fig. 3 804 

 805 
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Extended Data Fig. 2 The stochastic world model on gravity of each participant when gravity’s 806 
direction was inverted. The normality ratios of 𝜃 also followed a Gaussian distribution, with the 807 
variance ranging from 9.1 to 28.4, and no stochastic characteristic was observed along 𝜑. 808 

 809 
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Extended Data Fig. 4 811 

 812 
Extended Data Fig. 4 Relation between the stability estimated by the MGS stability and that by 813 
participants when the world model was implemented with different Gaussian functions. Only 814 
when the world model embodied Gaussian functions with intermediate variance (i.e., 𝜎 ∈ (15,20)) did 815 
the stability estimated by the MGS match participants’ stability inference. On the other hand, when the 816 
variance was small, most points were positioned below the diagonal line, indicating the model 817 
considered stacks more stable in general as compared to participants’ judgment. When the variance was 818 
large, the model considered stacks less stable. Note that all models showed high correlation coefficients 819 
regardless of the bias. In other words, the magnitude of the correlation is not the sole indicator to 820 
evaluate the fitness of the model. IB: inference bias. 821 
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Extended Data Fig. 5 824 

 825 
Extended Data Fig. 5 Height illusion of stability inference when the world model was implemented 826 
with different Gaussian functions. The illusion that tall objects are considered more unstable than 827 
short ones manifests at all levels of variances of Gaussian functions, with larger variance leading to a 828 
stronger illusion. 829 
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Extended Data Fig. 6 831 

 832 
 833 

Extended Data Fig. 6 The developmental trajectory of 𝜽 (Top) and 𝝋 (Bottom) angles. Sampling 834 
probabilities of 𝜃 angles gradually decreased during reinforcement learning, with the probabilities from 835 
smaller 𝜃 angles having a lower decrement tendency. The probability of 𝜃 without any deviation (i.e., 836 
𝜃 = 0) keeps unchanged. Probabilities of all 𝜃 angles finally reached convergence after about 50% 837 
training progress. Different from 𝜃 angles, sampling probabilities of the 𝜑 angles dropped evenly.  838 

 839 
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Extended Data Fig. 7 841 

 842 
Extended Data Fig. 7 The world models developed in the world containing stacks with different 843 
numbers of blocks. The number of blocks ranged from 2 to 15, and in all the worlds gravity’s 844 
direction was in Gaussian distributions with the vertical direction as the maximum likelihood. Note that 845 
the world with stacks consisting of more block numbers led to smaller variances in the Gaussian 846 
function.  847 
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Extended Data Fig. 8 849 

 850 
Extended Data Fig. 8 Ecological advantage of the world model embodied with different Gaussian 851 
functions. a) Prediction accuracy decreased when the variance of the Gaussian function increased, and 852 
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reaches an asymptote of 0.75. b) Response time decreased as the variance increased, and reached an 853 
asymptote of 0.20. c) The prediction accuracy and response time was combined as a measurement for 854 
efficiency, which gradually increased monotonically as the function of the variance until an asymptote 855 
of 4. Red box: the world model embodied no stochastic characteristic (i.e., the deterministic model); 856 
Blue box: the world model with different levels of variances. Error bar: standard error. 857 
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Extended Data Fig.9 859 

 860 
Extended Data Fig. 9 The relation between the number of simulations and the variance of stability 861 
inference. The simulation showed that the variance of stability inference decreased with the number of 862 
simulations. Note that the variance in the world model observed in participants best matched the 863 
variance when the simulation of the MGS was conducted three times.  864 
 865 
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Appendix: Estimate the lower bound of the possible number of 867 
configurations  868 
A configuration is a structure composed of several contact blocks. To simplify the 869 
computation of estimating the number of possible configurations, here we constrained 870 
the shape of blocks and the position where the blocks were placed.  871 

The shape constraint: the blocks used to form a configuration are all uniform 872 
rectangular blocks with the same aspect ratio. 873 

The position constraint: only one block is allowed to be placed on the same 874 
layer of the configuration. 875 

Thus, the problem is then simplified to estimate the possible number of 876 
configurations when only one rectangular block with the aspect ratio of 𝛼: 𝛽: 𝛾 (i.e., 877 
the shape constraint) is allowed to place in one layer (i.e., the position constraint). 878 
Note that the constraints significantly reduce the number of estimated configurations.  879 

We illustrated our solution by starting with a simple case: the aspect ratio of 880 
blocks is 𝛼: 𝛼: 𝛼. 881 
 882 

