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Abstract 27 

The immune system encodes information about the severity of a pathogenic threat in the quantity 28 

and type of memory cell populations formed in response. This encoding emerges from the 29 

decisions of lymphocytes to maintain or lose self-renewal and memory potential during a 30 

challenge. By tracking CD8 T cells at the single-cell and clonal level using time-resolved 31 

transcriptomics and quantitative imaging, we identify a flexible memory strategy, whereby T 32 

cells initially choose whether to maintain or lose memory potential early after antigen 33 

recognition, but following pathogen clearance may regain memory potential if initially lost. This 34 

flexibility is implemented by a cis-epigenetic switch silencing the memory regulator TCF1 in a 35 

stochastic, reversible manner in response to stimulatory inputs.  Mathematical modeling shows 36 

how this strategy allows memory cell numbers to scale robustly with pathogen virulence and 37 

immune response magnitudes.  Thus, flexibility in cellular decision making ensures optimal 38 

immune responses against diverse threats. 39 

 40 
 41 
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Main 43 

The immune system keeps a memory of prior infections with information about the inducing 44 

threat. This memory is encoded by the numbers and types of memory lymphocytes generated 45 

upon challenge. The quantity of memory T cells, in particular, scales with the magnitude of a 46 

prior infection, such that the memory population is a fixed fraction of the T cell number at the 47 

infection peak, across a range of pathogenic challenges1–3. This scaling in memory production is 48 

robust across T cell clones with different epitope specificities and allows the body to generate 49 

memory proportional to the severity of the pathogenic challenge. The regulatory mechanisms 50 

that enable this critical feature of adaptive immunity are not well understood.  51 

 52 

The size and characteristics of the memory compartment are determined by the fate decision-53 

making strategies of T cells responding to an acute infection4. As naive CD8 T cells respond to 54 

antigens, they must decide whether and when to maintain long-term viability and self-renewal 55 

potential, and thereby persist to form memory cells as the infection is cleared. One class of 56 

models posits that cells make this decision early after antigen encounter, and in a mutually 57 

exclusive manner with effector differentiation (Fig. 1A)5–7. Under this model, memory cells form 58 

directly from naive cells without first passing through an effector phase, but through an early 59 

lineage bifurcation that concurrently gives rise to short-lived effector cells. A second class of 60 

models posits that cells decide later, only after they have undergone effector differentiation (Fig. 61 

1A)8–10. In this strategy, cytotoxic effectors that maintain memory potential populate the memory 62 

compartment upon infection clearance. However, in contrast with both models, it is also possible 63 

that this process is inherently flexible11, such that T cells have multiple opportunities to commit 64 

to the memory state. From a social and cognitive sciences perspective12,13, flexibility in decision 65 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2022. ; https://doi.org/10.1101/2022.12.31.521782doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.521782
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

making allows individuals to adapt and better respond to uncertain and dynamic environments; 66 

in the immune system, such flexibility may allow T cells to optimize memory formation for 67 

threats whose properties might only manifest as they unfold in time. It is unclear whether there 68 

exists such flexibility in T cell memory formation and, if so, what its underlying mechanisms and 69 

functional roles are. 70 

 71 

In this study, we sought to elucidate the memory decision-making dynamics of CD8 T cells by 72 

following the regulation of TCF1 (encoded by Tcf7), a transcription factor essential for memory 73 

cell generation14. Tcf7 is expressed in naive and memory cells, where it is crucial for maintaining 74 

self-renewal, and is silenced during effector differentiation, resulting in loss of memory potential 75 

and entry into a short-lived state5,15. To follow Tcf7 regulation and memory decision-making in a 76 

controlled environment where cells can be continuously observed and signaling inputs carefully 77 

manipulated, we developed an ex vivo system to mimic stimulation of T cells by acute challenge. 78 

Using this system and complementary testing in vivo, we uncover a flexible decision-making 79 

strategy: T cells can gain or lose memory potential at multiple junctures after antigen encounter, 80 

and do so in a stochastic and reversible manner. Mathematical modeling reveals that this flexible 81 

decision-making strategy allows for the number of memory cells to scale linearly with total 82 

numbers of expanded T cells at the peak of infection, thereby encoding information about the 83 

severity of the prior threat.  84 

 85 

A minimal ex vivo system for effector and memory differentiation 86 

In our system, naive (CD44-CD62L+) CD8 T cells with a knock-in YFP reporter for Tcf716 are 87 

activated with plate-immobilized anti-CD3 and anti-CD28 antibodies and IL-2, together with 88 
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additional cytokines present during acute infection (IL-12, IL-7, and IL-1517–19). These 89 

conditions minimize variability in the exposure of individual cells to stimulatory signals, 90 

enabling cell-intrinsic lineage control mechanisms to be studied apart from environmental 91 

heterogeneity.  92 

 93 

In this system, all cells begin dividing rapidly after 24 hours and upregulate the transmembrane 94 

glycoprotein CD44, indicating uniform activation (Fig. 1B). Activated cells downregulate Tcf7 95 

and the lymph node-homing adhesion molecule CD62L, consistent with effector differentiation. 96 

The inflammatory cytokines IL-12 and IFN-β1 enhance Tcf7-YFP silencing (Fig. 1C, Fig. S1C-97 

D), consistent with their roles in driving effector differentiation20,21. When TCR stimulation 98 

(anti-CD3/CD28) and inflammation (IL-12) are removed to mimic pathogen clearance, the cells 99 

demonstrate a population-level increase in CD62L and Tcf7-YFP while continuing to divide, as 100 

previously observed4. Tcf7 and CD62L levels are heterogeneous both during stimulation and 101 

after removal, suggestive of an early memory and effector differentiation decision. YFP levels 102 

closely matched TCF1 protein levels throughout activation, validating use of the reporter in this 103 

system (Fig. S1A-B).  104 

 105 

Naive cells bifurcate early into effectors and memory precursors 106 

To determine whether the heterogeneity in Tcf7 and CD62L downregulation reflects early 107 

memory and effector programming (Fig. 1), we analyzed ex vivo activated cells using the 108 

temporally-resolved single-cell transcriptome sequencing method, sci-fate22. Here, metabolic 109 

labeling of newly-synthesized transcripts reveals a cell’s current activity state apart from its 110 

history22,23 (Fig. 2A). We subjected cells at days 1, 2, and 4 to 4-thiouridine (4sU) pulse-labeling 111 
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for 2 hrs, followed by sequencing and analysis as previously described22. We obtained old and 112 

new transcriptomes for ~17,000 single cells, with a median of 17,574 total and 2,529 new 113 

transcripts detected per cell (Fig. S2A). To disentangle effector and memory gene programs from 114 

other activation-induced programs, we performed an integrative analysis of our temporally-115 

resolved transcriptome data and existing transcription factor (TF) binding data24 to identify TF 116 

modules, consisting of co-regulated groups of TFs and their cognate target genes (see Methods). 117 

This analysis revealed two main TF modules, a cell cycle module and a T cell differentiation 118 

module, the latter further separable into submodules that included known regulators of effector 119 

and memory differentiation (Fig. 2B; Fig. S2C).  120 

 121 

By visualizing cell states using genes in the T cell differentiation module for Uniform Manifold 122 

Approximation and Projection (UMAP) dimensionality reduction, we resolved distinct effector 123 

and memory states with coherence between timepoints (Fig. 2C; Fig. S2B, D). Unsupervised 124 

clustering and differential gene expression analysis revealed distinct early and late (A vs. B) 125 

effector (E1 and E2) and memory precursor (MP) states. E1 and E2 cells exhibited higher 126 

expression of the effector-associated genes Gzmb, Ifng, Tbx21, Zeb2, and IL12rb2, while MP 127 

cells had higher expression of the stem- and memory-associated factors Bach2, Lef1, Tcf7, Sell, 128 

and Slamf6, and lower expression of effector-associated genes (Fig. 2D-E; Fig. S2E-F; 129 

Supplementary Table 1-2)25. These differential gene expression patterns were present at day 2 130 

and amplified at day 4.  131 

 132 

Consistent with an early fate bifurcation, RNA velocity vectors calculated using reads from 133 

newly synthesized transcripts originate from the undifferentiated state (U), and flow along 134 
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separate effector and memory branches26 (Fig. 2F). To gain insight into the dynamics of genes 135 

differentially regulated between divergent trajectories, we visualized their expression over 136 

pseudotime along each trajectory (Fig. 2G; Supplementary Table 3). This analysis, together with 137 

RNA velocity and TF activity analysis (Fig. 2H-I), identified effector and memory regulators 138 

with greatest differential regulation along their respective trajectories. Tbx21, Egr1, and Irf4, 139 

among other effector regulatory genes, were specifically active along the E1 trajectory, while a 140 

distinct set of effector regulators, including Eomes, Bhlhe40, Stat5a and Stat3, characterize the 141 