 883 
Appendix Fig 1. An illustration of the procedure to estimate the possible number of configurations 884 
when blocks have an aspect ratio of 𝛼: 𝛼: 𝛼. (a) the cubic block with the length, width and height are 𝛼. 885 
(b) Constructing a configuration by stacking two cubic blocks. The upper block could only be placed 886 
within a 3𝛼 × 3𝛼 area to guarantee contact with the lower block. (c) A three-block configuration can 887 
be viewed as stacking a cubic block on a two-block configuration. 888 

 889 
The condition when the aspect ratio of blocks is 𝜶:𝜶: 𝜶 890 
 The block with the aspect ratio of 𝛼: 𝛼: 𝛼 is a cube (Appendix Fig 1a). The 891 
side length of the cube is defined as 𝛼. Consider a configuration with two stacking 892 
blocks, the upper block needs to be placed in a 3𝛼 × 3𝛼 area to ensure contact with 893 
the bottom block (Appendix Fig 1b). To estimate the possible number of this simple 894 
situation, we defined a visual acuity 𝜐, which is the minimum resolution to distinguish 895 
two stacks (i.e., j.n.d.). Note that 𝜐 is a small value and here we set it as 𝜐 = 0.01 to 896 
match the minimal position difference for stability estimation in the simulation 897 
platform (please see Methods). Therefore, the possible number of the configuration 898 
containing two cubic blocks is 899 

 𝑁<1 = (
2𝛼
𝜐 )

1 (1) 
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Where 𝑁<1 indicates the possible number of configurations containing two cubic 900 
blocks. 901 
 We further consider the situation with more cubic blocks. For a stack that 902 
contains three cubic blocks, it can be viewed as placing a cubic block on a two-block 903 
stack (Appendix Fig 1c). Therefore, the total possible number of configurations is the 904 
multiplication of two two-block configurations, which is formulated as 905 

 𝑁<= = 𝑁<1 × 𝑁<1 = 𝑁<11  
Similarly, the possible number of configurations for stacks containing four cubic 906 
blocks is 907 

 𝑁<> = 𝑁<= × 𝑁<1 = 𝑁<1=  
Accordingly, the possible number of configurations with M cubic blocks is 908 

 𝑁<& = 𝑁<(&0() × 𝑁<1 = ⋯ = 𝑁<1&0( = o
2𝛼
𝜐 p

1&01

, 𝑀 ≥ 2 (2) 

Now, we have introduced the basic idea of calculating the number of 909 
configurations using a block with an 𝛼: 𝛼: 𝛼 aspect ratio as a special case. Then we 910 
generalized the idea to estimate the possible number when the block is rectangular 911 
with the aspect ratio as 𝛼: 𝛽: 𝛽. 912 
 913 

 914 
Appendix Fig 2. An illustration of the procedure to estimate the possible number of configurations 915 
when blocks have the aspect ratio of 𝛼: 𝛽: 𝛽. (a) Three types of rectangular blocks with an aspect ratio 916 
of 𝛼: 𝛽: 𝛽. (b) There are nine possible two-block configurations when combining blocks with an aspect 917 
ratio of 𝛼: 𝛽: 𝛽. (c) A three-block configuration could be viewed as stacking a cubic block on a two-918 
block configuration. 919 

 920 
The condition when the aspect ratio of blocks is 𝜶:𝜷: 𝜷 921 
 A block with the aspect ratio of 𝛼: 𝛽: 𝛽 has three types, corresponding to the 922 
sides of length, width and height are 𝛼 and the rest sides are 𝛽 (𝛼: 𝛽: 𝛽, 𝛽: 𝛼: 𝛽, and 923 
𝛽: 𝛽: 𝛼; see Appendix Fig 2a). For simplicity, we label the three basic blocks as A, B 924 
and C. The three types of blocks can generate 9 (i.e., 32) two-block configurations in 925 
total (Appendix Fig 2b). We calculate each of the possible numbers of two-block 926 
configurations below. 927 
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 𝑵𝑹𝟐 = t
𝑁AA 𝑁AB 𝑁A<
𝑁BA 𝑁BB 𝑁B<
𝑁<A 𝑁<B 𝑁<<

u 

(3) 

 =
1
𝜐1 v

4𝛼𝛽 (𝛼 + 𝛽)1 2𝛽(𝛼 + 𝛽)
(𝛼 + 𝛽)1 4𝛼𝛽 2𝛽(𝛼 + 𝛽)
2𝛽(𝛼 + 𝛽) 2𝛽(𝛼 + 𝛽) 4𝛽1

x 

The possible number of configurations for stacks containing two rectangular 928 
blocks with the aspect ratio of 𝛼: 𝛽: 𝛽 is  929 

 𝑁C1 =y𝑵𝑹𝟐 (4) 
For a configuration containing three blocks, it can be viewed as a block 930 

stacked on a two-block stack (Appendix Fig 2c). Therefore,  931 
 𝑁C= = 𝑁∙∙A + 𝑁∙∙B + 𝑁∙∙<  (5) 

Where 𝑁∙∙A indicates the possible number when block A stacked at the upper layer, 932 
and each term can be expanded as below. 933 

 𝑁∙∙A = 𝑁∙A × 𝑁AA + 𝑁∙B × 𝑁BA + 𝑁∙< × 𝑁<A 
(6)  𝑁∙∙B = 𝑁∙A × 𝑁AB + 𝑁∙B × 𝑁BB + 𝑁∙< × 𝑁<B 

 𝑁∙∙< = 𝑁∙A × 𝑁A< + 𝑁∙B × 𝑁B< + 𝑁∙< × 𝑁<<  
Combining equations (4), (5) and (6), we have 934 

 𝑁C= =y([𝑁∙A 𝑁∙B 𝑁∙<] × t
𝑁AA 𝑁AB 𝑁A<
𝑁BA 𝑁BB 𝑁B<
𝑁<A 𝑁<B 𝑁<<

u)  

And 935 

 [𝑁∙A 𝑁∙B 𝑁∙<] = [1 1 1] × t
𝑁AA 𝑁AB 𝑁A<
𝑁BA 𝑁BB 𝑁B<
𝑁<A 𝑁<B 𝑁<<

u  

Therefore,  936 

 𝑁C= =y(𝑵𝑹𝟐
1) (7) 

Following a similar logic, the possible number of configurations containing M blocks 937 
with an aspect ratio of 𝛼: 𝛽: 𝛽 is 938 

 𝑁C& =y(𝑵𝑹𝟐
&0() ,𝑀 ≥ 2 (8) 

 939 
The aspect ratio of blocks is 𝜶:𝜷: 𝜸 940 
 We further generalize the problem by considering the aspect ratio of blocks as 941 
𝛼: 𝛽: 𝛾. This forms six different types: 𝛼: 𝛽: 𝛾, 𝛼: 𝛾: 𝛽, 𝛽:	𝛼: 𝛾, 𝛽: 𝛾: 𝛼, 𝛾: 𝛼: 𝛽, 𝛾: 𝛽: 𝛼, 942 
for each type the three proportional values corresponding to length, width and height, 943 
respectively. We label the six types of blocks as A, B, C, D, E, F, and G for 944 
simplicity. 945 

Following the similar logic as above, different types of blocks generated 36 946 
(i.e., 61) two-block configurations in total, and the possible number of each two-block 947 
configuration is 948 

 𝑵𝑹𝟐 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑁&& 𝑁&' 𝑁&( 𝑁&) 𝑁&* 𝑁&+
𝑁'& 𝑁'' 𝑁'( 𝑁') 𝑁'* 𝑁'+
𝑁(& 𝑁(' 𝑁(( 𝑁() 𝑁(* 𝑁(+
𝑁)& 𝑁)' 𝑁)( 𝑁)) 𝑁)* 𝑁)+
𝑁*& 𝑁*' 𝑁*( 𝑁*) 𝑁** 𝑁*+
𝑁+& 𝑁+' 𝑁+( 𝑁+) 𝑁+* 𝑁++ ⎦

⎥
⎥
⎥
⎥
⎤

 (9) 
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⎥
⎥
⎥
⎥
⎥
⎤

 

 949 
The possible number of configurations for stacks with M blocks with an aspect 950 

ratio 𝛼: 𝛽: 𝛾 is  951 

 𝑁C& =y(𝑵𝑹𝟐
&0() ,𝑀 ≥ 2 (10) 

Therefore, we can estimate the possible number of configurations when only 952 
one rectangular block with the aspect ratio of 𝛼: 𝛽: 𝛾 is allowed to place in each layer 953 
using the formula (9) and (10). 954 
 955 

Finally, in this study we chose blocks with an aspect ratio of 3:1:1 as building 956 
blocks for stacks whose stability was evaluated. Specifically, for stacks consisting of 957 
10 blocks and j.n.d. of 𝜐 = 0.01, the number of configurations can be estimated with 958 
formula (9), which is 3.72 × 10(E. 959 
 960 
 961 
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