E2 trajectory. This effector heterogeneity and its potential influence on downstream 142 

differentiation will be interesting to investigate in future studies but is not further pursued here. 143 

Finally, regulators of T cell stemness and survival, including Tcf7, Myb, Mxd4 and Fli1, were 144 

active in the MP trajectory. Tcf7 was the most significantly differentially expressed gene 145 

between trajectories, upregulated early along the MP trajectory and absent in both E1 and E2 146 

trajectories. Its expression furthermore coincided with that of target genes identified through TF 147 

linkage that promote self-renewal, such as Ikzf2, Sesn3, Aff3, and Pecam1 (CD31). Thus, Tcf7 is 148 

a critical driver of this early divergent memory trajectory in our system. 149 

 150 

The early effector and memory decision occurs heterogeneously within clones  151 

The divergence of cells into effector and memory lineages, occurring even under the strong, 152 

uniform stimulatory conditions of our ex vivo system, is suggestive of a cell-intrinsic regulatory 153 

mechanism involving Tcf7 that generates heterogeneity in fate outcomes. To elucidate the degree 154 

to which this decision is heterogeneous within cell lineages amid constant environmental signals, 155 

we acquired multi-day time-lapse movies of clonal CD8 T cell lineages during activation with 156 

continuous measurement of Tcf7 reporter levels (Fig. 3). As T cells are difficult to track with live 157 
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imaging due to their high mobility, tendency to adhere to one another, and rapid proliferation, we 158 

optimized adhesion conditions and computational analyses that allow continuous tracking of a 159 

fate regulating TF across clonal CD8 T cell lineages (Fig. 3; Fig. S3; see Methods)27. Using this 160 

method, we tracked a total of 120 clonal lineages over 4 days and an average of 4.4 cell 161 

generations. 162 

 163 

Naive cells in these time-lapse movies start small, adhere to the antibody-bound plate, acquire 164 

CD69 expression, increase dramatically in size, and divide rapidly after 1-2 days (Fig. S3G; 165 

Supplemental movie 1). Strikingly, individual activating T cell clones often gave rise to Tcf7 166 

high and low subpopulations (Fig. 3A; Fig. S3J; Supplementary Movie 1), indicating that the 167 

effector and memory decision is made heterogeneously within clones. Of note, Tcf7 low and high 168 

cells showed similar degrees of attachment to the surface, indicating that these intra-clonal 169 

differences are not due to differences in TCR stimulation, but more likely due to cell-intrinsic 170 

mechanisms generating heterogeneity in Tcf7 silencing. 171 

 172 

Differences in Tcf7-YFP levels after multiple cell divisions likely stem from earlier Tcf7 173 

silencing events propagated through dilution of the stable fluorescent protein by cell division. To 174 

pinpoint the timing of early regulatory events that give rise to these differences in Tcf7-YFP 175 

levels, we calculated the Tcf7 promoter activity over time in single cells, defined as the rate at 176 

which total Tcf7-YFP levels increase over time, using a Hidden Markov Model (HMM) to assign 177 

Tcf7 promoter activity states to each cell at each timepoint and identify switching points between 178 

those states (Fig. 3A-C; Fig. S3A-F; see Methods).  179 

 180 
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This analysis revealed that cells silence Tcf7 expression at variable times after the onset of 181 

stimulation, and can do so as early as the first cell division as well as at later generations. Cells 182 

activated the Tcf7 promoter prior to the first cell division, reflecting exit from quiescence, and 183 

then proceeded to switch the Tcf7 promoter to a silent state. The timing at which the Tcf7 184 

promoter transitioned to the silent state varied between cell tracks both within and between cell 185 

lineages, consistent with observed heterogeneity in Tcf7-YFP levels within clones (Fig. 3A-D). 186 

Removing IL-12 increased the fraction of cells in an active promoter state (Fig. 3C,E). Silent 187 

Tcf7 promoter states persisted across multiple cell divisions (Fig. 3A; Fig. S3I-J) and thus 188 

represent heritable regulatory changes as opposed to more transient dynamics such as 189 

transcriptional bursting. These results provide evidence that a cell-intrinsic Tcf7 silencing event, 190 

occurring heterogeneously within clones, underlies the early divergence in effector and memory 191 

states. 192 

 193 

A stochastic epigenetic switch controlling Tcf7 silencing underlies the early effector and 194 

memory decision 195 

Heterogeneity in Tcf7 silencing could derive from asymmetric cell division6,28, whereby cell fate 196 

determinants partition unequally, giving rise to discordant behavior between two sister cells. 197 

Alternatively, this heterogeneity could result from stochastic control29–31, whereby two sisters 198 

would make Tcf7 silencing decisions independently. While two sister cells could still make 199 

different decisions, they would silence Tcf7 discordantly no more frequently than expected by 200 

chance. To test these predictions, we analyzed the fractions of daughter cell pairs that silence 201 

Tcf7 either discordantly (ON/OFF) or concordantly (OFF/OFF), doing so for cell pairs across all 202 

cell generations, with or without IL-12 (Fig. 3F). By plotting concordant (OFF/OFF) versus 203 
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discordant (ON/OFF) sister pair fractions, we found that all data points adhered to a theoretical 204 

curve representing the expected relationship between sister pair fractions for independent 205 

regulation (Fig. 3G). Consistently, by statistical analysis using a modified Cohen’s kappa 206 

coefficient (κ’), we found that daughter cells were no more likely to make discordant decisions 207 

than expected by chance (Fig. 3H; Supplementary Table 4). These findings support the view that 208 

Tcf7 silences in a stochastic manner to drive divergent decision making within clones. 209 

 210 

Epigenetic switching mechanisms, involving changes in chromatin modifications or 211 

conformation at gene loci, can introduce stochastic rate-limiting steps to gene activation or 212 

silencing32–34. As Tcf7 silencing involves repressive DNA or histone methylation14,20,35,36, it 213 

could be gated by such a mechanism. Epigenetic mechanisms act in cis at individual gene loci 214 

and therefore would silence each Tcf7 locus independently. To test for this mechanism, we 215 

compared Tcf7-YFP silencing kinetics in cells from mice homozygous and heterozygous for the 216 

reporter, with the prediction that homozygous reporter cells would yield a smaller population of 217 

YFP-low cells, since both loci need to silence for loss of reporter expression (Fig. 3I-J, Fig. 218 

S3K). Indeed, the Tcf7-YFP silent population was significantly smaller in homozygous reporter 219 

cells and increased with IL-12, consistent with a cis-epigenetic silencing mechanism modulated 220 

by inflammation. Together, these results provide evidence that a stochastic cis-epigenetic switch, 221 

tunable by external stimuli, controls the early decision of naive cells to silence Tcf7 expression 222 

and memory potential. 223 

 224 

Reversibility of Tcf7 silencing enables a late memory decision 225 
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Tcf7 silencing has been proposed to be an irreversible event that marks a ‘point of no return’ for 226 

effector differentiation and loss of memory potential5,37. Conversely, various studies have 227 

demonstrated that cells that acquire cytotoxic effector function are able to populate memory 228 

compartments after an infection is resolved8,9,38, suggesting that Tcf7-silenced effectors may still 229 

be able to reactivate Tcf7 and reacquire memory potential. Our data thus far provide evidence for 230 

an early T cell decision to abandon or maintain memory potential, driven by stochasticity in 231 

antigen-driven Tcf7 silencing, but do not exclude the possibility that effector cells can reverse 232 

their decisions and regain memory potential later after withdrawal of stimulation.  233 

 234 

To test this possibility, we sorted Tcf7-YFP low and Tcf7-YFP high cells after initial culture and 235 

subjected them to reculture with variable stimulation conditions ex vivo (Fig. 4A). As expected, 236 

sorted Tcf7-YFP high cells maintained Tcf7-YFP expression without stimulation but underwent 237 

heterogeneous silencing under continuing stimulation (Fig. 4B-C, Fig. S4A-B). Furthermore, 238 

Tcf7-YFP low cells maintained a silent state upon continued stimulation, as observed. Strikingly, 239 

however, upon stimulation withdrawal, Tcf7 reactivated, with the fraction of Tcf7 expressing 240 

cells increasing over 6 days. Tcf7 reactivation upon stimulation withdrawal coincided with CD25 241 

downregulation and CD62L upregulation, suggesting re-entry into a memory state (Fig 4D). To 242 

test whether Tcf7 reactivation and reacquisition of memory potential also occurs in vivo, we 243 

transferred Tcf7-YFP low and high cells into naive recipient mice (Fig. 4A), and assayed their 244 

Tcf7 expression at successive time points. Indeed, Tcf7-YFP low cells reactivated Tcf7 245 

expression progressively in the spleen and lymph nodes over 10 days with concomitant increases 246 

in CD62L and IL7Rα, indicating reacquisition of a memory phenotype (Fig. 4E-G; Fig. S4C-D).  247 

 248 
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We next used clonal live imaging of sorted Tcf7-YFP low cells confined in microwells to test if 249 

Tcf7 reactivation is heterogeneous within individual effector clones, as would be expected if 250 

reactivation occurs via reversal of stochastic cis-epigenetic silencing (Fig. 3). Consistent with 251 

reactivation observed from bulk starting populations, individual Tcf7 silenced cells gave rise to 252 

Tcf7 high cells (Fig 4H-I; Supplementary Movies 2 and 3; Supplementary Table 5). Similar to 253 

the initial Tcf7 silencing event, reactivation was heterogeneous within clones. Reactivation 254 

occurred only after multiple divisions, which may reflect the need for cell division for permissive 255 

chromatin state changes. Overall, these results indicate that cells that have silenced Tcf7 and 256 

relinquished memory potential can reverse this decision later, after resolution of an immune 257 

challenge.  258 

 259 

Tcf7 high cells formed through early and late decisions acquire a common memory 260 

program 261 

Our results show that memory cells can arise through two pathways: a “naive to memory” (NM) 262 

pathway, whereby some cells maintain Tcf7 expression during initial antigen stimulation, and a 263 

“naive to effector to memory” (NEM) pathway, by which cells that have silenced Tcf7 and 264 

entered an effector state can turn expression back on after stimulation removal. To determine 265 

whether Tcf7 high cells emerging through these two pathways both have genomic and functional 266 

memory programs, we subjected them to transcriptomic, epigenomic, and cytokine secretion 267 

analysis, alongside control in vivo naive (CD44-CD62L+), memory (CD44+CD62L+), and ex vivo 268 

generated effector cells (Fig. 5).  269 

 270 
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Remarkably, NM and NEM cells showed similar memory characteristics, despite different Tcf7 271 

regulatory history. They were both more similar to naive and memory in vivo controls compared 272 

to ex vivo generated effector cells in their shared expression of memory-defining genes, though 273 

they also maintained some effector characteristics, in line with their recent stimulation (Fig. 5A-274 

C; Fig. S5A). Similar to memory controls, NM and NEM cells demonstrated greater TNF-ɑ and 275 

IFN-ɣ secretion upon re-stimulation compared to naive cells (Fig. 5D-E). NM and NEM cells 276 

were most similar in global chromatin accessibility to memory controls (Fig. 5F; Fig. S5B-C). 277 

NEM cells recovered similar Tcf7 accessibility to NM cells (Fig. 5G). At the Ifng locus, 278 

intermediate accessibility of NM and NEM cells between naive and effector controls suggests 279 

that both were poised for rapid recall response, and accessibility at other memory- and effector- 280 

associated loci support this conclusion (Fig. S5D).  281 

 282 

While NM and NEM cells were largely similar, notable differences in tissue localization and 283 

gene expression suggest they may be primed for different functional memory properties in vivo. 284 

Transferred Tcf7 high cells showed greater engraftment in secondary lymphoid organs than Tcf7 285 

low sorted cells, suggesting different homing capabilities (Fig. S5E). NEM cells also had higher 286 

expression and accessibility of some effector-associated genes compared to NM, possibly 287 

indicative of enhanced effector capabilities or an effector memory state37,38 (Fig. S5F-G). 288 

Overall, both NM and NEM decision strategies give rise to cells with genomic and functional 289 

characteristics of memory, suggesting that memory formation may proceed through a flexible 290 

decision-making strategy, allowing both for memory and effector divergence during the initial 291 

immune challenge and for effector reacquisition of memory potential after the challenge is 292 

resolved.  293 
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 294 

Multiple paths to memory enable robust encoding of pathogen experience through memory 295 

population size 296 

Flexibility in memory decision-making may have functional benefits, and may in particular 297 

allow for scaling of memory population sizes with immune response magnitudes. To test this 298 

idea, we used mathematical modeling to evaluate different T cell decision-making strategies in 299 

their memory outcomes in response to pathogens of different virulence, modeled as having 300 

different rates of replication (see Mathematical Appendix). In our first model, we consider the 301 

flexible strategy we observed (Fig. 6A). Here, naive T cells (Tn) initially transition to a Tcf7-302 

expressing memory-competent state (MC, Tm) that divides upon exposure to pathogen (v), but 303 

stops dividing and persists upon pathogen clearance. These cells can either maintain memory 304 

competence upon continuing stimulation, or transition to Tcf7-silent effector state (Te), where 305 

they control pathogen growth, but are short-lived. Based on our findings (Fig. 3), this transition 306 

to an effector state is stochastic, with a probabilistic rate that increases with pathogen. Effector 307 

cells can reverse Tcf7 silencing and re-enter the memory-competent state in the absence of 308 

pathogen, as we observe (Fig. 4).  309 

 310 

Mathematical simulations of this flexible decision model recapitulate the canonical features of 311 

the T cell response to acute infection (Fig. 6B; Fig. S6A-B). T cells expand rapidly in response to 312 

pathogen, reaching a peak 4-8 days after infection onset that consists mostly of effector cells, 313 

followed by a contraction to a stable, lower level of memory-competent cells (Tm). Consistent 314 

with known studies1,39, the quantity of memory cells is ~5% of the peak cell number. 315 

 316 
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In response to pathogens with varying replication rates, this flexible decision model allows 317 

memory cells to form robustly and scale linearly with peak cell expansion numbers. Increasing 318 

effector expansion with faster pathogen replication was accompanied by a proportional increase 319 

in memory cells, such that the memory fraction relative to the peak T cell number remained 320 

constant (Fig. 6B and 6C – top, yellow shading, γv>0.02/hr). This relation is given by: 321 

 𝑓𝑇𝑚 =
𝛽𝑒,𝑚

𝛽𝑒,𝑚+𝛿𝑒
 322 

where 𝛽%,' is the maximum effector to memory conversion rate and 𝛿%is the effector death rate.  323 

This scaling breaks down when pathogen replication is slow (γv<0.02/hr): reduced antigen 324 

encounter decreases the probability of the early effector cell decision, such that the number of 325 

memory cells generated converges to the starting naive cell number rather than increasing with 326 

pathogen replication rate. This ensures a baseline level of memory amid weak challenges that do 327 

not elicit a full effector response3.  328 

 329 

To ask whether flexibility is necessary for scalable memory encoding, we analyzed two 330 

alternative decision models, where memory decisions are made at only one juncture. The early 331 

decision model, where naive cells irreversibly commit to the Tcf7-silent effector state, generated 332 

robust memory upon challenge with slow-dividing pathogens but cannot reproduce the linear 333 

scaling of the memory population to the peak population in response to faster-replicating 334 

pathogens (Fig. 6C, middle; Fig. S6C-F; see also Mathematical Appendix). Conversely, the late 335 

decision model, where naive cells transition obligatorily to the effector state and decide later 336 

whether to regain memory competence, generated constant memory fractions upon stronger 337 

challenges but attenuated memory populations in response to weaker challenges (Fig. 6C, 338 
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bottom; Fig. S6G-H). These analyses underscore the importance of flexibility in memory 339 

decision making for optimal long-term immunity against variable threats. 340 

  341 

Discussion  342 

Our finding that reversible epigenetic silencing of Tcf7 generates inherent flexibility in the T cell 343 

memory decision reconciles two prevailing models for memory development that have often 344 

been regarded as mutually opposed. While there is evidence that memory cells can form both 345 

directly from naive cells with little or no effector differentiation and from effector cells that 346 

dedifferentiate upon infection clearance8,9, no model has explained how both pathways can 347 

coexist. In this mechanism, stochastic control of Tcf7 silencing enables early divergent memory 348 

and effector decision making, and its reversibility enables late effector dedifferentiation. Antigen 349 

and inflammatory signals tune the decision-making probabilities at both junctures (Fig. 2-4) and 350 

would thereby influence which pathway would predominate across challenges that differ in 351 

signal duration and intensity40. This study, together with others33, implicate stochastic epigenetic 352 

switches as drivers of cellular diversification in the immune system. Through regulatory events 353 

that initiate over timescales spanning cell generations, these switches allow multiple cell 354 

populations to emerge in defined numbers without strict spatially-organized cues41, facilitating 355 

division of labor for optimal pathogen defense. 356 

  357 

Our modeling results lay the groundwork for understanding how the adaptive immune system 358 

can encode information about the nature and severity of a pathogen in its memory cell population 359 

(Fig. 6). In future work, it will be interesting to determine whether other pathogen features, such 360 

as antigenicity or latency, may also be encoded quantitatively. Our findings that memory cells 361 
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emerging from different decision points may differ in their functional properties (Fig. S5E-G) 362 

raise the possibility that flexible decision making could underlie qualitative encoding of 363 

pathogen information through the generation of heterogeneous memory subsets37,38. In future 364 

work, it will be interesting to investigate the extent to which each decision pathway is utilized 365 

under various threats in vivo and whether cells emerging from different pathways are 366 

functionally heterogeneous42. 367 

 368 

Overall, our study highlights the utility of plasticity in cell fate decision making in biological 369 

systems. From a strategic standpoint, flexibility enables decision makers to change their minds 370 

with new information, allowing them to mount optimal responses amid uncertain 371 

circumstances12. For immune cells responding to a pathogen, an ability to reassess prior 372 

decisions, as opposed to making early commitments, may enable bet-hedging and greater 373 

responsiveness as an immune challenge evolves. Observed plasticity in mammalian stem cell 374 

fate decision making43,44 may similarly allow the body to rapidly adapt its regenerative output to 375 

changing physiological needs45. A fuller consideration of flexibility in cellular decision making, 376 

along with its mechanisms and roles, will shed light into design principles of these systems and 377 

provide valuable insight for harnessing cells as environmentally-responsive therapeutic agents.  378 
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 417 

Figure 1: A minimal ex vivo system to track CD8 T cell effector and memory decision 418 

making dynamics. (A) Candidate decision-making strategies for CD8 T cell memory generation 419 

(left); a minimal ex vivo system for tracking memory decision-making dynamics at the single-420 

cell level. (B-C) Naive CD8 T cells were isolated from Tcf7-YFP reporter mice, then cultured 421 

using this minimal ex vivo system. Flow cytometry plots show analysis of cultured CD8 T cells 422 

during initial stimulation for 2 days (left) and continued stimulation to day 5 (middle), or after 423 

stimulation withdrawal (removal of αCD3/αCD28 after day 2 and IL-12 after day 3) (right). (C) 424 

Tcf7-YFP silencing is tunable by IL-12 levels. Data are from a single experiment representative 425 

of at least 3 independent experiments. 426 

  427 
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Figure 2: Naive cells diverge into effector and memory states early after activation. (A) 429 

Naive CD8 T cells were activated as in Fig. 1A, with 0.05 ng/ml IL-12. After 1, 2, and 4 days, 430 

cells were treated with 4sU for 2 hours to label new transcripts, then harvested for time-resolved 431 

transcriptomics using sci-fate. (B) Heatmap showing the absolute Pearson’s correlation 432 

coefficient between the activities of pairs of TFs, generated using sci-fate. Key TFs in each 433 

module are labeled at right. T cell differentiation module used for subsequent analysis is boxed. 434 

(C) UMAP visualization of cells based on the activity of T cell differentiation-related TF 435 

module, using newly synthesized mRNA, colored by cluster ID (top). Percentage of cells in each 436 

T cell activation state cluster after indicated days (bottom). (D) Aggregated expression (scaled, 437 

log10 normalized) of top 400 differentially expressed (DE) genes between clusters (q < 3 x 10-45 438 

for all genes except for Ifng, q = 7.3 x 10-29). (E) DE genes between E1(A) and MP(A) at day 2 439 

only; log2FC > 0.5 and adj. p < 0.05. (F) UMAP visualization as in (C), characterized by 440 

labeling-based RNA velocity analysis. Streamlines indicate the integration paths that connect 441 

local projections from the observed state to the extrapolated future state(26). (G) Pseudotemporal 442 

ordering of top 200 DE genes and additional genes of interest (q < 1.4 x 10-17) between 443 

trajectories. Gene labels correspond to all DE TFs in the T cell differentiation TF module (left 444 

text) and DE target genes linked to Tbx21, Egr1, Eomes, and Tcf7 (right text). (H) RNA velocity 445 

and (I) Loess smoothed TF activity over pseudotime for four of the most DE genes between 446 

trajectories. TF activity is calculated as the normalized aggregation of levels of newly 447 

synthesized mRNA for all TF target genes, scaled across all cells. Cells in the undifferentiated 448 

(U) cluster are set to pseudotime = 0 for each trajectory.  449 

 450 

  451 
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Figure 3: Heterogeneous Tcf7 silencing within clones is controlled by a stochastic epigenetic 453 

switch. (A) Representative lineages demonstrating clonal heterogeneity in Tcf7-YFP silencing: 454 

image snap shots (left), lineage trees (middle), and reporter intensity (area x median YFP levels) 455 

over time for each track (right), with the first cell division marked by a vertical dashed line. Cell 456 

borders in snapshots are colored and labeled to match their corresponding leaves in the lineage 457 

trees. Lineage trees and tracks are colored by HMM-derived promoter state, outlined in (B). 458 

Cells are cultured with 1 ng/ml IL-12 unless otherwise indicated. (C) Reporter intensity for all 459 

overlaid tracks, colored by promoter state. (D) For each track, from left to right: time of first 460 

division, time of first transition to a stable active state, time of first transition to a stable silent 461 

state (stable state ≥ 10 hrs). (E) For all lineages combined, fraction of cells in an active promoter 462 

state over time, +/- 1 ng/ml IL-12. (F-H) Each division of a parent cell with the Tcf7 promoter 463 

ON was categorized as giving rise to zero, one, or two daughters that transition to an OFF state. 464 

(F) Examples of each division category. (G) The OFF/OFF fraction by ON/OFF fraction is 465 

plotted separately for each generation, +/- IL-12, to distinguish concordant, independent, and 466 

asymmetric silencing mechanisms. (H) Modified Cohen’s kappa test for division events in (G). 467 

(I) Comparison of YFP/YFP and YFP/+ reporters to distinguish cis and trans regulation of Tcf7 468 

silencing (left). YFP distributions for YFP/YFP and YFP/+ reporters cultured for 5 days with 0.2 469 

ng/ml IL-12 (right). YFP off fractions are calculated from gaussian fits to distributions. (J) YFP 470 

off percentages as in (I), over a range of IL-12 concentrations. Mean ± s.d. Statistical 471 

significance was calculated with an unpaired two-tailed t test; n.s. p=0.05, ***p<0.005. 472 

Individual data points are from a single experiment representative of 2 independent experiments 473 

(I-J). 474 

 475 
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 476 

Figure 4: Effector cells reverse Tcf7 silencing and regain memory potential upon 477 

stimulation withdrawal. (A) Naive cells from Tcf7-YFP mice were stimulated as indicated, 478 
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sorted for Tcf7-YFP low and high populations after 3 days, and recultured either ex vivo (B-D, 479 

H-I) or adoptively transferred to naive recipients (E-G). Light and dark blue coloring throughout 480 

correspond to sorted YFP low and high populations, respectively. (B-C) Tcf7-YFP levels during 481 

reculture with or without  αCD3/αCD28 and IL-12 (+/- stim) compared to non-fluorescent 482 

controls. (D) CD25, CD62L, and Tcf7-YFP expression in Tcf7-low sorted cells recultured +/- 483 

stimulation. (E-F) Tcf7-YFP levels over time in CD45.2+CD45.1-CD8+ cells harvested from the 484 

spleen after sort and adoptive transfer to naive recipients. (G) CD62L and IL7Rɑ expression in 485 

cells from E, F after in vivo transfer. (H) Representative microwells of sorted Tcf7-low cells 486 

recultured without stimulation: snap shots (left), top and bottom wells represent single clones; 487 

corresponding histograms (middle) with binned cell data for each time point, with YFP +/- gate 488 

drawn at 2 standard deviations above the mean YFP intensity from the first 25 hrs; 489 

corresponding YFP+ fractions over time (right). (I) YFP+ fraction for all wells overlaid. Mean 490 

activation time = 59.1 hr. [C, F] Mean ± s.d. [B-D] Data are from a single experiment 491 

representative of 1 and 3 independent experiments for +stim and 0 stim, respectively. [E-G] Data 492 

are from a single experiment with n=3-4 biological replicates. 493 

 494 
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 495 

Figure 5: Tcf7 high cells emerging from different routes acquire memory programming 496 

and functions. Tcf7-YFP low and high cells were sorted after 2 days of stimulation followed by 497 

one day of rest, recultured without TCR stimulation or IL-12 for an additional 6 days ex vivo, 498 

and then sorted for high Tcf7-YFP expression and subjected to genomic and functional analyses.  499 

(A) PCA of RNA-seq profiles (top 500 DE genes) for recultured cells compared to day 3 effector 500 

(Eff) and day 0 naive (CD44-CD62L+, N) and memory (CD44+CD62L+, Mem) controls. NM and 501 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2022. ; https://doi.org/10.1101/2022.12.31.521782doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.521782
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

NEM cells were sorted as YFP-high and YFP-low on day 3, respectively. (B) GSEA of gene 502 

signatures from MSigDB (C7, collections deposited by Goldrath (GR) and Kaech (KA) 503 

comparing ex vivo recultured populations to Eff and Mem controls. (C) Heatmap displaying top 504 

500 DE genes (lfc ≥ 2, Bonferroni-adjusted p value <0.05) between recultured populations and 505 

Eff, N, and Mem controls. Scale bar indicates row z-scores of regularized log transformed count 506 

data. Memory and effector associated genes from MSigDB Goldrath and Kaech collections are 507 

highlighted. (D-E) Cytokine secretion of recultured cells compared to N and Mem controls after 508 

PMA/Ionomcyin restimulation. (F) PCA of ATAC-seq counts of top 500 differentially accessible 509 

peaks between recultured cells and controls. (G) ATAC-seq read coverage tracks; vertical bars 510 

annotate differentially accessible peaks between recultured cells and controls. [A-C] n = 2 511 

biological replicates for each sample. [D-E] Mean ± s.d. Statistical significance was calculated 512 

with an unpaired two-tailed t test performed between groups. *p<0.5, **p<0.01, ***p<0.001. 513 

Data are n=3 biological replicates from a single experiment. [F-G] n = 1 biological replicate for 514 

Eff, N, Mem, n = 2 for NM, n = 3 for NEM.  515 

 516 
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518 

Figure 6: Flexible decision making enables quantitative encoding of pathogen experience 519 

during T cell memory formation. (A) Model incorporates pathogen proliferation, T cell 520 

memory decision making through reversible epigenetic switching. Orange arrows indicate 521 

modulation of T cell state transitions by pathogen load. (B) Time traces show memory T cell 522 
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levels (top), total T cell levels (middle) and pathogen load (bottom), for different rates of 523 

pathogen replication (left to right). Dotted line shows the number of memory T cells formed in 524 

the case when this number is a defined fraction of the peak total T cell number, fTm. (C) Distinct 525 

strategies for memory decision making: flexible (top), early (middle) or late (bottom); the 526 

fraction of T cells at the response peak that become memory cells fTm; the peak cell number 527 

(black) and memory cell number (orange), both plotted against pathogen replication rate γv. The 528 

dotted line indicates the number of starting naive cells, and the yellow shading marks scalable 529 

memory. 530 

 531 

Methods 532 

 533 

Mice 534 

Tcf7-YFP mice have been described16. We note that a small number of experiments utilized mice 535 

harboring an additional non-perturbing Tbx21-CFP BAC transgene reporter allele46, though this 536 

reporter was not further analyzed for this study. All mice used in experiments were heterozygous 537 

for the Tcf7-YFP reporter except where specified. WT C57BL/6 mice (Jackson Laboratory) were 538 

utilized as reporter negative controls, where applicable. Both male and female mice were used 539 

for ex vivo experiments, aged 8 to 12 weeks. Female CD45.1 mice, 8-12 weeks of age, were 540 

purchased from the Jackson Laboratory for use as recipients for adoptive transfer experiments. 541 

For donors for adoptive transfer experiments, homozygous Tcf7-YFP mice were crossed with an 542 

LCMV specific TCR transgenic strain47 (P14) (Jackson Laboratory) and heterozygous offspring 543 

were used. P14 homozygous mice without Tcf7-YFP were utilized as non-fluorescent controls 544 
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for sort gate setting. All mice were used in accordance with Institutional Animal Care and Use 545 

Committee guidelines for the University of Washington.  546 

 547 

Naive T cell extraction 548 

Spleens were harvested from mice, massaged between rough glass slides to generate a single-cell 549 

suspension, and filtered through 40 µm nylon mesh into HBH (HBSS, 10 mM HEPES, 0.5% 550 

BSA, pH 7.4). Cells were spun down for 5 min at 300g, resuspended in 3 ml red blood cell 551 

(RBC) lysis buffer (150 mM NH4Cl, 10 mM NaHCO3, 1 mM EDTA) for 3-5 min, and quenched 552 

with HBH. Cells were spun down for 5 min at 300g and resuspended in HBH with 2.4G2 553 

blocking solution and incubated for 30 min on ice. Cells were counted, spun down again, and 554 

then enriched for CD8 T cells using a CD8a+ T Cell Isolation Kit, mouse (Miltenyi, #130-104-555 

075), with the volume and amount of antibodies and microbeads used scaled down to 70% of 556 

that specified by the manufacturer. One LS column was used per spleen (Miltenyi, # 130-042-557 

401). To obtain a pure population of naive CD8 T cells, the cell suspension was stained with 558 

anti-CD8 (PerCP/Cyanine5.5, eBioscience, # 45-0081-82 or Biolegend, #100734), anti-CD44 559 

(APC or PE, Invitrogen, #17-0441-82, or #12-0331-82), and anti-CD62L (APC/eFluor780, 560 

Invitrogen, #47-0621-82) at 1:600 antibody to cell suspension volume ratio in 30x106 cell/ml 561 

HBH with Fc block for 15-30 min on ice and then sorted with a BD FACS Aria III (BD 562 

Biosciences) with assistance from the University of Washington Pathology Flow Cytometry 563 

Core Facility. The naive population was gated as CD8+CD44-CD62L+Tcf7-YFP+. Memory cells 564 

were gated as CD8+CD44+CD62L+Tcf7-YFP+. The cells were sorted into HBH and kept on ice 565 

until plating.  566 

 567 
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Ex vivo T cell differentiation 568 

One day prior to T cell harvest and activation (day -1), plates were prepared by coating with anti-569 

CD3e (Tonbo, #40-0031-U100), anti-CD28 (Tonbo, #40-0281-U100), RetroNectin (Takara, 570 

#T100B), and when specified, anti-CD11a (Biolegend, #101117). Unless otherwise specified, 571 

each well of a 96-well plate received 0.2 µg anti-CD3, 0.1 µg anti-CD28, 1 µg Retronectin, and 572 

(when specified) 1 µg anti-CD11a in 50 µL of PBS. For differentiation in larger wells, these 573 

amounts were scaled up by well surface area. Plates were sealed with parafilm and incubated at 574 

4°C overnight. On day 0, plates were allowed to come to room temperature for at least 30 min 575 

and washed 2x with PBS. Purified cells were added to wells in T cell media [85% RPMI 1640 576 

with L-glutamine, 10% Fetal Bovine Serum, Pen-Strep-Glutamine, 20 mM HEPES, 1 mM 577 

Sodium Pyruvate, 0.1 mM NEAA, 50 µM BME] with indicated cytokine concentrations, mixed, 578 

and spun down for 1 min at 150g to ensure initial contact for all cells with the coated plate 579 

surface. Cytokines added to the media were 100 U/mL IL-2 (PeproTech, # 200-02), 0.5 ng/mL 580 

IL-7 (PeproTech, # 200-07), 50 ng/mL IL-15 (PeproTech, # 210-15), and 1 ng/mL IL-12 581 

(PeproTech, #210-12) unless otherwise specified. Where specified, IFN-β1 (Biolegend, 582 

#581302) was added at 1000 U/mL. The cell seeding concentration was 0.1 - 2.5 million cells / 583 

ml unless otherwise indicated. Cells were incubated at 37°C in 5% CO2 and split every two days 584 

by mixing, removing half of the well volume, and topping off the volume with TCM and 585 

respective cytokines. Where applicable, prior to seeding, cells were stained with 5 µM CellTrace 586 

Violet (CTV) (Invitrogen, #C34557) following the manufacturer’s instructions.  587 

 588 

 589 

Flow cytometry analysis 590 
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For timecourse analyses with cell surface protein staining, cells were spun down in round-bottom 591 

96-well plates or 1.5 ml eppendorf tubes, resuspended in 2.4G2 blocking solution for 15-30 min 592 

on ice, stained with cell surface antibodies at 1:1200 (anti-CD8: PerCP-Cyanine5.5, eBioscience, 593 

# 45-0081-82, or Biolegend, #100734, anti-CD44: APC, Invitrogen, #17-0441-82, anti-CD62L: 594 

APC-e780, Invitrogen #47-0621-82 , anti-CD25: APC, #17-0251-82), 1:400 (anti-CD45.1: APC, 595 

Biolegend, #110714), 1:200 (anti-CD45.2: PE/Dazzle594, Biolegend, #109846) or 1:100 (anti-596 

CD127/IL7Rɑ: PE, Invitrogen, #12-1271-83) antibody to cell suspension volume ratio for an 597 

additional 15-30 min on ice, and spun down again for a final resuspension in HBH prior to 598 

acquisition. For samples that required intracellular protein staining, cells were fixed and 599 

permeabilized using Cytofix/Cytoperm Fixation and Permeabilization kit (BD #554714) 600 

according to manufacturer instructions and incubated with antibody for 30 min on ice. The TCF1 601 

antibody (PE, BD Biosciences, #564271) and T-bet antibody (PE, Biolegend, #644809) were 602 

used at 1:50 and 1:200, respectively. For samples that required intracellular cytokine staining, 603 

cells were restimulated for 5 hr with PMA/Ionomycin (1x in 100 µL per sample Thermofisher, 604 

#00-4970-93) in round-bottom 96-well plates, with a protein transport inhibitor (1x 605 

Thermofisher, #00-4980-93) added after 1 hr. For cytokine secretion after sorting (for Naive, 606 

Mem, and NM/NEM) cells were stained with Zombie Near IR at a 1:1000 dilution in PBS 607 

following the manufacturer’s instructions (Biolegend, #423117). Cells were then fixed, 608 

permeabilized, and stained with antibodies for cytokine and other intracellular protein antibodies 609 

as described above. All cytokine antibodies were used at 1:100 dilution in 1x BD Perm/Wash 610 

buffer (anti-IFN-ɣ (APC/Cyanine7 or PE, Biolegend, #505849, #505808) and anti-TNF-ɑ 611 

(BV711 Biolegend, #506349). Data were acquired using an Attune Nxt Flow Cytometer 612 

(ThermoFisher Scientific) and analyzed using FlowJo (BD) software.  613 
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 614 

Sample processing for sci-fate-seq 615 

Naive CD8 T cells were activated ex vivo, as described. For this experiment, media was 616 

supplemented with 100 U/mL IL-2, 0.5 ng/mL IL-7, 50 ng/mL IL-15, and 0.05 ng/mL IL-12. 617 

The moderate level of IL-12, 0.05 ng/ml, was chosen for this experiment to produce a relatively 618 

even representation of Tcf7 high and low cells (see Fig. 1C). At days 1, 2, and 4 of activation, 619 

two subsequent sci-fate time points were taken as follows: cells were mixed and split into two 620 

wells, which had been coated with anti-CD3 and anti-CD28 at day -1 and remained in the 621 

incubator with TCM; 4sU was added to one well for a final concentration of 200 µM, and that 622 

well was harvested 2 hr later. At that time, 4sU was similarly added to the second well, and that 623 

well was harvested 2 hr later. After each 4sU addition, cells were mixed and spun down at 150g 624 

for 1 min. Harvested cells were prepared for sci-RNA-seq as described for the sci-fate protocol 625 

22. Briefly, cells were fixed with ice-cold 4% PFA for 15 min, washed and flash frozen with 626 

PBSR [PBS, pH 7.4, 0.2 mg/ml bovine serum albumin (Fisher), 1% SuperRnaseIn 627 

(Thermofisher) and 10 mM dithiothreitol (DTT)]. PFA-fixed cells were thawed, washed, and 628 

treated with iodoacetamide (IAA) to attach a carboxyamidomethyl group to 4sU. Following 629 

these steps, a single-cell RNA sequencing library was prepared using the sci-RNA-seq 630 

protocol48,49. The library was sequenced on the Illumina Next-seq system.  631 

 632 

Computational analysis for sci-fate-seq 633 

 634 

Read alignment, downstream processing, and TF module construction 635 
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Read alignment and downstream processing, linking of TFs to regulated genes, and construction 636 

of TF modules was performed as described in Cao et al., 2020, with minor modifications. 637 

Briefly, for each gene, across all cells, the correlation between mRNA levels of each expressed 638 

TF and that gene was computed using LASSO (least absolute shrinkage and selection operator) 639 

regression. We sought to comprehensively define gene programs with distinct dynamics by 640 

doing this correlation separately both using only newly synthesized transcript levels for potential 641 

target genes and using overall transcript levels, expecting that target genes with more stable 642 

transcripts would be more readily identified using newly synthesized transcripts, while less 643 

abundant, more lowly detected target genes would be more readily identified in the overall 644 

transcriptome. After filtering out the resultant covariance links with a correlation coefficient less 645 

than 0.03, we identified 2,117 putative TF - target gene covariance links using newly synthesized 646 

transcriptome levels and 9,927 using overall transcriptome levels, resulting in a total of 10,405 647 

unique links after aggregation. These were further filtered to retain only links supported by ChiP-648 

seq binding, motif enrichment, or predicted enhancer binding24, resulting in 1065 links between 649 

51 TFs and 632 genes. Of these 1065 links, 147 were identified using the newly synthesized 650 

transcriptome levels, 649 were identified using the overall transcriptome levels, and 269 were 651 

identified by both. To calculate TF activity scores in each cell, newly synthesized unique 652 

molecular identifier (UMI) counts for all linked target genes were scaled by library size, log 653 

transformed, aggregated, and normalized. The absolute correlation coefficient was computed 654 

between all TF pairs with respect to their activity across all cells. Pairwise correlations were 655 

hierarchically clustered using the ward D2 method to identify TF modules, with the reasoning 656 

that co-regulatory TFs must be simultaneously active within the same cell.  657 

  658 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2022. ; https://doi.org/10.1101/2022.12.31.521782doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.521782
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

37 

Cell ordering, clustering, and differential gene expression analysis between clusters 659 

We initially attempted to resolve T cell differentiation states by performing dimensionality 660 

reduction with Uniform Manifold Approximation and Projection (UMAP) on whole or new 661 

transcriptomes using all detected genes. This analysis largely separated cells by the time point at 662 

which they were sampled (Fig. S2B), as previously observed50,51, likely a consequence of the 663 

host of other temporal changes occurring during activation apart from differentiation, such as cell 664 

cycle control and metabolic programming. To characterize T cell differentiation dynamics apart 665 

from other regulatory processes, cells were represented in UMAP space using newly synthesized 666 

reads for all genes within the T cell differentiation TF module with monocle3 (v.0.2.3.0) 667 

(reduction_method = ‘UMAP’, umap.n_neighbors = 15L, umap.min_dist = 0.001) 52 using the 668 

function align_cds53 to remove effects of cell cycle phase (preprocess_method = 'PCA', 669 

alignment_group = 'Phase'). The resultant UMAP was clustered using density peak clustering54, 670 

which resulted in 5 main clusters (Fig. 2C, U and E2(A) combined, E1(A), E1(B), E2(B), and 671 

MP(A) and MP(B) combined). To further resolve observed variable T cell differentiation marker 672 

expression within two of these clusters, k-means clustering was used to further divide U and 673 

E2(A) into separate states and MP(A) and MP(B) into separate states (k = 2 and 2.5, 674 

respectively). Cells in different cell cycle phases were relatively evenly distributed across this 675 

UMAP, with S phase representation highest in E1(A) (Fig. S2D). Differential gene expression 676 

testing was performed between clusters using the monocle3 fit_models function. 677 

 678 

RNA velocity analysis 679 

RNA velocity analysis and visualization of velocity streamlines was performed using Dynamo 680 

(v.0.95.2.dev)26 using expression matrices from the full and new transcriptome. The dataset was 681 
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subsetted to include only the T cell differentiation module genes prior to analysis, but the 682 

resultant streamlines were similar when the analysis was performed with all genes. The 683 

streamline results were also similar when scVelo (v.0.2.2)55 was used for velocity analysis (data 684 

not shown), with the full and new transcriptome used as the unspliced/spliced expression 685 

matrices, indicating that the streamline results are consistent between multiple analysis methods. 686 

The scVelo results were also similar with or without subsetting to include only the T cell 687 

differentiation module genes.  688 

 689 

Trajectory analysis 690 

Cells in each putative trajectory (E1, E2, MP) were ordered in pseudotime based on the point 691 

position on the principal curve estimated using the princurve package56. To align the precursor 692 

cells between trajectories, cells in the undifferentiated (U) cluster were set to pseudotime = 0. To 693 

identify genes that distinguish the trajectories, differentially expressed genes were identified 694 

using the monocle3 fit_models function with the model formula as the trajectory and pseudotime 695 

terms. Only resulting DEG associated with the trajectory term were selected.  696 

    697 

Time-lapse imaging 698 

Long-term time-lapse imaging of cultured cells, both to track Tcf7 regulation during initial 699 

activation in naive cells and to track Tcf7 reactivation in sorted Tcf7-low cells, was performed as 700 

previously described with some modifications57,58. Images were acquired with an inverted 701 

widefield fluorescence microscope (Leica DMi8) fit with an incubator to maintain a constant 702 

humidified environment at 37°C and 5% CO2, using a 40X dry objective. For imaging of the 703 

initial 4 days of activation (Fig. 3), cells were seeded at low density (2-5k c/well) in wells of a 704 
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96-well glass bottom plate (Mattek) coated with anti-CD3, anti-CD28, anti-CD11a, and 705 

RetroNectin, as described above. For Tcf7 reactivation imaging experiments (Fig. 4), Tcf7-low 706 

cells were sorted on day 3 after 2 days of initial culture with anti-CD3 and anti-CD28 in media 707 

with IL-2, IL-7, IL-15, and IL-12 and one additional day of culture with anti-CD3 and anti-CD28 708 

removed. These cells were seeded onto PDMS micromesh (250 μm hole diameter, 709 

Microsurfaces) mounted on top of a 24-well glass bottom plate (Mattek) to enable clonal 710 

tracking, as seeded cells show considerably enhanced motility in the absence of TCR 711 

stimulation. To prepare the micromesh for imaging, the surface was first coated with BSA while 712 

mounted on top of a 24-well plate overnight at 4°C and then transferred to a new glass well and 713 

coated with anti-CD11a and RetroNectin for improved adhesion but without anti-CD3 and anti-714 

CD28. For reactivation experiments, cells were cultured in TCM with IL-2, IL-7, and IL-15, but 715 

without IL-12.  716 

 717 

To determine if the experimental conditions required for imaging affect differentiation, we 718 

systematically compared expression of CD44, CD62L, and Tcf7-YFP in cells activated on glass 719 

or tissue culture plates, at high or low seeding density, and with or without presence of anti-720 

CD11a (Fig. S3L). CD44 levels were comparable across all conditions, confirming that all cells 721 

activated in all conditions. In tissue culture plates, CD62L and Tcf7-YFP levels were also 722 

comparable, though the Tcf7-YFP levels were slightly reduced at lower cell density, particularly 723 

in the condition without IL-12, consistent with previous findings that memory differentiation 724 

occurs less efficiently at lower cell densities59. On glass plates, the fraction of CD62L low cells 725 

was increased compared to on tissue culture plates. Tcf7 levels were similarly low for the 726 

condition with IL-12, but the combination of low seeding density and presence of anti-CD11a on 727 
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the glass plate resulted in a lower Tcf7 distribution in the no IL-12 condition than was otherwise 728 

observed. This analysis shows that the specific conditions used for imaging do not affect overall 729 

differentiation trends but may underestimate the differences in differentiation between conditions 730 

with and without IL-12. 731 

 732 

Computational analysis for time-lapse imaging 733 

 734 

Image segmentation and tracking 735 

Image pre-processing, cell segmentation, and tracking was performed in MATLAB (Mathworks, 736 

Natick, MA) using the ictrack movie analysis pipeline we described previously58,60 (Fig. S3A-B), 737 

modified to enable segmentation of cells from brightfield movies. Importantly, to segment cells 738 

without additional fluorescent labels besides Tcf7-YFP, we first trained a convolutional neural 739 

network (CNN) with a U-net architecture61 to predict fluorescence images of whole cells from 740 

brightfield images, using images of cell-trace violet labeled T cells as a training data set27. We 741 

trained separate CNNs for the images acquired in 96-well plates (Fig. 3) and in microwells (Fig. 742 

4), as predictions are optimal when images for training and prediction have similar features. For 743 

each training dataset, hundreds of images of CTV-stained cells were acquired at multiple 744 

timepoints during the process of interest (e.g. initial T cell activation or culture after stimulation 745 

removal). Using the trained CNN, we then generated predicted whole-cell fluorescence images 746 

from acquired brightfield movies, which were used for cell segmentation (Fig. S3B, 1.). Briefly, 747 

in the ictrack analysis pipeline, images underwent (1) correction by subtraction of uneven 748 

background signal stemming from the bottom of the glass plate or the side of the PDMS 749 

microwells (2) Gaussian blur followed by pixel value saturation to fix uneven signal intensity 750 
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within the nucleus of the cell and (3) Laplacian edge detection algorithm to identify the nucleus 751 

boundary. Non-cell objects were excluded via size and shape limit exclusions. To generate clonal 752 

lineage trees, cells were tracked automatically between adjacent movie frames using the 753 

Munkres assignment algorithm, and the resulting cell tracks were manually checked for errors 754 

and to annotate cell divisions (Fig. S3B, 2.).  755 

 756 

Tcf7 promoter state assignment and analysis 757 

To enable quantitative analysis of Tcf7 promoter activity in clonal cell lineages, we assembled 758 

separate full tracks of total Tcf7-YFP fluorescence levels from the starting cell to each ending 759 

cell within a lineage tree, for all lineage trees analyzed (Fig. S3B, 3.). Fluorescence levels are 760 

halved at each cell division; thus, to ensure continuity in Tcf7-YFP levels in these tracks, we 761 

calculated for each parent-daughter cell pair an offset in Tcf7-YFP levels, that we added to the 762 

daughter cells and their progeny, as previously implemented32. These ‘continuized’ tracks were 763 

then smoothed using MATLAB medfilt1 (N=5) and smooth (span = 80 time points, equivalent to 764 

20 hours, method = lowess), and their first derivatives with respect to time were calculated to 765 

generate single-cell tracks of Tcf7 promoter activity for downstream HMM analysis (Fig. S3B, 766 

4.). 767 

 768 

Cell tracks were exported from MATLAB to R for downstream processing. Tcf7 promoter states 769 

for each cell and time point were called from tracks of Tcf7-YFP level derivatives using Hidden 770 

Markov Model (HMM) modeling, implemented with the msm Package for R (v1.6.9)62. We 771 

initially tested four candidate HMM models with either three or four promoter states and variable 772 

constraints on the derivative ranges within each state (Fig. S3C-D). For each model, we 773 
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constrained the mean and variance in Tcf7 promoter activities of each state by fitting Gaussian 774 

distributions to the Tcf7-YFP derivatives at different time windows, to reflect our observations 775 

that cells are expected to be mostly in an inactive, active, or attenuated state at different times.  776 

We then compared the performance of these four models by calculating their log-likelihood and 777 

corresponding AIC (Akaike information criterion) scores. We also checked the quality of each 778 

model’s fit to the data by assessing whether residuals of the fit follow a Gaussian distribution63 779 

(Fig. S3E). Based on this analysis, we chose a model in which cells transition between 4 states: 780 

off (initial), low active, high active, and off (Fig. 3B, Fig. S3F), and all start in the off-initial 781 

state at the beginning of the track. This four-state model performed favorably compared to other 782 

models, likely because it better accounts for the distinct distributions of promoter activity of 783 

silent and active cells at initial and later time points. 784 

 785 

Using this four-state model, we assigned promoter activity states at each time point for each cell, 786 

removing potentially spurious transient promoter states by finding all promoter states lasting less 787 

than 8 hours and replacing them with the previously assigned promoter state. From these states, 788 

we then identified promoter silencing events as those involving a switch from active (high or 789 

low) to an inactive (off) state, and activation events as those involving a switch from inactive 790 

(off-initial or off) to active (high or low) states. We did not allow transitions back to the starting 791 

inactive (off-initial) state, as this state has a distinct Tcf7 promoter activity distribution from the 792 

later silent state (off), likely reflecting the distinct noise characteristics of Tcf7-YFP levels at 793 

different stages after activation.  794 

 795 
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For analysis of Tcf7 silencing between sister cells, we first assigned an ending cell state to all 796 

cells in the dataset, representing the final promoter state of the cell prior to division or the end of 797 

the cell track. Cells with a tracked duration of less than 3 hours and parents with ending cell state 798 

durations of less than 10 hours were also excluded, to ensure the analysis only includes 799 

sufficiently tracked cells and durable promoter states. We then collected all division events for 800 

which the parent cell was in an ON promoter state prior to division and asked whether the 801 

daughter cell tracks ended in an ON or OFF promoter state. We thus calculated the number of 802 

division events that lead to no (ON/ON), unequal (ON/OFF), or concordant (OFF/OFF) daughter 803 

silencing and then calculated the fractions of each category in the entire dataset and within each 804 

generation. To statistically analyze the degree of discordance in Tcf7 silencing decisions between 805 

sister pairs by modifying Cohen’s kappa statistical test for inter-rater reliability as follows: 806 

division events were categorized as concordant (ON/ON or OFF/OFF) or discordant (ON/OFF) 807 

between sisters. The modified Cohen’s kappa coefficient, κ’, was calculated as the observed 808 

percentage of discordant events minus the percentage of discordant events expected by chance, 809 

divided by 1 minus the percentage of discordant events expected by chance64 (Supplementary 810 

Table 4). 811 

 812 

Analysis of Tcf7-YFP negative fractions in homozygous and heterozygous reporter cells  813 

For analysis in Fig. 3I-J and Fig. S3K, YFP distributions were exported from FlowJo as csvs, 814 

imported to Python, and represented as histograms. The positive and negative populations were 815 

fit simultaneously as two gaussian distributions using the scipy.optimize.least_squares function 816 

(scipy v1.5.2), and the gate between YFP positive and negative populations was identified as the 817 

intersection between the gaussian curves. The silent fraction was then calculated as the sum of 818 
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the histogram below the gate divided by the sum of the entire histogram. Two-tailed unpaired t 819 

tests between homozygous and heterozygous YFP silent fractions were performed using 820 

scipy.stats. 821 

 822 

Sort and adoptive transfer or ex vivo reculture of activated cells 823 

Cells were cultured ex vivo in the presence of anti-CD3/28 (+TCR stim) and IL-2, IL-7, IL-12, 824 

and IL-15 as described. On day 2, cells were transferred to a non-antibody-coated plate (-TCR 825 

stim) but kept in the same cytokine environment until day 3 for sorting. For adoptive transfer 826 

experiments only, CD8 T cells were activated directly after purifying with the Miltenyi CD8a+ T 827 

Cell Isolation Kit using 100% recommended reagent amounts, without further purifying naive 828 

starting cells by sorting, and RetroNectin was not used during anti-CD3/anti-CD28 stimulation. 829 

Prior to ex vivo activation, cells were stained with 2 or 5 µM CellTrace Violet (Invitrogen, 830 

#C34557). For ex vivo reculture experiments, cells were sorted from a single CellTrace peak 831 

representing cells that had undergone the same number of divisions over the 3 day culture period, 832 

to ensure YFP differences were due entirely to Tcf7 regulation differences and not cell division 833 

differences. Cells were recultured with and without TCR stimulation and IL-12 (with IL-2, IL-7, 834 

and IL-15 maintained except where specified), as labeled in each figure, for an additional 6-10 835 

days. For genomics experiments, effector controls (Eff) were activated with TCR stimulation and 836 

cytokines for 3 full days. For adoptive transfer, cells were sorted that had undergone at least 4 837 

divisions. Cells were sorted on CellTrace Violet and Tcf7-YFP levels. The Tcf7 low gate was set 838 

using wild type non-fluorescent control cells that were stimulated identically ex vivo. Using this 839 

negative gate, the top and bottom 20% of the YFP distribution were selected as Tcf7 high and 840 

low. Sorted cells were resuspended in PBS and transferred retro-orbitally (1 million cells 841 
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transferred per recipient) to naive CD45.1 mice. On days 1.5, 4, and 10 after adoptive transfer, 842 

mice were euthanized, and blood, spleens, and lymph nodes were collected for flow cytometry.  843 

 844 

Blood and lymph node processing  845 

Blood was collected from euthanized mice by cardiac puncture. Red blood cells were lysed 2x 846 

for 5 minutes at room temperature using 1x RBC lysis buffer (described in naive T cell 847 

extraction), prior to proceeding with cell staining as described in Flow Cytometry Analysis. 848 

Inguinal lymph nodes were harvested, and massaged over a 40 µm cell strainer and resuspended 849 

for flow cytometry staining as described in Flow Cytometry Analysis. 850 

 851 

Sample processing for RNA-seq 852 

Cells were centrifuged at 500g for 5 minutes, resuspended in 350 µL of Trizol (Ambion), mixed 853 

well, and frozen at -80°C for processing, starting from step 2 of the RNeasy micro kit (Qiagen, 854 

#74004) following the manufacturer’s instructions. After processing, RNA was resuspended in 855 

RNase free water, quantified using a NanoDrop 2000c (Thermo Scientific), and shipped on dry 856 

ice to Novogene Corporation Inc. (Sacramento, CA) for library preparation and sequencing.  857 

 858 

Computational analysis for RNA-seq 859 

Raw FASTQ files from RNA-seq paired-end sequencing were aligned to the GRCm38/mm10 860 

reference genome using Kallisto (v0.46.1)65, and the resultant transcript-level abundance 861 

estimates were imported to genes by cells matrices using tximport (v1.18.0) for downstream 862 

analysis. Transcripts with low counts (<10) were removed. Differentially expressed genes were 863 

identified with DESeq2 (v1.30.1)66. PCA plots were generated using the top 500 differentially 864 
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expressed genes between NM and NEM samples and naive, memory, and effector controls. 865 

Significantly differentially expressed genes were also used for gene set enrichment analysis, 866 

performed with fgsea (v1.16.0)67 and using gene sets from the C7 immunologic or the H 867 

Hallmark gene-sets from Molecular Signatures Database deposited by Goldrath and Kaech. 868 

 869 

Sample processing for ATAC-seq 870 

After sorting, cells were centrifuged at 500g for 5 minutes then supernatant was aspirated 871 

without disturbing the pellet. The pellets were resuspended in 100 µL of ATAC freezing buffer68 872 

(50 mM Tris at pH 8.0, 25% glycerol, 5 mM Mg(OAc)2, 0.1 mM EDTA, 5 mM DTT, 1× protease 873 

inhibitor cocktail (Roche-noEDTA tablet), 1:2,500 superasin (Ambion)), flash frozen in liquid 874 

nitrogen and stored at -80°C. On the day of processing, samples were thawed, centrifuged at 4°C 875 

500g for 5 minutes, and washed with 100 µL of cold 1X PBS. Cells were again centrifuged and 876 

resuspended in 100 µL Omni lysis buffer69 (RSB with 0.1% NP40, 0.1% Tween 20 and 0.01% 877 

Digitonin) and incubated on ice for 3 minutes, then quenched with 500 mL of RSB + 0.1% 878 

Tween 20. Nuclei were pelleted at 500g for 5 minutes at 4°C, resuspended in 100 µL cold PBS 879 

and counted. 50,000 nuclei were used per reaction, pelleted (500g for 5 min at 4°C), resuspended 880 

in tagmentation master mix69 (50 µL total: 25 µL 2X TD buffer, 16.5 µL 1x DPBS, 0.5 µL 1% 881 

Digitonin, 0.5 µL 10% Tween 20, 5 µL water, 2.5 µL Tn5 enzyme), and incubated at 55°C for 882 

30 minutes. Samples were purified using DNA Clean and Concentrate-5 (Zymo Research) and 883 

eluted in EB buffer (10 mM Tris) for amplification of tagmented DNA. PCR amplifications were 884 

performed using Illumina indexed primers and NEBNext High-Fidelity 2X PCR Master Mix. 885 

SYBR green was added to each PCR reaction to monitor amplification before it reached 886 

saturation. Samples in this study were amplified between 11-15 cycles using recommended 887 
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conditions70. Unpurified products were run on a 6% TBE gel for quality control. PCR 888 

product/library were purified using DNA Clean and Concentrate-5 (Zymo Research) then ran on 889 

a tapestation to visualize nucleosome distribution. The libraries were normalized to 2nM then 890 

pooled equimolar for sequencing. Pooled libraries were loaded onto a NextSeq 500 High150 891 

cycle kit at 1.5 pM loading concentration with paired ends sequencing (read 1: 74 cycles, read 2: 892 

74 cycles, index 1: 10 cycles, index 2: 10 cycles). 893 

 894 

Computational analysis for ATAC-seq 895 

Raw ATAC-seq FASTQ files from paired-end sequencing were processed and aligned to the 896 

mm10 mouse genome using the PEPATAC (v0.10.3)71 pipeline, which uses bowtie272 for 897 

alignment. Unmapped, unpaired, and mitochondrial reads were removed. Following alignment, 898 

peak calling, merging across all samples, and annotation was performed using HOMER 899 

(v4.10)73. Differentially accessible regions were identified using DESeq2. PCA plots were 900 

generated using the top 500 differentially accessible regions between recultured samples and 901 

naive, memory, and effector controls. Coverage tracks were generated from bigwig read 902 

alignment files using karyoploteR (v1.14.1). 903 

 904 

Statistical Analysis 905 

All analyses and p or adjusted p value significance are listed with each figure caption. Statistics 906 

were performed in R using the rstatix package (v0.7.0) or Python using scipy (v1.5.2). 907 

 908 

  909 
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Supplementary tables 910 

Table S1: Differential gene expression between all UMAP clusters in Fig. 2C. These DEG 911 

results are displayed in heatmap in Fig. 2D. 912 

Table S2: Differential gene expression results for pairwise comparisons between relevant 913 

UMAP clusters in Fig. 2C. These DEG results are displayed in volcano plots in Fig. 2E and Fig. 914 

S2F. 915 

Table S3: Differential gene expression between E1, E2, and MP trajectories. These DEG 916 

results are displayed in Fig. 2G. 917 

Table S4: Discordance score calculation using modified Cohen’s kappa coefficient. Results 918 

are displayed in Fig. 3H. 919 

Table S5: Analysis of Tcf7-YFP reactivation in microwells. The number of microwells with a 920 

given starting number of cells and the number of microwells with this number of starting clones 921 

that gave rise to Tcf7-YFP reactivated cells is shown. Relevant to Fig. 4H-I. 922 

Table S6: Differentially expressed genes in each bulk RNA-seq cluster. Relevant to Fig. 5C. 923 

  924 

Supplementary movies 925 

Movie S1: Tcf7-YFP silencing within a clonal lineage. Relevant to Fig. 3A. 926 

Movie S2: Tcf7-YFP reactivation example 1. Relevant to Fig. 4H-I. 927 

Movie S3: Tcf7-YFP reactivation example 2. Relevant to Fig. 4H-I. 928 

 929 

 930 

 931 

 932 

 933 

934 
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